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TOWARDS MINIMAL BINDING VARIETIES OF 
LATTICES 

VACLAV KOUBEK 

Introduction. By classical results of Ambrust and Schmidt, every 
monoid is isomorphic to the endomorphism monoid of an algebra. Thus if 
we want to investigate in which varieties (or generally, in a concrete 
category) each monoid is isomorphic to the endomorphism monoid of an 
algebra in this variety (or an object of this category) then the important 
role is played by the concept of a binding category (see the definition 
below). Moreover, as shows the Hedrlîn-Kucera Theorem [13] if the 
set-theoretical assumption (M) holds (i.e., there is an infinite cardinal a 
such that each ultrafilter closed under a intersections is trivial) every 
concrete category can be fully embedded into any binding category. Other 
properties of binding categories are in [7, 11, 13]. A list of the most 
important binding categories and the properties of binding categories can 
be found in an excellent monograph [13]. 

This paper is devoted to binding varieties of bounded lattices and 
(0, l)-homomorphisms. Grâtzer and Sichler [5] proved that the variety of 
all bounded lattices is binding. Adams and Sichler [1] strengthened this 
result by proving that there is a locally finite variety j^of bounded lattices 
(it will be defined later) that is binding and asked whether j^ is the smallest 
binding variety of bounded lattices. The aim of this paper is a negative 
answer to this question. We define two varieties s/(B)* and sé(B)* of 
bounded lattices and prove that they are binding and their intersection is 
the variety generated by 7V5; in this variety each lattice has a prime ideal 
and thus it is not binding, see [13]. Therefore, there is no smallest binding 
variety of bounded lattices. The following problem is open: Are the 
varieties s/(B)* and s/(B)* minimal binding varieties of bounded 
lattices? 

The proof of the main theorem is not based on the existence of 
complement pairs, in contrast to [1] and [5]. In fact, our lattices have 
exactly one complement pair, 0 and 1. 

The paper has four parts. The first part consists of standard definitions 
and facts in Graph Theory, Category Theory and Lattice Theory. In the 
second part auxiliary graph constructions are given; a special binding full 
subcategory of the category of all graphs is constructed. The third part 
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264 VACLAV KOUBEK 

contains a proof of the main theorem: s/(B)* ands/(B)* are binding. The 
last part continues [2] by a description of the lattices of subvarieties of 
s/(B)* or sé(B)*. In particular, these lattices are countable in contrast to 
the lattice of subvarieties of stf which is uncountable. 

1. Preliminaries. For a set X, denote by \X\ its cardinality. Each ordinal 
a is identified with the set of all ordinals less than a. Cardinals are 
identified with initial ordinals. The set of all natural numbers (i.e., the set 
of all finite cardinals) is denoted by N. 

Since the paper uses notions from four different fields, we recall some 
basic notations used in these fields. 

Graph theory. A graph is a pair (X, R) where X is a set and R is a set of 
some two-point subsets of X. Elements of X are called vertices, elements of 
R are called edges. If (X, R), (Y, S) are graphs then a mapping f:X —> Y is 
a compatible mapping from (X, R) to (7, S) if [f(x),f(y) } e S for each 
{x, y) e R. The category of all graphs and compatible mappings is 
denoted by Gra. A directed loop free graph is a pair (X, R) where X is a set 
and 

R c X X X - { (JC, JC); x e X}. 

If (X, R),(Y, S) are directed loop free graphs then a mapping/ :^ —> 7 is a 
compatible mapping from (X, i?) to (7, S) if 

( / ( * ) , / O 0 ) ^ S for each (x, ;y) G * . 

The category of all directed loop free graphs and compatible mappings is 
denoted by DiGr. We recall that a subset T of a graph (X, R) is called a 
component of (X, i?) if 7" is a maximal set (with respect to inclusion) such 
that for each pair x, y e T there is a sequence x = JCQ, jq, . . . , xtl = y 
with 

{xn x / + 1 } G Z? for each / = 0, 1, . . . , « — 1. 

The set of all components forms a decomposition of X. A subset T of a 
graph (X, R) is independent if for each pair of vertices w, v of T, {i/, v} £ /?. 
For a vertex * of (X, /?) the degree of JC is the cardinality of the set {y; {x, 
y) <= /*} . If T is a subset of (X, R) then (7, { {x, y} e= JR; JC, y <= 7} ) is a 
full subgraph of(X, R) induced on T (or shortly, on a set T). A graph (X, R) 
is called complete if i? is the set of all two-point subsets of X. In particular, 
a three-point subset 7 of Xis called a triangle in (X, 7?) if the full subgraph 
induced on 71 is complete. A graph (X, R) is called a complete bipartite 
graph, if there is a decomposition Xj, X2 of X such that 

* = {{x,y};x e Xuy Œ X2). 
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Category theory. A functor F\<£^ J f is called afull embedding if for each 
pair a, b of ^objects it holds that: 

(i) if/, g:a —> b are distinct iPmorphisms then Ff ¥* Fg (i.e., F is 
faithful); 

(ii) if f\Fa —> F& is a J^morphism t h e n / = Fg for an isomorphism 
g:<? —> b (i.e., F is full). 

A pair (J^ F) is a concrete category where i f is a category, F is a faithful 
functor from ££ to a category of all sets and mappings (usually, if F is clear 
we omit it). 

An object A of a category Jf is called ngzd if it has exactly one 
endomorphism, the identity of A. 

A concrete category is called a binding (or universal) category if every 
category of algebras and their homomorphisms can be fully embedded 
into it. This is well-known (see e.g. [13] ). 

THEOREM 1.1. Gra and DiGr are binding. 

Lattice theory. In this paper "lattice" means a bounded lattice (i.e., a 
lattice with the least element 0 and the greatest element 1), "homomor-
phism" means a (0, l)-homomorphism; i.e., a homomorphism preserving 0 
and 1; "sublattice" means a (0, l)-sublattice; i.e., a sublattice with the 
same 0 and 1 as the original lattice. A complemented pair of a lattice L is a 
pair a, b of elements of L with a - b = 0, a + b = 1 (we shall denote the 
meet as • , the join as + ). If L is a lattice, then an element a of L is an 
atom if a ¥= 0 and for every element b ^ L, a ^ b > 0 implies a = b. A 
subset X of a lattice L is called an order-ideal iî y <E X whenever there is x 
G X with x ^ y. For a lattice L and an element a G L, the set {y G L; J> 
^ a} is called the principal ideal generated by a. An element Û of a lattice L 
is called join-irreducible (or meet-irreducible) if a = x + _y (or a = x • j>) in 
L implies a = x o r û = j . For a graph ^ = (X, R), denote by / ( ^ ) * the set 
of all finite independent sets of (X, R) ordered by the inclusion with an 
added new element 1. Then / ( ^ ) * is a lattice. In particular, if ^ is a 
complete bipartite graph with a decomposition on X\, X2 of X such that 

R = {{x,y};x G Xh y G X2} 

then / ( ^ ) * is the set of all finite subsets of X\ or of X2 ordered by the 
inclusion plus a greatest element added. The dual lattice of / ( ^ ) * is 
denoted by / ( ^ ) * . Then s/is the smallest variety containing / ( ^ ) * and 
/ ( ^ ) * for each graph @. Define J / ( 5 ) * (or s/(B)*) the smallest variety 
containing all / ( ^ ) * (or 7(^)*, resp.) for each complete bipartite graph. 

Universal algebra. A variety i^is locally finite if each finitely generated 
algebra in i^is finite. An algebra A is called subdirectly irreducible if it has 
a least non-identical congruence. 
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2. A graph-theoretical representation. The aim of this section is to show 
that a subcategory of Gra with certain properties is binding. This result 
will be used in the next section for a construction of full embeddings of a 
suitable full subcategory of Gra into varieties s/(B)* and J?/(B)* of 
lattices. The theorem is a modification of the results and proofs in [10]. 
First we give a construction of a rigid graph with suitable properties. This 
graph will be used for the proof of Theorem 2.6 which describes a required 
subcategory C of Gra. 

Construction 2.1. By induction, we shall construct a sequence of graphs 
(Zh Si)iÇzN such that if / < j then (Z„ Sz) is a full subgraph of (Zy, Sj). 
First choose an increasing one-to-one sequence {«/}/eN °f infinite 
cardinals. Let (Z0, So) be the complete graph on the set Z0 = «o- To 
construct ( Z b S\)9 first choose a rigid graph (Z0, PQ). For every edge r = 
{x, v} ^ Po we add a copy of the complete graph (a\, C\) and connect 
each point a e ax by edges to x and j \ Precisely, put 

Z, = Z() U (a, X P0), 

S, = S0 U { { (fl, r), (ft, r) }; fl, ft e a,, r G P0} 

U { { (a, r), x}; a G a b r e A)> * G >*}• 

Now we proceed by induction. If (Z„ 5/), / > 0 is constructed, we denote 
by Qj the set of all components of the full subgraph of (Z„ Sj) on the set Z, 
— Z,-1. For each P^ G 12, we choose a rigid graph ( W, Ph w) and we form 
(Z/ + 1, 5 / + i ) such that for each edge r = {x, jy} G P, ^ we add a copy of 
the complete graph (az-+i, Q+i ) and each point a of a / + 1 we connect to x 
and y by edges. Precisely, put 

Z / + 1 = Zz U («,-+, X U {/>,- ^ ; W G QJ ), 

S/+1 = S, U { { ( a , r ) , (Z>, r ) } ; 

a, Z> e a /+1 , r G P, ^ for JF G 12J 

U { { ( a , r), x ) ; 

a G a / + I , r G P, ^ for 1^ G Qh x G r}. 

Put 

Z = U {Z,; / G N}, S = U {£,; / G N}. 

To form the graph (Z, S) we add new edges to S. For this purpose we 
choose a one-to-one mapping 

<P„:Z0 -> U {PfhW; W G ttn} for every « ^ 3 

(it is possible because \Pn,w\ = an for every n) and put 

S = S U { {x, (a, <p„(x) ) }; « G aw + 1, x G Z0, « G N, « ^ 3). 
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PROPOSITION 2.2. The graph (Z, S) satisfies the following: 
a) for each edge {x, y] e S there are infinitely many vertices z e Z such 

that {x, y, z} is a triangle in (Z, S); 
b) assume that for every n e N and every W G S2„ every vertex of the 

graph (W, Pthw) has an infinite degree then for every z e Z //We zs a/7 
infinite subset Tz of Z such that: 

bl) *// <= Tz\hen {t, z) e S; 
hi) for every y e Z and for every pair t, u G Tz, t ¥= u either 

y = z or {yy t) £ S or {y, u] £ S; 

c) there is an infinite set T of disjoint triangles in (Z, S), i.e., if {x, y, z} 
and {f, w, v) are distinct triangles in T then 

(x, y, z} n {t, u, v} = 0; 

d) each vertex of (Z, S) has an infinite degree in (Z, S); 
e) /br e#c/z pair x, y of vertices of Z there is a finite sequence 7Q, 

T\, . . . , Tn of subsets of Z with 

x e T0, y G r„, |r, n rz+1| ^ 2 
/or e#c/z i = 0, 1, . . . , « — 1 swc/z f/W the full subgraph of(Z, S) induced on 
Tjfor each i = 0, 1, . . . , n is complete; 

f) (Z, S) z's a rigid graph; 
g)for each edge {x, y} e Sj — Si- \for i = 0 (weput S- \ = 0) there is a 

subset T of Z with x, y e T, | T\ = at such that the full subgraph of (Z, S) 
induced on T is complete; 

h)for each subset T ofZ such that the full subgraph of(Z, S) induced on T 
is complete, if T n Zl ¥= 0 for an i > 0 then \T\ = «/+i; 

\)for each vertex X G Z Q and for each i e N there is a subset T c Z wzz7z 
x e r , | r | = a{ such that the full subgraph of (Z, S) induced on T is 
complete; 

j) x G Zn — Zn-\ for n > 0 if and only if a shortest sequence 7Q, 
T\, . . . , Tk of subsets of Z with x e 7Q, IT* Pi Z0| > 1, tfftd 17/ Pi 7/+i| > 
\for every i = 0, 1, . . . , k — 1 such that the full subgraph of(Z, S) induced 
on Tj is complete for every i has length n. 

Proof The verification of a), b), c), d), e), g), h), i) and j) is a 
straightforward calculation based on the construction of (Z, S). We verify 
f). If/:(Z, S) —> (Z, S) is a compatible mapping we get by h) and i) that 
f(Z0) c Z0 because/preserves complete graphs. By j) we get tha t / (Z / ) c 
Zj for each / and by g) and h) we obtain that 

f(Zl — Zi-\) c Zz — Z/_i for every z e N. 

We prove by induction over i tha t / i s the identity. For a pair x, y e Z0 we 
have {x, y} e PQ if a n d onty if there is a subset T of Z with x, _y G r , |JT| 
= a\ such that the full subgraph of (Z, S) induced on r i s complete. Thus 
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the restriction o f / t o Z0 is an endomorphism of (ZQ, PQ); hence/ /ZQ is the 
identity. Assume that / /Z 7 is the identity for some /' G N. Let fi/+i be the 
set of all components of the full subgraph of (Z, S) induced on Zi+\ — Zr 

According to the definition of (Z / + 1 , S/+i) for each W G Q / + 1 there is a 
pair xw,yw G Z, such that for each w ^ W and for each z G Z, we have 
{w, z} G S if and only if z G { X ^ , J V } - Since f(xw) = xwa.nâf(yw) = 
> V w e g e t / ( ^ ) c ^ f o r each W G £2/ + 1. For a pair x,y G W e Q / + 1 w e 
have that {x, _y} G P / + j w if and only if there is a subset 7 of Z with x, y 
G r, | r | = al + 2

 s u c n that t n e full subgraph of (Z, 5) induced on T is 
complete. Thus the restriction of / to W is an endomorphism of ( W, 
Pi+\^w)- Hence// Wis the identity. Since J^is an arbitrary component of 
the full subgraph of (Z, S) induced on Z/ + ] — Z„ by the induction 
hypothesis we conclude t h a t / / Z z + 1 is the identity. Thus (Z, S) is rigid. 

If we combine b) and d) of Proposition 2.2 we get: 

COROLLARY 2.3. There is a rigid graph (Z, S) such that: 
a) for every edge {x, y} G S there are infinitely many vertices z G Z such 

that {x, y, z} w a triangle in (Z, 5); 
b) for every vertex z G Z //2£re z's AT? infinite subset Tz of Z such that for 

each t G 7\ w /ztfve {/, z} G S and for each vertex y G Z — {z} and for 
each pair w, t G 7\, u =£ t either {y, t} £ S or {y, u} £ 5; 

c) //z^re w tf« infinite set T of disjoint triangles in (Z, £); 
à) for each pair (x, y] of vertices in Z there is a finite sequence of subsets 

To, T\, . . . , Tn of Z with x G ^ j G 7^, |TZ n 7/+i| > 1 for each i = 0, 
1, . . . , n — 1 such that the full subgraph of(Z, S) induced on Tj is complete 

for each i = 0, 1, . . . , n. 

We use a standard sîp construction, see e.g. [9], [12], [13]. A quadruple 
(X, R, a, b) is called a Yip if (X, R) is a graph and a, b are vertices of (X, 
R). 

Construction 2.4. Let (X, R, a, b) be a sîp, then we define a functor (X, R, 
a, b) — from DiGr into Gra as follows: for a directed loop free graph (7, 
S) put 

(X,R,a,b) * ( 7 , 5 ) = (K, T) 

where F = X X 57 ~ where — is the smallest equivalence such that 

for s = (x, y), t = (z, y) G S we have (/3, s) ~ (/3, /) 

for s = (x, j ) , / = (y, z) G S we have (Z>, s) ~ (a, /) 

for s = (x, j ; ) , / = (x, z) G 5 we have (a, s) ~ («, t). 

Then for each s G S there is a one-to-one mapping is:X —> F such that 
4 0 ) is the class of — containing (x, s) for each x G X. Put 

71 = {{!,(*), I 5 ( J O } ; {x,^} G * , j G 5} . 
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For a compatible mapping f:(Y, S) —> (7' , S') define a compatible 
mapping 

(X, R, a, b) *f:(X, R9 a, b) * (7, S) -> (X, R, a, b) * (7' , S') 

such that for each s e S1 we have 

aX,R9a,b)*f)-is = is> 

where s' G 5" such that 

•*' = (f(x),f(y)) whenever s = (x, y). 

A sîp (X, i?, a, b) is called a rigid Yip if for every directed graph (7, S) 
and for every compatible mapping 

f:(X, R) ^> (X, R, a, b) * (7, S) 

there is s e S w i t h / = /5. 

THEOREM 2.5. If(X, R, a, b) is a rigid sip then (X, R, a, b) * — is a full 
embedding. 

Proof. See [12], [13]. 

By Condition d) of Corollary 2.3, if a, b e Z are distinct points then (Z, 
S, a, b) is a rigid sîp. Thus from Corollary 2.3 and Theorem 2.5 we 
obtain: 

THEOREM 2.6. There is a full subcategory C o/Gra swc/z //z#/ 
a) C is binding', 
h) for every compatible mapping f:(X, R) —» (7, S) between objects 

ofC 
bl) //zere z's tf« infinite set T of disjoint triangles in (X, R) such that if {x, 

y, z} and {w, v, w} are distinct triangles in T then 

{f(x),f(y),f(z)} n {/(«),/(v),/(w)} = 0; 

b2) for every x e X there is an infinite set Tx of X such that fl Tx is 
one-to-one, ift^ Tx then (JC, /) e R and for every pair w, v e Tx, u ¥= v and 
for every w e 7 either 

w =f(x) or {* , / («)} € S or {w,/(v) } £ S; 

b3) for every edge {x, y} ^ R there is an infinite subset T of X such that 
f/T is one-to-one and {x, / } , {y, t} e R for each t G T. 

3. Lattice theoretical representations. The aim of this section is to prove 
that jtf(B)* ands/(B)* are binding varieties of bounded lattices. We prove 
this only for s/(B)*, the proof fors/(B)* being dual. First we recall some 
useful facts: 

PROPOSITION 3.1. Every finite subdirect ly irreducible lattice ins/(B)* is a 
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sublattice of I*(&) for a finite complete bipartite graph <S. If ^, ^ ' are 
complete bipartite graphs, & a full subgraph of <&' andf:@-> <&' the inclusion 
map, then f can be extended to an embedding f I*{$) —* I*(&). 

Proof For the first fact see [3], and for the second one see [1]. 

Hence we immediately get: 

COROLLARY 3.2. If L is a finite lattice in JX7(B)* and x, y are distinct 
points of L then for some finite complete bipartite graph & and a 
homomorphism f.L —» 7*(^) , / (x) ¥= f(y) holds. 

We describe a construction of a functor 0 from Gra to s/(B)*. 

Construction 3.3. Let & = (V, E) be a graph and a £ V U E a point. Let 
©^denote the smallest congruence of a free l a t t i c e ^ V U E U {a} ) in 
J / ( £ ) * over V U E U {a} such that 

1) for each v <E V U {a} and for each e e is, 

v -f e©g? 1; 

2) for each edge e = {v, w} e £, 

v • w • e0g?O; 

3) for each triangle e\ = (w, v}, e^ = {v, w}, e3 = {w, w} G E, 

e\ • e2 • e3@$ 0 and a • v • w • u 0 ^ 0. 

Set 

$ ( ^ ) = J^(F U £ U {a} ) /0^ . 

For a compatible mapping/ :^ = (F, £ ) ^ J? = (W, F), let 

/ # : ^ " ( F U £ U {a} ) -*&(W U F U {«} ) 

denote its free extension (assume that a £ W U F) that i s , / # ( v ) = f(v) 
for each v <= F , / # ( {v, w} ) = {/"(v),/(w) } for each {v, w} e E,f*(a) 
= a. S ince / i s a compatible mapping we get t h a t / # maps 0 ^ into 0^? 
Thus there exists a homomorphism, denoted by $ / , from JF(V U E U 
{a})/®<$ to J ^ ï T U F U { a } ) / 0 ^ s u c h that the following diagram 
commutes 

J ^ F ' U E U {a}) 

0, 

/ * 
- • J^PT U F U {a}) 

0 ̂  

$(S?) = J^(F U £ U { a } )/6<? »-$(JT) = JF(JT U F U { a } ) / 0 ^ 
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Since V U E U {a}/®$generates O(^) we get that 0:Gra -> J^(2?)* is a 
functor. 

LEMMA 3.4. //" U (or V) is the natural forgetful functor from Gra (or 
s/(B)*, resp.) to Set then there is a monotransformation from U to K o $ , in 
particular <E> is faithful For each graph $ = (V, E), ifx + y = 1/or some x, 
y G 4>(^), x T̂  1 ^ j //zeft //zere #re v G V U {a} flwd e G £ with either v 
= x 0Wûf e = j or v = y and e = x. 

Proof. For a graph ^ = (V, E) define 

@(<g) = (V U {a} U E, S) 

where 

5 = { {v, e}; v G K U {a}, e G £ } . 

Obviously <%(&) is a complete bipartite graph. It is easy to see that 

U(SS(^S) ) fulfils 1), 2) and 3), thus there is 

such that ^ maps the class of ©^containing x ^ V U E U {a} onto x. 
Hence we get the first statement. Proposition 1.4 in [1] immediately 
implies the second one. 

In what follows, we shall identify a point x <s V U E U {a} with the 
class of ©^containing x; thus V U £ U {a} c <&(^). 

LEMMA 3.5. Le/ A be a subset of V U E U {a} such that either \A n V\ 
^ \ or \A D E\ ^ \. Then jQ 4̂ = 0 if and only if one of the following 
occurs : 

a) z7zere is a triangle e\ = (w, v}, e^ = (w, w}, £3 = {v, w} G £" wzï/z ej, 
e2, e3 G ,4; 

b) //zere is a triangle e\ = (w, v}, e2 = (w, w}, £3 = {v, w} G £ wz'z7z a, w, 
v, w> G y4; 

c) there is an edge e — {w, v} G £ w/z7z e, u, v G A 

Proof Assume \A n V\ ^ 1 and define 

< p : F u £ U { a ) -> /*(^,(^) ) 

as follows: 

v(v) = v for v G ( F U E U {a} ) - A, 

cp(v) = 1 for v G ^ n ( F U {a}), 

choose e0 <E A D E and set <p(e) = e0for e <E A n E.UA fails a), b) and 
c) then <jp can be extended to a homomorphism 
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and I I <P(A) = e0; thus I I (A) * 0. If \A n E\ ^ 1, define 

<p:V U E U {a} - > / * ( # ( # ) ) 

as follows: 

v(v) = v for v G ( F U E U {«} ) - A, 

<p(e) = 1 for e G ^ n E, 

choose v0 <E A H (V U {a} ) and put 

<p(v) = v0 for v G A n ( ^ U {a} ). 

If 4̂ does not satisfy a), b) and c) then <p can be extended to a 
homomorphism 

thus I I 04 ) ^ 0. On the other hand, if A fulfills a) or b) or c) then by the 
definition of @^we get I I A = 0. 

The following lemmas enable us to distinguish elements of X U R U 
{a} amongst those of O(^). 

LEMMA 3.6. Le/ ^ = (X, R) be a graph such that for each point x <E X an 
infinite subset Ex of R is given such that: 

a) for each e = {w, v} G Ex we have either x = u or x = v; 
b) if {x, u}, {x, v} G Ex then for every vertex y G X — {x} either {y, u) 

£ R or {y,v} £ R. 
Then for each x G X and each b G <£(^) with b > x there exists an edge e 

= {x, u} Œ Ex with b • e • u ^ 0. 

Proof Assume that b > x G X Then there is a finite subset A c X U R 
U {#} such that 

A) a, x G v4 and b lies in the sublattice L of O(^) generated by A\ 
B) for every edge e = {u, V } G # , e ^ A if and only w, v G ^4; 
C) for every triangle ex = {w, v}, e2 = {w, w), <?3 = {v, w} G R if | {<?b 

<?2, £3} H ^4| = 2 then e\, e2, £3 G A; 
D) there is a triangle e\ = {w, v}, e2 = {w, w}, e3 = {v, w} G # with e\, 

e2, ^3 G ^4. 

Indeed, there is a polynomial p such that 

/?(ci, (?2, . . . , cn) = b and c\, c2, . . . , cn G X U /? U {a}. 

Then there is a finite subset A' oî X such that 

cu c 2 , . . . , c „ e ^ ' u i ? r U {a} 

for the full subgraph (A', R') of (X, R). Choose a triangle e\ = [u, v }, e2 = 
{u, w}, e3 = {v, w} & R and put 

A = A' U {*, w, v, w}. 
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If ( J , R) is the full subgraph of (X, R) determined by Â then A = Â U R 
U {a} has the required properties. By Corollary 3.2 there is a finite 
complete bipartite graph (V, E) (with a decomposition V\, V2 of Kwith E 
= { {v, w); v e V\, w e F2} ) such that there is a homomorphism 

f:L -> J*(K, £ ) with /(ft) * / ( x ) . 

Since ft > x we obtain/(ft) >f(x), and thus/(x) ¥^ 1. Now for every e e 

/ ( * ) + /(<?) = l, 

thus/(e) * 0. If/(v) = 0 for some v Œ A n (X U {a} ) t h e n / » = 1 for 
each e e A C\ R because/(v) + f(e) = 1, but this is a contradiction with 
D) because 

f(ei)-f(e2)-f(e3) = 0. 

Thus we conclude: 
E ) / ( J C ) ¥* 0, 1 and for every c e A9f(c) > 0. 
Assume that/(A:) = Bx c V\. Since/(v) + f(e) = 1 for every v E / l n 

(X U {a}) and e e i n ^ w e get that / (e) = Be o V2ov = \ for every e 
e A n 7? and/ (v) = Bv c ^ or = 1 for every v e A n (X U {a} ). 
Furthermore, 

F) for every triangle e'j = {u\ v'}, e2 = {u\ w'}, e^ = {V, w'} G # 
either 

w', vr, u>' G A or 

| {w\ v', w'} n A\ ^ \ or 

n / ( ^ n {a, K', v', H/} ) * 1. 

Indeed, assume that w', v' e ^4, then ^ e ,4 by B) and 

/(*',) • /(« ') ' / (v ' ) = 0. 

Since f(e\) ^ 0, we get that / ( t / ) -f(vr) ¥= 1. By the hypothesis, there is an 
edge e0 = {x, y) e £ x such that {y, /} G i? for / <E ̂ 4 implies / = x. 
Define a graph 

Jf?= (V U X U R,E') 

where 

F = E U { {z, r } ; z G X, r G R} 

U {{z, v};z G X, v e K2} 

U { {r, v}; r <E #, v e F]}. 

Since (F, is) is a complete bipartite graph with the decomposition Vh V2, 
we get t h a t ^ i s a complete bipartite graph. By Proposition 3.1 there is a 
canonical embedding 
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g:/*(F, £ ) - > / * p f ) 

such that gl V is the inclusion of (F, E) into J^. Define 

<p:X U R U {a} - * / * ( ^ ) 

as follows: 

<p(z) = g of(z) for z G ^ 

<p(z) = z for z G X U R - (.4 U {e^ y) ) 

<POO) = 1, 

and choose c G Fj U {y} with c € i?A and {c} < g0f(b) (it is possible 

because /(/>) > / ( * ) ) a n d P u t <ïO) = c-
Clearly «p(v) + v(e) = 1 in / * p f ) for every v G X U {a}, e G fl. The 

edge <?o satisfies 

v(x) • <p(y) • <p(e0) = £x n {c}. 

For e = {z, /} G #, <? =£ <?0, by B) either e, z, t & A then 

v(e) • 9(z) • <p(0 = g o / ( e ) • g o / ( z ) • g o / ( 0 = 0 

or | {>, z, r} n ^4| â 1 and then 

v(e) • cp(z) • <p(/) = 0. 

Thus 
G) for each edge e = {z, /} G i£, 

V(<?) • cjp(z) • <p(0 = 0. 

If e\ = {V, v'}, ^ = {w> w ' }> ^3 = {v> w'} G î  is a triangle then by C) 
either e\, e'2, e^ G A and thus 

<p(e'\) ' vWi) ' <p(e'3) = g of(e\) • g of(e'2) • g o f(e'3) = 0 

or | {e\, ef
2, e^} n A\ ^ 1 and then 

<POI) ' 9O2) ' v(<?3) = ° 

because <?0 G {Vb ^2, £3} implies {e\, e'2> £3} C\ A = 0. Moreover by F) if 
u\ v', w' G A then by A) 

qp(tf) • qp(w') • V ( v ' ) • qpO' ) 

= g ° / " 0 ) • g ° / V ) • g o/(v ' ) ' g of(wr) = 0. 

If I {u\ v', w'} n ^ | ^ 1 then 

<p(a) • <p(u') • <jp(vr) • v(w') = 0. 

If I {uf, v', w'} n A\ = 2 then 

I t <P(A n {a, a', v', w'}) ¥= 1 

hence 
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<p(a) • <p(w') • <jp(vr) • <p(wr) = 0 

(because if e.g. w' <£ A then by the assumption ony, W ¥= y). Thus 
H) for each triangle e\ = {u\ v'}, e2 = {w', w'}, e\ = {V, w'} G R, 

<p(e'\) ' vie'i) ' «K^) = 0 and 

<p(a) • qp(V) ' <P(VO • <p(wf) = 0. 

Hence cp can be extended to a homomorphism 

v * : $ ( ^ ) - ^ ( j f ) . 

Then <?*(& • y e0) = {c} ¥= 0; thus b - y • e0 ¥= 0. 

LEMMA 3.7. Let (X, R) be a graph such that for each edge e = {x, y} ^ R 
an infinite subset Xe of X is given such that for each z G Xe, {x, y, z} is a 
triangle. Then for each edge e = {x,y} G R and for each b G $(X, R) with 
b > e there is z G Xe such that 

b- {xy z} • {y, z} * 0. 

Proof, Assume that b > e' = {x',y'} G JR. Analogously as in the proof 
of Lemma 3.6 we can choose a finite subset A of X U R U {a} satisfying 
the four conditions below: 

A) a, e' G A and b G L where L is the sublattice of &(X, i?) generated 
by ,4; 

B) for every edge e = {u, v) G R, e G A if and only if w, v G A\ 
C) for every triangle e\ = {u, v}, e2 = (w> w}> 3̂ = {v> w } G ^ W l t n 

I {eh e2y e3) D A\ ^ 2 

we have e\, e2, 3̂ G A; 
D) there is a triangle e\ = {u, v}, e2 = {u, w}, e3 = {v, w) G 7? with e1? 

e2, e3 G A. 
By Corollary 3.2 there are a complete bipartite graph (V, E) (with a 

decomposition of Vu V2 of F with £ = { {vj, v2}; vj G Fj, v2 G F2) ) and 
a homomorphism/: L -> I*(V9 E) with f(b) i= /(«?'). Then/(Z?) >/(*?') and 
hence 1 ¥= f{e'). Since 

/ (v ) + f(e') = 1 for each v G ^ n (X U {a} ) 

we get that /(v) ^ 0. I f / (e) = 0 for some e <E A n R then/(v) = 1 for 
each v G X U {a}, but this is a contradiction with D) and thus 

E) / (v) * 0 for each v G A and/(*?') * 1. 
Assume that f(e') = Be> c V\, then/(e) = Be a V\ or = \ for each e 

^ A n R and / (v) = Bv a V2 or = 1 for each v G ^ n (X U {a} ). 
Clearly, 

F) for each triangle e\ = {w, v}, e2 = {u, w}, e3 = {v, w} G 7? 
either 
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{w, v, w] c A, or 

| {w, v, w} n A\ ^ 1 or 

I I / ( ^ n {a, u,v, w}) ¥= I. 

By the hypothesis, there is z G Ee> —A, i.e., 

{*', z} = e'h {/, z} = e'2 G # - A 

P u t J f = ( F U l U ^ , F ) where 

£ ' - E U { {v, JC}; v G Fj, JC G X} U { {v, r } ; v G K2, r G tf } 

U { {x, r}\ x G X, r G # } . 

Obviously ^ i s a complete bipartite graph and there is a homomorphism 

g:I*(V, E)-*I*(JP) 

such that g/V is the inclusion mapping. Further there is c G V\ U {e'i} 
such that c £ Be> and {c} < g0f(b). Define a mapping 

<p:X U R U {a} -> 7*(^) 

by 

v(z) = g o / ( z ) for z G ,4 

<p(z) - z f o r z G l U i ? - ( ^ U {^, <?2} ) 

<PO"I) = V(̂ 2) = c-

It is easy to see that <p(v) + <p(e) = 1 for each e G i?, v G X U {a}. For e 
= {JC, _y} G R either 

e, x, 7 G A or | {e, x, _y} Pi 4̂1 ^ 1; 

in both cases 

<p(e) • <p(x) • « J O ) = 0. 

For a triangle ej = {w, v}, ̂ 2 = {w> w}, £3 = {v, w} G i? either £j, ^ £3 G 
^ and 

<?0i) * <P02) • vfo) = g of{ex) • g o/(<?2) • g of(e3) = 0 

follows, or {£b e2> ^3} = {e\ e'u ^2} s o t n a t 

<POI) ' v t e ) ' <p(e3) = Ben {c} = 0, 

or I {e\, e2, e3) Pi ^4| ^ 1 and { î, e2> ^3} ^ {̂ '» î> ^2}; t n e n obviously 

Furthermore, if w, v, w G A then 

<]P(W) • <p(v) • <pO) • <p(» = g of(u) • g o / (v ) • g o / (w) • g of (a) 

= 0; 
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if | {«, v, w} H A\ â 1 then again we have 

<p(a) • <p(u) • <p(v) • <jp(w) = 0. 

If | {u, v, w) n A\ = 2 then 

I I <P(A n {a, u, v, w} ) = E[ g o/(^4 Pi {<s, w, v, w} ) ^ 1 

and hence 

<p(a) • <PO) • v(v) • y(w) = 0; 

(if e.g. w £ A, then w £ I I <p(̂4 n {a, w, v, w} ) ). Thus <p can be extended 
to a homomorphism. 

<P*:0(X, fl) -> J * p O 

with 

v*(6) • <f*(e\) • ,,*(<£) = g o/(ft) • {c} = {c} * 0; 

thus 6 • e\ • e'2 ¥= 0. 

LEMMA 3.8. Let & = (X, R) be a graph with a given infinite set T of 
disjoint triangles in (X, R). Then for every b e O(^) with b > a there is a 
triangle (w, v, w} with b - u - v - w ¥= 0. 

Proof Assume that b > a. Analogously to the proof of Lemma 3.6 there 
is a finite subset A of X U R U {a} such that 

A) a e A and b e L where L is a sublattice of O(^) generated by A\ 
B) for every edge e = {*, J7} G i^, ^ e i if and only if A;, >> ^ ^4; 
C) for triangles ^ = {w, v}, e2 = {u, w}, <?3 = {v, w} G JR, if 

| {é>b e2, e3} n A\^2 

then e1? e2> £3 e ^ 
D) there is a triangle e\ = (w, v}, e2 = \u, w), e3 = {v, w} e i? with 

{*i, <?2, e3} c A 
By Corollary 3.2 there are a complete bipartite graph (V, E) (with a 

decomposition of F b V2 of F with £ = { {v\, v2}; v\ e V\, v2 e F2} ), 
and a homomorphism / : L —> I*(V, E) w i th / ( a ) =̂  / (£)• By the same 
arguments as in Lemma 3.6 we obtain: 

E)f(c) ¥= 0 for each c e A J {a) * 1; 
F) for each triangle (w, v, w) either 

u, v, w ^ A or 

I {w, v, w} n A\ ^ 1 or 

11/04 n {A, w, v, w}) * 1. 

Assume that / (a ) = Ba c F b then/(v) = £v c V\ or = 1 for each v e 
^ n X9f(e) = Be c V2 or = \ for each ^ E i n î . Put 
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tf = (V U X U Ry E) 

where 

F = £ U { {*, r } ; JC e AT, r e /Î} u { {v, x}; v G K2, X G X} 

U { {v, r } ; v G Kb r G # } . 

Obviously Jf is a complete bipartite graph and there is a homomorphism 

g : / * ( K , £ ) - > J * ( J O 

such that gl F is the inclusion. Choose C E F ] such that c £ Ba and {<:•}< 
/(£)• Choose a triangle {V, v', w'} such that 

{u\ v', W) n A = 0 

(this is possible by the hypothesis). Define a mapping 

<p:X U R U {a} -> /*(J f ) 

as follows: 

<p(z) = g of(z) for z G 4̂ 

cp(z) = z f o r z e l u ^ - ^ U {V, v', w'} ) 

<jp(wr) = <p(v') = <?(>') = c. 

It is clear that <p(v) + <p(e) = 1 for each v <E X U {a}, e <E R. Similarly to 
Lemma 3.6 we conclude that if e\ = {u, v}, ^ = (w, w}, £3 = {v, w} G /? 
is a triangle then 

<POI) • 9(^2) * <P<>3) = 0 and 

<p(a) • <p(w) • <p(v) • <pO) = 0. 

If e = {x, y} then for e £ T — { {u\ v'}, {V, w'}, {V, w'} } evidently 

tp(<?) • <p(x) • <p(>) = 0. 

If e G { {V, v'}, {V, w'}, {v', w'} } then e <£ A and hence 

<PO) • <JP(X) • <pO) - 0. 

Therefore there exists a homomorphism 

<p*:$(^).-+/*pf) 

extending <p; thus 

**(Z>) • v*(i/') • v*(v') • <p*K) = g o / (* ) • {c} = {c} * 0, 

but b • u' • v' • w' ¥= 0 now follows. 

THEOREM 3.9. Varieties s/(B)* andsrf(B)* are binding. 
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Proof. Let <p:0(^) -> Opf ) be a homomorphism where ^ = (X, R), Jf 
= (Y, 5). Then for each v E X U {^ }, e <= /?, 

<]P(V) + <p(e) = 1; 

thus if <p(e) = 0 for some e <E R then <p(v) = 1 for each v E l u {a} . I f^ 
contains a triangle ej = (x, y], e2 = {x, z} , e3 = {_y, z} e 7?, then 

<p(tf) • v(x) • <p(>0 • <p(z) = 0; 

this is a contradiction; analogously, if cp(v) = 0 for some v ^ X then <p(e) 
= 1 for each e <E R but 

<POI) • <p(e2) • <JP(̂ 3) = 0, 

a contradiction. Hence 
A) If ^contains a triangle then 

0 £ <p(X U fl U { Û } ) . 

Consider that for each edge e\ = {u, v} e R there is a vertex w such that 
2̂ = {u, w}, e^ = {v, w} G i?; i.e., each edge is in a triangle. Since 

<p(e\) • <p(e2) ' <P(̂ 3> = <P(*I ' e2 • <?3> = ° 

we see that <?(<?,) = 1 for at most one e,-. Assume that <P(<?I) = 1. Then <p(u ) 
^ 1 ^ <p(v) because 

<*>(>!) • <p(") • <P(V) = <K̂ i • M • v) = <p(0) = 0. 

By Lemma 3.4 there are x\, y\, x2, J2 e ^ U 5 U {# } such that 

<p(e2) ^ x,, <p(u) ^ x2, <P03) = ^1, v(v) ^ j>2 and 

*i + x2 = 1 = ^1 + yi 

(because <p(e2) + <p(w) = 1 = <P(^) + <P(V) and cp(̂ 2), ̂ (^3), <p(w), <p(v) ^ 1). 
Then 

0 = <p(e\ • w • v) = <JD(̂ I) • <p(u) • <p(v) ^ 1 • x2 • y2 = x2 • ĵ 2 ^ 0 

by Lemma 3.5. Hence <p(e\) ¥= 1. Thus we get 1 £ <p(i?). Since 

y(w) • <p(v) • v(e,) = <PO • v ej) = 0 

we get that either <p(u) ¥= \ or <p(v) ¥= I. Assume that <p(u) = 1, then 

1 = €p(e\ + v) = <p(e\) + <p(v) 

and by Lemma 3.4 there a r e x j G 7 U ^ U {«} with <p(ej) ^ x, <p(v) ^ y 
and * + >> = 1. This contradicts Lemma 3.5 because 

0 - <pOi • u • v) â 1 • x • ^ ^ 0. 

Therefore 
B) if ^has no isolated vertices and each edge of ^ is in a triangle then 1 

£ <p(* U R). 
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Now for each edge e = {u, v} G R there are x\, y\9 x2, y2 <E Y U S U 
{a} with 

<P(U) â xh <p(e) ^ x2, <]P(V) ^ J>J, <p(e) ^ j 2 and 

*i + x2 = 1 = y\ + ^2 

(we use Lemma 3.4). Then 

0 = <p(u • e • v) = <p(u) • <p(» • <p(v) è x, • ^!(x2 + y2) 

= x\ ' y\ ' xi + * i m y\ 'Ji-

From Lemma 3.5 it follows that for each pair x,y ^ Y U SU {a} there is 
at most one z G Y U S U {a} with x • y • z = 0; hence x2 = y2. An 
identical argument shows that if <p(u) è x3 then x\ = x3, because 

0 - v(w) • qp(v) • <p(e) ^ (x, + x3) • y\ ' x2 

^ x\ - y\ • x2 + x3 • y\ - x2. 

Thus for each z e l u i l there is at most one u G Y U S U {a} with <p(z) 
^ w; put i//(z) = u. If e = {w, v} G i? then either \p(e) G 5 and t//(w), i//(v) 
E r u ( f l } o r ,/,(«? ) G 7 U {a}, ^{u\ ^(v) G S. Since 

0 = v(w • v • e) è xl^(e) • î (w) • i/<v), 

Lemma 3.5 shows that the second case is impossible. Thus \p(e) G S and 
4^(u), \p(v) G Y U {^}; moreover, by Lemma 3.5, 

Me) = M«), WO }. 
Furthermore, <p(a) + <p(e) = 1 for every e G Z£; hence either 

<PO) = 1 or <pO) ̂  >> G Y U {a}. 

If {w, v, w} is a triangle then 

0 = <p(a) • <p(w) • ip(v) • <p(w) ^ Î//(Û) • I//(H) • i//(v) • i//(w) 

where *//(#) = 1 or ;//(#) = y. Hence, by Lemma 3.5 again <p(a) =£ 1 and ^ 
= a. Thus: 

C) there is a mapping 

x^:X U R U {a} -> 7 U S U {a} 

such that <P(JC) ^ i//(x) for each x G X U R U {<?}, i//(Ar) c 7, i//(#) G S, 
*//(<z) = a, \p/X is 3. compatible mapping from (X, R) to (7, S) such that 

^( {w, v} ) = {^(w), *Kv) } for each {u, v} G R. 

If <p(x) = $(x) for each x G X U i ? U { a } then <p = $(\f//X). 
To prove that <p(x) = ^/(x) for each x <E X U R U {a} we restrict 0 to 

the full subcategory C of Gra given by Theorem 2.6. By b2) each graph in 
C has no isolated point and by b3) each edge is in a triangle. Assume that 
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cp(x) > \p(x) for some x e X. Then by b2) there is an infinite subset Tx of 
X with {x, z} G i? for each z <= 7V such that \p/Tx is one-to-one and for 
each y e F — {^(x) }, and for each pair w, v £ 7\, w 7e v we have 
either 

{^(u\y) £ S or {T//(V),J>} £ S. 

Thus Lemma 3.6 applies to \p(Tx) for (F, 5") and \p(x). Therefore there is z 
G i//(rx) with 

<p(x) • z • e =£ 0 for £ = {z, \p(x) } <E S. 

There is t e Tx with ^(/) = z, then for e' = {t, x) e 7? we have î (V) = e 
and hence 

0 = <p(x • t - er) = <p(x) • <p(0 • <p(e') ^ <p(x) • z • e ¥= 0, 

a contradiction. Thus <p(x) = ^(x) for each x e X Assume that <jp(e) > 
^(e) for some e ^ R. Then by b3) there is an infinite subset T of X such 
that {w, z}, (v, z} e i? for each z e 71 where e = {w, v} and v// is 
one-to-one on T. By Lemma 3.7 there is w e ^(5") such that for e\ = 
{^(w), w}, 2̂ = {*KVX w } G S we have 

<p(̂ ) • e\ • e2 ¥= 0. 

For z G 7" with i//(z) = w and for e'i = {w, z}, ^ = {v^ z } e ^ we have 
\p(e\) = e\, ^(e2) = e2. Then 

0 = q>(e • ei • ^ ) = <P0) • <POI) • <p(̂ 2) = <p(e) • \p(e\) • \p(e'2) 

= <p(e) • 1̂ - 2̂ ^ 0, 

a contradiction. Thus <p(e) = \p(e) for each e <E R. Assume that <p(a) > a. 
Then by bl) there is an infinite set T of triangles in (X, R) such that for 
each pair of distinct triangles {x, y, z) and {u, v, w} in 7, 

{iKx), i/O), « z ) } n { /̂(M), ^(v), ^(w) } = 0; 

thus we can use Lemma 3.8 on \p(T) and hence there is a triangle (x, _y, z} 
in T with 

v(a) • iK*) • « J ) • </<*) * 0; 

this is a contradiction. Thus <?(#) = ^(«). The proof is complete. 

4. Lattice of subvarieties of jtf(B)* and s/(B)*. We describe the lattice 
of subvarieties of stf(B)*\ the description of the lattice of subvarieties of 
stf{B)* is analogous and we left it for the reader. By [1] we have 

PROPOSITION 4A.S/(B)* is locally finite. 

Hence each subvariety of stf(B)* is uniquely determined by its finite 
subdirectly irreducible lattices. We use Proposition 3.1 to describe 
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finite subdirectly irreducible lattices in stf(B)*. Observing that every 
proper principal ideal in 7*(^) is finite for each graph ^, by a routine 
calculation we obtain the following proposition: 

PROPOSITION 4.2. Let & = (V, E) be a complete bipartite graph (with a 
decomposition V\, V2 of V with E = { (vj, V2}; v\ G V\, v2 G V2} ). Let L 
be a sublattice of I*{&). Put 

IL = {A G L - {1}; 3 v G F ( v G ^ a n d 

V B Œ L(v ^ B => A Q B))}. 

Then IL is the set of all join-irreducible elements of L different from 1. L is 
non-distributive if and only if\IL\ > 2 and there are A, B G IL with A n V] 
¥= 0, B n F2 ^ 0. / / L « non-distributive then IL generates L by joins (thus 
1 is not a join-irreducible element). 

PROPOSITION 4.3. Let & = (V, E) be a complete bipartite graph. Let L be 
a sublattice of 7*(^). Then L is subdirectly irreducible if and only if IL = 0 
or L is non-distributive and IL contains at most one element which is not an 
atom of L. 

Proof Let V\, V2 be a decomposition of V with 

E = { {vb vl}> vl G ^ b v2 G Vl}-

Put ILX = {A G IL; A c KJ , /L2 = (^ G IL: A c K2}, then if L is 
non-distributive then ILX ¥= & =£ IL2 and JX = /Lj U 7L2. Moreover, if 
~ is a congruence on L then if ^ —̂  0 for some A G IL\, then Z? ~ 1 for 
each 5 G /L2 and Z? ~ 0 for each B G 7L]. On the other hand, for each 
non-identical congruence ~ o n L there is A G IL and Z? ç ^ , B ¥^ A with 
£ — A (indeed, if C ~ D for some C < D G L then there is 4̂ G ZL with 
v4 < D but A < C else 7X does not generate L by joins, thus A ~ A n C 
< A)\ thus if L is non-distributive and IL contains at most one element 
which is not an atom of L, then L is subdirectly irreducible. Since each 
proper principal ideal is finite, if A G IL is not an atom in L then there is 
the biggest element B < A. It is easy to verify that ~A is a congruence 
where C ~ A D if and only if C = Z) or # ç c and Z) = C U , 4 or £ Ç £ > 
and C = D U A. If A' is another non-atomic element of 7X then —^ and 
~A> are disjoint congruences and L is not subdirectly irreducible. The rest 
follows from Proposition 4.2 and from the fact that the two-element lattice 
is the only distributive subdirectly irreducible lattice. 

Let & be a complete bipartite graph, L a non-distributive subdirectly 
irreducible sublattice of 7*(^); denote by aIL\ the set of all atoms in ILX 

which are maximal elements in ZX1? and by aIL2 the set of all atoms in IL2 

which are maximal elements in IL2 (then by Proposition 4.3 either ILX = 
alLx or IL2 = aIL2). It is an easy exercise to verify: 
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PROPOSITION 4.4. Let % J^be finite complete bipartite graphs, L (or M) a 
non-distributive subdirectly irreducible sublattice ofI*(@) (or I*(J{f) ). Then 
L is isomorphic to M if and only if either \IL\\ = \IMX\, \aIL\\ = \aIMx\, 
\IL2\ = \IM2\ and \aIL2\ = \aIM2\, or \ILX\ = \IM2\, \aILx\ = \aIM2\, \IL2\ 
= \IMX\ and\aIL2\ = \aIMx\. 

Let L be a finite subdirectly irreducible non-distributive lattice in 
J^(2?)*. Combining Propositions 3.1, 4.3 and 4.4 we get that L is uniquely 
determined by numbers \ILX\, \aILx\, \IL2\, \aIL2\. We can assume that 
either \ILX\ > \IL2\ or \ILX\ = \IL2\ and \aILx\ ^ \aIL2\. Denote L as 
K( \ILX\, \aILxl \IL2l \alL2\ ). Then we have: 

PROPOSITION 4.5. a) K(m, n,p, q) is a sublattice of K(mf, n\p\ qf) if and 
only if m < m' or m = m' and n = ri and at the same timep < p' or p = p' 
and q — q''. 

b) K(m, n, p, q) is simple if and only if m = n and p = q > 1. 
c) If K(m, n, p, q) is not simple and if ~ is the smallest congruence on 

K(m, n, p, q) then 

K(m, n,p, q)/~ = K(m — 1, m — \,p, q) if m > n 

K(m, n, p, q)l ~ = K(m, n, p — \,p — 1) if p > q, 

K(m, n, p, q)l ~ is the two-element lattice ifm = n, p = q=\. 

Proof Proof of a) is a routine calculation, b) follows from [1] and the 
proof of Proposition 4.3, c) follows from the proof of Proposition 4.3. 

Put C = { (m, n,p, q)\ m, n,p, q are positive integers with m = n, m = p 
~ q and either m = n, orp = q, and m ¥= n implies m > p} and define an 
ordering ^ on C such that (m, n,p, q) = (m\ ri,p\ qf) if either m > m' or 
m = m' and n ^ ri and at the same time either;? > pf oxp = pf and q = 
q'. If we identify K(\, 1, 1, 1) with the two-element lattice then we get: 

COROLLARY 4.6. a) If a, fi e C then the variety of lattices generated by 
K(a) contains K(fi) if and only if a ^ /3. 

b) There is a bijective correspondence \p between subvarieties ofs/(B)* and 
order-ideals of C; for a subvariety i^ofs/(B)^, \p(i^) is the set of all a e C 
with K(a) e V, 

The proof immediately follows from Proposition 4.5 and the Jonsson 
Lemma see [8] or [4]. 

We shall extend C on 

C = C U { (oo, p, q)\ p ^ q are positive integers} U { (oo, oo) } 

and we extend the ordering ^ such that (oo, p, q) i^ (mf, ri, p\ q') or â 
(pop', q') Up > p' orp = pf and q = q' and (oo, oo) is the largest element 
of C. 
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LEMMA 4.7. a) There is a bijective correspondence 0 between independent 
subsets of C and order-ideals of C such that for an independent subset A of 
C, 

^ ) = { a G C ; 3 j 8 G ^ , a ^ j3}. 

b) Each independent set in C is finite. 

The proof is a routine calculation. 

Let/? be a positive integer, let (V, E) be a complete bipartite graph with 
a decomposition Fj , F2 of F such that 

£ = { {vi, v2}; V! G F b v2 G F2}, 

l^ll = «0, 

F2 = {w0, wb . . . ,wp-\}. 

For q < p define a sublattice of L^ of 7*(K, E) generated by the set 
consisting from all singletons in V except {vv^-j} and from the set {wq, 
w^+1, . . . , wp-\}. Then by Proposition 4.3 Lq is subdirectly irreducible. 
Denote Lq = K(oo, p, q), further denote I*(V, E) = K(ooy p, p) and 
I*(W, F) = K(oo, oo) where (W, F) is a complete bipartite graph with a 
decomposition Wh W2 of W with 

F = { {v1? v2}; V! G PFi, v2 G J^2} and 

l ^ , | = \W2\ = S0. 

Then we get: 

THEOREM 4.8. a) For each subvariety i^ofstf(B)* there is (exactly one) a 
(finite) independent set A y in C such that {K(a)\ a G A^} generates Y(in 
the sense of Birkhoff theorem). Moreover, for a pair of subvarieties Y\, Y2 of 
srf(B)*, Yx c V2 if and only if for each a e A^ there is fi e A^2 with a ^ 

b) The lattice of subvarieties ofs/(B)* is countable. 

An analogous theorem holds ms#(B)*\ we have only to substitute 7*(^) 
for 7*(^) (for any complete bipartite graph &). Hence we get: 

COROLLARY 4.9.S/(B)* n s/(B)* is the variety generated by N5 = K(2, 
0, 1, 1). 

Since each non-trivial lattice in the variety ^generated by N5 has a 
prime ideal, no non-trivial group is an endomorphism monoid of a lattice 
in -T. Thus: 

COROLLARY 4.10. The smallest binding variety of lattices does not exist. 
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Furthermore, there is no smallest variety Yfor which every monoid is 
isomorphic to an endomorphism monoid of a lattice in V. 

I wish to acknowledge helpful discussions with P. Goralcîk and J. 
Sichler. 
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