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Abstract

We study uniform and coarse embeddings between Banach spaces and topological groups. A
particular focus is put on equivariant embeddings, that is, continuous cocycles associated to
continuous affine isometric actions of topological groups on separable Banach spaces with varying
geometry.
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1. Introduction

The present paper is a contribution to the study of large scale geometry of Banach
spaces and topological groups and, in particular, to questions of embeddability
between these objects. In a sense, our aim is somewhat wider than usual as we will
be dealing with general Polish groups as opposed to only locally compact groups.
This is achieved by using the recently developed framework of [S7], which allows
us to treat Banach spaces and topological groups under one heading. Still our
focus will be restricted as we are mainly interested in equivariant maps, that is,
cocycles associated to affine isometric actions on Banach spaces.

To state the results of the paper, let us begin by fixing the basic terminology.
Given a map o : (X,d) — (Y,d) between metric spaces, we define the
compression modulus by

k(1) = inf(d(0 (a), o (b)) | d(a, b) = 1)
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and the expansion modulus by
05 (1) = sup(d(o (a), o (b)) | d(a,b) < 1).

Thus o is uniformly continuous if lim,_.,, 6,(t) = 0 (in which case 6, becomes
the modulus of uniform continuity) and a uniform embedding if, moreover,
ks (t) > 0O for all ¢+ > 0. Furthermore, o is bornologous if 6,(t) < oo for all
t < oo and expanding if lim,_,  k,(t) = 0o0. A bornologous expanding map is
called a coarse embedding. We also define o to be uncollapsed if «,(t) > 0 for
just some sufficiently large ¢ > 0.

As we will be studying uniform and coarse embeddability between Banach
spaces and topological groups, we must extend the above concepts to the larger
categories of uniform and coarse spaces and also show how every topological
group is canonically equipped with both a uniform and a coarse structure.

Postponing for the moment this discussion, let consider the outcomes of
our study. As pointed out by Kalton [35], the concepts of uniform and coarse
embeddability between Banach spaces seem very tightly related. Though,
Kalton [36] eventually was able to give an example of two separable Banach
spaces that are coarsely equivalent, but not uniformly homeomorphic, the
following basic question of Kalton concerning embeddings remains open.

QUESTION 1. Does the following equivalence hold for all (separable) Banach
spaces?

X is uniformly embeddable into E <= X is coarsely embeddable into E.

Relying on entirely elementary techniques, our first result shows that in many
settings we do have an implication from left to right.

THEOREM 1. Suppose o : X — E is an uncollapsed uniformly continuous map
between Banach spaces. Then, for any 1 < p < oo, X admits a simultaneously
uniform and coarse embedding into £¥ (E).

Since both uniform and coarse embeddings are uncollapsed, we see that if X
is uniformly embeddable into E, then X is coarsely embeddable into £7(E). For
the other direction, if X admits a uniformly continuous coarse embedding into
E, then X is uniformly embeddable into £”(E). It is therefore natural to ask to
which extent bornologous maps can be replaced by uniformly continuous maps.
In particular, is every bornologous map o : X — E between Banach spaces close
to a uniformly continuous map, that is, is there a uniformly continuous map ¢ so
that sup .y |lo(x) — o (x)|| < o0?
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As it turns out, Naor [46] was recently able to answer our question in the
negative, namely, there are separable Banach spaces X and E and a bornologous
map between them which is not close to any uniformly continuous map.
Nevertheless, several weaker questions remain open.

Also, in case the passage from E to £7(E) proves troublesome, we can get by
with E @ E under stronger assumptions.

THEOREM 2. Suppose o : X — By is an uncollapsed uniformly continuous map
from a Banach space X into the ball of a Banach space E. Then X admits a
uniformly continuous coarse embedding into E @ E.

For example, if X is a Banach space uniformly embeddable into its unit ball
By, for example, if X = ¢2, then, whenever X uniformly embeds into a Banach
space E, it coarsely embeds into £ @ E.

The main aim of the present paper, however, is to consider equivariant
embeddings between topological groups and Banach spaces, that is, continuous
cocycles. So let m: G ~ E be a strongly continuous isometric linear
representation of a topological group G on a Banach space E, that is, each
7 (g) is a linear isometry of E and, for every £ € E,themap g € G +— m(g)&€ is
continuous. A continuous cocycle associated to 7 is a continuous map b : G — E
satisfying the cocycle equation

b(gf) = m(g)b(f) + b(g).

This corresponds to the requirement that «(g)é = m(g)é + b(g) defines a
continuous action of G by affine isometries on E. As b is simply the orbit map
g — a(g)0, it follows that continuous cocycles are actually uniformly continuous
and bornologous. We call a continuous cocycle b : G — E coarsely proper if it
is a coarse embedding of G into E. In this case, we also say that the associated
affine isometric action « is coarsely proper.

For the next result, a topological group G has the Haagerup property if it
has a strongly continuous unitary representation with an associated coarsely
proper cocycle. Though it is known that every locally compact second countable
amenable group has the Haagerup property [8], this is very far from being true
for general topological groups. Indeed, even for Polish groups, that is, separable
completely metrizable topological groups, such as separable Banach spaces, this
is a significant requirement.

Building on work of Aharoni et al. [3], we show the following equivalence.

THEOREM 3. The following conditions are equivalent for an amenable Polish
group G:

(1) G coarsely embeds into a Hilbert space;
(2) G has the Haagerup property.
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Restricting to Banach spaces, we have a stronger result, where the equivalence
of (1) and (2) is due to Randrianarivony [51].

THEOREM 4. The following conditions are equivalent for a separable Banach
space X:

(1) X coarsely embeds into a Hilbert space;
(2) X uniformly embeds into a Hilbert space;
(3) X admits an uncollapsed uniformly continuous map into a Hilbert space;

(4) X has the Haagerup property.

Even from collapsed maps we may obtain information, provided that there is
just some single distance not entirely collapsed.

THEOREM 5. Suppose o : X — H is a uniformly continuous map from a
separable Banach space into Hilbert space so that, for some single r > 0,

inf Jlo(x) —a ()| > 0.

lx=yl=r

Then By uniformly embeds into By.

One of the motivations for studying cocycles, as opposed to general uniform
or coarse embeddings, is that cocycles are also algebraic maps, that is, reflect
algebraic features of the acting group G. As such, they have a higher degree
of regularity and permit us to carry geometric information from the phase
space back to the acting group. For example, a continuous uncollapsed cocycle
between Banach spaces is automatically a uniform embedding. Similarly, a
cocycle b : X — E between Banach spaces associated to the trivial representation
7 = idg is simply a bounded linear operator, so a cocycle may be considered
second best to a linear operator. We shall encounter and exploit many more
instances of this added regularity throughout the paper.

Relaxing the geometric restrictions on the phase space, the next case to consider
is that of super-reflexive spaces, that is, spaces admitting a uniformly convex
renorming. For this class, earlier work was done by Pestov [49] and Naor and
Peres [47] for discrete amenable groups G. For topological groups, several severe
obstructions appear and it does not seem possible to get an exact analogue of
Theorem 3. Indeed, the very concept of amenability requires re-examination. We
say that a Polish group G is Fglner amenable if there is either a continuous
homomorphism ¢ : H — G from a locally compact second countable amenable
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group H with dense image or if G admits a chain of compact subgroups with
dense union. For example, a separable Banach space is Fglner amenable.

THEOREM 6. Let G be a Fglner amenable Polish group admitting a uniformly
continuous coarse embedding into a Banach space E. Then, for every 1 < p < 00,
G admits a coarsely proper continuous affine isometric action on a Banach space
V that is finitely representable in L? (E).

We note that, if E is super-reflexive, then so is every V finitely representable in
L?(E). Again, for Banach spaces, this leads to the following.

THEOREM 7. Suppose X is a separable Banach space admitting an uncollapsed
uniformly continuous map into a super-reflexive space. Then X admits a coarsely
proper continuous cocycle with values in a super-reflexive space.

For our next results, we define a topological group to be metrically stable if
it admits a compatible left-invariant stable metric. By results of [10, 41, 60], a
Polish group is metrically stable if and only if it is isomorphic to a subgroup of
the linear isometry group of a separable reflexive Banach space under the strong
operator topology. Also, by a result of Raynaud [52], a metrically stable Banach
space contains a copy of £ for some 1 < p < oo.

Using the construction underlying Theorem 6, we obtain information on spaces
uniformly embeddable into balls of super-reflexive spaces.

THEOREM 8. Let X be a Banach space admitting an uncollapsed uniformly
continuous map into the unit ball Bg of a super-reflexive Banach space E. Then X
is metrically stable and contains an isomorphic copy of £¥ for some 1 < p < oo.

As an application, this restricts the class of super-reflexive spaces uniformly
embeddable into their own balls.

For a general nonamenable topological group G, we may also produce coarsely
proper affine isometric actions on reflexive spaces starting directly from a stable
metric or écart.

THEOREM 9. Suppose a topological group G carries a continuous left-invariant
coarsely proper stable écart. Then G admits a coarsely proper continuous affine
isometric action on a reflexive Banach space.

Intended applications here are, for example, automorphism groups of countable

atomic models of countable stable first-order theories that, under the additional
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assumption of being locally (OB), satisfy the conditions of Theorem 9. Note that
Theorem 9 may also be viewed as a generalization of a result of Haagerup and
Przybyszewska [30] stating that every locally compact second countable group
admits a proper affine isometric action on a reflexive space. Indeed, every locally
compact second countable group admits a compatible proper left-invariant metric,
which by properness is automatically stable.

The final part of our investigations concern a fixed point property for affine
isometric group actions. We identify a geometric incompatibility between a
topological group G and a Banach space E strong enough to ensure that not only
does G have no coarsely proper affine isometric action on E, but every affine
isometric action even has a fixed point.

The two main concepts here are solvent maps and geometric Gelfand pairs.
First, a map ¢ : X — Y between metric spaces is solvent if, for every n, there
isan R with R < d(x,x") < R+ n = d(¢x, px’) > n. Refining earlier results
of Kalton, we show that every bornologous map from ¢, to a reflexive Banach
space is insolvent. Also a coarsely proper continuous isometric action G ~ X
of a topological group G on a metric space X is said to be a geometric Gelfand
pair if, for some K and all x, y, z, u € X withd(x, y) < d(z,u), thereis g € G
sothatd(g(x),z) < K andd(z, g(y)) +d(g(y), u) < d(z,u) + K. This second
condition is typically verified when X is sufficiently geodesic and the action of
G is almost doubly transitive. For example, if Aff(X) denotes the group of affine
isometries of a Banach space X, then Aff(X) ~ X is a geometric Gelfand pair
when X = L?([0, 1]), 1 < p < oo, and when X is the Gurarii space. Similarly, if
X is the integral, ZU, or rational, QU, Urysohn metric space, then Isom(X) ~ X
is a geometric Gelfand pair.

THEOREM 10. Suppose G ~ X is a geometric Gelfand pair and Y is a metric
space so that every bornologous map X — Y is insolvent. Then every continuous

isometric action G ~ Y has bounded orbits.

Combining Theorem 10 with the observations above and the fixed point
theorems of [58] and [6], we obtain the following corollary.

COROLLARY 1. Every continuous affine isometric action of Isom(QU) on a
reflexive Banach space or on L' ([0, 1]) has a fixed point.

2. Uniform and coarse structures on topological groups

As is well known, the nonlinear geometry of Banach spaces and large scale
geometry of finitely generated groups share many common concepts and tools,
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while a priori dealing with distinct subject matters. However, as shown in [57],
both theories may be viewed as instances of the same overarching framework,
namely, the coarse geometry of topological groups. Thus, many results or
problems admitting analogous but separate treatments for Banach spaces and
groups can in fact be entered into this unified framework.

Recall that, if G is a topological group, the left-uniform structure Uy on G is
the uniform structure generated by the family of entourages

Ey={(x,y)eGxG|x'yeV)}

where V varies over identity neighbourhoods in G. It is a fact due to Weil that the
left-uniform structure on G is given as the union U, = |J, U, of the uniformities
U, induced by continuous left-invariant écarts (aka. pseudometrics) d on G. Thus,
E € U, if it contains some

E,={(x,y) e X x X |d(x,y) <a},

with ¢ > 0 and d a continuous left-invariant écart on G. Apart from the weak
uniformity on a Banach space, this is the only uniformity on G that we will
consider and, in the case of the additive group (X, 4) of a Banach space, is simply
the uniformity given by the norm.

More recently, in [57] we have developed a theory of coarse geometry of
topological groups the basic concepts of which are analogous to those of the left
uniformity. For this, we first need Roe’s concept of a coarse space [S3]. A coarse
structure on a set X is a family & of subsets E C X x X called coarse entourages
satisfying:

(i) the diagonal A belongs to &;

(i) FCEefE=Fe&;

(i) E€E= E7 = {(y,0) | (x,y) € E} € &;

(ivy ELFeE = EUF €&,

V) E,LFeE=EoF={(x,y)|3z(x,2) € E&(z,y) e F} €&.

Just as the prime example of a uniform space is a metric space, the motivating
example of a coarse space (X, &) is that induced from a (pseudo) metric space
(X, d). Indeed, in this case, we let E € &, if E is contained in some

E,={(x,y) e X x X |d(x,y) <a},

with ¢ < o0.
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Now, if G is a topological group, we define the left-coarse structure £; to be
the coarse structure given by
&= )%
d

where the intersection is taken over the family of coarse structures £, given by
continuous left-invariant écarts on G. Again, this is the only coarse structure on
a topological group we will consider and, in the case of a finitely generated or
locally compact, compactly generated group, coincides with the coarse structure
given by the (left-invariant) word metric. Similarly, for a Banach space, the coarse
structure &, is simply that given by the norm.

A subset A of a topological group has property (OB) relative to G if A has
finite diameter with respect to every continuous left-invariant écart on G. Also, G
has property (OB) if is has property (OB) relative to itself. A continuous left-
invariant écart d on a topological group G is said to be coarsely proper if it
induces the coarse structure, that is, if £ = &,. In the class of Polish groups,
having a coarsely proper écart is equivalent to the group being locally (OB), that
is, having a relatively (OB) identity neighbourhood. Finally, G is (OB) generated
if it is generated by a relatively (OB) set.

Recall that a map o : (X,U) — (Y, V) between uniform spaces is uniformly
continuous if, for every F € V), there is E € U so that (a,b) € E = (o(a),
o (b)) € F. Also, o is a uniform embedding is, moreover, for every E € U, there
is F € V so that (a,b) ¢ E = (0(a),o(b)) ¢ F. Similarly, a map o : (X,
&) — (Y, F) between coarse spaces is bornologous if, for every E € &, there is
F € F sothat (a,b) € E = (0(a),o(b)) € F. And o is expanding if, every
F € F,thereis E € £ so that (a,b) ¢ E = (o(a),c(b)) ¢ F. An expanding
bornologous map is called a coarse embedding.

A coarse embedding o is a coarse equivalence if, moreover, the image o [X] is
cobounded in Y, that is, there is some F € F so that

VyeY x e X (y,0(x)) € F.

Amapo: (X,E) - (Y,U) from a coarse space X to a uniform space Y is
uncollapsed if there are a coarse entourage E € £ and a uniform entourage F € U
so that

(a,b) ¢ E = (o(a),o(b)) ¢ F.
These definitions all agree with those given for the specific case of metric spaces.

It turns out to be useful to introduce a finer modulus than the compression. For
this, given a map o : (X,d) — (Y, d) between metric spaces, define the exact
compression modulus by

Ko (1) = inf(3d(o (a), o (b)) | d(a,b) =1)

and observe that «,, (1) = inf,>, K, (s).

https://doi.org/10.1017/fms.2017.20 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2017.20

Equivariant geometry of Banach spaces and topological groups 9

3. Uniform versus coarse embeddings between Banach spaces

Observe first thatamap o : X — M from a Banach space X to a uniform space
(M, U) is uncollapsed if there are A > 0 and an entourage F' € U so that

lx =yl > A = (c(x),0(y)) & F.

For example, a uniform embedding is uncollapsed. Note also that, if o : X — G
is a uniformly continuous uncollapsed map into a topological group G, then
X+ (0(x),0(2x),0(3x), ...) defines a uniform embedding of X into the infinite
product [ [, . G.

Our main results about uncollapsed maps between Banach spaces are as
follows.

THEOREM 11. Suppose o : X — E is an uncollapsed uniformly continuous map
between Banach spaces. Then, for any 1 < p < 0o, X admits a simultaneously
uniform and coarse embedding into €7 (E).

The next corollary then follows from observing that all of the classes of spaces
listed are closed under the operation E +— £”(E) for an appropriate 1 < p < oo.

COROLLARY 2. If a Banach space X is uniformly embeddable into €7, L? (for
some 1 < p < 00), a reflexive, super-reflexive, stable, superstable, nontrivial type
or cotype space, then X admits a simultaneously uniform and coarse embedding
into a space of the same kind.

If we wish to avoid the passage from E to the infinite sum £7(E), we can get
by with a direct sum E @ E, but only assuming that ¢ maps into a bounded set.
Also, the resulting map may no longer be a uniform embedding.

THEOREM 12. Suppose o : X — Bg is an uncollapsed uniformly continuous
map from a Banach space X into the ball of a Banach space E. Then X admits a
uniformly continuous coarse embedding into E @ E.

Both propositions will be consequences of somewhat finer and more detailed
results with wider applicability. Indeed, Theorem 11 is a direct corollary of
Lemma 1 below.

LEMMA 1. Suppose X and E are Banach spaces and P, : E — E is a sequence
of bounded projections onto subspaces E, C E so that, E,, C ker P, forallm # n.
Assume also that o, : X — E, are uncollapsed uniformly continuous maps. Then
X admits a simultaneously uniform and coarse embedding into E.
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This lemma applies in particular to the case when E is a Schauder sum of a
sequence of subspaces E,.

Proof. By composing with a translation, we may suppose that o,,(0) = 0 for each
n. Fix also A, §,, €, > 0 so that

[x =yl = Ay = llow(x) = oM =

and
x =yl <€ = llo.(x) =oM<
Note that, if ||x — y|| < k - €, for some k € N, then there are zo = x, z1, 22, .. .,

7=y € Xsothat [|z; — zi1 || = (1/k)|lx — yl| < €,, whence

k
low(x) = 0, < Y llow(zic) — ozl < k- 27"
i=1

Thus, setting ¥, (x) = 0,(nA, - x)/[(n*A,/€,)], we have, forall x, y € X,

n’A,
lx —yll <n = |[nA4,-x —nA, -y <n’A, <’V -‘-6,,

n

a7 o
|-z

n

2

= llowA, - x) =0, - 1) <[ °
= 1Y) — YOI < 2
while
=yl > = = lInd, x—nd, -yl > 4
= |lo.(n4, - x) —0,(nA, - y)| = 3,
5,
= () = O > i

Now choose &, > 0 so that

On
”)C - )’|| < %—n = ||Un(x) Un(y)” X ||P “ -2

and set ¢, (x) = (n|[ P, l/5,) - 0,(§,/n - x). Then

& H £

n

el s
n n nl| Pyl

= ¢ (x) = Il <27,

lx =yl <

=
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while
nAa,

&

2 Ai‘l

SI'L %‘l’l H
— x——.y
n
o(5)-o 5]
n n
= o (x) = &Il = nll Pyl

In particular, if ||[x — y|| < m, then ||x — y|| < n for all n > m, whence

lx =yl =

=

00 m—1 0
D 1) = Yo I < Y W21 (0) = Yo DI+ D27 < 00
n=1

n=1 n=m

and

o m—1 00
S () = B < Plgan() = ol + 327 < o0,
n=1 n=1

n=m

Setting y = 0, we see that both Y >~ ¥,_1(x) and Y_ -, ¢»,(x) are absolutely
convergent in E, whence we may define w : X — E by

o) =Y Yo () + Y hu(x).
n=1 n=1

First, to see that w is uniformly continuous and thus bornologous, let € > 0
and find m large enough so that 272"+ < ¢/3. Since each of o, is uniformly
continuous, so are the 1, and ¢,. We may therefore choose n > 0 so that

m—1 m—1 m—1 m—1
H (Z Va1 () + ) o (x)) - (Z Va1 () + ) bon (y)) H < §
n=1 n=1 n=1 n=1

whenever ||x — y|| < 5. Thus, if ||x — y|| < min{#n, m}, we have

m—1
>, ¢2n(x)>
n=1

m—1 m—1

~ (Z Yo )+ ) ¢zn(y>> H
n=1 n=1

+ ) W21 () = Yo O+ D llpan(x) = G2 ()l

m—1
lox(x) — 0 < H(Z Va1 (x) +
n=1

e+_€+e B
<_ 5 _7
3 3 3

showing uniform continuity.
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Secondly, to see that w is a uniform embedding, suppose that ||x — y| >
1/(2n — 1) for some n > 1. Then,

lo(x) =W = [ Pon—10(x) — Pryyo(y)l

||P2n 1l

IIPzn 1l 1¥20-1(6) = Y201 D

1 82n71
T NPyl T@r— 124, 1 /€2,11

Finally, to see that w is a coarse embedding, observe that, if ||x — y| >
(2nA2n/'§2n)’ then

o) = = | Prucw (x) — Poyeo ()|l

”Pn”

> [0t — g1

= 2n,
which finishes the proof. O

We should mention here that Braga [13] has been able to use our construction
above coupled with a result of Odell and Schlumprecht [48] to show that £> admits
a simultaneously uniform and coarse embedding into every Banach space with an
unconditional basis and finite cotype.

Our next result immediately implies theorem 12.

LEMMA 2. Suppose 0 : X — Bg and w : X — By are uncollapsed uniformly
continuous maps from a Banach space X into the balls of Banach spaces E and
F. Then X admits uniformly continuous coarse embedding into E @ F.

Proof. Since o and w are uncollapsed, pick A > 2 and § > 0 so that
lx=yl>4 = llox)—oW>6§ & [ok) —aw@l >3
We will inductively define bounded uniformly continuous maps
b1, P2, ... : X > E

and

'(//1,¢2,... Y > F
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with ¢,(0) = ¥,(0) = O0and numbers 0 =) < r; <t <r, < t, < --- with
lim, r, = oo so that, foralln > 1,

lx = yll > r -(x)—Zzpi(y)H >2
i=1

(x) —Zwm” >2",

lx =yl <ticr = () =W < 27"

lx =yl >

and

[x =yl <ra = 1Y) =¥ <27

Suppose that this have been done. Then

b=yl <t = Y llgi) =g <D 27

In particular, setting y = 0, we see that the series Zfilqbi(x) is absolutely
convergent for all x € X. Similarly,

e =yl <ro = Y@ — i< Y2

showing that also Y -, ¥;(x) is absolutely convergent for all x € X. So define
¢p:X—>Eandy: X —> Fbyox) =) o, ¢(x)and Yy (x) =D o, ¥;(x).

We claim that ¢ and 1 are uniformly continuous. To see this, let ¢ > 0 be given
and pick n > 2 so that 272 < o. By uniform continuity of the ¢;, we may choose
B > 0 small enough so that '~/ [l (x) — ¢ (») | < &/2 whenever [lx — y|| < B.
Thus, if ||x — y|| < min{B, t,_}, we have

-1

lp(x) —pWIl < Zuqs,(x) ¢,<y)||+2||¢,<x> 6o]

i=1 i=n

<543
<,

showing that ¢ is uniformly continuous. A similar argument works for .
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Now, suppose [lx — yl| > r,,. Then either r, < lx — y|l < , or 1, < x — y|| <
rny1 for some n > m. In the first case,

‘ D hilx) — Zq»(y)”

i=1 i=1

Y i) - ZWWH — D i) — g
i=1 i=1

i=n+1

lo(x) —dWIl =

>

22’1_17

while, in the second case,

Iy () =y Il = me—meH
i=1 i=1
> ' D i) - Zwi(y)” = Y ) = )
i=1 i=1 i=n+1
>2"—1.

Thus,

lx =yl Zrm = l¢@) —oWMI+ V&) -y =2" -1,

showing that p @ : X — E @ F is expanding. As each of ¢ and v is uniformly
continuous, so is ¢ @ Y and therefore also bornologous. It follows that ¢ @ v is
a coarse embedding of X into £ @ F.

Let us now return to the construction of ¢;, ¥, r; and #;. We begin by letting
to =0,r; = A and ¢; = (2/8)o. Now suppose that ¢y, ..., ¢,, ¥, ..., ¥, and
ty <r <t <---<r, have been defined satisfying the required conditions. As
the y; are bounded, let

n—

S = sup

x,yeX

1 n—1
%m—mew
1 i=1

i=

Also, as w is uniformly continuous, pick 0 < € < 1 so that lw(x) — 0w (y)| <
8/(S 4+ 2")2" whenever ||x — y|| < € and let ¥,(x) = ((S + 2")/8)w((e/r,)x).
Then, if |x — y| < r,, we have ||(e¢/r,)x — (€/r,)y]| < € and so

o))
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On the other hand, if we let , = r, A /€, then

lx=yll =t = IIYa(x) =W = 542" =

Zwi(x)—Zwi(y)H >0,
i=1 i=1

Note that, as ¢ < 1 and A > 2, we have t, > 2r,. A similar construction
allows us to find ¢,,; and r,; > 2t, given ¢y, ..., d,, ¥y, ..., ¥, and 1y < 1)
< ee <ty O

In the light of the previous results, it would be very interesting to determine
when a coarse embedding can be replaced by a uniformly continuous coarse
embedding. As mentioned earlier, Naor [46] was able to construct a bornologous
map between two separable Banach spaces, which is not close to any uniformly
continuous map.

QUESTION 2. Suppose X is a separable Banach space coarsely embedding into
a separable Banach space E. Is there a uniformly continuous coarse embedding
of X into E?

4. Cocycles and affine isometric representations

By the Mazur—Ulam Theorem, every surjective isometry A of a Banach space
X is affine, that is, there are a unique invertible linear isometry 7 : X — X and a
vector n € X so that A is given by A(§) = T (§) 4+ n for all £ € X. It follows that,
ifa : G »~ X is an isometric action of a group G on a Banach space X, there is
an isometric linear representation 7 : G ~ X, called the linear part of «, and a
corresponding cocycle b : G — X so that

a(g)é =m(g)é +b(g)

for all g € G and § € X. In particular, b is simply the orbit map g — «(g)O0.
Moreover, the cocycle b then satisfies the cocycle equation

b(gf) = m(@)b(f) + b(g)

for g, f € G. Finally, as « is an action by isometries, we have
16C(f) = bl = lle (/)0 — a(g)0]
= lla(g™' /)0 -0
= b N)I.

Now, if G is a topological group, the action « is continuous, that is, continuous
asamap o : G x X — X, if and only if the linear part 7 is strongly continuous,
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thatis, g € G — m(g)§ € X is continuous for every £ € X, andb: G — X is
continuous. Moreover, since b is simply the orbit map g — «(g)0, in this case, the
cocycle b : G — X is both uniformly continuous and bornologous. We say that
the action « is coarsely proper if and only if b : G — X is a coarse embedding.

If # : G ~ X is a strongly continuous isometric linear representation, we let
Z'(G, ) denote the vector space of continuous cocycles b : G — X associated
to 7. Also, let B'(G, ) denote the linear subspace of coboundaries, that is,
cocycles b of the form b(g) = & —m(g)& for some & € X. Note that the cocycle b
has this form if and only if & is fixed by the corresponding affine isometric action
« induced by 7 and b.

As noted above, continuous cocycles are actually uniformly continuous. But,
in the case of cocycles between Banach spaces, we have stronger information
available.

PROPOSITION 1. Let b : X — E be a continuous uncollapsed cocycle between
Banach spaces X and E, that is, there are A, § > 0 so that

x| > A = [[b(x)] > 8.

Then b : X — E is a uniform embedding. In fact, there are constants ¢, C > 0 so
that

c-min{[lx — y[l, 1} < I16(x) = bW < Cllx -yl + C.

Proof. Suppose that 7 : X ~ E is the strongly continuous isometric linear action
for which b : X — E an uncollapsed continuous cocycle. As noted above, b is
uniformly continuous and hence, by the Corson—Klee lemma [11, Proposition
1.11], also Lipschitz for large distances. This shows the second inequality.

We now show the first inequality with ¢ = min{é, §/2A}, which implies
uniform continuity of 5~!. Since ||b(x) —b(y)| = ||b(x — y)||, it suffices to verify
that

¢ -min{|[x[|, I} < [|b(x)]|

for all x € X. For ||x|| > A, this follows from our assumption and choice of c.
So suppose instead that x € X \ {0} with ||x|| < A and let n be minimal so that
n|x|| > A. Then ||x|| < A/(n — 1) < 2A/n and
§ < lb(n-x)|
= 7" (0)b(x) + 7" (X)b(x) 4 - - 4+ b))
< 7" @b + 17" )b 4 - - - + b)) |
=n-[lb(X)l,

https://doi.org/10.1017/fms.2017.20 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2017.20

Equivariant geometry of Banach spaces and topological groups 17

that is,

é
>ﬁ'7>ﬁ'”x” 2 cllx|]

as required. O

)
b = —
n

Since any continuous cocycle is both bornologous and uniformly continuous,
we see that any coarsely proper continuous cocycle b : X — E between Banach
spaces is simultaneously a uniform and coarse embedding.

The following variation is also of independent interest.

PROPOSITION 2. Let b: X — E be a continuous cocycle between Banach
spaces satisfying
HiIHlf Ib(x)| > 0

for some r > 0. Then By uniformly embeds into Bg.

Proof. Set § = inf|,,||b(x)|l and find, by uniform continuity of b, some m so
that

16 > g

whenever r < ||x|| < r 4+ 2/m. Then, if 0 < ||x|| < 1/m, fix n minimal so that
r < ||nx|| < r+2/m. With this choice of n we have as in the proof of Proposition 1

that
161 = 0 50 llxl
Vil 2n ~ 4r e
showing that b : (1/m)Bx — E is auniform embedding. The proposition follows
by rescaling b. O

Though we shall return to the issue later, let us just mention that uniform
embeddings between balls of Banach spaces has received substantial attention.
For example, Raynaud [52] (see also [11, Section 9.5]) has shown that B,, does
not uniformly embed into a stable metric space, for example, into L” ([0, 1]) with
1< p<oo.

Our next result replicates the construction from Section 3 within the context of
cocycles.

PROPOSITION 3. Suppose b: X — E is an uncollapsed continuous cocycle

between Banach spaces. Then, for every 1 < p < oo, there is a coarsely proper
continuous cocycle b : X ~ L7 (E).
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Proof. Let b be associated to the strongly continuous isometric linear
representation 7 : X ~ E. As in the proof of Lemma 11, there are constants €,
and K, so that

x = (Ky-b(ex), K> - b(e:x),...)

defines a simultaneously uniform and coarse embedding of X into £7(E). We
claim that the map 5 : X — ¢7(E) so defined is a cocycle for some strongly
continuous isometric linear representation 7 : X ~ £7(E). Indeed, observe that
each x — K, - b(e,x) is a cocycle for the isometric linear representation x +—>
w(e,x)on E, so bisa cocycle for the isometric linear representation

T(x) =7m(ex) @m(erx) @ - -
of X on ¢7(E). O
LEMMA 3. Let E be a separable Banach space and Isom(E) the group of linear
isometries of E equipped with the strong operator topology. If w : Isom(E)
LP(E) denotes the diagonal isometric linear representation for 1 < p < oo, there

is a continuous cocycle b : Isom(E) — £P(E) associated to 1 that is a uniform
embedding of Isom(E) into £7 (E).

Proof. Fix a dense subset {&,},cy of the sphere S and let

b _ &1 —g@&1) & —g&) & —g(&)
(&) = T e )

Then b is easily seen to be a cocycle for . Moreover, by the definition of the
strong operator topology, b is a uniform embedding. O

PROPOSITION 4. Suppose w : X — Isom(E) is an uncollapsed strongly
continuous isometric linear representation of a Banach space X on a separable
Banach space E. Then, for every 1 < p < oo, X admits coarsely proper
continuous cocycle b : X — €7(E).

Proof. Let c : Isom(E) — £P(E) be the cocycle given by Lemma 3 associated
to the diagonal isometric linear representation p : Isom(E) ~ £7(E). It follows
that c o : X — {P(E) is a continuous uncollapsed cocycle associated to the
isometric linear representation p o w : X ~ £7(E). By Proposition 3 and the
fact that ¢£7(¢”(E)) = £7(E), we obtain a coarsely proper continuous cocycle
b: X — P(E). O

Cocycles between Banach spaces are significantly more structured maps than
general maps. For example, as shown in Proposition 1, a coarsely proper
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continuous cocycle b : X — E between Banach spaces X and E is automatically
both a uniform and coarse embedding, but, moreover, b also preserves a certain
amount of algebraic structure, depending on the isometric linear representation
7w : X n~ E of which it is a cocycle.

To study these algebraic features, we must introduce a topology on the space of
cocycles. So fix a strongly continuous isometric linear representation 7 : G ~ E
of a topological group G on a Banach space E. Every compact set K € G
determines a seminorm ||-||x on Z'(G, ) by ||bllx = sup,.x 1b(g) |l and the
family of seminorms thus obtained endows Z'(G, ) with a locally convex
topology. With this topology, one sees that a cocycle b belongs to the closure
B'(G, r) if and only if the corresponding affine action « = (7, b) almost has
fixed points, that is, if for any compact set K € G and € > 0 there is some
& =&k € E verifying

sup|| (7w (x)§ + b(x)) — &l = supllb(x) — (§ — (X))l <e.

xekK xekK

Elements of B1(G, ) are called almost coboundaries.

Note that, if b is a coboundary, then b(G) is a bounded subset of E. Conversely,
suppose b(G) is a bounded set and E is reflexive. Then any orbit O of the
corresponding affine action is bounded and its closed convex hull C = conv(O) is
a weakly compact convex set on which G acts by affine isometries. It follows by
the Ryll-Nardzewski fixed point theorem [58] that G fixes a point on C, meaning
that » must be a coboundary.

Now, if b € B'(G, ) and, for every compact K € G, we can choose & = &k ;
above to have arbitrarily large norm, we see that the supremum

Sup||7T(x)i — i” < sup, ¢ 1) || + 1

xeK gl el Il
can be made arbitrarily small, which means that the linear action 7w almost has
invariant unit vectors. If, on the other hand, for some K the choice of &k ; is
bounded (but nonempty), then the same bound holds for any compact K’ 2 K,
whereby we find that 5(G) C E is a bounded set and so, assuming E is reflexive,
that b € B'(G, m). This shows that, if E is reflexive and w does not almost have
invariant unit vectors, then B'(G, ) is closed in Z!(G, 7).

We define the first cohomology group of G with coefficients in 7 to be the
quotient space H'(G, ) = Z'(G, n)/B'(G, ), while the reduced cohomology
group is H'(G, ) = Z' (G, )/BY (G, 7).

If E is separable and reflexive, the Alaoglu—Birkhoff decomposition
theorem [4] implies that £ admits 7 (G)-invariant decomposition into closed
linear subspaces E = EC @ Eg, where EC is the set of 7(G)-fixed vectors.
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We can therefore write b = b® @ b, where b° : X — E¢ and bg : X — Eg are
cocycles for 7. In particular,

b9 (xy) = m(0)BC(y) + b (x) = b%(y) + b%(x) = b9 (x) + b (y),

that is, % is a continuous homomorphism from G to (EC,+). Also, [7,
Theorem 2], implies that, if G is abelian, then H'(G, 7 |g,) = 0 and so bs €
B'(G, ).

Now, suppose w: X ~ E 1is a strongly continuous isometric linear
representation of a separable Banach space X on a separable reflexive Banach
space E. Assume that b : X — E is a continuous cocycle and let E = EX @ Ex
and b* : X — E¥ and bx : X — Eyx be the decompositions as above. Being a
continuous additive homomorphism, b* is a bounded linear operator from X to
EX. Also, if b* is coarsely proper or even just uncollapsed, then b* must be an
isomorphic embedding of X into E¥.

Now, since X is abelian, by : X — Ey belongs to B'(X, 7r), which means that,
for every norm-compact subset C € X and € > 0, there is £ € Ey so that

1§ —m(x)§ —bx(x)|| <€

forall x € C.
We summarize the discussion so far in the following lemma.

LEMMA 4. Suppose w : X ~ E is a strongly continuous isometric linear
representation of a separable Banach space X on a separable reflexive Banach
space E and assume that b : X — E is a continuous cocycle. Then there is a
7 (X)-invariant decomposition E = EX @ Ex and a decomposition b = bX @ by
so that bX : X — EX is a bounded linear operator and by : X — Ex belongs to
BY(X, m).

5. Amenability

Central in our investigation is the concept of amenability, which for general
topological groups is defined as follows.

DEFINITION 1. A topological group G is amenable if every continuous action
a : G ~ C by affine homeomorphisms on a compact convex subset C of a locally
convex topological vector space V has a fixed point in C.

If G is a topological group, we let LUC(G) be the vector space of bounded

left-uniformly continuous functions ¢ : G — R and equip it with the supremum
norm induced from the inclusion LUC(G) C £*°(G). It then follows that the
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right-regular representation p : G ~ LUC(G), p(g)(¢) = ¢ (- g), is continuous.
Moreover, if G is amenable, there exists a p-invariant mean, that is, a positive
continuous linear functional m : LUC(G) — R with m(1) = 1, where 1 is the
function with constant value 1, and so that m(p(g)(¢)) = m(¢).

While we shall use the existence of invariant means on LUC(G), at one
point this does not seem to suffice. Instead, we shall rely on an appropriate
generalization of Fglner sets present under additional assumptions.

DEFINITION 2. A topological group G is said to be approximately compact if
there is a countable chain Ky < K; < --- < G of compact subgroups whose
union | J, K, is dense in G.

This turns out to be a fairly common phenomenon among nonlocally compact
Polish groups. For example, the unitary group U () of separable infinite-
dimensional Hilbert space with the strong operator topology is approximately
compact. Indeed, if H; € H, C - -- € H is an increasing exhaustive sequence of
finite-dimensional subspaces and U (n) denotes the group of unitaries pointwise
fixing the orthogonal complement -, then each U (n) is compact and the union
(U, U(n) is dense in U (H).

More generally, as shown by de la Harpe [31], if M is an approximately
finite-dimensional von Neumann algebra, that is, there is an increasing sequence
A C A, € --- C M of finite-dimensional matrix algebras whose union is dense
in M with respect the strong operator topology, then the unitary subgroup U (M)
is approximately compact with respect to the strong operator topology.

Similarly, if G contains a locally finite dense subgroup, this will witness
approximate compactness. Again this applies to, for example, Aut([0, 1], A) with
the weak topology, where the dyadic permutations are dense, and Isom(U) with
the pointwise convergence topology (this even holds for the dense subgroup
Isom(QU) by an unpublished result of Solecki; see [56] for a proof).

Of particular interest to us is the case of non-Archimedean Polish groups.
By general techniques, these may be represented as automorphism groups
of countable locally finite (i.e., any finitely generated substructure is finite)
ultrahomogeneous structures. And, in this setting, we have the following
reformulation of approximate compactness.

PROPOSITION 5 (Kechris & Rosendal [37]). Let M be a locally finite, countable,
ultrahomogeneous structure. Then Aut(M) is approximately compact if and only
if, for every finite substructure A C M and all partial automorphisms ¢y, ..., ¢,
of A, there is a finite substructure A € B C M and full automorphisms yy, .. .,
v, of B extending ¢, . .., ¢, respectively.
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Whereas a locally compact group is amenable if and only if it admits a
Fglner sequence, there is no similar characterization of general amenable groups.
Nevertheless, one may sometimes get by with a little less, which we isolate in the
following definition.

DEFINITION 3. A Polish group G is said to be Fglner amenable if either:
(1) G is approximately compact; or

(2) there is a continuous homomorphism ¢ : H — G from a locally compact
second countable amenable group H so that G = ¢[H].

Apart from the approximately compact or locally compact amenable groups,
easy examples of Fglner amenable Polish groups are, for example, Banach spaces
or, more generally, abelian groups. Indeed, every abelian Polish group G contains
a countable dense subgroup I, which, viewed as a discrete group, is amenable
and maps densely into G.

6. Embeddability in Hilbert spaces

We shall now consider Hilbert valued cocycles, for which we need some
background material on kernels conditionally of negative type. The well-known
construction of inner products presented here originates in work of Moore [45]. A
full treatment can be found, for example, in [9, Appendix C].

DEFINITION 4. A (real-valued) kernel conditionally of negative type on a set X
is afunction ¥ : X x X — R so that:

(D) ¥Y(x,x)=0and ¥ (x,y) =¥ (y,x) forallx,y € X;
(2) forall xy,...,x, € Xandry,...,r, € Rwith Y., r; = 0; we have

iirirjllf(xi,xj) < 0.

i=1 j=1
For example, if 0 : X — 7 is any mapping from X into a Hilbert space H,
then a simple calculation shows that

n

YO nirjllo () — o x|’ = -2

i=1 j=1

Zn:ria(xi)
i=1

’g()’
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whenever ) |_, r; = 0, which implies that ¥ (x, y) = |lo (x) — o (y) ||? is a kernel
conditionally of negative type.

Suppose that ¥ is a kernel conditionally of negative type on a set X and let
M(X) denote the vector space of finitely supported real-valued functions £ on X
of mean 0, that is, ) _, £(x) = 0. We define a positive symmetric linear form
(- | -}y on M(X) by

n

< Z 76y,

i=1

k n k
Zstyl.L = —% Z Zrisjlp(xi’ i)
j=1

i=1 j=I

Also, if Ny denotes the null space

Ny ={§ e M(X) | (§ | &§)v =0},

then (- | -)y defines an inner product on the quotient M((X)/Ny and we obtain a
real Hilbert space /C as the completion of M(X)/N, with respectto (- | -)y.

We remark that, if & is defined by amap o : X — H as above and e € X is any
choice of base point, the map ¢, : X — K defined by ¢,(x) = 8, — &, satisfies
[pe(x) — d Wl = llo(x) — o (y) 3. Indeed,

llpe(x) — M = (Pe(x) — Ge(3) | Pe(x) — (1))
= (8 =4, | 6x —4y)
=1 @)+ ¥,y — ¥, y) —¥(.x)
=¥(x,y)
= llo(x) — o (M 3-

Also, if G ~ X is an action of a group G on X and ¥ is G-invariant, that is,
Y(gx,gy) = ¥(x,y), this action lifts to an action = : G ~ M(X) preserving
the form (- | -)y via w(g)§ = &(g~'-). It follows that 7 factors through to an
orthogonal (i.e., isometric linear) representation G . K.

A version of Lemma 5 below is originally due to Aharoni et al. [3] for the
case of abelian groups and has been extended and refined several times recently
in connection with the coarse geometry of Banach spaces and locally compact
groups (see, e.g., [20, 33, 51]). Since more care is needed when dealing with
general amenable as opposed to locally compact amenable or abelian groups, we
include a full proof.

Let us first recall that, if o : X — Y is a map between metric spaces, the exact
compression modulus k of o is given by K (¢) = inf,, = d(o (x), o (x")).

LEMMA 5. Suppose d is a compatible left-invariant metric on an amenable
topological group G and o : (G,d) — H is a uniformly continuous and
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bornologous map into a Hilbert space H with exact compression modulus k and
expansion modulus 6. Then there is a continuous G-invariant kernel conditionally
of negative type ¥ : G x G — R, satisfying

R(d(g, ) <¥(g, ) <0d(g, )
Proof. For fixed g, h € G, we define a function ¢, , : G — R via

Gen(f) = llo(fe) —o(fD]*.

Since, for all g, h, f € G, we have

R(d(g, M) =kd(fg, fM) < llo(fg) —o(fM* < O(d(g, h))’,

it follows that
K(d(g, h)* < ¢ei < 0(d(g, h)’

and so, in particular, ¢, , € £°(G).

We claim that ¢, is left-uniformly continuous, that is, that for all € > 0 there
is W > 1 open so that |¢, ,(f) — ¢, ,(fw)| < €, whenever f € G and w € W.
To see this, take some 1 > 0 so that 47|¢, 4|l + 41* < € and find, by uniform
continuity of o, some open V > 1sothat ||o(f) —o(fv)|| < nforall f € G and
v € V.Pick also W > 1 open so that Wg € gV and Wh C hV. Then, if f € G
and w € W, there are vy, v, € V so that wg = gv; and wh = hv,, whence

160 () = Bea(fw)l = [lo(f2) = o (fWIP = llo(Fuwg) — o (Fuh)|]

= |lo(re) = o (fMIF = llo (fgv) = o (Fhva)P|

< 4nl|¢g,h”oo +4772
< €.

Thus, every ¢, belongs to the closed linear subspace LUC(G) € £*°(G) of
left-uniformly continuous bounded real-valued functions on G and a similar
calculation shows that the map (g, h) € G x G > ¢, € £>°(G) is continuous.

Now, since G is amenable, there exists a mean m on LUC(G) invariant under
the right-regular representation p : G ~ LUC(G) given by p(g)(¢) = ¢ (- g).
Using this, we can define a continuous kernel ¥ : G x G — R by

lI/(g9 h) = m(¢g,h)

and note that ¥ (fg, fh) = m(Pre 1) = M(P(f)(Pgn)) = m(pgn) = ¥(g, h)
forallg, h, f € G.
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We claim that ¥ is a kernel conditionally of negative type. To verify this, let
gl,--sg€Gandr,...,r, ERWich?:lr,- = 0. Then, for all f € G,

n n

DO riritee (H) =YY rnirjllo(fe) —o(fenl* <0,

i=1 j=1 i=1 j=1

since (g, h) — ||o(fg) — o (fh)|? is a kernel conditionally of negative type. As
m is positive, it follows that also

Z Zrirj‘l’(gi, gj) = m(Z Zr,-r,»d)gi,gj) <0.

i=1 j=1 i=1 j=1

Finally, as m is a mean and

R(d(g, M) < dgn <Od(g, M),

it follows that
K(d(g, h)* <W¥(g h) <0Wd(g, h))*

as required. O

THEOREM 13. Suppose d is a compatible left-invariant metric on an amenable
topological group G and o : (G,d) — H is a uniformly continuous and
bornologous map into a Hilbert space H with exact compression modulus k and
expansion modulus 6.

Then there is a continuous cocycle into a real Hilbert space b : G — K so that

k(d(g, ) <1Ib(g) —b(NHI < 0(d(g, 1)),
forall g, f € G.

Proof. Let ¥ be the G-invariant kernel conditionally of negative type given by
Lemma 5. As above, we define a positive symmetric form (- | -)y on M(G).
Note that, since ¥ is G-invariant, the form (- | -)y is invariant under the left-
regular representation A : G ~ M(G) given by A(g)(€§) = &£(g~'-) and so A
induces a strongly continuous orthogonal representation 7 of G on the Hilbert
space completion KC of M(G)/Ny .

Moreover, as is easily checked, the map b : G — K given by b(g) = (8, — &)
+ Ny is a cocycle for 7. Now

161> = (8 — 81 | 8, — 81)w = (g, 1),
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whence
k(d(g, 1) < [Ib(g)ll < 0(d(g, D).

Replacing g with f~'g, the theorem follows. O

The first application concerns uniform embeddability of balls. Recall, for
example, that a Banach space X whose unit ball By is uniformly embeddable
into a Hilbert space must have finite cotype [52, Proposition 5.3].

COROLLARY 3. Let o : X — H be a uniformly continuous map from a Banach
space X into a Hilbert space satisfying

nf_ o) —o ()] >0

for just some r > 0. Then By is uniformly embeddable into Hilbert space.

Proof. Observe that the exact compression modulus of o satisfies &,(r) > O.
Thus, applying Theorem 13, we obtain a Hilbert valued continuous cocycle
b: X — K with &, (r) > 0. Finally, an application of Proposition 2, shows that
By uniformly embeds into Bj. O

The requirement that ¢ be uniformly continuous in Theorem 13 above is
somewhat superfluous. Indeed, Johnson and Randrianarivony [33, Step O] have
shown that any separable Banach space admitting a coarse embedding into a
Hilbert space also has a uniformly continuous coarse embedding into a Hilbert
space and the proof carries over directly to prove the following.

LEMMA 6 [33]. Suppose o : (X,d) — H is a map from a metric space into a
Hilbert space and assume that o is Lipschitz for large distances and expanding.
Then (X, d) admits a uniformly continuous coarse embedding into a Hilbert
space.

For a topological group, the question is then when one may work with Lipschitz
for large distance maps rather than bornologous maps.

LEMMA 7. Leto : G — (X, d) be a bornologous map from a Polish group into
a metric space. Then there is a compatible left-invariant metric 0 on G so that

o:(G,0) > (X,d)

is Lipschitz for large distances.
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Proof. Fora € G, set

w(a) = sup d(o(x),o(y))

x~ly=a

and observe that, as o is bornologous, w(a) = w(a~') < oo. We claim that there
is some symmetric open identity neighbourhood V so that

C =supw(a) < oo.
aeV

If not, there are @, — 1 so that w(a,) > n. But then K = {a,, 1}, is a compact
and thus relatively (OB) set and

Ex ={(x,y) €eGxG|x'yeK}

a coarse entourage on G. As o is bornologous, we see that (¢ x o)Eg is a
coarse entourage in X, that is, sup, yek d(o(x),0(y)) < oo, contradicting the
assumptions on K.

So pick V as claimed and let D < 1 be some compatible left-invariant metric
on G. Fix also € > 0 so that V contains the ball Bj(2¢). Define

d(x.y) = inf(Z D, )+ Y (wia) + 1) | x

ieB i¢B

=ya,---a, & a; €V forieB).

Since D is a compatible metric and V > 1 is open, 9 is a continuous left-invariant
écart. Moreover, as d > D, we see that 9 is a compatible metric on G.

Now, suppose x, y € G are given and write x = yay ---a, for some a; € G
witha; € V fori € Bsothat) ,_, D(a;, 1) + Zi@(w(ai) + 1) <ax,y) te.
Observe that, if D(a;, 1) < € and D(a;,1, 1) < € forsome i < n, thena;a;,| € V,
so0, by coalescing a; and a;, into a single term a;a,1; € V, we only decrease the
final sum. We may therefore assume that, for every i < n, either D(a;, 1) > € or
D(a;yq, 1) > €. It thus follows that

n —

1
- €,
2

A, y)+e=Y D, D+ wa)+1)>) D, 1) >

icB i¢B i<n

that is, n < 20(x, y)/€ + 3.
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Therefore,
d(o(x),0(y) < Y d(o(yar--a)).o(yay - a;))
ieB
+ Y do(yay-a). o(yay - a;i_y))
i¢B
<Con+ Yy wa)
i¢B
2C
< (——i—l) -9(x,y)+3C +e.
€
In other words, o : (G, ) — (X, d) is Lipschitz for large distances. ]

We can now extend the definition of the Haagerup property (see, e.g., [9,
Definition 2.7.5] or [18]) from locally compact groups to the category of all
topological groups.

DEFINITION 5. A topological group G is said to have the Haagerup property if
it admits a coarsely proper continuous affine isometric action on a Hilbert space.

Thus, based on Theorem 13 and Lemmas 6 and 7, we have the following
reformulation of the Haagerup property for amenable Polish groups.

THEOREM 14. The following conditions are equivalent for an amenable Polish
group G:

(1) G coarsely embeds into a Hilbert space;

(2) G has the Haagerup property.

Proof. (2) = (1):If « : G ~ H is a coarsely proper continuous affine isometric
action, with corresponding cocycle b : G — H, then b : G — H is a uniformly
continuous coarse embedding.

(1) = 2): If n: G — H is a coarse embedding, then by Lemma 7 there is
a compatible left-invariant metric d on G so that n : (G,d) — H is Lipschitz
for large distances. Since 7 is a coarse embedding, it must be expanding with
respect to the metric d. It follows from Lemma 6 that 5y : (G, d) — H may also be
assumed to be uniformly continuous. Thus, by Theorem 13, there is a continuous
affine isometric action « : G ~ K on a Hilbert space K with associated cocycle
b: G — K sothat, forall g € G,

iy (d (g, ) < I1b(g) = b < 0,(d(g, f)).
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Since 7 is a coarse embedding, the cocycle b : G — K is coarsely proper and so
is the action «. O

Haagerup [29] initially showed that finitely generated free groups have the
Haagerup property. It is also known that amenable locally compact groups [8] (see
also [18]) have the Haagerup property. However, this is not the case for amenable
Polish groups. For example, a separable Banach space not coarsely embedding
into Hilbert space such as ¢, of course also fails the Haagerup property.

There is also a converse to this. Namely, Guentner and Kaminker [28] showed
that, if a finitely generated discrete group G admits a affine isometric action on a
Hilbert space whose cocycle b grows faster than the square root of the word length,
then G is amenable (see [20] for the generalization to the locally compact case).
It is not clear what, if any, generalization of this is possible to the setting of (OB)
generated Polish groups. For example, [55, Theorem 7.2], the homeomorphism
group of the n-sphere S” has property (OB) and thus is quasi-isometric to a point.
It therefore trivially fulfils the assumptions of the Guentner—Kaminker theorem,
but is not amenable.

It is by now well known that there are Polish groups admitting no nontrivial
continuous unitary or, equivalently, orthogonal, representations (the first example
seems to be due to Christensen and Herer [32]). Also many of these examples are
amenable. While the nonexistence of unitary representations may look like a local
condition on the group that can be detected in neighbourhoods of the identity, the
following result shows that under extra assumptions this is also reflected in the
large scale behaviour of the group.

PROPOSITION 6. Suppose G is an amenable Polish group with no nontrivial
unitary representations. Then G is either coarsely equivalent to a point or is not
coarsely embeddable into Hilbert space.

Proof. Suppose G is not coarsely equivalent to a point. Then, by Theorem 14, if G
is coarsely embeddable into Hilbert space, there is a coarsely proper continuous
affine isometric action of G on Hilbert space. So either the linear part 7 is a
nontrivial orthogonal representation of G or the corresponding cocycle b : G —
‘H is a coarsely proper continuous homomorphism. Thus, as G is not coarsely
equivalent to a point, in the second case, b is unbounded and so composing
with an appropriate linear functional, we get an unbounded homomorphism into
R. In either case, G will admit a nontrivial orthogonal and thus also unitary
representation contrary to our assumptions. 0

Finally, let us sum up the equivalences for Banach spaces.
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THEOREM 15. The following conditions are equivalent for a separable Banach
space X:

(1) X coarsely embeds into a Hilbert space;
(2) X uniformly embeds into a Hilbert space;
(3) X admits an uncollapsed uniformly continuous map into a Hilbert space;

(4) X has the Haagerup property.

Here Condition (4) of Theorem 15 is a priori the strongest of the four since a
continuous coarsely proper cocycle b : X — H will be simultaneously a uniform
and coarse embedding. The equivalence of (1) and (2) was proved in [33] (the
implication from (3) to (1) and (2) of course also being a direct consequence of
Theorem 11), while the implication from (2) to (4) following from Theorem 14.
A seminal characterization of uniform embeddability into Hilbert spaces utilizing
a version of Lemma 5 appears in [3].

7. Preservation of local structure

Weakening the geometric restrictions on the phase space from euclidean to
uniformly convex, we still have a result similar to Theorem 13. However, in this
case, we do not know if amenability suffices, but must rely on strengthenings of
this.

Before we state the next result, we recall that a Banach space X is said to
be finitely representable in a Banach space Y if, for every finite-dimensional
subspace F C X and every € > 0, there is a linear embedding 7 : F — Y so
that | T - [T < 1+ €. We also say that X is crudely finitely representable
in Y if there is a constant K so that every finite-dimensional subspace of X is K -
isomorphic to a subspace of Y. Finally, if E is a Banach space and 1 < p < oo, we
let L”(E) denote the Banach space of equivalence classes of measurable functions
f : 10, 1] — E so that the p-norm

1 1/p
I e = (/ IfI% d)»)
0
is finite.

The next theorem is the basic result for preservation of local structure. Earlier
versions of this are due to Naor and Peres [47] and Pestov [49] respectively for
finitely generated amenable and locally finite discrete groups.
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THEOREM 16. Suppose that d is a continuous left-invariant écart on a Fglner
amenable Polish group G and o : (G,d) — E is a uniformly continuous and
bornologous map into a Banach space E with exact compression modulus & and
expansion modulus 6.

Then, for every 1 < p < 00, there is a continuous affine isometric action of G
on a Banach space V finitely representable in L? (E) with corresponding cocycle
b satisfying

k(d(x,y)) < Ib(x) —bly < 0(d(x,y))
forallx,y € G.

Proof. Let us first assume that G satisfies the second assumption of Definition 3
and let ¢ : H — G be the corresponding mapping. Then, replacing H by the
amenable group H/ ker ¢, we may suppose that ¢ is injective. Let also | - | denote
a right-invariant Haar measure on H. Since H is amenable and locally compact,
there is a Fglner sequence {F,}, that is, a sequence of Borel subsets F, C H of
finite positive measure so that lim, (|F,xAF,|/|F,|) = 0 for all x € H. Let also
L?(F,, E) denote the Banach space of p-integrable functions f : F, — E with

norm
1/p
||f||mn,E)=< / IIf(x)IIZ) -
F,

Now fix a nonprincipal ultrafilter / on N and let ([ [, L”(F,, E))y denote the
corresponding ultraproduct. That is, if we equip

W= {(5:) € HLP(Fn, E) | supll&,llrr (s, 5 < 00}
with the seminorm

1Nl = Limli&allLr s, )

andlet N = {(§,) € W | |[(§)]lw = 0} denote the corresponding null space, then
([, €7 (F,, E))y is the quotient W/N . For simplicity of notation, if (§,) € W, we
denote the element (§,) + N € ([, L?(F,, E))u by (£.)u-

Consider the linear operator @ : L*(H, E) — ([, L"(F,, E))u given by

O = UFI" - flr)u-
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Then || fllur,, = 1@ (f)llus defines a seminorm on L*°(H, E) satisfying
1A, = NAELY7 - fTeullZ,
= <liz/r{n|||F,,|_]/” - f an||Ll’(Fn,E)>p

:nm/ I E Y7 fFo5
U Jr,

1 p
A /Fnllf(X)IlE-

We claim that |||, , is invariant under the right-regular representation p : H ~
L*(H, E). Indeed, forall f € L*(H,E)andy € H,

= lim
u

lo) fliz,, — £z, = lim I HHOIE — lim If )Nz

u |E1| xekF, u |Fn| xeF,
1

— fim / 1wl — / IIf(x)II”>
u |Fn|( xeF, £ xekF, £
— lim — (/ 1ol —/ IIf(x)II”)
u |Fn| xeF,y k xeF, g
< lim — IO
< lim X
U |Fy| Jer,yar, g
. |F,yAF,|
< poo 1 -
”f”L (H,E) IZ/I;H |E1|
=0.
Since ¢ : H — G is a homomorphism and d is left-invariant, for x, y,z € H
we have
d(p(x), d(y)) = d(Pp(2)p(x), ¢(2)P(y)) = d(Pp(zx), P(zy))
and hence

kld@(x), ()] = k[d (@ (zx), ¢ (zy)]
Sllogzx) —ag(zy)lie
= l(e(x)od)(2) — (p(Y)oP) (@) &
<O[d@(x), o]
This shows that, for x, y € H, we have (p(x)o¢) — (p(y)o¢) € L*(H, E) and

k[d@x), o] < I(p(x)a¢) = (p(MoP) I < Old(P(x), p())]”

X
|Fn| Fy,
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for all n. By the expression for |||z, , it follows that

#[d@x), o] < ()0 d) = (0(MoP) s, < O[d(P(x), p()].

Therefore, by setting y = 1, we see that the mapping b : H — L*(H, E) given
by
b(x) = (p(x)op) —a¢
is well defined. Also, as b(x) — b(y) = (p(x)o @) — (p(y)o¢p), we see that

R[d@ ), o] < Ib&x) = bWl < 0[d(P(x), ()]

Since o uniformly continuous and thus lim._,, 8(¢) = O, it follows that b is
uniformly continuous with respect to the metric d(¢(-), ¢(-)) on H and the
seminorm |||z, , on L*(H, E).

Letnow M C L*(H, E) denote the null space of the seminorm ||-[|¢/,, and X be
the completion of L*°(H, E)/M with respect to |- ||, ,. Clearly, X is isometrically
embeddable into ([ [, L?(F,, E))y and the right-regular representation p : H ~
L>(H, E) induces a linear isometric representation of H on X, which we
continue denoting p. Similarly, we view b as a map into X.

Asis easy to see, b € Z'(H, p), that is, b satisfies the cocycle identity b(xy) =
p(x)b(y) + b(x) for x, y € H. So, in particular, the linear span of b[H] is p[H]-
invariant. Moreover, since each p(x) € p[H] is an isometry, the same holds for
the closed linear span V C X of b[H].

We claim that, for every & € V, the map x — p(x)& is uniformly continuous
with respect to the metric d(¢ (-), ¢ (-)). Since the linear span of b[H] is dense in
V, it suffices to prove this for £ € b[H]. So fix some z € H and note that, for
x,y € H, we have

o ()b (z) = p(Nb() llt,p = l[(b(x2) — b(x)) — (b(yz) — DY) llut.p
< Nb(xz) = by llewp + 110(y) — b et p
<O[d(¢(x2), p(y2)] +0[d(P(x), (y))]-

Now, suppose that € > 0 is given. Then, by uniform continuity of o, there is
5 > 0 so that () < €/2. Also, since multiplication by ¢ (z) on the right is left-
uniformly continuous on G, there is an n > 0 so that d(¢ (x), ¢ (y)) < n implies
that d(¢ (xz), ¢(yz)) < 8. It follows that, provided d(¢(x), ¢(y)) < min{n, 5§},
we have [|p(x)b(z) — p(y)b(2)llu,, < €, hence verifying uniform continuity.

To sum up, we have now an isometric linear representation p : H ~ V with
associated cocycle b : H — V so that, with respect to the metric d(¢ (-), ¢(-)) on
H, the mappings b and x — p(x)& are uniformly continuous for all £ € V.

Identifying H with its image in G via the continuous embedding ¢, it follows
that there are unique continuous extensions of these mappings to all of G,
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which we continue denoting b and x — p(x)&. Also, simple arguments using
continuity and density show that, for all x € G, the map & — p(x)& defines a
linear isometry p(x) of V so that p(xy) = p(x)p(y) and b(xy) = p(x)b(y) +
b(x). In other words, p is a continuous isometric linear representation and
b e Z'(G, p). Moreover,

i[d(x, NI < 1b(x) = bWl < Old(x, y)]

forallx,y € G.

To finish the proof, it now suffices to verify that V is finitely representable in
L?(E). To see this, note that, since each L”(F,, E) is isometrically a subspace of
LP(E), it follows from the properties of the ultraproduct that ([, L?(F,, E))u
is finitely representable in L?(E). Also, by construction, X and a fortiori its
subspace V are isometrically embeddable into ([ [, L”(F,, E))y, which proves
the theorem under the second assumption.

Consider now instead the case when G is approximately compact. The proof
is very similar to the second case, so we shall just indicate the changes needed.
Thus, let K| < K, < K3 < --- < G be a chain of compact subgroups with dense
union in G. Instead of considering the sets F, with the Haar measure | - | from H,
we now use the K, with their respective Haar measures and similarly L? (K, E)
in place of L?(F,, E). As before, the ultraproduct (][, L”(K,, E))y is finitely
representable in L”(E).

Also, if x € |, K,, then the right-regular representation p(x) defines a
linear isometry of all but finitely many L”(K,, E), which means that p(x)
induces a linear isometry of the ultraproduct ([ [, L”(K,, E))y simply by letting
p(x)(EDu = (P(X)&)u-

Also, observe that, for x, y € G, we have p(x)o, p(y)o € L?(K,, E) for all n
and by computations similar to those above, we find that

k[d(@x), o] < e — p(M)ullu < O[d(p(x), p()]-
We may therefore define b : G — ([, L”(K,, E))y by letting
b(x) = (p(x)o — o)y
and note that
K[d(@x), ()] < N1b(x) = bWl < 0[d(D(x), d(»)].

One easily sees that, when restricted to Un K,, b is a cocycle associated to the
representation p : |, K, ~ ([, L? (K., E))u.
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Moreover, as before, we verify that, for every & € V = b[|J, K,], the mapping
x € U, K, — px)§ € V is left-uniformly continuous, so the representation
p extends to an isometric linear representation of G on V with associated
cocycle b. O

Naor and Peres [47] showed the above result for finitely generated discrete
amenable groups using Fglner sequences and asked in this connection whether
one might bypass the Fglner sequence of the proof and instead proceed directly
from an invariant mean on the group. Of course, for a finitely generated group,
this question is a bit vague since having an invariant mean or a Fglner sequence
are both equivalent to amenability. However, for general Polish groups this is not
so and we may therefore provide a precise statement capturing the essence of their
question.

PROBLEM 1. Does Theorem 16 hold for a general amenable Polish group G?

REMARK 1. Subsequently to the appearance of the present paper in preprint, F.
M. Schneider and A. Thom have developed a more general notion of Fglner sets
in topological groups [59] and were able to combine this with the mechanics of
the above proof to solve Problem 1 in the affirmative. Moreover, they were also
able to construct an example of an amenable Polish group, which is not Fglner
amenable, thereby showing that their result is indeed a proper strengthening of
the above.

Our main concern here being the existence of coarsely proper affine isometric
actions, let us first consider the application of Theorem 16 to that problem.

COROLLARY 4. Let G be a Fplner amenable Polish group admitting a uniformly
continuous coarse embedding into a Banach space E. Then G admits a coarsely
proper continuous affine isometric action on a Banach space V that is finitely
representable in L*(E).

Though we do not in general have tools permitting us to circumvent the
assumption of uniform continuity as in Lemma 6, for non-Archimedean groups
we do. Indeed, assume o : G — E is a coarse embedding of a non-Archimedean
Polish group into a Banach space E. Then G is locally (OB) and thus has an open
subgroup V < G with property (OB) relative to G. Since o is bornologous, there
is a constant K > 0 so that ||o(g) — o (f)|| < K whenever f~'g € V. Letting
X C G denote a set of left-coset representatives for V, we define n(g) = o (h),
where h € X is the coset representative of gV. Then ||n(g) — o(g)|| < K for
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all g € G,s0 n: G — H is a coarse embedding and clearly constant on left
cosets of V, whence also uniformly continuous on G.

COROLLARY 5. Let G be a Fglner amenable non-Archimedean Polish group
admitting a coarse embedding into a Banach space E. Then G admits a coarsely
proper continuous affine isometric action on a Banach space V that is finitely
representable in L*(E).

Our second task is now to identify various properties of a Banach space E that
are inherited by any space V finitely representable in L*(E) (or in other L”(E)).
Evidently, these must be local properties of Banach spaces, that is, only dependent
on the class of finite-dimensional subspaces of the space in question.

We recall that a Banach space V is super-reflexive if every other space crudely
finitely representable in V is reflexive. Since evidently V is finitely representable
in itself, super-reflexive spaces are reflexive. Also, every space that is crudely
finitely representable in a super-reflexive space must not only be reflexive but
even super-reflexive. Moreover, super-reflexive spaces are exactly those all of
whose ultrapowers are reflexive. By a result of Enflo [22] (see also Pisier [50] for
an improved result or [23] for a general exposition), the super-reflexive spaces
can also be characterized as those admitting an equivalent uniformly convex
renorming.

It follows essentially from the work of Clarkson [19] that, if E is uniformly
convex, then so is L¥(E) forall 1 < p < oo. In particular, if E is super-reflexive,
then so is every space finitely representable in L(E).

For a second application, we shall note the preservation of Rademacher type
and cotype in the above construction. For that we fix a Rademacher sequence, that
is, a sequence (¢,)2, of mutually independent random variables €, : 2 — {—1,
1}, where (£2, IP) is some probability space, so that P(¢, = —1) =P(¢, = 1) = %
For example, we could take £2 = {—1, 1} with the usual coin tossing measure
and let €,(w) = w(n).

DEFINITION 6. A Banach space X is said to have type p for some 1 < p < 2 if
there is a constant C so that

(e

for every finite sequence xy, ..., x, € X.

n
E € X;
i=1

N\ 1/p n 1/p
) <C- (Zuxiu")
i=1
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Similarly, X has cotype g for some 2 < g < oo if there is a constant K so that

n 1/q g\ /4
(Zuxiuq) <K- (E )
i=1

for every finite sequence xy, ..., x, € X.
We note that, by the triangle inequality, every Banach space has type 1.
Similarly, by stipulation, every Banach space is said to have cotype ¢ = oo
Whereas the p in the formula (3_7_, [lx;[|?)"/? is essential, this is not so with
the p in (E||Y_/_, &:x;[1”)"/?. Indeed, the Kahane—Khintchine inequality (see [5])
states that, for all 1 < p < oo, there is a constant C, so that, for every Banach
space X and xy, ..., x, € X, we have
N\ V/p
e

E Xn:éixi < (E Zn:fi.x,' E Zn:éixi .
i=1 i=1 i=1

In particular, for any p,q € [1, o0[, the two expressions (E|>_;_, :x;[7)'/?
and (E|Y_7_, €x:]|“ |94 differ at most by some fixed mu1t1phcat1ve constant
independent of the space X and the vectors x; € X.

Clearly, if E has type p or cotype ¢, then so does every space crudely finitely
representable in X. Also, by results of Orlicz and Nordlander (see [5]), the space
L? has type p and cotype 2, whenever 1 < p < 2, and type 2 and cotype p,
whenever 2 < p < oco. Moreover, assuming again that E has type p or cotype ¢,
then L?(E) has type p, respectively, cotype ¢. We refer the reader to [5] for more
information on Rademacher type and cotype.

By the above discussion, Corollary 4 gives us the following.

.xi

COROLLARY 6. Let G be a Fplner amenable Polish group admitting a uniformly
continuous coarse embedding into a Banach space E that is either (a) super-
reflexive, (b) has type p or (c) cotype q. Then G admits a coarsely proper
continuous dffine isometric action on a Banach space V that is super-reflexive,
has type p, respectively, has cotype q.

In particular, this applies when G is a Banach space. Also, in fact, any
combination of properties (a), (b) and (c) verified by E can be preserved by V.

Corollary 6 applies, in particular, when G admits a uniformly continuous coarse
embedding into an L” space. In this connection, let us note that, by results of
Bretagnolle et al. [15, 16] and Mendel and Naor [42], for | < g < p < oo,
there is a map ¢ : LY — L*? which is simultaneously a uniform and coarse
embedding. Thus, if G admits a uniformly continuous coarse embedding into
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L”, p < 2, then it also admits such an embedding into L. On the other hand, by
results of Mendel and Naor [43], L? does not embed coarsely into L?, whenever
max{2, p} < g < oo.

Using Theorems 11 and 16, we conclude the following.

THEOREM 17. Let 0 : X — E be an uncollapsed uniformly continuous map
between separable Banach spaces. Then, for every 1 < p < 0o, X admits a
coarsely proper continuous affine isometric action on a Banach space V finitely
representable in LP (E).

Also, similarly to the proof of Corollary 3, we may conclude the following.

COROLLARY 7. Let o : X — E be a uniformly continuous map from a Banach
space X into a super-reflexive or superstable space satisfying
inf [lo(x) —o(I >0
lx=yll=r

for just some r > 0. Then By is uniformly embeddable into a super-reflexive,
respectively, superstable space.

Again, [52, Proposition 5.3], in the superstable case, we may further conclude
that X has finite cotype. In the super-reflexive case, we may combine this with a
result of Kalton to conclude the following.

COROLLARY 8. Let o : X — E be a uniformly continuous map from a Banach
space X with nontrivial type into a super-reflexive space satisfying

Hxir}l.f:,”(’(x) —oWMI >0

for just some r > 0. Then X is super-reflexive.
Proof. Indeed, [34, Theorem 5.1], if By is uniformly embeddable into a uniformly
convex space or, equivalently, into a super-reflexive space, and X has nontrivial

type, then X is super-reflexive. The result now follows by applying Corollary 7.
O

8. Stable metrics, wap functions and reflexive spaces

While it would be desirable to have a result along the lines of Theorems 13
and 16 for reflexive spaces, things are more complicated here and requires
auxiliary concepts, namely, stability and weakly almost periodic functions.
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DEFINITION 7. A function @ : X x X — R on a set X is stable provided that,
for all sequences (x,) and (y,,) in X, we have

lim lim @ (x,, y,) = lim lim @(x,, y,),
n—00 m—0o0 m—00 n—0Q0

whenever both limits exist in R.

Observe that, if @ is a metric or just an écart on X, then, if either of the two
limits exists, both (x,) and (y,,) are bounded. Thus, for an écart to be stable,
it suffices to verify the criterion for bounded sequences (x,) and (y,,). With this
observation in mind, one can show that an écart (respectively, a bounded function)
@ is stable provided that, for all bounded (x,), (y,) (respectively all (x,), (y.)),
we have

lim lim @(x,, y,) = lim lim @ (x,, y,)
n—-Um—Yy m—Y n—U

whenever U, V are nonprincipal ultrafilters on N.

We remark that a simple, but tedious, inspection shows that, if d is a
stable écart on X, then so is the uniformly equivalent bounded écart D(x, y) =
min{d(x, y), 1}.

In keeping with the terminology above, a Banach space (X, ||-||) is stable if
the norm metric is stable. This class of spaces was initially studied by Krivine
and Maurey [38] in which they showed that every stable Banach space contains a
copy of £7 for some 1 < p < oo. As we shall see, for several purposes including
the geometry of Banach spaces, the following more general class of groups plays
a central role.

DEFINITION 8. A topological group G is metrically stable if G admits a
compatible left-invariant stable metric.

Recall that a bounded function ¢ : G — R on a group G is said to be weakly
almost periodic (WAP) provided that its orbit A(G)¢ = {¢ (g~ -) | g € G} under
the left-regular representation A : G ~ £°(G) is a relatively weakly compact
subset of £°°(G). The connection between stability and weak almost periodicity
is provided by the following well-known criterion of Grothendieck [26].

THEOREM 18 (Grothendieck [26]). A bounded function ¢ : G — R on a group

G is weakly almost periodic if and only if the function ®(x,y) = ¢(x~'y) is
stable.

There is a tight connection between weakly almost periodic functions and
representations on reflexive Banach space borne out by several classical results.
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Central among these is the fact that every continuous bounded weakly almost
periodic function ¢ on a topological group G is a matrix coefficient of a strongly
continuous isometric linear representation ¥ : G ~ E on a reflexive Banach
space E, that is, for some & € E and n* € E*,

¢ (x) = (T(x)&, ).

Conversely, every such matrix coefficient is weakly almost periodic.

We shall need some more recent results clarifying reflexive representability of
Polish groups. Here a topological group G is said to admit a topologically faithful
isometric linear representation on a reflexive Banach space E if G is isomorphic
to a subgroup of the linear isometry group Isom(E) equipped with the strong
operator topology. The following theorem combines results due to Shtern [60],
Megrelishvili [41] and Ben Yaacov et al. [10].

THEOREM 19 [10, 41, 60]. For a Polish group G, the following are equivalent:
(1) G is metrically stable;

(2) G has a topologically faithful isometric linear representation on a separable
reflexive Banach space;

(3) for every identity neighbourhood V C G, there is a continuous weakly
almost periodic function ¢ : G — [0, 1] so that ¢(15) = 1 and supp(¢)
cV.

In particular, the isometry group of a separable reflexive Banach space is
metrically stable. Moreover, if E is a stable Banach space, then Isom(E) is
metrically stable. Indeed, by Lemma 3, Isom(£) admits a cocycle b : Isom(E) —
¢2(E) which is a uniform embedding. As also ¢*(E) is stable, it follows
that d(x, y) = |b(x) — b(y) |k is a compatible left-invariant stable metric on
Isom(FE).

Conversely, there are examples, such as the group Homeo, [0, 1] of increasing
homeomorphisms of the unit interval [40], that admit no nontrivial continuous
isometric linear actions on a reflexive space.

We now aim at extending earlier results of Raynaud [52] on the existence of
£? subspaces of Banach spaces. Observe first that every left-invariant compatible
metric on a Banach space is in fact bi-invariant and uniformly equivalent to the
norm metric. Thus, a Banach space is metrically stable exactly when it admits
an invariant stable metric uniformly equivalent to the norm. Formulated in our
terminology, [52, Théoreme 4.1] states the following.

THEOREM 20 (Raynaud). Every metrically stable Banach space contains an
isomorphic copy of £? for some 1 < p < oo.
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Also, by Theorem 19 and Proposition 4, we see that a metrically stable
separable Banach space admits a coarsely proper continuous affine isometric
action on a separable reflexive Banach space.

Furthermore, [52, Théoreme 0.2], Raynaud showed that any Banach space
uniformly embeddable in a superstable Banach space, that is, a space all of
whose ultrapowers are stable, is metrically stable (in fact, that it has a compatible
invariant superstable metric).

Note finally that, since by [52] the class of superstable Banach spaces is closed
under passing from E to L”(E), 1 < p < oo, and under finite representability,
Theorem 17 implies that a separable Banach space E uniformly embeddable into
a superstable Banach space also admits a coarsely proper continuous cocycle on
a superstable space.

THEOREM 21. Let X be a separable Banach space admitting an uncollapsed
uniformly continuous map into the unit ball Bg of a super-reflexive Banach space
E. Then X is metrically stable and contains an isomorphic copy of £ for some
1< p<oo.

Proof. Let 0 : X — Bpg be the map in question. By replacing E by the closed
linear span of the image of Y, we can suppose that E is separable. Let « and 6
be the compression and expansion moduli of o. As ¢ is uncollapsed, «(¢) > 0
for some t > 0 and, as o maps into Bg, we have 6(s) < 2 for all 5. By
Theorem 16, there is a Banach space V finitely representable in L*(E) and a
strongly continuous isometric linear representation 7 : X ~ V with a continuous
cocycle b : X — V satisfying

k(llx =yl < 1b(x) = bW llv < O(lx — yID.

Being finitely representable in the super-reflexive space L*(E), it follows that
V is super-reflexive itself. Also, b is bounded and uncollapsed, whence, by
Proposition 1, b is a uniform embedding of X into V. Being a bounded cocycle in
a super-reflexive space, we conclude by the Ryll-Nardzewski fixed point theorem
that b is a coboundary, that is, that b(x) = & — 7w (x)& for some & € V and all
x € X.

Now, since x +— & — m(x)¢ is a uniform embedding, so is x +— m(x)E&,
which shows that 7 : X — Isom(V) is a topologically faithful isometric linear
representation on a reflexive Banach space. By Theorem 19, we conclude that X
is metrically stable. Finally, by Theorem 20, X contains an isomorphic copy of ¢
for some 1 < p < oo. O
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A question first raised by Aharoni [2] (see also the discussion [11, Ch. 8])
is to determine the class of Banach spaces X uniformly embeddable into their
unit ball By. It follows from [1] that ¢, embeds uniformly into B, and, in fact,
every separable Banach space X containing ¢, embeds uniformly into its ball
Bx. Similarly, for 1 < p < 2, L?([0, 1]) is uniformly embeddable into the
unit ball of L2([0, 1]) [3]. Since also, for all 1 < p < oo, the unit balls of
L”([0, 1]) and L*([0, 1]) are uniformly homeomorphic by a result of Odell and
Schlumprecht [48], it follows that L”([0, 1]) in uniformly embeddable into the
ball Bys o1 for 1 < p < 2. This fails for p > 2 by results of [3].

COROLLARY 9. Let E be a separable super-reflexive Banach space not
containing ¥ for any 1 < p < oo or, more generally, which is not metrically
stable. Then E is not uniformly embeddable into Bp.

For example, this applies to the 2-convexification 7, of the Tsirelson space and
to V. Ferenczi’s uniformly convex HI space [24].

One may wonder whether Theorem 21 has an analogue for uniform embeddings
into super-reflexive spaces as opposed to their balls. That is, if X is an infinite-
dimensional Banach space uniformly embeddable into a super-reflexive space,
does it follow that X contains an isomorphic copy of £! or an infinite-dimensional
super-reflexive subspace? However, as shown by Braga [14, Corollary 4.15],
Tsirelson’s space T uniformly embeds into the super-reflexive space (73)r,
without, of course, containing £' or a super-reflexive subspace. The best one might
hope for is thus some asymptotic regularity property of X.

We shall now consider the existence of coarsely proper continuous affine
isometric actions on reflexive spaces by potentially nonamenable groups. For
locally compact second countable groups, such actions always exist, since
Brown and Guentner [17] showed that every countable discrete group admits
a proper affine isometric action on a reflexive Banach space and Haagerup
and Przybyszewska [30] generalized this to locally compact second countable
groups. Also, Kalton [34] showed that every stable metric space may be coarsely
embedded into a reflexive Banach space, while, on the contrary, the Banach space
co does not admit a coarse embedding into a reflexive Banach space.

Our goal here is to provide an equivariant counterpart of Kalton’s theorem.

THEOREM 22. Suppose a topological group G carries a continuous left-invariant
coarsely proper stable écart. Then G admits a coarsely proper continuous affine

isometric action on a reflexive Banach space.

Theorem 22 is a corollary of the following more detailed result.
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THEOREM 23. Suppose d is a continuous left-invariant écart on a topological
group G and assume that, for all o« > 0, there is a continuous weakly almost
periodic function ¢ € €*°(G) with d-bounded support so that ¢ = 1 on D, =
{g€G|dg 1) <a}

Then G admits a continuous isometric action w : G ~ X on a reflexive Banach
space and a continuous cocycle b : G — X that is coarsely proper with respect
to the écart d.

Proof. Under the given assumptions, we claim that, for every integer n > 1, there
is a continuous weakly almost periodic function O < ¢, < 1 on G so that:

(D) l¢nllc =¢(16) = 1;
(2) l1gn — 2(QPullw < 1/4" forall g € D,; and
(3) supp(¢,) is d-bounded.

To see this, we pick inductively sequences of continuous weakly almost
periodic functions (;)#", and radii (r;)}_, so that:

D O0=rp<2n<ri<rn4+22n<rm<nt+2n<ry<---<ry,

(i) 0< ¥ < 1

(i) ¥ = lon D, 1n;

(iv) supp(y) S Dy,
Note first that, by the choice of r;, the sequence
Dyyia\ Drys Di\ Drgins Dy \ Dty Dy\Dyins -+ D\ Dryr s G\ Dy,
partitions G. Also, forall 1 <i < 4",

Vvi1=---=¢;=0, whileyy;;, =---=ys =1lon D4, \ D,
and
Yr=---=¢%_,=0, whiley,,, =--- =y =1on D, \ D,_ ..

Setting ¢, = (1/4") Zf:] Y¥;, we note that, forall 1 <i < 4",

4

b=

on Dr,-+n \ Dr,-
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and
4" — i 4" —i+1
4n < ¢n < 4—n on Dri \ Dri71+n'

Now, if g € D, and f € G, then |d(g7'f, 1) — d(f, 1)| = |d(f, g) — d(,
D] € d(g,1) < n. So, if f belongs to some term in the above partition, then
g~ ! f either belongs to the immediately preceding, the same or the immediately
following term of the partition. By the above estimates on ¢,, it follows that

|, (f) — ¢, (g7 f)] < 1/4". In other words, for g € D,, we have

1
1 — (&) Pulloc = sup () — du(g™" I < T
feG

which verifies condition (2). Conditions (1) and (3) easily follow from the
construction.
Consider now a specific ¢, as above and define

W, = conv(A(G)¢, U —A(G)¢,) € Bro(g)

and, forevery k > 1,
Un,k - 2kWn + 2_kBgoO(G).

Let ||-||..x denote the gauge on £*°(G) defined by U, x, that is,
[V llne =inf(a >0 [ ¢ € a- Upp).

If g € D,, then [[¢, — A(g)Pullc < 1/4" and so, for k < n,

1 1
On — ()P, € o 27/{3500(0) - o U k.

In particular,

1
ldn — A(&)Pullnx < o forallk <nand g € D,. ey

On the other hand, for all g € G and k, we have ¢, — A(g)¢p, € 2W, C
(1/2"YU, x. Therefore,

1
Pn = 2(&)Pnllni < T for all k and g. 2)

Finally, since Un,l g 2Bgoo(G) =+ %BZW(G) = %Bgoo(c), we have ””oo S %”'”n,h
So, if g ¢ (supp ¢,)~', then

fn — A(&)Pullny >3, forall g & (supp ¢,)~". 3
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It follows from (1) and (2) that, for g € D,, we have

1\’ 1\’ 1Y I
2
;nm—ugmn,,,kg (2—) +---+(2—n) +(W> +(—2M1>

n times

1

X 2}172’

+ .-

while using (3) we have, for g ¢ (supp ¢,) "',

> lign = M@)pully > s
- n nlink = 25

Define || - ||, on £*(G) by [I¥ll, = G I |7 )"/ and set
X, ={¢ € span(A(G)¢,) S L(G) | 1Yl < oo} S £7(G).

By the main result of Davis er al. [21], the interpolation space (X, || - [I,.) is a
reflexive Banach space. Moreover, since W, and U, ; are A(G)-invariant subsets
of £*°(G), one sees that ||-||,,.x and || - ||, are A(G)-invariant and hence we have an
isometric linear representation A : G ~ (X, || - |l.)-

Note that, since ¢, € W,, we have ¢, € X,, and can therefore define a cocycle
b, : G — X, associated to A by b,(g) = ¢, — A(g)¢,. By the estimates above,
we have

1 n—2
bn n — n — A nlln X =
12, (M =l (&)Pulln < ( ﬁ)

for g € D,, while 5
12, (@M = Nl — A()Pulln = 5

for g ¢ (supp ¢,)~".
Letnow Y = (@, (X, ll-ll.)).2 denote the £2-sum of the spaces (X, ||-[l,). Let

also 7 : G ~ Y be the diagonal action and b = @ b, the corresponding cocycle.
To see that b is well defined, note that, for g € D,, we have

) 1/2
16y = (Z |||bm(g>|||i>

m=1

0 172
_ (ﬁnite + > llb <g>|||i)

sob(g) €Y.
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Remark that, whenever g ¢ (supp ¢,)~!, we have

2\2 N2\ 12 NG
||b<g>||y><(§) +--.+(§> ) > Y

n times

As (supp ¢,)~! is d-bounded, this shows that the cocycle b : G — Y is coarsely
proper with respect to d. We leave the verification that the action is continuous to
the reader. O

Let us now see how to deduce Theorem 22 from Theorem 23. So fix a
continuous left-invariant coarsely proper stable écart d on G with corresponding
balls D,. Then, for every ¢ > 0, we can define a continuous bounded weakly
almost periodic function ¢, : G — R by

d.(g) = 2—max{1,min {d(g, 1),2}}_

o

We note that ¢, has d-bounded support, while ¢, = 1 on D,, thus verifying the
conditions of Theorem 23.

9. A fixed point property for affine isometric actions

9.1. Kalton’s theorem and solvent maps. The result of this final section has a
different flavour from the preceding ones, in that our focus will be on the interplay
between coarse geometry and harmonic analytic properties of groups as related
to fixed points of affine isometric actions. As a first step we must consider a
weakening of the concept of coarse embeddings and show how it relates to work
of Kalton.

If M € N is an infinite set and r > 1, let P.(M) be the set of all r-tuples
ny < --- < n, withn; € M. We define a graph structure on P,(M) by letting two
r-tuplesn; < --- < n, and m; < --- < m, be related by an edge if

n<m KN <My < ---<n. <m,

or vice versa. When equipped with the induced path metric, one sees that P,(M)
is a finite-diameter metric space with the exact diameter depending on r.

THEOREM 24 (Kalton [34]). Suppose r € N and let E be a Banach space such
that E®" is separable. Then given any uncountable family {f;}ic; of bounded
maps f; : P.(N) — E and any € > 0, there exist i # j and an infinite subset
M C N so that

I filo) = fi(@)l <07 (1) +64(1) + €
forallo € P.(M).
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Kalton uses this result to show that ¢y neither embeds uniformly nor coarsely
into a reflexive Banach space. However, a close inspection of the proof reveals a
stronger result in the coarse setting.

DEFINITION 9. A map ¢ : (X,d) — (M, £) from a metric space X to a coarse
space M is said to be solvent if, for every coarse entourage E € £ and n > 1,
there is a constant R so that

R<dx,y))SR+n = (@x),¢() ¢ E.

In the case (M, d) is a metric space, our definition becomes more transparent.
Indeed ¢ is solvent if there are constants R, for all » > 1 so that

R, <d(x,y) <R, +n = 3(Xx), o) =n.

Also, in case X is actually a geodesic metric space, we have the following easy
reformulation.

LEMMA 8. Let (X, d) be a geodesic metric space of infinite diameter and suppose
that ¢ : (X,d) — (M, 9) is a bornologous map into a metric space (M, d). Then
¢ is solvent if and only if

sup K, (t) = sup d(j.r}f:t (P(x), p(y)) = oo.

Proof. Suppose that the second condition holds and find constants ¢, with
inf 3(p(x), p(y)) = n.
d(x,y)=ty

Since ¢ is bornologous and X geodesic, ¢ is Lipschitz for large distances and
hence

APp(x),¢(y) < K-d(x,y) +K

for some constant K and all x, y € X.

Now, assume #,2 < d(x, y) < t,2 + n. Then, as X is geodesic, there is some
z € X with d(x, z) = t,2, while d(z, y) < n. It follows that 3(¢(x), ¢(2)) > n?,
while d(¢(z), ¢ (¥)) < Kn + K, that is,

Apx), () =n*—Kn—K >n

provided n is sufficiently large. Setting R, = t,2, we see that ¢ is solvent.
The converse is proved by noting that every distance is attained in X. O
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While a solvent map ¢ : X — M remains solvent when postcomposed with
a coarse embedding of M into another coarse space, then dependence on X is
somewhat more delicate. For this and ulterior purposes, we need the notion of
near isometries.

DEFINITION 10. A map ¢ : X — Y between metric spaces X and Y is said to be
a near isometry if there is a constant K so that, for all x, x" € X,

dx,x) — K <d(¢x), ¢(x") <d(x,x) + K.

It is fairly easy to find a near isometry ¢ : X — X of a metric space X that
is not close to any isometry of X, that is, so that sup, d(¢(x), ¥ (x)) = oo for
any isometry i of X. However, in the case of Banach spaces, positive results
do exist. Indeed, by the work of several authors, in particular, Gruber [27] and
Gervirtz [25], if ¢ : X — Y is a surjective near isometry between Banach spaces
X and Y with defect K as above and ¢ (0) = 0, then there is surjective linear
isometry U : X — Y withsup, .y |l¢(x) —U (x)|| < 4K (see [11, Theorem 15.2]).

Now, suppose instead that ¢ neither surjective nor is ¢(0) = 0, but only that
¢ K-cobounded, that is, sup, .y infiex|ly — ¢(x)|| < K. Then Y has density
character at most that of X and hence cardinality at most that of X, whence a
short argument shows that there is a surjective map ¥ : X — Y with ¥(0) =0
so that sup, .y || (x) + ¢ (0) — ¢ (x)|| < 42K. In particular, ¥ is a near isometry
with defect 85K, whence there is a surjective linear isometry U : X — Y with
sup,cx ¥ (x) — U(x)|| < 340K. All in all, we find that

sup[|A(x) — ¢ ()| < 382K,
xeX
where A : X — Y is the surjective affine isometry A = U + ¢ (0). In other words,
every cobounded near isometry ¢ : X — Y is close to a surjective affine isometry
A: X — 7.
Let us also note the following straightforward fact.

LEMMA 9. Let
x-Sy Sz 5w

be maps between metric spaces X, Y and coarse spaces Z, W so that o is a
near isometry, ¢ is solvent and \ is a coarse embedding. Then the composition
Yoo : X — W is also solvent.

To gauge of how weak the existence of solvable maps is, we may reutilize the
ideas of Section 3.
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PROPOSITION 7. Suppose X and E are Banach spaces and that there is no
uniformly continuous solvent map v : X — (>(E). Then, for every uniformly
continuous map ¢ : X — E, we have

sup inf_[l¢(x) — ()l =0.

ro

Proof. Assume for a contradiction that ¢ : X — E is a uniformly continuous
map and that r > 0 satisfies infj,_, . |¢(x) — @¢(¥)|| = & > 0. Without loss of
generality, we may assume that ¢ (0) = 0.

Now fix n > 1 and choose €, > 0 small enough that 6,(¢,) < §/n2", where 6,
is the expansion modulus of ¢. Set also ¥, (x) = (n/8)¢ ((€,/n)x). Then

€, €, é
Ix =yl <n = Hqs(;x) - ¢(;y> H <

1
= @) =l < 55

while

rn
lx =yl = PRl 1V (x) = ¥ = 1.

n

Finally, let ¥ : X — ¢€*(E) be defined by ¥ (x) = (¥ (x), ¥»(x),...). Then
the above inequalities show that i is well defined and uniformly continuous and
also that, for every n > 1, there is some R with

lx =yl =R = I¥u(x) =vuWlle Z2n = V&) =W ller = n.

Applying Lemma 8, we conclude that v is solvent, contradicting our assumptions.
O

We now come to the improved statement of Kalton’s theorem.

THEOREM 25. Every bornologous map ¢ : ¢y — E into a reflexive Banach space
E is insolvent.

Proof. Let (ex);2, denote the canonical unit vector basis for cy. If a € N is a finite
subset, we let x, = Zkeu ey. Now, for r > 1 and A C N infinite, define

r
fr,A(nla LI nr) = ZXA(‘I[I,VL,‘J'
i=1
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Note that, if n; <m; <n, <mp, <---<n, <m, withn; <ny--- < n, and
m; < my < --- <mg,then || fra(m,...,n) — fralmy,...,m.)| <1, that is,
05 ,(1) < 1 and thus also Oy, , (1) < 6,(1).

Now fix r. Then by Theorem 24 there are infinite subsets A, B, M C N so that

16f.4(0) = @fr5(0) < Opr, . (1) + O, (1) +1 < 20,(1) + 1.

for all o € P,(M). On the other hand, as A # B, there is some o € P,(M) so that
Il fr.a(0) — frp(0)|l = r, whereby

inf Jl¢(x) =M < 18f.4(0) = @fr5(0)]| < 20,(1) + 1.

lx=yl=r

As any interval of the form [R, R + n], for n > 1, contains an integral point r, we
see that ¢ is insolvent. ]

COROLLARY 10. Every bornologous map ¢ : co — L'([0, 1]) is insolvent.

Proof. By Lemma 9, it suffices to observe that L'([0, 1]) coarsely embeds into
the reflexive space L*([0, 1]), which follows from [15]. O

Applying Proposition 7 and the fact that E — ¢*>(E) preserves reflexivity, we
also obtain the following corollary.

COROLLARY 11. Every uniformly continuous map ¢ : ¢co — E into a reflexive
Banach space satisfies

sup
|
r

Jinf_ 1l () — gl =0.

For a thorough study of regularity properties of Banach spaces preserved under
solvent maps, the reader may consult [12].

9.2. Geometric Gelfand pairs. Our next step is to identify a class of
topological groups whose large scale geometry is partially preserved through
images by continuous homomorphisms. This is closely related to the classical
notion of Gelfand pairs.

DEFINITION 11. A geometric Gelfand pair consists of a coarsely proper
continuous isometric action G ~ X of a topological group G on a metric space
X so that, for some constant K and all x, y,z,u € X with d(x, y) < d(z, u),
there is g € G withd(g(x),z) < K andd(z, g(y)) +d(g(y),u) <d(z,u) + K.
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An immediate observation is that, if G ~ X is a geometric Gelfand pair and
x,z € X, we may set x = y and z = u and thus find some g € G so that
d(g(x), z) < K. In other words, the action is also cobounded, whereby the orbit
map g € G — g(x) € X is a coarse equivalence between G and X for any choice
ofx € X.

To better understand the notion of geometric Gelfand pairs, suppose that
G ~ X is a coarsely proper continuous and doubly transitive isometric action
on a geodesic metric space, that is, so that, for all x, y,z,v € X withd(x, y) =
d(z,v), we have g(x) = z and g(y) = v for some g € G. Then G ~ X is a
geometric Gelfand pair. Indeed, if d(x, y) < d(z,u), pick by geodecity some
v € X sothatd(z,v)+d(v,u) =d(z,u) and d(z, v) = d(x, y). Then, by double
transitivity, there is g € G with g(x) = z and g(y) = v, verifying that this is a
geometric Gelfand pair.

Observe here that it suffices that X is geodesic with respect to its distance set
S =d(X x X), thatis, that, forall x, y € X and s € S with s < d(x, y), there is
ze€ Xwithd(x,z) +d(z,y) =d(x,y)and d(x, z) =s.

If K is a compact subgroup of a locally compact group G, then (G, K) is said
to be a Gelfand pair if the convolution algebra of compactly supported K-bi-
invariant continuous functions on G is commutative (see [9, Section 3.3] or [61,
Section 24.8]). A basic result due to Gelfand [61, Proposition 24.8.1] states that,
if G admits a involutory automorphism « so that g=' € Ka(g)K forall g € G,
then (G, K) is a Gelfand pair.

In the case above of a coarsely proper continuous and doubly transitive
isometric action G ~ X on a geodesic metric space, let K = {g € G | g(x) = x},
which is a closed subgroup of G. Then, if g, f € G and f € KgK, there is some
h € K sothat f(x) = hg(x) and so

d(f(x),x) = d(hg(x), x) = d(g(x), h™" (x)) = d(g(x), x).

Conversely, if g, f € G andd(f(x), x) = d(g(x), x), then, by double transitivity,
there is some & € G with Af (x) = g(x) and h(x) = x, thatis, g~'hf € K and
h € K whereby f € KgK. In other words,

feKgK <— d(f(x),x)=d(gx),x).

Asd(g7'(x), x) = d(x, g(x)), this shows that g~! € KgK forall g € G. So (G,
K) fulfils the condition of Gelfand’s result, except for the fact that G and K may
not be locally compact, respectively, compact. This motivates the terminology of
Definition 11.

EXAMPLE 1. Probably the simplest nontrivial example of a geometric Gelfand
pair is that of the canonical action Dy, ~ Z of the infinite dihedral group D,
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on 7Z with the euclidean metric. This action is doubly transitive and proper. As
moreover Z is geodesic with respect to its distance set N, we see that D, ~ Z is
a geometric Gelfand pair.

EXAMPLE 2. Similarly, if Aff(R") = O (n) xR" denotes the group of (necessarily
affine) isometries of the n-dimensional euclidean space, then Aff(R") ~ R" is a
geometric Gelfand pair.

Another class of examples are constructed as above from Banach spaces. For
this, let X be a separable Banach space and Isom(X) the group of linear isometries
of X equipped with the strong operator topology. As every isometry of X is affine,
the group of all isometries of X decomposes as the semidirect product Aff(X) =
Isom(X) x (X, +). Also, (X, ||-|]) is said to be almost transitive if the action
Isom(X) m X induces a dense orbit on the unit sphere Sy of X.

PROPOSITION 8. Let X be a separable Banach space. Then Aff(X) ~ X is a
geometric Gelfand pair if and only if Isom(X) has property (OB) and (X, ||-])) is
almost transitive.

Proof. First, as shown in [57], the tautological action Aff(X) ~ X is coarsely
proper if and only if Isom(X) has property (OB). So assume that Isom(X) has
property (OB) and consider the transitivity condition.

We observe that, if (X, ||-||) is almost transitive, then Aff(X) ~ X is almost
doubly transitive in the sense that, for all x, y, z, u € X with ||x — y|| = ||z — u||
and € > 0 there is g € Aff(X) so that g(x) = z and ||g(y) — u|| < €. In this case,
Aff(X) ~ X is a geometric Gelfand pair. Conversely, suppose Aff(X) ~ X is a
geometric Gelfand pair with a defect K. Then, for y, z € Sx and € > 0, there is
some g € Aff(X) so that ||g(0) — 0] < K and ||g((2K /e)y) — 2K /e)z]| < K.
Letting f € Isom(X) be the linear isometry f(x) = g(x) — g(0), we find that
I f(2K/€e)y) — 2K /e)zll < 2K, thatis, || f(y) — zll < €, showing that (X, ||-||)
is almost transitive. O

Examples of almost transitive Banach spaces include L ([0, 1]) for all 1 <
p < 0o [54] and the Gurarii space G [39]. Moreover, as all of these spaces are
separably categorical in the sense of continuous model theory, it follows from [55,
Theorem 5.2] that their linear isometry group has property (OB). We therefore
conclude that Aff(L? ([0, 1])) ~ L?([0, 1]) with 1 < p < oo and Aff(G) ~ G
are geometric Gelfand pairs.

EXAMPLE 3. Suppose I" is a countable metrically homogeneous connected

graph, that is, so that any isometry f : A — B with respect to the path metric on
I" between two finite subsets extends to a full automorphism of I". Then the action
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Aut(I") ~ I' is coarsely proper [57] and metrically doubly transitive. Since also
the path metric is Z-geodesic, it follows that Aut(I") ~ I" is a geometric Gelfand
pair.

Examples of metrically homogeneous countable graphs include the n-regular
trees T, for all 1 < n < Ry and the integral Urysohn metric space ZU.

This latter may be described as the Fraissé limit of all finite Z-metric spaces
(i.e., with integral distances) and plays the role of a universal object in the category
of Z-metric spaces. Alternatively, ZU is the unique universal countable Z-metric
space so that any isometry between two finite subspaces extends to a full isometry
of ZU. The rational Urysohn metric space QU is described similarly with Q in
place of Z.

Let us also recall that, since QU is countable, Isom(QU) is a Polish group
when equipped with the permutation group topology, which is that obtained by
declaring pointwise stabilizers to be open.

EXAMPLE 4. As shown in [57], the tautological action Isom(QU) ~ QU is
coarsely proper. Since it is also doubly transitive and QU is Q-geodesic, it follows
that Isom(QU) ~ QU is a geometric Gelfand pair.

9.3. Nearly isometric actions and quasi-cocycles. Having identified the
class of geometric Gelfand pairs, we will now show a strong geometric rigidity
property for their actions.

DEFINITION 12. Let G be a group and M a metric space. A nearly isometric
actionof Gon Misamap«a : G x M — M so that, for some constant C and all
g, f€eGandx,y € M, wehave

d(a(g, x),a(g,y) <d(x,y)+C

and
da(f,a(g, x)), a(fg,x)) < C.

Thus, if for g € G we let a(g) denote the map «(g, -) : M — M, we see firstly
that each «(g) is a contraction M — M up to an additive defect C and secondly
that «(f)a(g) and a(fg) agree as maps on M up to the same additive defect C.
Thus, a nearly isometric action needs neither be a true action nor do the maps
need to be exact isometries.

Nearly isometric actions can be constructed from Banach space valued quasi-
cocycles.
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DEFINITION 13. A map b: G — E from a group G to a Banach space E is
said to be a quasi-cocycle provided that there is an isometric linear representation
7w : G ~ E sothat

sup |z (g)b(f) + b(g) — b(gf)ll < oo.

8.f€G

Observe that if b : G — E is a quasi-cocycle associated to an isometric linear
representation w : G ~ E, then the formula

a(g)x =m(g)x + b(g)

defines a nearly isometric action of G on E. In fact, in this case, each map «(g)
is an actual isometry. We also have the following converse to this.

LEMMA 10. Suppose thata : G x E — E is a nearly isometric action of a group
G on a Banach space E so that the a(g) : E — E are uniformly cobounded. Then
b : G — E defined by b(g) = a(g)0 is a quasi-cocycle associated to an isometric
linear representation t : G ~ E so that

sup sup||7r(g)x + b(g) — a(g)x| < oo.

geG xe€E

Proof. Since the maps «(g) are uniformly cobounded, there is a constant C larger
than the defect of o so that infycg||x — a(g)y|| < Cforallg € Gand x € E.
Givenany x € E, find y € E with ||x — «a(1)y| < C and observe that
[a(Dx — x|l < [le(Dx —a(Dyl+C
< lax —a(Da(Dyll +2C
< x —a(yll +3C
< 4C.
Thus, forallx,y € Eand g € G,
lx = ylI < lle(Dx —e(Dyll +8C
< lla(gHa(g)x —a(g Ha(g)yll + 10C
< lla(@)x —a(@)yl +11C
< e =yl +12C,
showing that «(g) is a near isometry of E with defect 11C. Hence, as observed

in Section 9.1, there is a linear isometry 7 (g) of E so that, for b(g) = «(g)0 and
K = 5000C, we have

supl|m(g)x + b(g) —a(g)x| < K.

xeE
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It follows that the map A : G — Aff(E) given by A(g)x = m(g)x + b(g)
defines a rough action of G on E in the sense [44, Section 13.1], that is, each
A(g) is an affine isometry of E and sup, l|A(g)A(f)x — A(gf)x| < 4K <
oo. In particular, 7 : G — Isom(FE) is an isometric linear representation of
G and b: G — E an associated quasi-cocycle [44, Lemma 13.1.2]. Indeed

I ()b(f) +b(g) — bl = 1AQA(f)O — A(gf)0] < 4K, whereby

7w () (f)x—m(gf)x|

< w (@@ (H)x +b(f) +b(g) — (m(gf)x +b(gf DIl +4K
[AA(f)x — A(gf)xll +4K

8K

/

NN

forallx € E. As ||[n(g)m(f)x — m(gf)x|| is positive homogeneous in x, we see
that m(g)n (f) = n(gf) forallg, f € G. (|

As our applications deal with topological groups, it is natural to demand that
a nearly isometric action « respects some of the topological group structure. As
continuity may be too restrictive, a weaker assumption is that some orbit map is
bornologous.

LEMMA 11. Leta : G x M — M be a nearly isometric action of a Polish group.
Then, if some orbit map g € G +— a(g)x € M is Baire measurable, it is also
bornologous.

Proof. For every n, let B, = {g € G | d(a(g)x,x) < n & d(a(g ")x,
x) < n}. Then G = |J, B, is a covering of G by countable many Baire
measurable symmetric subsets, whence by the Baire category theorem some B,
must be nonmeagre. Applying Pettis’ theorem, it follows that B, B, is an identity
neighbourhood in G.

Now suppose that A C G is relatively (OB) and find a finite set F € G and
m > 1 sothat A C (FB,B,)". Let also K be a number larger than all of n,
max ser d(a(f)x, x) and the defect of «. Then, if i, g € G and h~'g € A, there
are kl, ey k2m € B, and fl, ey fm e F with g = hf1k1k2h2k3k4 s fmk2m—lk2m-
Thus,

d(a(g)x, a(h)x) = d(a(hfikiky -+ fnkom—1kom)x, c(h)x)
S d(a(hfikiky -+ fukom—1kom)X,
X a(h)a(fikiksy - fukom—1kam)x)
+d(a(MWa(fikiks -+ fukon-1kon)x, a(h)x)
Sd(a(fikiky - fukom-1kom)x, x) + 2K
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<d(a(fikiky - - fukom—ikom)x, a(fi)o(kiks - - - frkom—1kom)x)
+d(a(f)akiky - fukom—1kom)x, a(f)x)
+d(a(f)x,x) +2K

< d(alkiky - fokom—1kan)x, x) + 5K
<---
< (2+3m)K.
That is,
h'ge A = d(a(g)x,a(h)x) < 2+3m)K,
showing that the orbit map g € G — a(g)x € M is bornologous. 0

In particular, since a quasi-cocycle b : G — E associated to an isometric linear
representation 7 : G ~ E is simply the orbit map g — «(g)0 of the associated
rough action «(g)x = m(g)x + b(g), we have the following corollary.

LEMMA 12. Let b: G — E be a Baire measurable quasi-cocycle on a Polish
group G. Then b is bornologous.

EXAMPLE 5. In a great number of mainly topological transformation groups G,
we can remove the condition of Baire measurability from Lemmas 11 and 12.
Indeed, in the above proof, we need only that, whenever G = |, B, is a
countable increasing covering by symmetric subsets, then there are n and m so
that int(B)") # ¥. One general family of groups satisfying this criterion are Polish
groups with ample generics, that is, so that the diagonal conjugacy action G ~ G”"
has a comeagre orbit for every n > 1 [37]. For example, both Isom(QU) and,
by the same proof, Isom(ZQ) have ample generics, while Aut(7y,) has an open
subgroup with ample generics [37]. Thus, in all three cases, every quasi-cocycle
defined on the group is bornologous.

PROPOSITION 9. Suppose G ~ X is a geometric Gelfand pair and that « is a
nearly isometric action of G on a metric space M so that every bornologous map
X — M is insolvent. If some orbit map g € G — «(g)é € M is bornologous,
then every orbit a[G]¢ is bounded.

Proof. Fix & € M so that the orbit map g € G — «(g)§ is bornologous and let
C be the defect of «, that is, forall g, f € Gand ¢, n € M,

dx(a(g)s, a(g)n) < dx(¢,n) +C and dy(a(fla(g)s, a(fg)) < C.

Let also K be a constant witnessing that G ~ X is a geometric Gelfand pair.
Fix x € X and choose for each y € X some y, € G such that dx(y,(x),y) < K.
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Define then ¢ : X — M by ¢(y) = a(y,)§. Weset V = {g € G | dx(gx,x) <
3K}, which is a relatively (OB) symmetric identity neighbourhood in G and let

L= sup dy(a(g)t, a(f)é).

flgev

We claim that ¢ is bornologous. Indeed, observe that the composition y
yy(x) of y : X — G with the orbit map g € G — g(x) € X will be close to the
identity map on X. So, as the orbit map g +— g(x) is coarsely proper and hence
expanding, this implies that y and thus also ¢ are bornologous

Now, suppose that m > 1 and that

dy(@x), ¢(y) =2 m+3C +2L + 6,(m + 2K)

for some y € X. We claim that, for all z, u € X,

dy(x,y) <dx(z,u) <dx(x,y) +m = dy(@2), ) =

To see this, suppose that dy(x, y) < dx(z,u) < dx(x, y) + m and find some

g € G sothatdy(g(x),z) < K and dx(z, g(y)) +dx(g(y), u) < dx(z,u) + K,
that is,

dx(g(y),u) < dx(z,u)+ K —dx(z, g(y))
<dx(x,y)+m+K —dx(gx),g(y)+ K
=m+2K.

In particular, dy (¢ (gy), ¢ (1)) < 6,(m + 2K).
Now, dy (gy:(x), y:(x)) < dx(g(x),2) + 2K < 3K,s0y ' gy, € V, whence

dy(a(gy:)§, ¢(2)) = du(a(gy)§, a(y)§) < L

Slmllarly, dx(8Yy(X), Vey (%)) < dx(gyy(x), 8(¥)) + dx(8(y), ¥ey(x)) < 2K, s0
ygy gyy € V, whence

du(a(gyy)§, ¢(gy)) = du(a(gy)é, a(yy)§) < L
Thus
du(¢(x), ¢(y)) = du(a(y)§, a(yy)§)
<dy(a(g gy a(g Halgr)E) +2C
du(a(gy)§, a(gyy)§) +3C

<
<du(@(2), d(gy)) +3C +2L
< du(9(2), p(u)) +3C + 2L + 04(m + 2K),

whence dy, (¢ (z), ¢ (u)) = m, proving the claim.
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It follows from our claim that, if ¢ is unbounded, then, for every m, there is
some R,, so that

that is, ¢ is solvent, which is absurd. So ¢ is a bounded map, which easily implies
that every orbit ¢[G]¢ is bounded in M. O

PROPOSITION 10. Suppose G ~ X is a geometric Gelfand pair and H a
topological group so that every bornologous map X — H is insolvent. Then,
ift : G — H is a continuous homomorphism, w[G] is relatively (OB) in H.

Proof. Pick a constant K witnessing that G ~ X is a geometric Gelfand pair,
fix x € X and choose for every y € X some y, € G so that d(y,(x),y) <
K. As in the proof of Proposition 9, y : X — G is bornologous. Finally, let
V ={g € G| dx(gx,x) < 3K}, which is a symmetric relatively (OB) identity
neighbourhood in G.

Now assume that A € H is relatively (OB), m > 1 and fix a symmetric
relatively (OB) set D € G so that y, € y,D whenever d(w, v) < m + 2K.
Suppose that y, ¢ y,Vx~'(A)DV forsome y € X.

Suppose that dy (x, y) < dx(z,u) < dx(x, y) + m for some z, u € Z and find
some g € G so that dy(g(x), z) < K and dx(z, g(y)) + dx(g(y), u) < dx(z,u)
+ K, that is, dx(g(y), u) < m + 2K. In particular, y,, € y,D. Also dx(gy.(x),
V(%)) < dx(g(x),2) +2K < 3K and

dx (8yy(x), Yey (%)) < dx(8yy(x), 8(¥)) +dx(8(y), ey (x)) < 2K,

SO g¥x € ¥,V and gy, € y,, V. It follows that

vi'lve =@y ery € VY vV S VY DV
and so (y,)"'m(y,) ¢ A. In other words, forall z, u € X,

dx(x,y) < dx(z,u) <dx(x,y) +m = n(y) " 'n(n) ¢ A.

This shows that, if, for all relatively (OB) sets A € H and D C G, there is some
Yy € »xVa'(A)DV, then the map z € X +> 7 (y,) € H is both bornologous and
solvent, which is impossible. So choose some A and D for which it fails. Asim(y)
is cobounded in G, it follows that G = Vz~'(A)U for some relatively (OB) set
U C G and hence n[G] is included in the relatively (OB) set 7[V]Ax[U]. In
particular, w[G] is relatively (OB) in H. ]
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We are now in a position of deducing the main application of this section.
Note first that Isom(QU) is isomorphic to a closed subgroup of the group S,
of all permutations of a countable set and so, in particular, [som(QU) admits
continuous unitary representations given by permutations of an orthogonal basis
(ex)requ. Moreover, by results of [62] and [37], Isom(QU) is approximately
compact and thus amenable. As shown in [57], Isom(QU) is coarsely equivalent
to QU itself. So, as ¢y nearly isometrically embeds into QU, this shows that
Isom(QU) cannot have a coarsely proper affine isometric action on a reflexive
space. This is in opposition to the result of Brown—Guentner [17] and Haagerup—
Przybyszewska [30] that every locally compact second countable group admits
such an action. However, our result here indicates a much higher degree of
geometric incompatibility.

THEOREM 26. Let E be either a reflexive Banach space or E = L' ([0, 1]) and let
G be Isom(ZU) or Isom(QU). Then every quasi-cocycle b : G — E is bounded.
In particular, every affine isometric action G ~ E has a fixed point.

Proof. Observe that there are near isometries from ¢, into both ZU and QU. It
thus follows from Theorem 25, respectively Corollary 10, that every bornologous
map from ZU or QU into a reflexive space or into L'([0, 1]) is insolvent. Now,
by Example 5, every quasi-cocycle on G is bornologous, so it follows from
Proposition 9 that every quasi-cocycle b : G — E is bounded.

Now, if « : G ~ E is an affine isometric action, then the associated cocycle
in bounded and thus the affine action has a bounded orbit. Thus, by the Ryll-
Nardzewski fixed point theorem [58] for the reflexive case or the fixed point
theorem of Bader et al. [6] for E = L'([0, 1]), there is a fixed point in E. O]

Theorem 26 is motivated by questions pertaining to the characterization of
property (OB) among non-Archimedean Polish groups. Every continuous affine
isometric action of a Polish group with property (OB) on a reflexive space
has a fixed point and one may ask if this characterizes property (OB) for non-
Archimedean Polish groups, that is, closed subgroups of S,,. As Isom(QU) acts
transitively on the infinite-diameter metric space QU, it fails property (OB) and so
the answer to our question is no. However, the following question remains open.

QUESTION 3. Suppose « : Isom(QU) ~ E is a continuous affine action on a
reflexive Banach space E. Does a necessarily have a fixed point?

The difference with Theorem 26 here is that the action is not required to be

isometric and thus the linear part 7 could map onto an unbounded subgroup of
the general linear group GL(E).
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