LA SOIF DU BONUS

JEAN LEMAIRE Bruxelles

RÉSUMÉ

L'introduction d'un système bonus-malus indépendant du montant des sinistres en assurance automobile incite les assurés à prendre eux-mêmes en charge les frais résultant de petits sinistres. Nous analysons cette "soif du bonus" et déterminons la politique optimale de l'assuré au moyen d'un algorithme apparenté à la programmation dynamique. La technique développée est ensuite appliquée au système belge.

SUMMARY

In motorcar insurance is widely used a merit rating system characterized by the fact that only the number of claims occurred (and not their amount) modifies the premium. This system induces the insured drivers to support themselves the cost of the cheap claims. We analyze this "hunger for bonus" and solve this decision problem by means of an algorithm related to dynamic programming. The method is then applied to the Belgian bonus system.

§ I. INTRODUCTION

Les compagnies d'assurances européennes utilisent de plus en plus un système de personnalisation a posteriori des primes d'assurance automobile responsabilité civile, populairement appelé système bonus-malus. La prime annuelle payée par le propriétaire du véhicule dépend du nombre de sinistres survenus au cours des années précédentes, mais non de leur montant; la compagnie accorde une réduction ou bonus aux assurés n'ayant déclaré aucun sinistre entraînant des débours en responsabilité civile et pénalise les "mauvais" conducteurs, "en tort" dans plusieurs accidents, en imposant un malus. L'augmentation de prime résultant d'un accident peut être très importante et ses effets se prolonger pendant de nombreuses années. Par exemple, en Suède, un seul accident peut doubler la prime, et six années consécutives sans sinistres sont ensuite requises pour ramener la prime à son taux initial. Il s'ensuit évidemment une tendance assez marquée chez les assurés à prendre personnellement en charge les petits sinistres et à ne pas les déclarer. pour échapper à une remontée sur l'échelle des bonus. Cette "soif du bonus" entraîne une forte réduction de la fréquence moyenne des sinistres déclarés (une étude menée en Suisse a montré une diminution pouvant aller jusqu'à 30%). La stratégie optimale de l'assuré est assez difficile à déterminer, car les sinistres futurs doivent intervenir dans le raisonnement. Le problème de décision relève de la programmation dynamique en avenir aléatoire à horizon infini.

§ 2. FORMULATION DU PROBLEME DE DECISION

Une compagnie d'assurance utilise un système bonus-malus lorsque:

- I) l'ensemble des polices d'un groupe donné peut être partitionné en un nombre fini de s classes $C_i(i=1,\ldots,s)$ de telle manière que la prime annuelle ne dépende que de la classe;
- 2) la classe à un moment donné est déterminée univoquement par la classe de la période précédente et le nombre de sinistres déclarés pendant la période.

Un tel système est déterminé par deux facteurs:

- I) l'échelle des primes $b_i(i = 1, ..., s)$;
- 2) les règles de transition, c'est-à-dire les lois régissant le passage d'une classe à l'autre lorsque le nombre de sinistres est connu. Ces règles peuvent être présentées sous la forme de transformations T_k telles que $T_k(i) = j$: la police est transférée de C_i à C_j si k sinistres ont été déclarés.

Considérons un assuré, venant de provoquer un accident de montant x, à un instant t de la période prise comme unité de temps $(0 \le t < 1)$. Désignons par

$$\{p_k(\lambda) \mid k = 0, 1, \ldots\}$$

la distribution du nombre d'accidents par période de l'assuré, où λ est sa fréquence moyenne des sinistres. Nous supposons le processus homogène, c'est-à-dire λ indépendante du temps.

Nous allons définir une politique de l'assuré par un vecteur

$$\bar{x}=(x_1,\ldots,x_i,\ldots,x_s)$$

où x_i est la limite de rétention pour C_i ; les frais de tout accident de montant inférieur ou égal à x_i seront supportés par l'assuré, les sinistres de montant supérieur à cette limite seront déclarés.

En désignant par ξ la variable aléatoire représentant le montant d'un sinistre et par f(x) sa fonction de fréquence, la probabilité p_i pour qu'un accident ne soit pas déclaré si l'assuré se trouve en C_i vaut

$$p_i = P(\xi \le x_i) = \int_0^{x_i} f(x) dx.$$

La probabilité $\overline{p_k^i}(\lambda)$ de déclarer k sinistres au cours d'une période vaut

$$\overline{p_k^i}(\lambda) = \sum_{h=k}^{\infty} p_h(\lambda) (1 - p_i)^k p_i^{h-k} \binom{h}{k}.$$

L'espérance mathématique du nombre de sinistres déclarés est égale à

$$\overline{\lambda^i} = \sum_{k=0}^{\infty} k \, \overline{p_k^i}(\lambda).$$

L'espérance de coût d'un accident non déclaré est égale à

$$E^{i}(\xi) = (1/p_{i}) \int_{0}^{x^{i}} x f(x) dx.$$

L'assuré devra donc débourser, en moyenne,

$$E^{i}(\xi) \ (\lambda - \overline{\lambda^{i}}),$$

à titre de dédommagement des sinistres non déclarés à la compagnie (en supposant classiquement l'indépendance entre les variables représentant le nombre et le montant des sinistres).

L'espérance de coût pour cette période vaut donc

$$E(x_i) = b_i + \beta^{1/2} E^i(\xi) (\lambda - \overline{\lambda^i}),$$

en introduisant un taux d'actualisation β et en plaçant les sinistres en milieu de période.

Soit v_i l'espérance actualisée de tous les paiements d'un assuré se trouvant en début de période en C_i . Le vecteur $\bar{v} = (v_1, \ldots, v_s)$ doit satisfaire au système

$$v_i = E(x_i) + \beta \sum_{k=0}^{\infty} \overline{p_k^i}(\lambda) v_{T_k(i)} \qquad i = 1, \ldots, s$$
 (1)

Théorème: Le système (1) possède une et une seule solution, pour une politique donnée.

Démonstration: Soit la transformation T définie par

$$T\overline{v} = \overline{w}$$
, où $w_i = E(x_i) + \beta \sum_{k=1}^{\infty} \overline{p_k^i}(\lambda) v_{T_k(i)}$.

Choisissons comme norme: $||\bar{v}|| = \max_{i} |v_i|$.

Il vient:

$$||T\overline{w} - T\overline{v}|| = \max |E(x_i) + \beta \sum_{k=0}^{\infty} \overline{p_k^i}(\lambda) w_{T_k(i)} - E(x_i)$$

$$-\beta \sum_{k=0}^{\infty} \overline{p_k^i}(\lambda) v_{T_k(i)} |$$

$$= \max |\beta \sum_{k=0}^{\infty} \overline{p_k^i}(\lambda) (w_{T_k(i)} - v_{T_k(i)}) |$$

$$\leq \beta \sum_{k=0}^{\infty} \overline{p_k^i}(\lambda) \cdot \max |w_{T_k(i)} - v_{T_k(i)}|$$

$$= \beta \max |w_j - v_j|, \text{ en posant } j = T_k(i)$$

$$= \beta ||\overline{w} - \overline{v}||.$$

Par conséquent l'opérateur T est de contraction et il y a un seul point fixe.

L'assuré provoquant à l'instant t un sinistre de montant x a deux stratégies à sa disposition; s'il ne déclare pas l'accident, son espérance de coût total, actualisée au moment du sinistre, vaut

$$\beta^{-t}E(x_i) + x + \beta^{1-t} \sum_{k=0}^{\infty} \overline{p_k^i}[\lambda(\mathbf{I}-t)] v_{T_{k+m}(i)},$$

où m est le nombre de sinistres déjà déclarés pendant la période; si l'accident est déclaré à la compagnie, elle vaut

$$\beta^{-t}E(x_i) + \beta^{1-t} \sum_{k=0}^{\infty} \overline{p_k^t}[\lambda(\mathbf{I} - t)]v_{T_{k+m+1}(i)}.$$

La limite de rétention x_4 est évidemment celle pour laquelle les deux stratégies sont équivalentes. Donc

$$x_{i} = \beta^{1-t} \sum_{k=0}^{\infty} \overline{p_{k}^{i}} [\lambda(1-t)] [v_{T_{k+m+1}(i)} - v_{T_{k+m}(i)}] i = 1, ..., s \quad (2)$$

(2) constitue en fait un système de s équations à s inconnues x_i , car celles-ci apparaissent implicitement dans les $p_k^i[\lambda(\mathbf{r} - t)]$. Il est

également facile de démontrer que ce système possède une et une seule solution, pour \bar{v} fixé. La politique optimale $\bar{x}^* = (x_1^*, \ldots, x_s^*)$ peut alors être déterminée par approximations successives au moyen de l'algorithme suivant:

Première itération: choisissons une politique \bar{x} arbitraire. La plus intéressante est $\bar{x}^0 = (0, \dots, 0)$, (c'est-à-dire celle qui consiste à déclarer tous les accidents), car ce point de départ nous permettra de calculer l'amélioration de l'espérance de coût apportée par la prise en charge de certains sinistres. Déterminons un premier vecteur \bar{v} . Le système (1) se simplifie et devient

$$v_i = b_i + \beta \sum_{k=0}^{\infty} p_k(\lambda) v_{T_k(i)} i = 1, \ldots, s.$$

Une politique améliorée peut être obtenue par les relations (2), qui se réduisent dans ce cas particulier à

$$x_i = \beta^{1-t} \sum_{k=0}^{\infty} p_k[\lambda(1-t)] [v_{T_{k+m+1}(i)} - v_{T_{k+m}(i)}] i = 1, \ldots, s.$$

Itérations suivantes: l'application successive des relations (I) et (2) permet d'obtenir la politique optimale \bar{x}^* .

§ 3. APPLICATION AU SYSTEME BELGE

Depuis l'arrêté ministériel du 14-4-1971, toutes les compagnies belges sont astreintes à utiliser le système suivant. Il y a 18 classes.

Degré	Niveau de prime				
18	200				
17	160				
16	140				
15	130				
14	120				
13	115				
12	110 105 100 100 95				
II					
10					
9 8					
8					
7 6	90				
6	85				
5	80				
4	75				
3	70				
2	65				
I	60				

Les nouveaux assurés ont accès au degré 6 s'ils sont sédentaires (c'est-à-dire s'ils n'utilisent leur voiture qu'à des fins privées), au degré 10 dans le cas contraire. Cette discrimination est justifiée par une différence de fréquence moyenne des sinistres (la distribution du nombre de sinistres étant une loi de Poisson simple de paramètre $\lambda = 0.21$ pour les sédentaires, $\lambda = 0.20$ pour les autres).

Les déplacements s'opèrent selon le mécanisme suivant:

- par année d'assurance sans sinistre: descente d'un degré;
- par année comportant un ou plusieurs sinistres:
 - montée de deux degrés pour le premier sinistre;
 - montée de trois degrés pour les sinistres suivants.

Deux restrictions sont à apporter à ce mécanisme:

- l'assuré ne dépassera jamais les degrés I et 18;
- l'assuré qui n'a pas eu d'accident pendant 4 années consécutives, et qui malgré cela se trouve toujours à un degré supérieur à 10 est ramené à ce degré.

Cette dernière clause rend malheureusement le processus nonmarkovien: la condition 2 de la définition d'un système bonus-malus est violée. Aussi allons-nous subdiviser certaines classes en y ajoutant un indice indiquant le nombre d'années consécutives sans sinistres. Le nouveau processus ainsi défini est markovien. Il comporte 30 classes.

Considérons un assuré responsable d'un accident en début de période (t=0). Nous supposons que

- i) le taux d'intérêt est de 6%;
- 2) la prime commerciale au niveau de base 100 vaut 10.000 F.B. (elle correspond à une voiture de cylindrée moyenne);
- 3) la distribution du nombre de sinistres de l'assuré est une loi de Poison simple de paramètre $\lambda = 0.21$:

$$P_k(\lambda) = \frac{e^{-\lambda} \lambda^k}{k!}.$$

Nous devons également déterminer la distribution du montant des sinistres. Faute d'avoir pu obtenir un ajustement précis et

Classe	Niveau de Prime	T_0	T_1	T_2	T_3	T_4	T_5	$T_k(k \ge 6)$
18	200	17.1	18	18	18	18	18	18
17.0	160	16.1	18	18	18	18	18	18
17.1	160	16.2	18	18	18	18	18	18
16.0	140	15.1	18	18	18	18	18	18
16.1	140	15.2	18	18	18	18	18	18
16.2	140	15.3	18	18	18	18	18	18
15.0	130	14.1	17.0	18	18	18	18	18
15.1	130	14.2	17.0	18	18	18	18	18
15.2	130	14.3	17.0	18	18	18	18	18
15.3	130	10	17.0	18	18	18	18	18
14.0	120	13	16.0	18	18	18	18	18
14.1	120	13.2	16.0	18	18	18	18	18
14.2	120	13.3	16.0	18	18	18	r8	18
14.3	120	10	16.0	18	18	18	18	18
13	115	12	15.0	18	18	18	18	18
13.2	115	12.3	15.0	18	18	18	18	18
13.3	115	10	15.0	18	18	18	18	18
12	110	II	14.0	17.0	18	18	18	18
12.3	110	10	14.0		18	18	18	18
II	105	10	13	16.0	18	18	18	18
10	100	9	12	15.0	18	18	18	18
9	100	8	II	14.0	17.0		18	18
8	95	7	10	13	16.0	18	18	18
7	90	6	9	12	15.0	18	18	18
7 6	85	5	8	II	14.0	17.0	18	18
5	80	4	7	10	13	16.0	18	18
4	75	3	6	9	12	15.0	18	18
3	70	2	5	8	II	14.0		18
2	65	r	4	7	10	13	16.0	r8
I	бо	I	3	6	9	12	15.0	18

maniable pour les petits sinistres, nous avons utilisé dans le programme la distribution observée suivante, portant sur 225.330 accidents survenus en 1970 en Belgique, totalisant près de 4 milliards de francs. Elle représente environ 75% du parc. Les résultats plus récents n'ont pu être utilisés car ils sont visiblement influencés par la soif du bonus: le nombre d'accidents déclarés est en régression et la diminution du pourcentage observé dans les classes inférieures ne peut être expliquée par l'inflation.

Montant de sinistres	Nombre de sinistres	Coût moyen
0 - 1.000	34.368	466
1.000 - 2.000	29.408	1.462
2.000 - 3.000	27.432	2.443
3.000 - 5.000	36.473	3.874
5.000 - 10.000	44.059	6.935
10.000 - 20.000	28.409	13.884
20.000 - 50.000	16.435	29.886
50.000 - 100.000	4.440	66.675
+ de 100.000	4.306	499.755
	225.330	17.337

Les résultats principaux sont résumés dans le tableau suivant.

Classes	5 x _i *	v i o	v _i *	Pi*	λ *	$E(x_i^*)$	100xa _i 0	100xa;*
18	10.875	194.095	170.863	0,7732	0,0476	20.547	0,1076	0,0000
17.0	14.629	186.427	163.237	0,8205	0,0376	16.674	0,0578	0,0000
17.1	19.265	182.308	158.773	0,8790	0,0254	16.848	0,0872	0,0000
16.0	17.121	181.047	158.836	0,8520	0,0311	14.765	0,0726	0,0000
16.1	21.324	177.511	154.761	0,8915	0,0228	14.894	0,0468	0,0000
16.2	26.238	172.125	149.917	0,9034	0,0203	14.963	0,0707	0,0000
15.0	12.253	176.039	155.647	0,7906	0,0440	13.592	0,1042	0,0001
15.1	15.817	173.092	152.142	0,8355	0,0345	13.717	0,0589	0,0000
15.2	20.305	168.468	147.738	0,8890	0,0233	13.880	0,0379	0,0000
15.3	25.618	161.424	142.481	0,9019	0,0206	13.955	0,0573	0,0000
14.0	10.007	171.750	152.909	0,7622	0,0499	12.519	0,1486	0,0003
14.1	12.928	169.460	150.001	0,7991	0,0422	12.615	0,0845	0,0001
14.2	16.809	165.608	146.146	0,8480	0,0319	12.753	0,0477	0,0000
14.3	21.612	159.560	141.384	0,8922	0,0226	12.898	0,0307	0,0000
13	11.264	166.290	148.285	0,7781	0,0466	12.059	0,3267	0,0010
13.2	14.493	163.296	145.049	0,8188	0,0380	12.169	0,0684	0,0001
13.3	18.718	158.256	140.824	0,8721	0,0269	12.326	0,0387	0,0000
12	12.427	160.854	143.846	0,7928	0,0435	11.598	0,5788	0,0036
12.3	16.040	156.938	140.268	0,8383	0,0340	11.725	0,0556	0,0001
II ~	11.813	155.470	139.607	0,7850	0,0451	11.078	0,8926	0,0098
10	II.II	150.349	135.674	0,7762	0,0470	10.554	1,4303	0,0235
9	10.773	145.557	132.073	0,7719	0,0479	10.543	1,9005	0,0737
8	10.328	140.527	128.277	0,7663	0,0491	10.029	2,5708	0,1713
7	9.867	135.809	124.808	0,7570	0,0510	9.510	3,3055	0,3389
6	8.915	131.426	121.683	0,7197	0,0589	8.950	4,6529	1,1147
5	7.881	127.530	118.945	0,6793	0,0673	8.389	6,0412	1,9491
4	6.746	124.202	116.632	0,6349	0,0767	7.827	6,7360	2,8125
3	5.455	121.539	114.795	0,5844	0,0873	7.263	13,3333	11,2302
2	4.053	119.649	113.494	0,4900	0,1071	6.676	10,8076	10,2918
I	2.511	118.641	112.791	0,3453	0,1375	6.082	46,2486	71,9792

Colonne 2: Politique optimale de l'assuré

On constate que pour toutes les classes supérieures à 7, la rétention optimale est plus grande que la prime au niveau 100. Les montants sont plus élevés pour les classes supérieures, étant donné la forte augmentation de prime résultant d'un sinistre. Les plus grandes rétentions sont obtenues dans les classes 16.2, 15.3 et 14.3: après deux ou trois années sans accident un conducteur a intérêt à supporter des sinistres plus coûteux dans le but de réintégrer la classe 10 par application de la 2ème restriction.

Colonne 3 et 4: Espérances actualisées des paiements en déclarant tous les sinistres (v_i^0) et sous la politique optimale (v_i^*)

En utilisant x*, un assuré sédentaire peut espérer économiser 9.743 F., un non-sédentaire 14.675 F.

Colonne 5: Probabilité de ne pas déclarer un sinistre en utilisant \bar{x}^* Dans certaines classes, 90% des sinistres sont pris en charge par l'assuré.

Colonne 6: Fréquence moyenne optimale des sinistres déclarés

Colonne 7: Espérance de coût minimale par période

La fraction due au dédommagement des sinistres non-déclarés reste dans toutes les classes peu élevée en comparaison de la prime.

Colonne 8 et 9: Distributions stationnaires de probabilité en utilisant \bar{x}^0 puis \bar{x}^*

Quelle que soit la politique utilisée, le système constitue une chaîne de Markov irréductible dont tous les états sont ergodiques. La distribution des probabilités d'état converge donc vers une distribution stationnaire, obtenue en normant le vecteur propre à gauche de la matrice de transition. Nous voyons qu'en régime stationnaire, un assuré se comportant de manière optimale restera le plus souvent dans les classes inférieures.

Ces distributions nous permettent de calculer la prime moyenne stationnaire

étant donné
$$\bar{x}^0$$
: $b^0 = \sum_{i=1}^{30} a_i^0 b_i = 7.025 \text{ F.}$
étant donné \bar{x}^* : $b^* = \sum_{i=1}^{30} a_i^* b_i = 6.293 \text{ F.}$

Dans ce dernier cas, l'assuré devra suppléer, pour tous les sinistres non déclarés $\sum_{i=1}^{20} a_i^* E^{i*}(\xi) \ (\lambda - \lambda^{i*}) = 135 \text{ F.}$ L'économie annuelle moyenne réalisée au détriment de la compagnie est donc de 597 F. Cette perte pour l'assureur est partiellement compensée par une diminution des frais administratifs, puisque $\sum_{i=1}^{20} a_i^* p_i^* = 40,85\%$ des accidents ne sont pas déclarés; la fréquence des sinistres tombe de 0,21 à 0,1242.

Insistons sur le fait que ces dernières relations ne sont vérifiées qu'une fois le régime stationnaire atteint; il ne saurait être question de comparer par exemple le bénéfice annuel stationnaire de 597 F. et l'économie totale actualisée de 9.743 F. réalisée par un assuré entrant dans le système en classe 6.