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Points of Small Height on Varieties
Defined over a Function Field

Dragos Ghioca

Abstract. 'We obtain a Bogomolov type of result for the affine space defined over the algebraic closure
of a function field of transcendence degree 1 over a finite field.

1 Introduction

The Manin—Mumford conjecture, proved by Raynaud [8], asserts that if an irre-
ducible subvariety X of an abelian variety A defined over a number field contains
a Zariski dense subset of torsion points of A, then X is a translate of an algebraic sub-
group of A by a torsion point. Next we describe the Bogomolov conjecture, which is
a generalization of the Manin—-Mumford conjecture.

Let A be an abelian variety defined over a number field K. We fix an algebraic
closure K2 for K and we let h: A(KY8) — R>¢ be the Néron height associated to
a symmetric, ample line bundle on A. Let X be an irreducible subvariety of A. For
eachn > 1, welet X, = {x € X(K8) | h(x) < 11 The Bogomolov conjecture,
which was proved in a special case by Ullmo [10] and in the general case by Zhang
[12], asserts that if for every n > 1, X, is Zariski dense in X, then X is the translate of
an abelian subvariety of A by a torsion point of A. Both Ullmo and Zhang proved the
Bogomolov conjecture via an equidistribution statement for points of small height on
A. The characteristic 0 function field case of the Bogomolov conjecture was proved
by Moriwaki [7], while a generalization of the Bogomolov statement to semi-abelian
varieties was obtained by David and Philippon in [5].

The case of Bogomolov conjecture for any power G, of the multiplicative group
was first proved by Zhang in [11]. Other proofs of the Bogomolov conjecture for G,
were given by Bilu [1] and Bombieri and Zannier [2]. This last paper constituted our
inspiration for proving a version of the Bogomolov conjecture for the affine scheme
defined over the algebraic closure of a function field of transcendence degree 1 over
a finite field (see our Theorem [2.2)).

The picture in positive characteristic for the Bogomolov conjecture is much differ-
ent due to the varieties defined over finite fields. Indeed, if A is a semi-abelian variety
defined over a finite field I, then every subvariety X of A defined over a finite field

contains a Zariski dense subset of torsion points (because X (]leg) - A(]leg) = A¢or 18

Zariski dense in X). Because all torsion points have canonical height 0, then each sub-

lg

variety X defined over IFg® constitutes a counterexample to the obvious translation in
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positive characteristic of the classical Bogomolov statement. Thus, it is not true in
characteristic p that only translates of algebraic tori are accumulating subvarieties of
G, for points of small height. All subvarieties of G, invariant under a power of the
Frobenius are accumulating varieties for points of small height. The group structure
of the ambient space G, disappears from the conclusion of a Bogomolov statement
for G7,. This motivated our approach to Theorem [2.2]in which the ambient space is
simply the affine space, and not an algebraic torus as in [2].

We note that Bosser [3] proved a Bogomolov statement for the additive group
scheme in characteristic p under the action of a Drinfeld module of generic char-
acteristic. His result is not yet published, but the main ingredient of his proof was
published in [4]. The author formulated in [6] an equidistribution statement for
points of small height for Drinfeld modules of generic characteristic (and we also
proved in [6] a first instance of our equidistribution statement). Our equidistribu-
tion statement is similar with the ones proved by Ullmo [10] and Zhang [12] for
abelian varieties. Finally, we note that our Theorem[2.2]can be interpreted as a Bogo-
molov type statement for Drinfeld modules defined over finite fields.

2 Statement of our Main Result

In this section we state our main result Theorem [2.2] which we prove in Section 3]

For each finite extension K of I, (¢), we construct the usual set of valuations My
and the associated local heights h, on K. For the reader’s convenience we sketch
this classical construction (for more details, see [9, Chapter 2]). Let R := [F,[¢].
For each irreducible polynomial P € R we let vp be the valuation on F,(t) given by
Vp(%) = ordp(Q;) — ordp(Q,) for every nonzero Q;,Q, € R, where ordp(Q;) is
the order of the polynomial Q; at P. Also, we construct the valuation v, on IF,(¢)
given by Voo(%) = deg(Q;) — deg(Qy) for every nonzero Q;,Q; € R. We let the
degree of vp be d(vp) = deg(P) for every irreducible polynomial P € R and we
also let d(voo) = 1. Then, for every nonzero x € [F,(t), we have the sum formula
ZveMW d(v) - v(x) = 0.

Let K be a finite extension of IF,(t). We normalize each valuation w from My so
that the range of w is the entire Z. For w € Mk, if v € Mg () lies below w, then e(w|v)
represents the corresponding ramification index, while f(w|v) represents the relative
residue degree. Also, we define

f(w|v)d(v)
dlw) = ———.

[K:Fy(1)]
Let x € K. We define the local height of x at w as h,,(x) = —d(w) min{w(x),0}.
Finally, we define the (global) height of x as h(x) = Zwe My h,, (x).

We extend the above heights to every affine space A" defined over le(t)“lg. Let K
be a finite extension of IF,(t) and let P = (xy,...,x,) € Ak. We define the local
height of P at w as h,,(P) = h,(xy,...,x,) = max_, h,,(x;). We define the (global)
height of P as h(P) = ZWQMK h,,(P).

The following proposition contains standard results on the Weil height h.
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Proposition 2.1 Forevery P,Q € A\]’;P(t)ﬂlg, the following statements are true:
(i) h(P)=0ifandonlyif P € A\]’;alg.

P
(i) h(P+Q) < h(P)+h(Q) (triangle inequality). Moreover, if x1,x, € ]Fp(t)alg, then
h(x; +x2) < h(x,x).

Proof The results of Proposition 2] are classical, possibly with the exception of the
“moreover” part of (ii). Hence we show next how to obtain that statement. For each
place v, v(x; + x2) > min{v(x;), v(x2)}. Thus h,(x; + x;) < max{h,(x;),h,(x;)} =
h,(x1,x,). Therefore h(x; + x,) < h(x, x2). [ |

The following theorem is our main result.

Theorem 2.2 Let X be an affine subvariety of A" defined over IF,(£)¥8. Let Y be the
Zariski closure of the set X (IF;lg ), i.e., Y is the largest ]F;lg—subvariety of X.

There exists a positive constant C, depending only on X, such that if P € X(]Fp(t)alg)
and h(P) < C, then P € Y (IF,(£)8).

Remark 2.3. The result of Theorem 2.2] extends to any closed projective subvariety
X of a projective space IP". Indeed, we cover P" by finitely many open affine spaces
{U;}, and then apply Theorem [2.2] to each X N U; (which is a closed subvariety of
the affine space U;).

3 Proof of our Main Result

Unless otherwise stated, all our subvarieties are closed. We start with a definition.

Definition 3.1 We call reduced a non-constant polynomial f € IF,[t][Xy,...,X,],
whose coefficients a; have no non-constant common divisor in IF,[¢]. For each finite
extension K of F,(¢), we define the local height h,,(f) of f at a place w € Mk as
max; hy(a;). Then we define the (global) height h(f) of f as ZweMK h,(f). Note
that our definition is independent of K, as h(f) equals the maximum of the degrees
of the coefficients a; € F,[t] of f.

Our proof of Theorem 2.2 goes through a series of lemmas.
Lemma 3.2 Let f € Fpt][X,,...,X,] be a reduced polynomial of total degree d. For
every k such that p* > 2h(f), if (x1, . : Xn) € kA\;’;p(t)alg satisfies f(x1,...,%,) = 0,
then either h(xy, ..., x,) > 1/2d or f(x ,...,xh ) =0.

Proof Let k satisfy the inequality from the statement of Lemma and let

(x1,...,%,) € A\]’gpmalg be a zero of f. We let f = 3. a;M;, where the a;’s are the

nonzero coefficients of f and the M;’s are the corresponding monomials of f. For
each i, we let m; := M;(xy,...,x,).

Assume f(xfk, e ,xﬁk) #0.
k k
Welet K = F,(£)(x1,...,x,). If( = f(x{7 ....,xP), then (because ¢ # 0)

> dwyw(() =o.

wEMg
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Because f(x1,...,x,) =0, weget{ =(— f(xi,... ,xn)l’k and so,

(1) ¢=>(ai—aym!".

Claim 3.3 Foreveryg € F,[t], (tl’k —1) | (gpk - 9.
Proof of Claim[3.3] Let g := ZT:O bjt/. Then gl’k = ZT:O bjtjpk. The proof of
Claim[3.3]is immediate because for every j € N, (tl’k —t) | (tjpk —th). [ |

Using the result of Claim[3.3]and equation (), we get
(=" )Y bim!’,

k
_g . .
”['Pki[ € IF,[t]. Let S be the set of valuations w € My such that w lies

where b; =

above an irreducible factor (in IF,[¢]) of t?" —t. Foreachw € S,

(2) d(w) - w(¢) > d(w) - w(t? — 1) — dp*hy(x1,..., %),

because for each i, w(b;) > 0 (as b; € IF,[t] and w does not lie over v, ) and also,

d(w) - w(m?) > —dp*hy(x1, . .., %),

as the total degree of M; is at most d.
k
For each w € Mx \ S, because ¢ = >, a;m!,

(3) d(w) - w(¢) > —hy(f) — dphy(x1, . .., xa).

Adding all inequalities from (2)) and (@) we obtain

@ 0= dw) w(Q) > —h(f)—dp*h(x,...,.x)+ > d(w)-w(t? —p).
weMg WkEMK
w(t!” —1)>0

By the coherence of the valuations on I, (¢)¢,

k k k
Soodw)wt? =)= > dw) - v(t? — 1) = —vao(t? —1) = ph.
W}(GMK VGM}p(,)
w(t? —1)>0 v(tpk_[)>0

Thus, inequality (@) yields 0 > —h(f) — dp*h(xy, ..., x,) + p*, so

1 h(f)
h(xy, ... %) > E_d—pk

Because k was chosen such that pk > 2h(f), we conclude h(xy,...,x,) >1/2d. ®
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Lemma 3.4 Let k be a positive integer. Let K be a finite field extension of I, (t) and let

f € K[Xy,...,X,] be an irreducible polynomial. If f(Xi,...,Xy) | f(ka, e ,X,fk),
then there exists a € K \ {0} such that af € Fp[Xy,..., X,].

Proof Let Z be the zero set for f. Let F be the Frobenius on IF,. The hypothesis on
f shows that for every P € Z(K*8), FkP ¢ Z(K¥8). Hence F*Z C Z. Because Z
is irreducible (as f is irreducible) and dim(F*2) = dim(Z), we conclude F*Z = Z.
Therefore Z is defined over the fixed field IFx of F*. Moreover, Z is defined over
IF,« M K. Thus there exists a polynomial g € IF«[X, ..., X,] such thatg = a - f, for
some nonzero a € K. |

Lemma 3.5 Let X C A" be an affine variety of dimension less than n defined over
I, (t)¥8. There exists a positive constant C, depending only on X, and there exists an
affine ]F;lg—variety Z C A" of dimension less than n, which also depends only on X, such
that for every P € X(IFp(t)alg), either P € Z(]Fp(t)alg) orh(P) > C.

Remark 3.6. The only difference between Lemma[3.5and Theorem[2.2]is that we do
not require Z be contained in X.

Proof of Lemma[3.5] Let K be the smallest field extension of I, () such that X is
defined over K. Let p™ be the inseparable degree of the extension K /F,(t) (m > 0).
Let

Xl = Uxa,

where o denotes any field morphism K — F,(t)"8 over I, (¢). The variety X; is an
]Fp(t)l/ " _variety. Also, X, depends only on X. Thus, if we prove Lemma 3.3 for X;,
then our result will hold also for X C X;. Hence we may and do assume that X is
defined over I, (t)!/¢".

We let F be the Frobenius on I,. The variety X’ = F"X is an I, (¢)-variety, which
depends only on X. Assume we proved Lemma 3.5 for X’ and let C’ and Z’ be the
positive constant and the IF;lg—variety, respectively, associated to X’, as in the conclu-
sion of Lemma[3.5 Let P € X(]Fp(t)alg). Then P’ := F"(P) € X’(IFP(t)alg). Thus,
either h(P') > C’ or P’ € Z'(F,(t)"). In the former case, because h(P) = pi h(P"),
we obtain a lower bound for the height of P, depending only on X (note that m de-
pends only on X). In the latter case, if we let Z be the ]F;lg—subvariety of A", obtained
by extracting the p™-roots of the coefficients of a set of polynomials (defined over
]F;lg) which generate the vanishing ideal for Z’, we get P € Z(]Fp(t)alg). By its con-
struction, Z depends only on X and so, we obtain the conclusion of Lemma[3.5

Thus, from now on in this proof, we assume X is an IF,, (t)-variety. We proceed by
induction on n. The case n = 1 is obvious, because any subvariety of Al different
from Al, is a finite union of points. Thus we may take Z = X(]F;lg), (which is also
a finite union of points) and C := minpe x\z)(k, (1) h(P). By construction, C > 0
(there are finitely many points in (X \ Z)(F, (t)¥8) and they all have positive height by
Proposition 2.11i)). If there are no points in X(]Fp(t)alg) \ X(]F;lg), then we may take
C =1, say.
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Remark 3.7. The above argument proves the case n = 1 for Theorem[2.2]because the
variety Z that we chose is a subvariety of X.

We assume Lemma[3.51holds for n— 1 and we prove it for n (n > 2). We fix a set of
defining polynomials for X which contains polynomials P; € IF,[t][Xi,...,X,] for
which max; deg(P;) is the minimum among all possible sets of defining polynomials
for X (where deg P; is the total degree of P;). We may assume all of the polynomials
we chose are reduced. If all of them have coefficients from a finite field, i.e., IF,, then
Lemma[3.5holds with Z = X and C any positive constant.

Assume there exists a reduced polynomial f ¢ Fp[Xi,...,X,] in the fixed set of
defining equations for X. Let { f;}; be the set of all the IF, (¢)-irreducible factors of f.
For each i let H; be the zero set of f;. Then X is contained in the finite union U;H;.
The polynomials f; depend only on f. Thus it suffices to prove Lemma [3.3] for each
H;. Hence we may and do assume X is the zero set of a reduced IF, (¢)-irreducible
polynomial f ¢ F,[X;,...,X,].

LetP = (x1,...,x,) € X(]Fp(t)alg). We apply Lemma[3.2]to f and P and conclude
that either

1
2deg(f)

or there exists k depending only on h( f) such that

(5) h(P) >

(6) Fe, o =o.

If (5) holds, then we obtained a good lower bound for the height of P (depending
only on the degree of f).

Assume (€) holds. Because f is an irreducible and reduced polynomial, whose
coefficients are not all in F,, Lemma [3.4] yields that f(Xi,...,X,) cannot divide
f(X‘IDk, e 7X;?k). We know f has more than one monomial because it is reduced
and not all of its coefficients are in F,. Without loss of generality, we may assume
f has positive degree in X,,. Because f is irreducible, the resultant R of the polyno-
mials f(Xi,...,X,) and f(ka7 .. 7X,lfk) with respect to the variable X, is nonzero.
Moreover, R depends only on f (we recall that k depends only on h(f)).

The nonzero polynomial R € F,(¢t)[X;,...,X,—1] vanishes on (xi,...,x,—1).
Applying the induction hypothesis to the hypersurface R = 0 in A"~!, we conclude
there exists an IF;lg—variety Z, strictly contained in A"~!, depending only on R (and
so, only on X) and there exists a positive constant C, depending only on R (and so,
only on X) such that either

(7) h(xi,...,x,—1) > Cor
(8) (X1, - -y Xn1) € Z(Fp(£)78).

If ([7) holds, then h(xi,...,x,—1,%,) > h(x1,...,x,—1) > C and we have a height
inequality as in the conclusion of Lemma[3.5l If (8) holds, then (xi,...,x,) € (Z x
AN (IF,(¢)¥¢) and Z x Al is an IF;lg-variety, strictly contained in A", as desired in
Lemma[35l This proves the inductive step and concludes the proof of Lemma

|
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The following result is an immediate corollary of Lemma[3.5

Corollary 3.8 Let X be a proper subvariety of A" defined over IFp(t)alg. There exists
a positive constant C and a proper subvariety Z C A" defined over ]F;lg, such that the
pair (C, Z) satisfies the conclusion of Lemma[B3.5] and moreover Z is minimal with this
property (with respect to the inclusion of subvarieties of A").

Proof Let (C1,Z;) and (C;,Z;) be two pairs of a positive constant and a proper
subvariety of A" defined over ]F;lg, such that both pairs satisfy the conclusion
of Lemma 35 Clearly, (min{C,,C,},Z; N Z,) also satisfies the conclusion of
Lemmal[3.5 Using the fact that there exists no infinite descending chain (with respect
to the inclusion) of subvarieties of A", we obtain the conclusion of Corollary3.8 ®

We are ready now to prove Theorem[2.2]

Proof of Theorem[2.2] If X = A", the conclusion is immediate. Therefore, assume
from now on in this proof that X is strictly contained in A",

We prove Theorem 2.2 by induction on n. The case n = 1 was already proved
during the proof of Lemma [3.5](see Remark [3.7]).

We assume Theorem 2.2 holds for # — 1 and we will prove that it also holds for n
(n > 2). Let C and Z be as in the conclusion of Corollary 3.8 for X. Also, we recall
that Y, as defined in the statement of Theorem[2.7] is the largest IF;lg-subvariety of X.
Our goal is to show that Z C X, because this would mean that Z C Y, as Y is the

largest subvariety of X defined over IF;lg.

Assume Z is not a subvariety of X. Thus there exists an IF;lg-irreducible subvariety
W of Z, such that W N X is a finite union of proper IF,(t)¥-irreducible subvarieties
{W;}:_, of W. Let j € {1,...,1}. Note that both W and W; depend only on X
(because Z and W N X have finitely many geometrically irreducible components).

Assume P := (x1,...,X,) € Wj(]Fp(t)alg). According to Lemma[3.5] dimZ < n
and so, dim W =: d < n. Moreover, dim W; < dim W, because both W and W are
irreducible and W; is a proper subvariety of W. Without loss of generality, we may
assume the projection 7 : A" — A, when restricted to W is generically finite-to-one.
(After relabelling the n coordinates of A" we can achieve this anyway.)

Let U; be the Zariski closure of m(W;). Because W; is a closed subvariety of W
of smaller dimension, dimU; < d. Because W; depends only on X, U; depends
only on X. Because d < n and Uj is a subvariety strictly contained in A, we may
apply the inductive hypothesis to U;. Let U o be the largest IF;lg-subvariety ofU;. We
conclude there exists a positive constant C; depending only on the variety U; (and
so, depending only on the variety X) such that either

9) h(x1,...,x4) > C; or

(10) (x1, .-+, Xa) € Ujo(Fp(t)™8).
If @) holds, then h(x;, ..., x,) > h(x,...,x;) > C;. If (I0) holds, then

(X1, -+ %) € (Ujo x A", (1)¥8).
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The ]Faplg—variety U jo x A" ?intersects W in a subvariety of smaller dimension be-

cause
dim(r(Ujo x A"%) = dim(U; ) < d = dim(x(W)).

Let V;:= (Ujp x A"=4) N W. Then P lies on Vj,and V;isan ]F;lg—variety (both U
and W are ]F;lg-varieties) which is properly contained in W. Moreover, V; depends

only on X because both W and U x A"~ depend only on X.
Hence, for each P € W N X, there exists j € {1,...,I} such thatP € Wj(]Fp(t)alg).

Then either
(11) h(P) > C; or
(12) P € V;(F,(t)¥).

Let C' := min{C,Cy,...,C;}. Then C’ is a positive constant which depends only
on X. Let Z’ be the proper subvariety of Z obtained by replacing the irreducible
component W of Z by ngl Vi. Then Z’ is also a closed subvariety of A" defined
over ]F;lg. Moreover, because the pair (C, Z) satisfies Lemma[3.5] using also () and
(@), we conclude that the pair (C’,Z’) also satisfies the conclusion of Lemma [3.5
This contradicts the minimality of Z which satisfies the conclusion of Corollary 3.8
This contradiction shows that Z C X (and so, Z C Y), which concludes the proof of

Theorem [ |
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