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Abstract

The aim of this note is to give a simple topological proof of the well-known result concerning continuity
of roots of polynomials. We also consider a more general case with polynomials of a higher degree
approaching a given polynomial. We then examine the continuous dependence of solutions of linear
differential equations with constant coefficients.
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1. Introduction

It is well known that the roots of a monic polynomial zn + an−1zn−1 + · · · + a1z + a0
in the complex plane depend continuously on the coefficients. A classical proof uses
Rouché’s theorem [1, page 153], but there are other proofs. The proof in [6, page 10]
uses estimates of the absolute values of roots in terms of the parameters an−1, . . . , a0,
while the proofs in [3, 4] and [5] treat the space of roots as a metric space and apply
topological machinery. Finally, the proof in [2] relies on the notion of projective space
and gives continuity of the roots for polynomials which are not necessarily monic (see
Theorem 3.3 below or, equivalently, [2, Theorem 3]).

In the first part of this note (Section 2), we give a proof of continuity of the roots
for monic polynomials by characterising convergence of sequences in the quotient
space of n-roots vectors, in which we identify two vectors if their coordinates may be
reordered so as to obtain one vector from the other. Such a quotient space (a symmetric
space) has also been used in [1–5] and we just take it as a starting point to conduct a
purely topological proof without any reference to metrisability of the topological space
under consideration. In Section 3, we use a simple trick to get a general continuity
result (Theorem 3.3) from its ‘monic version’ presented in Corollary 2.9.

In the second part of this note, we examine the continuous dependence of solutions
of linear differential equations with constant coefficients. The case of linear differential
equations of a fixed order is obvious as a consequence of Theorem 2.8 and the form of
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the general solution of the equations under consideration. On the other hand, when we
consider linear differential equations of higher order than the limit equation, various
conclusions are possible, as we show in Example 4.1.

Notation. Let N denote the set of positive integers, C the set of complex numbers,
R the set of real numbers and R+ the set of nonnegative elements of R. We write
[n] := {1, . . . , n} for any n ∈ N. Let Sn denote the set of all permutations of elements of
the set [n] for n ∈ N.

We define the (Euclidean) norm of a vector ξ = (ξ1, . . . , ξn) ∈ Cn by |ξ| :=√∑n
i=1 ‖ξi‖

2, where ‖ξi‖ is the modulus of ξi ∈ C. For ε > 0, let Bε := {ξ ∈ Cn : |ξ| < ε}.
For nonempty sets A, B ⊂ Cn, their Minkowski sum is the set A + B := {a + b : a ∈ A,
b ∈ B}. For ξ ∈ Cn we write simply ξ + B instead of {ξ} + B. If P is a polynomial, we
denote its degree by deg(P).

2. Results for monic (normed) polynomials

Fix n ∈ N. Let σ : Cn → Cn be defined by σ(ξ) := (σ1(ξ), . . . , σn(ξ)), where ξ =

(ξ1, . . . , ξn), ξi ∈ C for i ∈ [n], σi(ξ) = ai ∈ C, i ∈ [n], and
n∏

i=1

(z − ξi) = zn + anzn−1 + · · · + a2z + a1, z ∈ C.

Viète’s formulas ensure that σ is a well-defined continuous function.
For ξ ∈ Cn and s ∈ Sn, we define s(ξ) (abusing notation) by s(ξ) := (ξs1 , . . . , ξsn ).

Note that s(ξ + ξ′) = s(ξ) + s(ξ′) for ξ, ξ′ ∈ Cn and s ∈ Sn.
We introduce an equivalence relation ∼ on Cn as in [4], that is, for ξ, ξ′ ∈ Cn, ξ ∼ ξ′

if and only if ξ = s(ξ′) for some s ∈ Sn. For ξ ∈ Cn, let π(ξ) := {ξ′ ∈ Cn : ξ′ ∼ ξ} and
denote the quotient set induced by ∼ on Cn by

Cn/∼ := {π(ξ) : ξ ∈ Cn}.

The mapping π is called the quotient projection of Cn onto Cn/∼. The quotient space
induced by the relation ∼ on Cn is the set Cn/∼ endowed with the (quotient) topology:
A ⊂ Cn/∼ is open if and only if π−1(A) := {x ∈ Cn : π(x) ∈ A} is open in Cn endowed
with the Euclidean topology.

Lemma 2.1. Let ε > 0 and ξ ∈ Cn be fixed. Then s(ξ + Bε) = s(ξ) + Bε for s ∈ Sn.

Proof. Let b ∈ s(ξ + Bε), that is, there exists b′ ∈ Bε with b = s(ξ + b′) = s(ξ) + s(b′).
However, |s(b′)| = |b′| < ε, so b ∈ s(ξ) + Bε. Let s−1 ∈ Sn be the inverse of s.
If b ∈ s(ξ) + Bε, then b = s(ξ) + s(s−1(b′)) = s(ξ + s−1(b′)) ∈ s(ξ + Bε) for some
b′ ∈ Bε. �

Corollary 2.2. Let ε > 0 and ξ, ξ′ ∈ Cn be fixed. Then π(ξ′) ∈ π(ξ + Bε) if and only if
ξ′ ∈ s(ξ) + Bε for some s ∈ Sn.

Lemma 2.3. Let ε > 0 and ξ ∈ Cn be fixed. The set π−1(π(ξ + Bε)) ⊂ Cn is open.
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Proof. By the definition, π−1(π(ξ + Bε)) = {ξ′ ∈ Cn : π(ξ′) ∈ π(ξ + Bε)}. The claim
π(ξ′) ∈ π(ξ + Bε) is equivalent to {s(ξ′) : s ∈ Sn} ∈ {{s(ξ + b) : s ∈ Sn} : b ∈ Bε}. Since

{s(ξ′) : s ∈ Sn} ∈ {{s(ξ + b) : s ∈ Sn} : b ∈ Bε}

⇔ {s(ξ′) : s ∈ Sn} = {s(ξ + b) : s ∈ Sn} for some b ∈ Bε
⇔ ξ′ = s(ξ + b) for some s ∈ Sn, b ∈ Bε
⇔ ξ′ = s(ξ) + b for some s ∈ Sn, b ∈ Bε

⇔ ξ′ ∈ s(ξ) + Bε for some s ∈ Sn ⇔ ξ′ ∈
⋃
s∈Sn

(s(ξ) + Bε)

and
⋃

s∈Sn
(s(ξ) + Bε) is an open subset of Cn, the claim follows. �

Corollary 2.4. Let ε > 0 and ξ ∈ Cn be fixed. Then the set π(ξ + Bε) ⊂ Cn/∼ is open.

Lemma 2.5. Let U ⊂ Cn/∼ be a nonempty and open set. If π(ξ) ∈ U for some ξ ∈ Cn,
then there exists ε > 0 such that π(ξ + Bε) ⊂ U.

Proof. Let U ⊂ Cn/∼ be a nonempty, open set. By the definition of the quotient
topology, {ξ ∈ Cn : π(ξ) ∈ U} ⊂ Cn is open in Cn. Therefore, if π(ξ) ∈ U, then there
exists ε > 0 such that π(ξ + Bε) ⊂ U. �

The next corollary follows from Lemma 2.5 and Corollary 2.4.

Corollary 2.6. A nonempty set U ⊂ Cn/∼ is open if and only if for each ξ ∈ Cn,
π(ξ) ∈ U, there exists ε > 0 such that π(ξ + Bε) ⊂ U.

By Lemma 2.3 and Corollary 2.6, we conclude that for any π(ξ) ∈ Cn/∼ there is a
countable neighbourhood base of π(ξ), so the space Cn/∼ endowed with the quotient
topology is a first-countable topological space. Moreover, in view of the finiteness of
π(ξ), ξ ∈ Cn, Corollary 2.6 has the following corollary.

Corollary 2.7. A sequence (π(ξq)) ∈ Cn/∼, ξq ∈ Cn, q ∈ N, converges to π(ξ) ∈ Cn/∼,
as n→∞, if and only if the set

⋃
q∈N π(ξq) ⊂ Cn is bounded in Cn and each convergent

subsequence of a sequence ξ̂q ∈ π(ξq) ⊂ Cn, q ∈ N, has its limit in π(ξ) ⊂ Cn.

Let us now define a function σ̂ : Cn/∼ → Cn by σ̂(π(ξ)) = σ(ξ), ξ ∈ Cn; observe
that σ(ξ) is independent of ξ′ ∈ π(ξ). The fundamental theorem of algebra guarantees
that σ̂ is a surjection. Since π and σ are continuous functions, it easily follows from
Corollary 2.7 that σ̂ is continuous. Moreover, by the fundamental theorem of algebra
and Bézout’s theorem, σ̂ is injective. Consequently, σ̂ is a continuous bijection from
Cn/∼ onto Cn (compare with [1, page 153] or [4]).

Theorem 2.8. σ̂ is a homeomorphism.

Proof. Let τ : Cn → Cn/∼ denote the inverse function of σ̂: τ(σ̂(π(ξ))) = π(ξ), ξ ∈ Cn.
It suffices to show that if Cn 3 aq → a ∈ Cn, as q→∞, then τ(aq)→q τ(a). Let ξ ∈ Cn

https://doi.org/10.1017/S0004972718000709 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000709


[4] Continuity of roots 451

be such that π(ξ) = τ(a) and let ξq = (ξq
1 , . . . , ξ

q
n) ∈ Cn meet π(ξq) = τ(aq) for q ∈ N. Let

ξ̂q ∈ π(ξq), q ∈ N. Then, for q ∈ N, i ∈ [n],

(ξ̂q
i )n + aq

n(ξ̂q
i )n−1 + · · · + aq

2(ξ̂q
i ) + aq

1 = 0

and, since (aq)q∈N converges, the sequence (ξ̂q)q∈N is bounded. Since one can easily
see that each convergent subsequence of (ξ̂q)q∈N has its limit in π(ξ), by Corollary 2.7,
the proof is complete. �

Since π(ξ + Bε), ε > 0, is open in Cn/∼ and, by Corollary 2.2, π(ξ′) ∈ π(ξ + Bε)
implies that |ξ′ − s(ξ)| < ε for some s ∈ Sn, we can now state the following consequence
of Theorem 2.8.

Corollary 2.9. Let ai ∈ C, i ∈ [n], and P(z) := zn + anzn−1 + · · · + a2z + a1, z ∈ C. For
each ε > 0, there exists δ > 0 such that, for a′ ∈ Cn with |a′ − a| < δ, it follows that
|ξ′ − s(ξ)| < ε for some s ∈ Sn, where ξ ∈ Cn is a vector of all roots of P and ξ′ is a
vector of roots of Q(z) := zn + a′nzn−1 + · · · + a′2z + a′1, z ∈ C.1

3. The general case

In this section, it is convenient to denote the coordinates of a ∈ Cn+1 by means of
a = (an, an−1, . . . , a1, a0). For a ∈ Cn+1, the polynomial Pa with coefficients a is

Pa(z) := anzn + an−1zn−1 + · · · + a1z + a0, z ∈ C.

If a ∈ Cn+1, an , 0, by Corollary 2.9 we easily deduce that roots of P vary continuously
in Cn/∼ as coefficients change in a neighbourhood of a. What happens with the roots
of Pa′ , a′ ∈ Cn+1, if an = 0 and deg(Pa′) > deg(Pa), as a′ approaches a? This section is
devoted to answering that question.

Let 〈a〉 := (a0, a1, . . . , an), a ∈ Cn+1. For a ∈ Cn+1, 0 , z ∈ C,

P〈a〉(z) = znPa(z−1)

(cf. [6, Remark 1.3.2]). We state the following without proof.

Lemma 3.1. Let a ∈ Cn+1, an = · · · = ak+1 = 0, 0 < k ≤ n and a0 , 0. Then:

(1) Pa, P〈a〉 are polynomials of degrees k and n, respectively;
(2) all k roots of Pa are nonzero and exactly n − k out of n roots of P〈a〉 vanish;
(3) for 0 , z ∈ C, we have P〈a〉(z) = 0⇔ Pa(z−1) = 0.

Applying Corollary 2.9 and Lemma 3.1 to P〈a〉, we obtain the following lemma.

Lemma 3.2. Let a ∈ Cn+1 be as in Lemma 3.1. For each sufficiently small ε > 0, there
exists δ > 0 such that for a′ ∈ Cn+1 with |a′ − a| < δ, it follows that |ξ′ − s(ξ)| < ε
for some s ∈ Sn, where ξ ∈ Cn and ξ′ ∈ Cn are vectors of all roots of P〈a〉 and P〈a′〉,
respectively.

1Here and hereafter, roots are counted with their multiplicities.
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The general continuity result is contained in the following theorem.

Theorem 3.3. Let a = (an,an−1, . . . ,a1,a0) ∈ Cn+1, a , 0, an = · · · = ak+1 = 0 and ak , 0
with k > 0. For each sufficiently small ε > 0, there exists δ > 0 such that for a′ ∈ Cn+1

with |a′ − a| < δ, exactly deg(Pa′) − k roots of Pa′ have moduli greater than 1/ε and
the other k roots, formed in a vector ξ′, satisfy |ξ′ − s(ξ)| < ε for some s ∈ Sk, where
ξ ∈ Ck is a vector of all roots of Pa.

Proof. Let ε > 0 be fixed. Suppose that a0 , 0 and let us consider a sequence Cn+1 3

aq → a, q ∈ N. Note that 〈aq〉 → 〈a〉 and that Paq (0) , 0 for sufficiently large q. Thus,
for sufficiently large q, deg(P〈aq〉) = n and, if ξq = (ξq

1 , . . . , ξ
q
n) ∈ Cn is a vector of all

roots of P〈aq〉, then, by Lemma 3.2, exactly n − k of the roots are arbitrarily close to 0,
(n − deg(Paq )) of the roots, say ξ

q
1 , . . . , ξ

q
n−deg Paq

, are 0 and the other (deg(Paq ) − k)
roots, say ξq

n−deg Paq +1, . . . , ξ
q
n−k, are different from 0. Moreover, for sufficiently large q,

the remaining k roots, ξq
n−k+1, . . . , ξ

q
n , are at a positive distance from 0 with

lim inf
q→∞

min{|ξq
i | : i = n − k + 1, . . . , n − k} > 0

(because a0 , 0). For i = n − deg Paq + 1, . . . , n, we have ξ
q
i , 0, which, by

Lemma 3.1(3), implies that Paq ((ξq
i )−1) = 0. Hence, the complete list of deg(Paq ) roots

of Paq is (ξq
n−deg Paq +1)−1, . . . , (ξq

n)−1. Further, for sufficiently large q, |(ξq
i )−1| > 1/ε,

i = n − deg Paq + 1, . . . , n − k, and, by Corollary 2.9, Lemma 3.1(3), the remark made
at the beginning of this section and continuity of the mapping C 3 z 7→ 1/z at z , 0, we
have |(ξq

n−i)
−1 − sq(ξi)| < ε, i ∈ [k], where ξ = (ξ1, . . . , ξk) is a vector of all roots of Pa

and sq ∈ Sk. The case a0 , 0 follows.
Suppose now that a0 = 0. Since a , 0, there exists ξ ∈ C with Pa(ξ) , 0. Let

Pξ
a(z) := Pa(z + ξ) for z ∈ C. The degree of the polynomial Pξ

a equals the degree of
Pa. Since Pξ

a(0) = Pa(ξ) , 0, it follows that 0 is not a root of Pξ
a, so its constant term

is nonzero. Moreover, the coefficients of Pξ
a depend continuously on the coefficients a,

and z ∈ C is a root of Pξ
a if and only if z + ξ is a root of Pa. It now suffices to apply

the conclusion from the first part of the proof to Pξ
a and use the fact that the sum z + ξ

depends continuously on z. �

4. Applications to linear differential equations
For simplicity, we investigate linear differential equations of the second order with

constant coefficients. First, let us consider the problem

y′′(x) + a1y′(x) + a0y = 0, y(0) = x0, y′(0) = x′0, (4.1)

where a1, a0 ∈ R. Denote by P(λ) the characteristic polynomial of the equation (4.1)
and suppose that it has two distinct roots. The unique solution to this problem has the
form

y(x) =
x′0 − λ2x0

λ1 − λ2
eλ1 x +

λ1x0 − x′0
λ1 − λ2

eλ2 x for x ≥ 0.

Now, let us consider the problem

an
2y′′(x) + an

1y′(x) + an
0y(x) = 0, yn(0) = x0, y′n(0) = x′0, (4.2)
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where an
2, a

n
1, a

n
0 ∈ R for n ∈ N and suppose that an

i → ai as n→ ∞ for i = 0, 1, 2
(obviously here a2 = 1). Denote by yn(x) the unique solution to the problem (4.2) for
n ∈ N. Theorem 2.8 implies that yn → y as n→∞, pointwise on R+.

The considerations of Section 3 motivate the following question. What can one say
about the convergence of solutions to the problem (4.2) in the case when an

2 → 0 as
n→∞? To answer that question, we consider the following example.

Example 4.1. Fix real numbers x0 , 0 and a0 and consider the following equation:

1
n

y′′(x) + 2y′(x) + a0y(x) = 0. (4.3)

Note that the solution to the problem

2y′(x) + a0y(x) = 0, y(0) = x0,

is given by y(x) = x0e−a0 x/2, so y(0) = x0 and y′(0) = − 1
2 a0x and therefore it seems

natural to endow the equation (4.3) with the initial conditions:

y(0) = x0 and y′(0) = − 1
2 a0x0. (4.4)

For sufficiently large n ∈ N, there are two distinct real roots of the characteristic
equation corresponding to the equation (4.3), namely

λn
1 = −n

(
1 +

√
1 −

a0

n

)
and λn

2 = −n
(
1 −

√
1 −

a0

n

)
.

A general solution to the equation (4.3) is of the form

yn(x) = cn
1eλ

n
1 x + cn

2eλ
n
2 x, cn

1, cn
2 ∈ R (4.5)

and thus the unique solution to the equation (4.3), satisfying the imposed
conditions (4.4), is given by

yn(x) =
x0(λn

2 + 1
2 a0)

2n
√

1 − a0/n
e−n(1+

√
1−a0/n)x +

x0(λn
1 + 1

2 a0)

−2n
√

1 − a0/n
e−n(1−

√
1−a0/n)x

for x ≥ 0. It can be checked that, for x > 0,

lim
n→∞

e−n(1+
√

1−a0/n)x = 0 and lim
n→∞

x0(λn
2 + 1

2 a0)

2n
√

1 − a0/n
= 0,

so
x0(λn

2 + 1
2 a0)

2n
√

1 − a0/n
eλ

n
1 x → 0,

pointwise for x > 0, as n→∞. Similarly, it can be checked that, for x > 0,

lim
n→∞

e−n(1−
√

1−a0/n)x = e−a0 x/2 and lim
n→∞

x0(λn
1 + 1

2 a0)

−2n
√

1 − a0/n
= x0,
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so
x0(λn

1 + 1
2 a0)

−2n
√

1 − a0/n
eλ

n
2 x → x0e−a0 x/2,

pointwise for x > 0, as n→∞.
Now, let us consider the equation

−
1
n

y′′(x) + 2y′(x) + a0y(x) = 0 (4.6)

along with the initial conditions (4.4). Again, for sufficiently large n ∈ N, the
characteristic equation to (4.6) possesses two distinct roots:

λn
1 = n

(
1 +

√
1 +

a0

n

)
and λn

2 = n
(
1 −

√
1 +

a0

n

)
.

A general solution to the equation (4.6) is of the form (4.5) and thus the unique solution
to the equation (4.6) is given by

yn(x) =
−x0(λn

2 + 1
2 a0)

2n
√

1 + a0/n
eλ

n
1 x +

x0(λn
1 + 1

2 a0)

2n
√

1 + a0/n
eλ

n
2 x

for x > 0. It can be checked that, for x > 0,

lim
n→∞

en(1+
√

1+a0/n)x = +∞ and lim
n→∞

−x0(λn
2 + 1

2 a0)

2n
√

1 + a0/n
= 0;

however, one can prove that ∣∣∣∣∣−x0(λn
2 + 1

2 a0)

2n
√

1 + a0/n
eλ

n
1 x
∣∣∣∣∣→ +∞,

pointwise for x > 0, as n→∞. Moreover,

lim
n→∞

en(1−
√

1+a0/n)x = e−a0 x/2 and lim
n→∞

x0(λn
1 + 1

2 a0)

2n
√

1 + a0/n
= x0,

so
x0(λn

1 + 1
2 a0)

2n
√

1 + a0/n
eλ

n
2 x → x0e−a0 x/2,

pointwise for x > 0, as n→ ∞. Therefore, |yn(x)| → +∞, pointwise for x > 0, as
n→∞.

5. Final comments

In Section 3 of this paper, we presented Theorem 3.3 describing the behaviour of
roots of polynomials f q approaching a polynomial f of degree, say k, not greater
than the degrees of f q, q ∈ N. According to that theorem, exactly k roots of f q tend
to roots of f , while the other deg f q − k roots (if any) diverge to +∞ (in modulus),
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as q→∞. Theorem 3.3 concerns the situation when sup{deg f q : q ∈ N} is finite. Could
we generalise the assertion of Theorem 3.3 to the case sup{deg f q : q ∈ N} = +∞?
The answer is no and the reason for that is as follows. Suppose that there is given a
polynomial f of degree k, all the roots of which have positive moduli different from 1.
For q ∈ N and z ∈ C, define three sequences of polynomials:

f q(z) := (1 − zq) f (z), gq(z) := (1 − qqzq) f (z), hq(z) :=
(
1 −

1
qq zq

)
f (z).

It is clear that the roots of f are among the roots of f q, gq, hq. It is also clear that
sup{deg f q : q ∈ N} = sup{deg gq : q ∈ N} = sup{deg hq : q ∈ N} = +∞. At the same
time, for large q ∈ N, we see that q roots of f q have unit moduli, q roots of gq, which are
not the roots of f , have absolute value 1/q, while q roots of hq have absolute value q.
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