
17 
D-branes and black holes 

We've seen now many examples of the ways in which D-branes can be 
used as probes of the non-perturbative structure of string theory, with 
remarkable insights, including the one that string theory is not really a 
theory of strings beyond perturbation theory. It should not be forgotten 
that strings also have the intriguing feature that they insist on describing 
(at least) a perturbative quantum gravity. It is considerably significant 
that we can get insight into string theory's non-perturbative treatment of 
certain questions in quantum gravity, again using D-branes to probe and 
model the physics of black holes. This chapter will lay the foundations for 
how this works. 

17.1 Black hole thermodynamics 

17.1.1 The path integral and the Euclidean calculus 

In an attempt to construct a path integral definition of quantum gravity, 
one might envision the following: 

z = / D[g, yjeiI[g,'Pl, (17.1) 

for some appropriate choice of integration measure D[g, yj over the met­
ric g and matter fields y. In the early days of studying the path integral 
for gravity, it was noticed that the gravity action for some region M 
should be supplemented by a term evaluated on its boundary aM which 
allows the contribution of variations which include configurations which 
vanish on aM, but which might have non-vanishing normal derivatives 
on it. The result is (in units where GN = 1): 

1=- v=g R d x + - y-h K d x, 1 J D 1 fr' ~ D-l 
167T M 87T aM 

(17.2) 
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410 17 D-branes and black holes 

where h{U/ is the induced metric on the boundary, and K is the trace of the 
extrinsic curvature of the boundary. (We learned how to compute these 
quantities in insert 10.2.) This term is required so that upon variation with 
metric fixed at the boundary, the action yields the Einstein equations. 

Since I is real, there is the problem that the path integral has conver­
gence problems, since the integral is in principle oscillatory. One way this 
is made sense of to 'Wick rotate' the time axis by 900 by the substitution 
t ---+ -it, and so the path integral becomes: 

(17.3) 

where IE = -iI is the Euclidean action, which is real for real fields, and 
now the integrand is seen to be a damped exponential, which improves 
convergence. The metric has gone from signature (- + + ... +) to signa­
ture (+ + + ... +). In principle, we can evaluate our path integral on the 
Euclidean section and then rotate back to Lorentzian signature. 

The Euclidean technology allows for the definition of the canonical ther­
modynamical ensemble as well. Let us see how this works. The amplitude 
to go from a configuration (gl, Cf?I) at time h to a configuration (g2, Cf?2) 
at time t2 is: 

This quantity has another representation, in the Schrodinger picture: 

Let us study the situation that (gl, Cf?1) = (g2, Cf?2). Writing t2-h = -i{3, 
and summing over a complete set of eigenstates ('I/Jn, En) of the 
Hamiltonian, we get the partition function: 

(17.4) 

The system is at temperature T = (3-1, and we have the standard expres­
sion for the probability, Pn, of being in the nth state: 

1 
Pn = _e- f3En 

Z 

The familiar representation given in equation (17.4) represents the same 
system represented by the Euclidean path integral given in equation(17.3), 
where the fields (g, Cf?) are periodic in T with period {3. We shall see how 
to extract other physical quantities from here a little later. 
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17.1 Black hole thermodynamics 411 

17.1.2 The semiclassical approximation 

The evaluation of the entire path integral will not concern us here, since 
as string theorists, we take a rather different approach to the problem of 
quantum gravity. However, we expect from the reasoning that we have 
used many times already that we will arrive at a low energy action of the 
sort we studied above, regardless of the underlying microscopic model. 
So in fact, when we come to examine the macroscopic predictions of the 
microscopic details of our particular approach to fundamental physics 
(string and M-theory) - or any other approach, for that matter - they 
should make contact with the semiclassical results to be derived from the 
action above. 

The expectation is that the configurations with the most dominant 
contribution to the path integral will be those which are near an extremum 
of the action, i.e. solutions to the equations of motion. This of course 
fits with our intuition about how the classical limit arises from the path 
integral approach. 

In this limit, the path integral becomes 

Z = e-1E == e-(3W, 

defining the thermodynamic (effective) potential W, which is 

W=E-TS, (17.5) 

where T is the temperature and S is the entropy of the system. We can 
easily extract useful information in this limit. For example, the average 
energy of the system would be quite reasonably defined as the normalised 
quantity 

( ) _ ~ " -(3En __ ~ 8Z __ 8 log Z _ 8lE 

E - Z ~ Ene - Z 8(3 - 8(3 - 8(3' (17.6) 

Another example of some importance is the entropy. This is defined in 
terms of the occupation probability Pn as: 

(17.7) 

The approximation will allow us to extract a number of key features of 
the physics. For example, the contribution of the fields cp to the effective 
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412 17 D-branes and black holes 

action of quantum fields on various curved spacetime backgrounds will be 
sensitive to various features of the background and the properties of the 
fields themselves. Meanwhile, in the purely gravitational sector, we will 
find that there are dramatic effects which arise in our computations due to 
the non-trivial interplay of topology of the Euclidean section with the path 
integral288 . An example of an immediate consequence of this is the result 
that black holes have an intrinsic temperature. Let us compute this for 
the Schwarz schild and Reissner-Nordstrom solutions to see how it works, 
since the computation in this framework is surprisingly straightforward. 

17.1.3 The temperature of black holes 

We begin with the Schwarzschild and Reissner-Nordstrom solutions which 
we met in given in chapter 10, and as we were instructed in the previous 
section, we continue the solution to Euclidean signature via t ---+ -iT, with 
period {3 for T: 

(17.8) 

with 

This solution is taken as making sense in the range r + ::; r ::; 00, where 
r + = M + VM2 - Q2. Now the neighbourhood of r = r + (what was 
the horizon) is trying to look like lR 2 X 52, but sadly, there is a conical 
singularity there, because the coordinates (r, T), trying to look like polar 
coordinates in the plane, have the wrong periodicity for T for arbitrary {3. 

In fact, the problem of computing the temperature reduces to the mat­
ter of removing this 'bolt singularity,83, 82, ensuring the 'regularity of the 
Euclidean section'. This is quite easy to do: one has to make sure that the 
infinitesimal ratio of the circumference (going around in T) to the radius 
(moving in r), is in fact 27T as one approaches the origin of lR 2, which is 
r = r + = 2M. This boils down to: 

. .6.T d(V1/2) 
27T = hm -1/2 d r---+r+ V- r 

47T / 73 = V Ir=r+, 

where.6.T = {3 = liT. We then add a point (equivalent to a whole 52) to 
repair r = r +. From this we get: 

(17.9) 
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17.1 Black hole thermodynamics 

and for the case of Q = 0 (Schwarzschild), we have 

1 
T=--

87TM' 

413 

which shows that large black holes are actually quite cold, and it is small 
black holes which are hot. This is actually a good thing for consistency 
with what we have already observed, since it means that astrophysical 
black holes (especially the really big ones apparently indirectly detected 
out there at the cores of galaxies, but even stellar-sized ones) have neg­
ligible mass loss due to this sort of radiation*. In fact, this means that 
asymptotically fiat black holes (i.e. the sort we've been studying so far) 
have negative specific heat, since reducing the energy of the system (mass) 
increases the rate at which it is lost. 

Notice furthermore that for the charged black hole, the temperature 
vanishes at extremality, since there r + = Q = M. This fits rather well with 
what we have learned previously: the extremal solution is supersymmetric 
and in fact a BPS state, and so zero temperature is consistent with 
its stability. In addition, we see that the thermodynamics protects the 
censorship idea, since it cannot radiate further mass away, making a sub­
extremal object with a naked singularity. 

In fact, the temperature can be related to a purely geometrical quan­
tity known as the surface gravity, K" of a black hole, which is a purely 
geometric quantity that exists at the horizon, and (crucially) is constant 
all over it 292 . If we had a test particle in the geometry connected to an 
observer at infinity by a long (light) string, the surface gravity is in fact 
the acceleration needed to hold the particle stationary at the horizon. It 
can be defined in terms of a Killing vector X normal to the horizon: 

(17.10) 

where we perform the evaluation at the horizon. 
For our solution, we have that XIL = elL = of, and from the list of 

the non-vanishing components of the affine connection given in equa­
tion (10.5), we can compute the only non-zero component of the covariant 
derivative: 

-2Mr + 2Q2 Mr _ Q2 
----~3~---+ 3 

r r 
which gives 

* The reader can multiply by hc3 /GkB in order to restore the physical units. 
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and so we have: 

17 D-branes and black holes 

T=~. 
27T 

17.2 The Euclidean action calculus 

(17.11) 

The action is usually evaluated by computing with what is called the 
'Euclidean section' of the spacetime, which arose in the previous sec­
tions. Since this removes the singularities from the integrand, it makes the 
integration procedure sensible288 , 290. Furthermore, for asymptotically 
(locally) fiat spacetimes, the action is interpreted as computed with refer­
ence to an appropriate background in order to give a finite answer. Later, 
we will see a different prescription in the context of asymptotically anti-de 
Sitter spacetimes, which allows for a computation of the action which does 
not require reference to another spacetime. Let us compute an example 
with the present methods to get used to how they work. 

17.2.1 The action for Schwarzschild 

The Schwarzschild spacetime is asymptotically fiat, and so we can com­
pute the action by using fiat spacetime as a reference background. For 
both spacetimes, the Ricci scalar R = 0 and so the second part of the 
action is where we must concentrate our efforts. 

We must evaluate the extrinsic curvature for both spacetimes. Let us 
pick for our boundary the spherical shell at r = R. The unit outward 
normal to this is (see insert 10.2, p. 229): 

The extrinsic curvature is 

which gives non-zero components 

1 1 (2M) 2M 
K tt = -"2 (1 _ 2~I) 1/2 1 - ----;:- ~; 

1 1 (2M) 
Kee = "2 (1 _ 2~f/2 1 - ----;:- 2r; 
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17.2 The Euclidean action calculus 415 

1 1 (2M). 2 
Kee = "2 (1- 2~)1/2 1-~ 2Tsm e; 

- G/LV - 1 [ 1 K - K/Lv - . 1/2 21' - 3M , 
(1- 2~I) 1'2 

(17.12) 

and by setting M = 0 we get the result K = 2/1' for Minkowski space. 
The measure for integration on the boundary is 

( 2M) 1/2 Vh = 1'2 1 - -1'- sin e 
and recall that the period of the imaginary time is tlT 
Schwarzschild we have 

J VhKd3 x = ,641T(2T - 3M). 

,6. So for 

For Minkowski, we must be more careful. The measure is Vh = 1'2 sin e, 
and K = 2/1', but we must choose our temperature carefully. Since 
Minkowski is regular for any period of T, the temperature is arbitrary, 
and so we must fix it to match the Schwarzschild temperature. At ra­
dius 1', the temperature is not ,6, but it is red shifted to,6 (1 - 2M/T)1/2, 
so that is what we should use for the result of integrating over the compact 
time, with the result: 

J ( 2M)1/2 Vh Kd3x = (J41T2T 1 - -1'- , 

and so the action difference in the limit R ----+ ex) is 

(17.13) 

Let us see that we can in fact extract useful information from this result. 
First, we note that M is a function of ,6 (M = ,6/81T) and so we should 
be careful when differentiating with respect to ,6. A computation of the 
energy, using the formula (17.6) gives: 

IE\ _ M ~aM - M 
\ I - 2 + 2 a{-J - , 

which is an extremely intuitive result. We have seen that the system has a 
temperature, and so we should expect to compute a non-zero 'Bekenstein­
Hawking,262, 261 entropy, using equation (17.7): 

S = {:JM _ ,6M = 81TM2 = A 
2 2 4' 
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416 17 D-branes and black holes 

where A is the area of the black hole's horizon. So we see that these 
results combine nicely to confirm the expression for the thermodynamic 
potential 

I M 
W == 73 = 2 = M - TS. 

17.2.2 The action for Reissner-Nordstrom 

A similar computation of the gravity action can be done for the charged 
black hole, and in fact, the result is the same as in equation (17.13), 
with {3 now from the expression given in (17.9), which should be obvious 
to the reader who followed the computations. The term in the metric 
containing Q is subleading in a 1/r expansion. Now the action needs to 
be supplemented by a contribution from the Maxwell term, which can 
be manipulated into a boundary term, assuming that the equations of 
motion are obeyed: 

1j· In J-wD 1 1. A IW hI = -- v gF F d x = -- F dS 167T M IW 87T aM M v, 
(17.14) 

where the latter is a boundary integral, and we have used the on-shell 
condition that \7 vFMV = O. 

Notice that the usual expression for the gauge potential, written as a 
one-form A = Atdt, where At = Qlr, is singular, since the interval dt is 
infinite at the horizon. We can repair this problem by defining a value for 
the potential at the horizon, <I> = Q I r +, and then redefining the potential 
by a gauge transformation: 

A = Q (~ - ~) dt. 
r r+ 

Now since the non-zero components of FMV are just Frt = -Qlr2, the 
boundary integral for the action is easy to compute, giving, in the limit 
R ----+ 00 the result: 

{3 
1M = --Q<I>. 

2 
So the total action turns out to be 

IE = ~[M - Q<I>]. 
2 

Again, in the semiclassical limit we can equate this to {JW, where the 
thermodynamic or Gibbs potential is 

W = M - TS - Q<I>, 
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17.2 The Euclidean action calculus 417 

since in the thermodynamic analogy, <I> is like a chemical potential for Q, 
the analogue of particle number. Now we can use the standard thermo­
dynamic relations to compute: 

( 81) <I> (81) 
E = 8 {-J <I> - {-J 8<I> (3 = M; 

(81) A 
S = (-J 8{3 <I> - 1 = 4; 

1 (81) Q = -73 8<I> (3 = Q, (17.15) 

where A is the area of the black hole's horizon. These canonical ensemble 
computations are best performed by working in terms of r + as much as 
possible, converting in the end to, for example, 8/8{3 = (8r +/8(3)8/8r +, 
etc. 

17.2.3 The laws of thermodynamics 

The reality of the thermodynamic behaviour of black holes begun to 
emerge from considering (among other things) the observation that was 
made by relativists that an isolated black hole's horizon area, A, cannot 
be decreased by any physical process292 , 289. This is, of course, reminis­
cent of the analogous law for entropy, S, in thermodynamics, where it is 
called the Second Law of thermodynamics. 

Combining this with the result that there is in fact a temperature to be 
associated with black holes, because they are radiating their mass away 
quantum mechanically leads to the 'Bekenstein-Hawking' relation of the 
entropy to the area262 , 261, which we computed in two cases above: 

S= A 
4' 

In fact, a First Law can be formulated for black holes as well, 

dE = T dS + pdV ¢::::::} 
1 

dM = -KdA + DHdJ + Qd<I>, 
81T 

(17.16) 

where on the left hand side are the usual quantities from the first law, and 
on the right are the analogous black hole quantities, the electric charge 
and potential at the horizon, and the angular velocity at the horizon DH 
and angular momentum J such as could be computed for a rotating black 
hole (the Kerr solution). 

Additionally, a Third Law can be stated292 . For the Reissner-Nordstrom 
black hole, we saw that the extremal case has T = O. However, to achieve 
such a case starting from finite temperature is intuitively physically 
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impossible since approaching the extremal case would mean opening up 
the infinite volume spacetime which in chapter 10 was shown to live at 
the horizon of the extremal black hole. 

17.3 D = 5 Reissner-Nordstrom black holes 

It is a remarkable and profound fact that black holes obey the laws of 
thermodynamics, saying that gravity has some underlying structure which 
has yet to be fully understood. What one needs to find is (as for ordi­
nary thermodynamics) an underlying microscopic description from which 
these laws arise. This is a big problem with quantum gravity. A universal 
microscopic description of the required degrees of freedom is not known. 

Happily, the modern era has seen remarkable progress. String theory 
contains a theory of quantum gravity within it which is understood well 
enough to make progress in at least some of these questions. So far, we 
have only seen signs of gravity perturbatively, but black holes are firmly in 
the non-perturbative sector. Now, there are powerful arguments about the 
behaviour of strings at high energy density which can be followed to strong 
coupling to achieve a sharp, but qualitative understanding of the quantum 
behaviour of black holes as described by strings via a 'correspondence 
principle,263. There is marked qualitative agreement with the properties 
we have uncovered above 7. 

However, by the study of a specific but large class of black holes in 
string theory, it is possible to find a microscopic description of them us­
ing D-branes which firmly establishes the precise (including all crucial 
universal numerical factors) thermodynamic relations we discussed semi­
classically above. This is remarkable progress is a good sign that string 
theory (and M-theory) does indeed show mature signs of having a descrip­
tion of non-perturbative gravity. Let us begin to uncover some aspects of 
this description. 

We shall work with five dimensions, for the simplest example. A five 
dimensional analogue of the charged black hole solution (10.4) that we 
already studied somewhat in chapter 10 is: 

2 ( 2m q2 ) 2 ( 2m q2 ) -1 2 2 3 
ds = - 1 - R2 + R4 dt + 1 - R2 + R4 dR + R d03 , 

q 
At = R2' (17.17) 

where 
(17.18) 

is the metric on a round three sphere, and (t, R, e, ¢, X) constitute polar 
coordinates in the directions (xO, xl, x 2, x 3, x 4). 
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17.3 D = 5 Reissner-Nordstrom black holes 419 

As before, there is an outer horizon at the largest root of crr = 0: 

R~ = m ± -1m2 - q2, 

and a singularity at R = O. From our previous discussion, we know that 
there is a Hawking temperature and Bekenstein-Hawking entropy set by 
the horizon. We would like to make a link to a microscopic description of 
the underlying structure of the black hole. 

The challenge is therefore to attempt to embed this black hole into 
string theory in a manner which allows us to use some of the tricks we 
learned about D-branes to help us study its properties. It is useful to 
rewrite the hole in isotropic coordinates for this study, since we are going 
to build the black holes out of branes, and we have presented the super­
gravity solutions for them in chapter 10 in terms of such coordinates. To 
do this, let us write R2 = r2 + R~ for some new radial coordinate r. Since 
we can write -Ctt = crr as 

where rrr = R~ - R~ = 2jm2 - q2, we find the following pleasingly 
simple form: 

where 

~ (1- H-1) 
R~ , (17.19) 

where the horizon is at r = rHo It has area A = 27T2(rrr+R~)3/2 = 27T2 Rt. 
The interior region of the black hole containing the singularity is not 
covered by these coordinates. In the extremal limit where the horizon is 
degenerate (m = q), we get R~ = R~ = q and the solution in the original 
coordinates is: 

where the horizon is at R2 q. It has area A = 27T2q3/2. In isotropic 
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coordinates we get simply: 

ds 2 = -rf;;2dt2 + He (dr 2 + r2dnn, 

At = H;;l 
Q2 

and He == 1 + 2' r 
(17.21) 

where we write Q2 = q for later notational convenience. The horizon is 
now at r = O. 

Now comes the fun part. We have to see whether any of the structure 
of the solution is familiar to us from what we have learned so far. It is 
encouraging that we get something that looks like the correct type of 
harmonic function that we would like to come from a brane solution, but 
we have to achieve a constant dilaton, and see the gauge field arise from 
either pure metric geometry and/or the R-R sector, if we are to connect 
it entirely to D-branes. 

17. 3.1 Making the black hole 

The most obvious thing to try would have been the D5-brane solution, 
wrapped on T 5 , which would have given (ignoring the T 5 directions): 

ds2 = _H-1/4dt2 + H 3/4 (dr2 + r2dn~), 
d5) = H-\ e-~ = H 1/ 4 

Q2 
where H == 1 + -2 . 

r 
(17.22) 

Compare this to the solution (17.21). This comes close in the gauge field, 
but fails for a number of reasons. The first is that the powers of the 
function H = 1 + Q2 / r2 are wrong in the parallel and transverse parts of 
the metric, and the second is that the dilaton is not a constant. 

Looking at the transverse part to see what is missing, we observe that 
we really need an additional Hl/4. Perhaps we can combine this solu­
tion with something which has this behaviour. This behaviour is what 
we would get if were to attempt to make instead a hole by dimension­
ally reducing the D1-brane solution (delocalised in four of its transverse 
directions on a T4 C T 5 , so that we use r-2 and not r-6 in H): 

ds2 = - H-3/ 4dt2 + H 1/ 4 (dr2 + r2dn~), 
C~1) = H-\ e-~ = H- 1/ 4 

Q2 
where H == 1 + -2 . 

r 
(17.23) 
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Again, this solution on its own would have shortcomings. Notice that the 
dilaton goes inversely with that of the D5-brane solution, but that the 
reduced R-R field is again just what we want. 

In fact, we can make a solution by combining these two in a manner 
analogous to that which we saw before in section 15.4, using the har­
monic function sum rule to get a solution which has eight supercharges. 
The harmonic functions in the three sectors (i.e. directions transverse to 
both, transverse to the smaller, or parallel to both) combine by product. 
Ignoring the five directions of the T 5 this gives us: 

ds 2 = - H- 1dt2 + H (dr 2 + r 2dD§) , 

dl) = H- 1 = C?); e-% = 1. (17.24) 

We could take the diagonal combination of the charge sector as our gauge 
field (thereby averaging C(1) and C(5) and so summing the charges) and 
things would be perfect there. So overall, this is very nearly what we want, 
but it sadly it fails because the power of H in Gtt is not correct. 

Undaunted, we must search for some new component to the solution 
which does not modify what we have already got correct for the trans­
verse directions and the dilaton and charge sector, but fixes the prob­
lematic power of H in Gtt . Switching off the contributions from the 
branes temporarily, we see that we must have a constant dilaton, and a 
metric: 

and we can still possibly allow an electric potential At = H-l, since we 
can take a linear combination of it with the other gauge sectors. 

One recourse is to appeal to pure geometry. We have only so far been 
considering a direct reduction on the T 5 by simply ignoring it. We can be 
considerably more subtle and reduce on it (or part of it) with a Kaluza­
Klein twist. This could achieve our modification of the metric without 
modifying the dilaton, since it would come the pure geometry of the re­
duction. Recall that we learned from earlier Kaluza-Klein studies in chap­
ter 4 (see also insert 12.1) that we can modify a metric component which 
is G~y+1 in D + 1 dimensions by twisting the y direction with, say the 
x 5 direction along which we do the Kaluza-Klein reduction. The metric 
component G~y in the D-dimensional metric is in fact Gf!v+ 1 - G55A0' and 
the gauge field Ay = G5y /G55 . In the present case, our gauge field must 
be of the form (up to a gauge choice) At = H-l, and so this fixes for us 
what we can achieve in the reduction. 
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N.B. Since the gauge field is electric, it must come from a metric 
component resulting from a twist of time t with a spatial component 
and so this is in fact equivalent to giving the entire solution some 
momentum in the internal direction x5. 

To see that this Kaluza-Klein will give the modification we need to get 
the five dimensional black hole metric, choose a six dimensional Kaluza­
Klein ansatz (still with the D1- and D5-brane components switched off): 

ds 2 = - ~dt2 + dr 2 + r2dO~ + H [dX5 + (~ - 1) dtf 

= -dt2 + dx~ + Q: (dt - dX5)2 + dr2 + r2dO~, (17.25) 
r 

where we have shifted the gauge potential At = H- 1 by unity (this is just 
a gauge choice), and labelled the Kaluza-Klein dimension as X5. 

We see that the solution looks very simple as a six dimensional metric, 
but when written in the Kaluza-Klein ansatz, with the appropriate gauge 
field, we can achieve the desired modification of the coefficient of dt2 which 
will appear in the reduced metric. When we introduce the D1 and D5 
harmonic functions into the full solution, they will be multiplied back in 
according to the manner we have seen above, not modifying this structure 
at all. 

Before writing the full solution, note that we can introduce orthogonal 
coordinates V2u = X5 - t and V2v = X5 + t and write the solution as 

There is a null vector with components l{l = o{lu, which is in fact co­
variantly conserved. This shows that the solution (H is independent of 
the u, v directions and can have a variety of dependences on the trans­
verse ones) is in fact a 'plane-fronted' wave, which has parallel wave 
fronts. It is often called a 'pp-wave' for this reason. (See insert 17.1 for 
a discussion.) 

So we have in fact succeeded in our goal. By superposing these three 
components according to the sum rules, we can construct the five dimen­
sional extremal black hole. To recapitulate, it corresponds to a D5-brane 
wrapped on a T4 (in directions X6, X7, Xs, xg) to make a string lying in 
the x5-direction. This string is combined with a D1-brane also lying in X5. 
We know from previous chapters that this is supersymmetric. Finally, we 
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Insert 17.1. pp-Waves as boosted Schwarzschild 

Observe that we can write the pp-wave given in equation (17.25) in 
a manner in which is clearly a limit of a non-extremal form: 

ds 2 ~ -dt' + dX; + ~~ ( 008h jldt - sinh (JdX5)' + (1 _ ~~ ) - 'dr2 

9 

+ r2dO~ + L dx;' (17.26) 
i=6 

This is written as a sort of boost, rather like we did for the p-brane 
solutions in subsection 10.2.2. It is actually a Lorentz boost of a fa­
miliar solution in the (t, X5) plane. The supersymmetric solution we 
wrote previously is the limit of infinite boost, {3 ----+ 00, with rH ----+ 0 
holding the combination r~ = rAe2 ;3 j 4 held fixed, just like the infi­
nite boost gives the supersymmetric extremal p-branes. The infinite 
boost gives a special supersymmetric solution with a null Killing vec­
tor a j au, where V2 u = (X5 - t). This is a momentum in the X5 direc­
tion, as discussed in the main text. The correctly normalised value of 
rp is 

2 2,V*ci 
rp = gsO: V R2 Qp, 

where Qp is an integer, R is the radius of X5, and V is the volume 
of the T4. We were able to compute the momentum in this direction 
by Kaluza-Klein reduction to be P = Qj R = RVj(g;o:'4) , where R 
is the length of X5 and V is the volume of the T4 on which we could 
put X6, ... , Xg. More generally, we have now 

So we see that the supersymmetric limit is to have only a left-moving 
momentum excited. The general solution has both left and right mo­
mentum excited. What was it we boosted? Well, taking {3 ----+ 0: 

( 2) (2) -1 9 
ds2 = - 1 - ~~ dt2 + dx~ + 1 - ~~ dr2 + r2 dO~ + ~ dX; , 

simply the five dimensional Schwarzschild solution, times a T5. 
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combine this with a third element, a wave in the X5 direction. Compact­
ifying on X5 to five dimensions, we get a pointlike object, the extremal 
Reissner-Nordstrom black hole, where the U(I) charge is in fact a diag­
onal combination of the U(I)s from the two R-R sector charges and the 
Kaluza-Klein charge of the momentum! 

We can now be a bit more general. There is no reason why we cannot 
consider having different amounts of the various charges from the three 
independent sectors, since it is only their orientations which matter for 
the amount of preserved supersymmetry. So we can have Q5, Q1 and 
Qp as three independent integers representing the number of D5-branes, 
Dl-branes, and momentum in the compact X5, respectively. Let us intro­
duce the correctly normalised harmonic functions and write the solution 
representing this. The metric is (in Einstein frame) 

g~/2ds2 = H-;3/4 H;:1/4 ( -dt2 + dx~ + Hp (dt - dX5)2) 

+ Hi/4Hi/4 (dr2 +r2dS1§) + V1/2Hi/4H;:1/4ds~4' 
(17.27) 

where dS~4' in the (x6, X 7 , x8, x9) directions, is the metric on a T4 with 
unit volume. Notice that given the orientations of the constituent branes, 
we can replace the T4 by a K3 and preserve the same amount of supersym­
metry. The results for the entropy count will turn out to be the same, but 
we will do it more carefully in a later section, since wrapping branes on 
K3 produces interesting subtleties, due to the enhan<;on mechanism which 
we discussed in chapter 15. The X5 direction is compact with period 2TiR. 
The dilaton and Ramond-Ramond (R-R) fields are given by 

2<I> 2H1 (3) -1 
e = g8 -H ' Frtz = 3rH 1 , 

5 

The harmonic functions are given by 

where the various scales are set by 

F (3) 2 2 . 2 e . A. 
8¢x = r5 sm sm 'P. (17.28) 

(17.29) 

2 , Q 2 , V* 2 2' V* a' () 
r5 = gsa 5, r1 = gsa V Q1, rp = g8 a V R2 Qp, 17.30 

where V* = (2Tivei) 4 . The properties of the event horizon at r = 0 can 
be computed (which the reader should do), yielding a vanishing surface 
gravity (and hence Hawking temperature) and a non-vanishing area and 
hence Bekenstein-Hawking entropy: 

(17.31) 
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Our goal is to find a microscopic description of this, and we do this next. 
Notice that the mass of the black hole is computed to be: 

(17.32) 

which is just the sum of the Kaluza-Klein mass and the constituent brane 
charges normalised by the appropriate volume factors arising from where 
they are wrapped. That there is no interaction energy is consistent with 
the fact that we are constructing this black hole out of BPS constituents. 

Notice that, inevitably, there is an explicit dependence of the mass on 
the embedding parameters. This is in contrast to the entropy, which is 
independent of the embedding parameters and so appears to be much 
more universal. We shall see a reason for this much later. 

17.3.2 Microscopic entropy and a 2D field theory 

Now we can follow the logic which we used in chapter 10. This geometry is 
entirely constructed with R-R charged objects, with some momentum. We 
have established that D-branes are the smallest possible objects carrying 
those charges, and so we must be able to make the black hole out of 
D-branes, with some momentum 7 . 

The case which we consider here is a compactification in which Q5 
D5-branes wrap a T 4 , appearing as strings in six dimensions, forming 
a composite with Q1 D1-branes. The D1 can only move within the 
D5-brane world-volume, and so this configuration should remind us of 
the D1-D5 bound state, which preserves 1/4 of the spacetime supersym­
metries. Adding BPS momentum (i.e. purely right-moving) to such a con­
figuration breaks a further 1/2 of the supersymmetries, and so we have a 
total of four supercharges. 

Let us consider the case of gsQ « 1, where Q is any of the charges in 
the solution. Then from the form of the harmonic functions (17.30), it 
is clear that in this limit we are studying the weakly coupled system of 
D-branes in fiat space. We shall perform the study of the system in this 
limit initially. The case of gsQ > 1 is where we have a macroscopic black 
hole, and as we shall see, our results for the counting of the entropy will 
apply to this case as well. This will appear to be simply due to the fact 
that we are counting BPS states, but later we shall see that things are 
more robust than that. 

The configuration yields the following decomposition of the spacetime 
Lorentz group: 

50(1, 9) ~ 50(1,1) Q9 50(4) Q9 50(4), (17.33) 
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where the first factor acts along the D-string world sheet (t, x 5 ), the 
third acts in the rest of the D5-brane world-volume (x6,x7,x8,x9) and 
the second in the rest of spacetime (xl, x 2, x 3, x 4). From the point of 
view of the D5-brane gauge theory, the Dl-branes are bound states in 
the 'Higgs branch', in which the Dl-branes are instantons inside the 
D5-branes (see section 13.4). This branch is parametrised by the vacuum 
expectation values (vevs) of 1-5 open strings, which give 4QI Q5 bosonic 
and fermionic states, simply the dimension of instanton moduli space. 
The 'Coulomb branch' of the gauge theory is the situation where the 
Dl-branes become pointlike instantons and then leave the D5-branesI30 , 
ceasing to be bound states. This branch is parameterised by the vevs of 
1-1 and 5-5 strings, which ultimately separate the individual D-branes 
from each other. This takes us away from the black hole, the state of 
most degeneracy. So we study the 1-5 and 5-1 open string sector, i.e. 
oriented strings stretching between the Dl- and D5-branes. From the 
counting in section 13.4, we know that we have 4QI Q5 boson-fermion 
ground states 7 . 

N.B. Another way of thinking of this theory is as follows. At strong 
coupling, it will flow to the infra-red and become a non-trivial con­
formal field theory (see insert 3.1). It turns out (this is essentially a 
property of the superconformal algebra) that the number of boson­
fermion ground states is directly related to the central charge of 
the conformal field theory, which in turn is equal to the difference 
in the number of hypermultiplets and vector multiplets nH - nv. 
In this case (things will be different in the case of K3 wrapping 
later in section 17.5) the number of 1-1 and 5-5 hypermultiplets 
exactly cancel the number of 1-1 and 5-5 vector multiplets, leaving 
QIQ5' 

Our configuration must be made to carry momentum Q p in the x 5 

direction around which the D-string is wrapped. What we really have is 
an effective 2D field theory in the (t, X5) directions on the world-volume 
of the effective string. The Hamiltonian is H = Qp/ R. We are trying to 
distribute this total momentum amongst the 4QI Q5 bosons and fermions. 
This should remind the reader of earlier studies in chapters 3 and 4. It is 
just like being at level n and trying to distribute the energy among the 
bosons and fermions in the two dimensional conformal field theories we 
discussed in chapter (see insert 3.4, p. 92). Here, we have a supersym­
metric string moving in the 4QI Q5 dimensions of the moduli space. 
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The number of ways, d( Q p ), of distributing a total momentum Q p 

amongst the 1-5 and 5-1 strings is given by the partition function: 

( 

00 1 + n ) 4Ql Q5 
'Ld(Qp)qQp = II 1- qn (17.34) 

n=l q 

For large Qp, this gives d(Qp) rv exp(21TvQIQ5Qp), and Boltzmann's 
relation S = lnd(Qp) yields precisely the entropy (17.31) we computed 
for our black hole using the Bekenstein-Hawking area law, in the previous 
section 7. 

Let us pause to admire this result. We have actually counted the de­
generacy of BPS states in the limit gsQ « 1 where we have D-branes in 
fiat space. When we go to gsQ > 1 and the geometry of the branes will 
take over, making the black hole with geometry given in (17.27), we can 
be assured that the degeneracy will be precisely the same, because this 
is not renormalised by any quantum effect. So we have actually found 
a microscopic description of the black holes, at least for the purposes of 
counting the entropy. This works for black holes in four dimensions to0268, 
and with other properties like spin, etc. There are excellent reviews of this 
in the literature278 . In fact, as we shall see, it is not really supersymmetry 
that is protecting us from an awful mismatch between the strong and 
weak coupling limits, but an important universal structure which will be 
uncovered later in chapter 18. A sign of this is to perform the counting 
successfully for a non-extremal black hole269 , which we shall do next. 

17.3.3 Non-extremality and a 2D dilute gas limit 

A non-extremal generalisation269 of the solution can be written by exploi­
ting the boost forms of the various components which we noted in sub­
section 10.2.2 (see equation (17.26)) and insert 17.1, with the following 
result: 

g;/2ds2 = Z;-3/4Z51/4 (-dt2+dX~+ ~~ (COShPdt-sinhPdX5 )2) 

+ Zl'/4 Z;/4 ( (1 _ ~~ ) -1 dr' + ,.' dill) + V ' /2 Zl'/4 Z~ 1/4 ds}" 

e2iP = g;ZdZ5, (17.35) 

where* 

* The reader might find it worth checking that in the case that all of the R-R charges 
and the momentum are the same, a reduction to five dimensions gives the isotropic 
form ofthe five dimensional Reissner-Nordstrom black hole given in equation (17.19). 
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The R-R charges of this solution are as before, while as we learned in 
insert 17.1, there is now both left- and right-moving momentum in the X5 

direction, creating the non-extremality. 

The mass of this solution is 

~ _ RV 1'~ (COSh 2(31 cosh 2(35 cosh 2(3) 
M - g;o/4 2 + 2 + 2 . 

Now we can compute the entropy of the solution by computing the area 
of the horizon at l' = 1'H: 

27TRV1'~ 
S = 2 14 ( cosh lh cosh (35 cosh (3). 

g80: 

Now we study an interesting limit. We take the R-R charge densities 
to be greater than the momentum densities which in turn is larger than 
the string scale: 

(17.36) 

which has the effect of keeping the D-brane component close to extremal­
ity but allowing both left and right momenta to survive. We can check 
this by seeing that the energy above the amount at extremality, computed 
in equation (17.32), becomes: 

~ RV1'~ e2~ Q~ 
M-M""----=-

- g;0:14 4 R ' 

and so we see that the extra energy coming from the left-moving sector is 
simply additive, as though the left- and right-moving components of the 
system are non-interacting, despite the fact that we are non-extremal. 
This is called the 'dilute gas' limit, since in the 1+1 dimensional model, 
a 'gas' of 4Q1 Q5 boson-fermion pairs, there is no interaction between the 
left- and right-moving parts. 

A little algebra shows that in this limit we get for the entropy 

(17.37) 

The microscopic computation for the statistical entropy is just like the 
one we had before, but with both left- and right-moving sectors. In this 
dilute limit, since they are decoupled the result is just the sum of the 
entropies of the two sectors, as we have seen coming from the supergravity. 
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So again, we have exactly verified with a microscopic computation the 
entropy of a black hole, now even without the help of supersymmetry. 

17.4 Near horizon geometry 

Recall that in our earliest examination of extremal black holes in chap­
ter 10, we found that the geometry of the horizon was an interesting place, 
since the geometry was highly symmetric. The extremal horizon size was 
controlled entirely by the asymptotic charge at infinity, and not by the 
details of the embedding of the solution into the supergravity. In fact, 
there are other special properties of the black hole apparent when the 
system is embedded in the supergravity. 

Just as we saw in the case of the solution for the D6-brane wrapped 
on K3 in section 15.4, the parameters of the compact solution are just 
the asymptotic values of fields - the moduli - in the full supergravity. 
There, we studied a solution where the volume of K3. Here, the radius R 
of the X5 circle, and the volume V of the T 4, are the asymptotic values 
of scalars. In fact, these scalars approach fixed universal values at the 
black hole horizon, due to what is called the 'attractor mechanism'267. 
The values are fixed by the underlying U-duality algebraic structure of 
the supergravity. In particular, the area of the horizon itself is fixed in 
terms of the E6,(6) U-duality invariant, and the parameters which make 
it up are determined only by the charges measured at infinity and not the 
details of the geometry or the embedding. In particular, the entropy itself 
is an E6,(6) U-duality invariant. 

We won't study this general issue in any detail here, but refer the reader 
to the literature267 . Let us instead directly examine the near-horizon ge­
ometry of the black hole that we constructed in the previous sections. 
Consider the non-extremal black hole solution given in equation (17.35), 
but in string frame: 

,2 _ -1/2 -1/2 ( 2 2 r§ ( . J " (3' )2) ds - Zl Z5 -dt + dX5 +?i cosh {Jdt - smh dX5 

+ Zl/2 Zl/2 ((1 _ r§) -1 dr2 + r2 dO~) + V1/2 Zl/2 Z-1/2 d 2 
1 5 r2 3 1 5 ST4, 

e2<I>=g;Zl/Z5. (17.38) 

The limit we will take is that g8Q1, g8Q5 are large, but Qp are arbitrary. 
This means that r2 < rr and rg, and so we can neglect the 1 in the har­
monic functions in which they appear. So we see that the volume of the T4 
has become fixed to Vri!rg, and the dilaton has gone to e<I> = gsrl/r5. 
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In the limit, we get: 

ds2 = ~ (-dt2 + dx~ + 1'~ (cosh(3dt - sinh (3dX5)2) 
1'11'5 l' 

+ r~~5 ( (I _ ~~ ) -1 dr' + r' dnl) + :; d4, (17.39) 

It is useful to define 

P2 - ",2 ('osh2{:J p2_ =_ "'H2 "1'nh2{:J, + = I H . J, I U ) (17.40) 

Finally, after a change of coordinates to p2 = 1'2 + p~, the metric is: 

( 2 2)( 2 2) 2 
ds2 = _ P - p+ P - p- dt2 + 1'1 1'5P dp2 

1'1 1'5p2 (p2 _ p~)(p2 _ p~) 

2 ( p+p-) 2 2 1'1 2 + P dX5 + --2-dt + 1'1 1'5d03 + -dST4 , 
P 1'5 

(17.42) 

which can be recognised294, 295 as a three dimensional black hole solu­
tion called the 'BTZ black hole,296 multiplied by an S3 and T4. In fact, 
the black hole solution can be seen to be asymptotically AdS3 , with a 
length scale f! set by f!2 = 1'11'5. See insert 17.2. The case p+ = p_, gives 
the extremal 5D black hole, and the near-horizon metric becomes locally 
AdS3 x S3 X T 4, with an identification on the X5 circle. This is a situa­
tion that we have seen before, where the extreme black hole has a simple, 
highly symmetric spacetime in the near-horizon limit, with the size of the 
solution controlled by the asymptotic charges. 

The fact that the near-horizon geometry of the black hole is actually 
AdS3 , (times fixed compact spaces) with a black hole in it is interesting. 
As we shall see in the next chapter, there is remarkable duality proposed 
which - if correct - ensures that the physics of the 1 + 1 dimensional theory 
which was controlling our entropy count is captured entirely by the AdS3 

physics. Especially in the case of AdS3 , the aspects of the duality relevant 
to our problem are quite well understood. It is this AdS/CFT duality 
which seems to ensure that the entropy count was correct, even away 
from extremality. See insert 17.2. 

https://doi.org/10.1017/9781009401371.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401371.018


17.4 Near horizon geometry 431 

Insert 17.2. The BTZ black hole 

Consider the action for (2+ 1 )-dimensional gravity with negative cos­
mological constant A = _1/£2: 

(17.43) 

There is an interesting solution, whose metric is: 

2 2 -1 2 2 ( 4G3J) 2 dSBTZ = -V(p)dt + V(p) dp + P dcp+ ------;;x-dt , 

( 
p2 16G2J2) 

V(p) = -8G3M + £2 + p~ , (17.44) 

where cp is periodic, with period 27T. This is the 'BTZ black hole' 
solution296 , and there are two event horizons are at p = P±, in terms 
of which we arrived at the solution (17.42), and £2 = r1r5 there. The 
mass and angular momentum of this solution are given by 

J = p+p-. 
4RG3 

Notice that the case M = -1/8G3 , J = 0 gives us AdS3 in global 
coordinates, as given in equation (10.29). The case M = 0, J = 0 is 
also AdS3 , but now in local coordinates. In fact, the BTZ spacetime 
is locally AdS3 everywhere. Since cp is compact, there is a global 
difference which makes it a non-trivial solution for arbitrary M and J. 

Using the techniques presented at the beginning of this chapter, the 
entropy and temperature may be computed to be 

The AdS/CFT correspondence, to be discussed in the next chapter, 
associates a dual (1 + 1 )-dimensional CFT to the physics of AdS3 x S3, 
with297 C = 3R/2G3 . In fact, the M = 0 and M = -1/8G3 cases can 
be identified298 with the NS-NS and R-R ground states of the theory, 
with energy E = 0 or E = -R/8G3 , where the fermions are either 
periodic or antiperiodic around cpo (The factor of R results from a 
conformal rescaling, see section 18.1.3.) Computations we know how 
to do from chapters 2 and 4 show that the zero point energy difference 
is c/12, which is the result one would get from converting R/8G3 . 
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17.5 Replacing T4 with K3 

An important variation on the constructions above is to replace the T4 
in the X6, ... ,X9 directions by the K3 manifold instead. In fact, this does 
not break any more supersymmetries than the D5-Dl orientation, and 
so in principle, everything should go through trivially. However, as we 
know from chapters 9 and 15, the wrapping of the D5-branes on the K3 
should change things considerably, since the enhanc;on mechanism ought 
to modify the geometry significantly in the limit of large charges where 
the black hole becomes manifest. In fact the original reference considered 
K3 first 7 , and did not take into account the subtleties introduces by K3 
in the macroscopic geometry. Our goal in this section is to examine this 
physics carefully299. Their answer for the entropy was not wrong, however, 
for reasons we shall see. Our careful analysis will produce a new result, 
however, since it will become clear that the enhanc;on mechanism works 
in precise conjunction with the second law of thermodynamics. 

17.5.1 The geometry 

The Einstein frame metric is: 

ds 2 = H;3/4H;;1/4 (-dt2 + dx~ + Hp(dt - dX5)2) 

+ Hi/4 H;/4 (dr2 + r2 dO~) + V 1/2 Hi/4 H;;1/4dsk3' (17.45) 

where dSk3 is the metric on a K3 manifold with unit volume. The other 
fields and harmonic functions are the same as those listed in equations 
(17.30). 

Of course, the integers Ql, Q5 and Qp appearing in the harmonic func­
tions measure the asymptotic charges associated with the electric and 
magnetic R-R fluxes and the internal x5-momentum, respectively. We 
must, however, introduce another set of integers, Nl and N5 to denote the 
number of Dl-branes and D5-branes, respectively, in the system. Clearly 
we have N5 = Q5. However, as discussed in chapter 9 and in detail in 
section 15.4, wrapping the D5-branes on K3 induces a negative Dl-brane 
charge and so we have Ql = Nl - N5 or alternatively Nl = Ql + Q5. 

Just like in section 15.4, the volume of the K3 manifold (measured by 
the string frame metric) is: 

HI 
V(r) = H5 V, (17.46) 

where V is the asymptotic volume of the K3. At the horizon, it is: 

_ rr Ql Nl - N5 
VH = V(r = 0) = 2 V = -Q V* = N V*, (17.47) 

r5 5 5 
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and so if rl < r5, then VH < V. So we see that as long as rl < r5, that 
the volume K3 is shrinks as we move in from r ---+ 00. When we reach 
V(r) = V* at some radius, new physics will come into play, and this is 
the 'enhangon' locus we discovered in section 15.4. This radius is easily 
computed: 

{ >o 
<0 

for 
for 

(17.48) 

where r~ < 0 simply indicates that the K3 volume reaches V* inside the 
event horizon. Therefore we see that we can have the enhangon appearing 
either above or below the horizon, depending upon how we choose the 
parameters. 

Let us consider the case of r~ > O. Now when the K3 volume reaches 
V*, at the enhangon radius, re , the wrapped D5-branes will be unable to 
proceed supersymmetrically into smaller radius, due to the fact that their 
effective tensions are going through zero there. They are therefore forced 
to form an enhangon sphere at radius re. By contrast, D1-branes and 
momentum modes can movie inside of r = re: they are not wrapped on 
K3 and therefore do not care that it is approaching a special radius there. 
However, notice that the geometry can be made of D1-D5-bound states. 
The corrections of -Tl to the effective tension of the wrapped D5-brane 
is precisely compensated by the +Tl coming from the marginally bound 
D1-brane. Therefore we can make the above geometry in equations (17.45-
17.29) by binding N5 D1-branes to N5 the D5-branes we wish to include 
in the geometry, and bring the resulting N5 D1-D5 bound states in from 
infinity, together with Ql extra D1-branes. 

17.5.2 The microscopic entropy 

In the microscopic model we have some modifications to the T4 situa­
tion. We have an effective 1 + 1 dimensional gauge theory on the effective 
D-string formed by wrapping the D5-branes and binding it with 
D1-branes. At strong coupling the theory will flow to a conformal field 
theory in the infra-red (see insert 3.1, p. 84). The important feature of the 
conformal field theory is its central charge, which can be computed from 
the gauge theory as proportional to nH - nv, the difference between the 
numbers of hypermultiplets and the number of vector multiplets. Count­
ing the bosonic parts, the D1-branes contribute Nf vectors and Nf hy­
pers, the latter coming from (x6 , X 7, x 8 , x 9 ) fluctuations. The D5-branes 
contribute N1; vectors, but there are no massless modes coming from os­
cillator excitations in the (x 6 , X 7, x 8 , x 9 ) (K3) directions. There are, in 
addition, 1-5 strings which give Nl N5 hypermultiplets. Evaluating the 
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difference gives: Nl N5 - Ng = Ql Q5 hypermultiplets. Hence in total, 
there are 4Ql Q5 bosonic excitations and an equal number of fermions, 
since a hypermultiplet contains four scalars and their superpartners. 

In another language all that we have done is evaluated the dimension 
the Higgs branch of the D5-brane moduli space of vacua, where the Nl 
D1-branes can become instanton strings of the U(N5) gauge theory on the 
world-volume of the D5-branes. The vacuum expectation values of the 1-5 
strings is precisely what constitutes this branch. In this language, the ab­
sence of hypers coming from the 5-5 sector corresponds to the absence 
of Wilson lines on the K3 surface (there are no non-trivial one-cycles). 
The entropy count then goes precisely along the lines of section 17.3.2. 

Let's close this discussion by observing that we have a mild appar­
ent conflict with the microscopic description. For Nl < 2N5, we know 
from the analysis of the previous section that, at any given value of the 
momentum, the entropy can be maximised by using only Nl/2 of the D5-
branes in the problem. So, from the field theory point of view it appears 
to be favourable to Higgs the U(N5) gauge theory leaving massless only 
a U(Nl/2) subgroup. But since all of these supersymmetric vacua are 
degenerate, all black holes appear to be on the same footing. 

This is really an artifact of the thermodynamically peculiar situation 
that we are at zero temperature while having a finite entropy, so the 
entropy strictly has a meaning as a degeneracy of ground states. Processes 
which maximise the entropy require dynamics, and so we must take the 
system away from extremality in order that it can explore configuration 
space, and find the maximal entropy black hole. 

17.5.3 Probing the black hole with branes 

Let us illustrate the above statements with some probe computations299 . 

Both D1- and D5-branes are natural probes of the geometry266, since they 
preserve the same supersymmetries. Consider a composite probe brane 
consisting of n5 D5-branes and nl D1-branes. It is important for the 
physics of the following that this composite probe is in the D5-branes' 
Higgs phase. That is, this composite probe is not simply a collection 
of individual D5-branes and D1-branes moving together, but rather the 
D1-branes have been absorbed as instanton strings lying along the z­
direction in the D5-brane world-volume. These instantons are maximally 
smeared over the K3 directions and that we have chosen the orientation of 
the vevs of the hypermultiplets arising from 1-5 strings such that the in­
stantons are of maximal rank in the U (n5) gauge theory. In this phase, the 
composite probe brane is then a true bound state, i.e. the fields describing 
the relative separation of the branes in the Coulomb phase are all massive. 
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The effective action for the composite brane probe regarded as an ef­
fective string is 

s = - h d2~ e- iP(rl(n5 T5V (r) + (nl- n5)Tl)(-detgab)lj2 

+n5T5 r C(6) + (nl - n5)Tl r C(2), (17.49) 
J~xK3 J~ 

where ~ is the unwrapped part of the brane's world-volume, with co­
ordinates ~O,l. Remember in the above action that the wrapping of the 
D5-branes on the K3 introduces negative contributions to both the tension 
and two-form R-R charge terms. Recall that gab is the pull-back of the 
string-frame spacetime metric. The background fields in which the probe 
moves are those of the black hole solution given in equation (17.28). The 
corresponding R-R potentials may be written as 

(17.50) 

where CK3 denotes the volume four-form on the K3 space with unit volume. 
These R-R potentials do not vanish asymptotically because we choose a 
gauge which eliminates a constant contribution to the energy which would 
otherwise appear. 

We will now choose static gauge, aligning the coordinates of the effective 
probe string with the x 5 direction and letting it move in the directions 
transverse to K3 while freezing and smearing the degrees of freedom on 
the K3: 

~O = xO == t, xi = xi(t), i = 1,2,3,4. (17.51) 

The result can be written as an effective Lagrangian £ for a particle 
moving in the (xl, x 2, x 3, x 4) directions: 

where, as usual, a dot is used to denote a/at, and 

As should be expected by now, here is no non-trivial potential, since 
supersymmetry cancelled the mass against the R-R charge as in previous 
computations of this type. 

The effective tension of the probe is given by the prefactor in equa­
tion (17.52). We can already see that there is the possibility that the 
tension will go negative when n5 > nl. 
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Putting m the definitions of the harmonic functions given m equa­
tions (17.29) and (17.30), we see that the tension remains positive as 
long as 

(17.53) 

which translates into 

(17.54) 

It is worth considering some special cases of this result. If we remove all 
of the D5-branes, the result for pure D1-brane probes is quite simple, as 
setting n5 to zero in the above result gives: 

(17.55) 

since the D1-brane is not wrapped on the K3 and so its tension is positive 
everywhere. It simply floats past the enhanc;on radius on its way to the 
origin without seeing anything particularly interesting there. 

Note that the result (17.55) is the same as would have been obtained in 
the case of probing for a T4 compactification, considering only motion in 
the directions transverse to the torus. Similarly in the case that nl = n5, 

we get: 

(17.56) 

which is the same as the result for pure D5-brane probes in the case where 
they are wrapped on T4. The cancellation of the induced tensions from 
K3 wrapping and non-trivial instanton number in constructing the bound 
state probe provided a simple result: the wrapped D5-branes, when appro­
priately dressed with instantons, can indeed pass through the enhanc;on 
shell. 

If we instead remove all of the D1-branes, we just get the familiar result 
of section 15.4 that the probe, made of pure D5-branes, hangs up at the 
enhanc;on radius re given by equation (17.48). Now we discover that our 
earlier enhanc;on result is just a special case of a more general result: 
whenever there are more D5-branes than D1-branes making up the probe 
(i.e. n5 > nl), there is a generalisation of the enhanc;on radius, f~, where 
the composite probe will become tensionless and must stop. Notice that 
this happens in a 'substringy' regime where VK3 < V*. 
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17.5.4 The enhanr;on and the second law 

The entropy and area of the black holes which we construct are given by 
the formula 

S = :a = 2TIVQIQ5Qp = 2TIJ(N1 - N 5)N5Qp, (17.57) 

where in the second equality we have written it in terms of the number 
of physical branes of each type. Let us consider the dependence of the 
entropy on the number of D5-branes. Fixing Nl and Qp, we see that it 
gives a half an ellipse, as depicted in figure 17.1. We see that there are 
maximal entropy black holes that we can make, (corresponding to the 
apside of the ellipse) which are those for which N5 = Nl/2, or in other 
words Ql = Q5' 

If we wish to consider the maximum entropy that can be achieved for 
a given set of parameters, N 1 , N5 and Qp, we observe that the behaviour 
of this entropy changes at precisely Nl = 2N5. In figure 17.2 is a plot of 
the (square of the) maximal entropy as a function of Ql for fixed N5 and 
Qp. For a 'large' number of D1-branes (Nl > 2N5), the maximal area 
squared is simply proportional to Ql, as expected from equation (17.57). 
However, for a 'small' number of D1-branes (Nl < 2N5), the entropy is 
maximised if only N~ = Nl/2 of the available D5-branes participate in 
the formation of the black hole. In this regime, we have 

(17.58) 

and so the curve becomes a parabola which only reaches zero at Ql = - Q5. 

2.5 

A 

1.5 

0.5 

Hs 
5 

Fig. 17.1. The horizon area as a function of N 5 , for fixed Q p (= 1) and 
Nl (= 5), which forms half of an ellipse. As the number of D5-branes 
increases past Nl/2, the area decreases. 
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Fig. 17.2. The square of the maximal horizon area as a function of Q1, for 
fixed Qp (=1) and Q5 (=2). For N1 > 2N5, the (area)2 increases linearly. 
For N1 < 2N5 , to maximise the area, one must use only NI/2 of the 
available D5-branes (see figure 17.1), and therefore the dependence on N1 
is quadratic. 

Note that in this regime, the maximum entropy is greater than one would 
calculate from equation (17.57). Assuming the excess D5-branes have ac­
cumulated in an enhan<;on shell around the black hole, the maximum 
entropy configuration corresponds to precisely that where the K3 volume 
is frozen at V* throughout the interior region. 

Let us return to the curve in figure 17.1. If we were to begin with a 
black hole with a 'large' number of D1-branes, we would be on a point 
on the left hand side of the ellipse in the figure. We may now consider 
increasing the number of D5-branes in the system by bringing them one 
at a time from infinity. As a result the black hole moves up the ellipse 
to the extremum at N5 = NI/2. At this point, however, if we were to 
add one more D5-brane, we we see that we will in fact decrease the hori­
zon area, and hence the entropy of the resulting system. In principle we 
can bring this D5-brane up to the black hole horizon as slowly as we 
like, and so we have found a way of reducing the entropy of the hole by 
an adiabatic process. This is a violation of the second law of thermo­
dynamics. 

Actually, there is a very satisfying resolution of this problem299 . It is 
precisely for this class of black holes that the enhanc;on appears above 
the horizon. So an attempt to bring our extra D5-brane into the hole is 
thwarted by the fact that it will be forced to stop at the enhan<;on radius 
Te just above the horizon. We could bind the extra D5-brane with an 
extra D1-brane to bring it in, but in this case Q1 remains fixed while 
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Q5 increases. Therefore adding the D1/D5 bound state to the black hole 
increases the entropy. 

If we begin with a black hole on the right half of the ellipse (Nl/2 < 
N5 < N I ), the enhanc;on again ensures that we cannot move further to the 
right decreasing the horizon area by dropping D5-branes into the black 
hole. These were configurations where the black hole is already surrounded 
by a region where V(r) < V* and hence the extra D5-branes are restrained 
from reaching the horizon by the enhanc;on mechanism. 

However, we have seen in section 17.5.3 that D1/D5 bound states can 
move through such regions where V(r) < V* and so we must still in­
vestigate if we are able to decrease the entropy by sending in a bound 
D1/D5 probe brane. Adopting the previous notation, let the probe con­
sist of a bound state with nl D1-branes and n5 D5-branes. Assuming 
that the black hole already contains many more of each type of brane, i.e. 
nl, n5 « NI, N5, dropping in such a probe would cause an infinitesimal 
shift in the entropy (squared) given by 

(17.59) 

Note that implicitly we are assuming NI, N5, nl, n5 > O. Even so the 
expression in parentheses has the potential to be negative, which would 
signal a decrease in the black hole entropy. However, we found that this 
expression also appears in the numerator of equation (17.54) for the ra­
dius of vanishing probe tension, but with the opposite sign. Hence the 
probe-brane finds no obstacle to dropping inside the horizon only in those 
situations where the entropy increases. Precisely in those cases where sec­
ond law would be violated, the enhanc;on locus filters out the wrong type of 
D1-D5 bound states from reaching the event horizon. Thus the enhanc;on 
provides string theory with precisely the mechanism needed to maintain 
consistency with the second law of black hole thermodynamics299 , 300. 
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