OSCULATING SPACES
PETER SCHERK

In this paper an attempt is made to prove some of the basic theorems on
the osculating spaces of a curve under minimum assumptions. The natural
approach seems to be the projective one. A duality yields the corresponding
results for the characteristic spaces of a family of hyperplanes. A duality
theorem for such a family and its characteristic curve also is proved. Finally
the results are applied to osculating hyperspheres of curves in a conformal
space.

The analytical tools are collected in the first three sections. Some of them
may be of independent interest.

1. On Taylor’s theorem. The following version of Taylor's theorem
should be known. For the convenience of the reader, we include a proof.

In this paper, the symbol I always denotes an interval on the real axis.
It may be open or closed. If ¢ € I, put

J = {hlto + h € I}; thus 0 € J.
“Neighbourhoods’’ are neighbourhoods on I respectively J.

THEOREM 1.1. Let f(t) be defined in I and p-times differentiable at to € I;
p > 0. Then
-

Fo+ B = J@) + ) + ..+ .

p
+ (9 0) + e)) 3 lim e(h) = 0.
p: 0
Proof. The function
¢ P
o) = 1+ 1) — (1) + 20 + .. + %f“”(h))
is defined in J and p-times differentiable at 2 = 0. It satisfies

(L.1) $(0) =¢'(0) =... =¢®(0) = 0.

Apply Taylor’s theorem to ¢ (k) with p — 1 instead of p. Thus there exists a
6 = 6(h) with 0 < 6 < 1 such that
o) = 1§70 0h)
(- 1! '
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Since ¢~V (k) is still differentiable at 2 = 0, (1.1) implies
B0 (k) = 62-0(0) + hin(h) = I (1)
where
lim () = ¢ (0) = 0.

Replacing % by 6k we obtain

.
) = -
This proves Theorem 1.1.
If we put €(0) = 0, the function e(%) will be continuous in J. The same
applies to the functions

< O0h - n(0h) = ge(h), lim e(k) = 0.

h0

en(h) = hme(h); m=0,1,...,p.
The function

& (h) = plo(h)
was p-times differentiable at 2 = 0 and satisfied
(1.2) &(0) = ¢(0) = ... =€7(0) = 0.

It will be differentiable in some neighbourhood of the origin.
We require the case m = p — 1 of the following remark.

THEOREM 1.2. Letp > 1,1 < m < p — 1. Then €, (k) is m-times continuously
differentiable at h = 0 and satisfies

n(0) = e (0) = ... = €.°(0) = 0.
Proof. Applying Theorem 1.1 to ¢, (h), we obtain on account of (1.2)
e)(h) = K7'8(h)  where 1hin3 5(h) = 8(0) = 0.
Put
S (h) = W"6(h); m=0,1,...,p — 1.
We first verify that in some neighbourhood of the origin
(1.3) en(h) = dp_1(h) — (p — m)en_1(h) ; m=12,...,p— 1

The right-hand term vanishes at 2 = 0. On the other hand

@ (0) = lim @ = @) ey 2o
0

h—0 h h—0 h h

Now let 2 3= 0. Then

) 1 ST -
en(h) = <ﬁ’m ép(h>> = 5 e(h) — %TKL &(h)

= W"8(h) — (p — m)E™ e(h).
This vields (1.3).
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For m = 1, (1.3) implies
ei(h) = 6(h) — (p — D)e(h).

The right-hand term being continuous and zero at the origin, the same holds
true of (k).

Suppose Theorem 1.2 has been proved up to m — 1. Then either of the two
functions in the right-hand term of (1.3) is (m — 1)-times continuously dif-
ferentiable at 2 = 0 and vanishes there together with its derivatives up to
the order m — 1. The same will therefore apply to €, (%). This proves our
theorem for m.

2. Divided differences. Suppose the function f(t) is defined in the

interval I; tg, ¢1, . . . lie in I and are mutually distinct. The divided differences
of f(¢) are defined through

{[tO] = f(to) :
(2.1) s byl = [ttty
[tots . . . t,] = Py ;

p=1,2....
The divided differences of another function g(¢) are denoted by

ltots « . . 1],

The following well-known formula is readily verified by induction:

03[tk]//11_z[0(tk—tl>€; m=1,2,....

Fk

M

(2.2) [fof1. .. tn] =

£
|

The following mean value theorem also is known: Let f(f) be p-times dif-
ferentiable in I. Then

2.3) (tr. . bl = f®(1)/p!
’ Mill (tl, P ,tp+1) <7< Max (Ifl, ey tp+1);
cf. (1).
We need
THEOREM 2.1. Let f(t) be p-times differentiable at to; p > 0. Then
_ f(p)(to)

lim [L‘otl e tp]

|
... tp>to P

Proof. We may assume p > 1. Put
§ () = f(t)

t—t
gt) = ’ € _
f(t0) t =ty
By Theorem 1.1

t# by
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gt )= 2L o) <1 )

By Theorem 1.2, the function h”—le(h) is (p — 1)-t1mes continuously dif-
ferentiable at & = 0. It vanishes there together with its derivatives up to the
order p — 1. Hence g(¢) is (p — 1)-times continuously differentiable at #, and

(2.4) g7 () = ﬁf"’)(to)-
We readily verify by induction that
[tl...tm]g=[tot1...im]; m=1,2,....
Replacing f by g and p by p — 1 in (2.3), we therefore obtain
(—1)
,
bty ] = [t .. b)), = *‘(Zp _(1))!,
Min(ty, ..., ) < < Max(ty, ..., 1).
Let t5,...,¢t, tend to ¢. Then 7 will also converge to ¢, and we obtain on
account of (2.4)
g® D
. (1)
Hm  [tets...4)] = lim =—TL
t[,..l,.lp—ﬂo[ . ] rl—)lo (p - 1)'
(p—l) (t ) f(p)(t )
(P - pl
Obviously, (2.1), (2.2) and Theorem 2.1 may be applied to vector valued

functions.

3. Some mean-values and limits. In the following let = > 0 be fixed.
The vector function

is defined in the interval I. Let 0 < m < n. The parameter values ¢, . . ., i,
are mutually distinct. Let a4, ..., a, be fixed vectors, say
o = (@x1, .-, Qun); k=m+1,...,n
Put
(), x(t2), - - o s t(tw), Aty « + -y Qn)
x1(t) %1(t2) . . . X1(tw) Gmyr,1- - - Cma
x2(t1) x2(82) . .. X2(m) Gma1,2 -« - B2
%o (t1) %a(te) .. Xn(tm) Gmirin« - - Gun
Let
3.1) A, = (@), x(), . .., T(tn)s Ams1y « + oy On) .

T &—1t

1L i<k<m
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Formula (2.2) readily implies
(32) Am = ([tllv [tltZ]y ceey [tl LS tm]y am+11 L) an)
where the divided differences are those of r(¢).

TueoreM 3.1. Let ¢ (t) be (m — 1)-times differentiable at t,. Then

lim A, = (E(tl), I’(tl)' L) I(m_l) (tl), Qptly « o oy a,,)
t2,..., tms 11 " 1120, .. (m — 1) .

Proof. Write

2 A T Y A

Thus this number is the 7th component of the vector [fits . . . t,].

By (3.2)
[t1]1 [tth]l e [tl e Ifm]l Am+1,1+ + « Au1
(3 3) A = [tl]z [t1t2]2 P [tl P tm]z Am+1,2+ . . Ap2
[tl]n [tltzln P [tl R tm]n A1« » - Ann

By Theorem 2.1

(»—1)
. _ X (tl)
o im e ble= T

The determinant being a continuous function of its elements, (3.3) therefore
readily implies our assertion.

THEOREM 3.2. Let r(t) be (m — 1)-times differentiable in 1. Then there are
m numbers T, = t1, 7o, . . ., Tm SUch that

A, = (l‘(7'1>, I,(TZ)y L ) I(m_l)(Tm)9 Amt1s « - -y an)
" 120, .. (m—1)! ’

Min(ty, ..., &) < 7 < Max(by, ..., 8) ; BE=2,...,m.

In order to prove this statement, we generalize it. Let ay, . . . , a, be constant
vectors. For each k let ¢y, .. ., t lie in I and be mutually distinct. Put

Tw = ([t11], [artae], - - o [Ber - - - beidy Qen, - - vy Q)
@ = ([tu], lartes], -« oy er1 -« Bemri—a], £, Qrgry - o Q).
Thus the (B — 1)st divided difference
ter oo tekls
of fis equal to T By (2.3) with p = k& — 1, there exists a 7, satisfying
(3.4) Min (g, ..y ) < 7 < Max (b, - - -y frx)
such that '
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(ter .oty = fE D (i) /(B — 1)!

or
(*—1)
Ty = <[l11], [taitas), - o o) [to—11 -« - b1 i, %:%ICT)' y QEily -« vy an>.
Applying this result consecutively with & =m,m — 1,...,2, we obtain
T = (I(Tl)v x’(TZ‘)v L) X(m_l) (Tm)’ Amt1y o« oy an)

2. (m—1)!

where 7, = #;; and where the 7, satisfy (3.4) if 2 < kB < m.

The case m = n of Theorem 3.2 is a slight refinement of a mean-value
theorem for determinants due to Schwarz. He developed it for similar purposes;
cf. (2). We note the following corollary.

THEOREM 3.3. Suppose t(t) is (m — 1)-times continuously differentiable at t,.
Then

im Ao &), "V (), G, - )
Hotheotmsto 120 .. (m—1)! ’

4. A definition of the osculating spaces. Existence. A curve C in
projective n-space R, is the continuous image of an interval I. Thus C can be
described through a vector function

C:r=1:(); t €1

We do not distinguish between a point and its—homogeneous—co-ordinate
vector.

Let #p € I be fixed. Put Lo(¢0) = r(fo). Suppose Lo(¢o), . .., Lr_1(to) have

been defined and they exist. Let ¢t € I, t # t,. It can happen that the (& — 1)-
space L;_1(¢o) and r(¢) span a k-space whenever ¢ is sufficiently close to 4,
and that this k-space converges if ¢ tends to ¢o. The limit space L;(to) is then
called the osculating k-space of C at i,.

TuEOREM 4.1. Let 0 < m < n. Let C be m-times differentiable at to,

(4.1) t(to) At (o) Ao AI™(8) # 0.
Then C has osculating k-spaces at to for 0 < k < m, and L, (ty) is given by
(4.2) PALl) AL @) A ... AT™ (k) = 0.

Formula (4.1) states that r(f), ..., t™ (¢) are linearly independent. By

(4.2), these points span Ly, ().
We prove Theorem 4.1 by induction. In the case m = 1 we have

t(t) — r(t)
t— to

lim £(to) A M = t(t) A lim

t>10 ¢ ¢ 0 t>t0

= t(t) A £ () #= 0.

Thus
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(4.3) £(t) A %{)@—“) # 0

if |t — #o| is sufficiently small. But the straight line through r(¢y) and r(¢) is
spanned by the bivector (4.3). Thus the last two formulae prove the case

m = 1.
Suppose Theorem 4.1 has been proved up to m — 1. Put & = ¢t — ¢,. By
Theorem 1.1,
(to+ 1) = xt) + 240 + .+ =) +
o R TR P Y

lim g, (h) = ™ (£o).
h-0
By (4.1),
(4.4) rto) AT'(t) Ao A ™D () # 0.
Hence by our induction assumption, L,_i(¢y) exists and is given by the m-
vector (4.4). From the above

!
TRl AT A AT () At B)

=1t AU A oo AT V@) A tnlh).

If » tends to zero, this (m + 1)-vector converges to the (m + 1)-vector
(4.1). In particular, it does not vanish if % is sufficiently small. Thus L, (¢)
and r(to + %) span an m-space for these 4. If i tends to zero, this m-space
converges to the m-space spanned by the (m + 1)-vector (4.1). This yields
our theorem.

In the special case m = n — 1 we obtain the osculating hyperplane L,_1(to).
We formulate this case explicitly:

CoOROLLARY 4.2. Let C be (n — 1)-times differentiable at t,. Suppose the
points t(t), t'(to), . . ., L™V (bo) are linearly independent. Then the osculating
hyperplane of C at by exists. It has the equation

(t), x(tO)v gl(to)) ey I(n—l) (tO)) = 0.

We do not prove the following observation.
THEOREM 4.3. Let C be n-times differentiable in I,
4.5 HALEN... AN D@E) #0
(4.5) HONN 40 () forall 1€ 1.
4.6) O ALOAN...ANZDE AL™E) =0
Then L,_1(t) is constant. Thus C lies in this constant hyperplane.

It should be noted that this theorem becomes false without the assumption
(4.5) even if C is of class C™.

https://doi.org/10.4153/CJM-1962-057-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-057-9

676 PETER SCHERK

5. Osculating spaces as ‘‘subspaces through neighbouring points.”’

THEOREM 5.1. Let 0 < m < n. Suppose the curve
(5.1) Cir=10); tel

1s m-times differentiable at to and satisfies (4.1); the parameter values to, t1, . . . , tn
are mutually distinct. Then if ty, ..., t, are sufficiently close to t,, the points

(5.2) t(to), t(tn), . . ., t(tm)

span an m-space. It converges to L, (to) if the t; tend to to.

Proof. Let a4y, - . ., 0, be any n — m constant vectors.
By Theorem 3.1,
lim (x(to)y g(tl>y s ey x(tm)v Amt1y « - - an)
11,...tm> 0 H (t)c _ t)

0 i<k<m

_ (I(tO), gr(to)v ) I(m) (to)y am+1y R ) an)
- 112!, .. m! '

Since this holds for every choice of @41, . . ., a,, this implies

fm LB AT A A ) _El) AT AL A X ()
121 ! :
..., tm-> 10 H (tk _ ti) 12t .. m!

0< i<k <m
By (4.1), the right-hand multivector does not vanish. Hence
ro) Axt) Ao Attt #0

if the ¢, lie sufficiently close to £y, and the m-space through the points (5.2)
converges to the m-space spanned by the (m + 1)-vector (4.1), that is, to
L, (to) if the ¢, converge to t¢; cf. Theorem 4.1.

THEOREM 5.2. Let 0 < m < n. Suppose the curve (5.1) is m-times continuously

differentiable at to and satisfies (4.1). The parameter values t1, ts, . . ., by are
mutually distinct. Then if t1, ..., tny1 lte close enough to to, the points
I(h)v sy I(trrH-l)

span an m-space. It converges to L, (ty) if the t; tend to t,.

The proof of this statement is based on Theorem 3.3 rather than 3.1. Other-
wise it is parallel to the preceding proof.

5a. A limit case. The question arises whether the results of 5 remain

valid if some of the t; coincide. In our comments we shall only consider
Theorem 5.1.
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Let 0 < m < n. Suppose the curve (5.1) is m-times differentiable at ¢, and
satisfies (4.1). The parameter values f, ¢, ..., {, are mutually distinct;

me>0, mi>0,...,m>0; > (m+1)=m+l
0

Suppose the ¢; lie sufficiently close to ¢,. Then C will be m;-times differenti-
able at each ¢; and L, (¢;) will exist. It is the limit of m ;-spaces through points
determined by m; + 1 parameter values t;0 = f4 ¢4, . . ., tim; CoOnverging to
t;. We may assume that all the m + 1 parameter values ¢;; are mutually
distinct. Keep the ¢; fixed and let the ¢;; converge to ¢; for each 7. Any limit
space of the m-spaces spanned by the t(¢;;) will contain the L, (¢;). This yields:

Remark 5.3. There exist m-spaces containing all the L,;(¢;) which converge
to L, (t) as the ¢; tend to £.

There remains the question whether the assumption (4.1) is sufficient to
ensure that the osculating spaces

Ly (to), L, (#1), -« -, L, (1)

actually span an m-space if the {; lie near enough to #{. We have only been
able to discuss the case r = 1.

Let >0, p >0, 4+ p =m + 1. Without loss of generality let ¢ = 0
and put ¢ = ¢t # 0. If

5.3) E=10O)ALTOA...AZP0) AZOALZEOAN... ALDE) =0,

then L;(0) and L,(¢) span an m-space. If (5.3) holds for all small {, Remark
5.3. will show that this m-space converges to L, (0) as ¢ tends to zero.
Assume p < k + 1. By Theorem 1.1

) ; o e m—
@) = P () + Ti () + .+ T — £ (0)
¢ y i
+ o =@, limae ) = 7 0).

Hence

Eo=10)A...A1%P0)
tm—l

k+1
((kt+1)u£(’°+”(0>+ oot O+ ""‘(‘))

m—2 m——l

A <% “0) + ...+ '(‘**—*5‘)7 77(0) + *(‘"—1), Lln-l(t)>

Ao N <———tk+l_ D (0) ..+ (0) b (t))
e (k‘l—l ),E k'I (k_|_1),lk+1 .
This yields
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—
[=h

(5:4) ltlg)l FEDGED = Eipt@) ATO) A ... AT™(0)
where
1 1 1 1
(k+1)! k+2)t 777 (m—1)! m!
1 1 1 1
| | P _ i — T |
By, = fe: (k+1)! (m —2)! (m — 1)! =%Ek,,_1
1 1 l 1
k+1—p) (k+2-—p) "7 k! (k+ 1)!

In particular E; , # 0 and the right-hand term of (5.4) does not vanish. Thus
= # 0 if ¢ is sufficiently small.

If p>k+1, (5.4) remains valid if E;, denotes a similar determinant
satisfying the same recursion formula. This proves

THEOREM 54. Let B > 0, p > 0, m = k + p + 1 < n. Suppose the curve C
satisfies the assumptions of Theorem 5.1. Then Ly(t0) and L,(¢1) span an m-space
if t1 1s sufficiently close to to. If ty tends to to, this m-space converges to Ly (to).

6. Families of hyperplanes. Capital German letters denote hyperplane
co-ordinate vectors.

Given a family of hyperplanes
(6.1) I': X =%@); tel

in projective n-space R,.

Let £ € I, t # to. The characteristic subspaces Ay (to) of T' at ¢ are defined
dually to the osculating spaces of a curve. Put A,_i1(t)) = ¥(¢0). Suppose
An_1(t0), ..., Ay_i(¢¢) have been defined and they exist. If the intersection
of A,_r(to) with X(¢) is an (n — kB — 1)-space for every ¢ close to ¢ and if
this (m — k — 1)-space converges as ¢ tends to o, then the limit space
An_1-:(to) is called the characteristic (m — 1 — k)-space of I' at ¢,. We obtain
from Theorem 4.1 by a duality

THEOREM 6.1. Let 0 < m < n. Suppose T is m-times differentiable at ty and
(6.2) X(to) ANX (to) A oo AEM () £ 0.

Then T has characteristic subspaces of the dimensions n — 1,n — 2, ...,
n— 1 — mattoand Ay_1_n(to) has the equation

DAXEER) AX@) A ... ANXE™(t) =0
lor in point co-ordinates
X)) = 9% (t) = ... = YX™ (¢) = 0].

Theorems 5.1 and 5.2 can also readily be translated to families of hyperplanes.
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THEOREM 6.2. Let 0 < m < n. Suppose T is m-times [continuously] dif-
ferentiable at ty and satisfies (6.2). The parameter values to, t1, . .., tn [b1, ...,
bty bma1] are mutually distinct. Then if the t; are sufficiently close to to, the inter-
section of the hyperplanes

X(t), X(t), ..., B(tw)  [X(t0), ..., (), E(bmsn)]

is an (n — 1 — m)-space. It converges t0 Ayp_1_n(to) 1f the t; tend to t,.

7. On the characteristic curve of a family of hyperplanes. If the
family T of hyperplanes (6.1) is (# — 1)-times differentiable in [ and if

XQ)ANE@ N ... ANEDE) #£0 forallt € I,

then T has by Theorem 6.1 a characteristic point A¢(¢) at each ¢. We call

C: Ay = Ao(8); te T

the characteristic curve of T. Let r(¢) be a homogeneous co-ordinate vector of
the point A¢(¢). Then

(7.1) tOX@ =¥ @) =...=(O)X*D({#) =0 for all ¢t € I.
THEOREM 7.1. Let X(t) be n-times differentiable at to € I,
(%(to), %, (tO)y ... 7%(71) (to)) ;é 0
Then the characteristic curve C has osculating spaces Li(to) of every dimension
at to, and
Lk(to) = Ak(to), k =0, 1,...,7’L— 1.

Proof. There is a neighbourhood N of # such that X(¢) is ( — 1)-times
differentiable in IV and that

(7.2) E@®,X@),..., X" D), XM (L)) # 0 forall t € N.

This follows from our assumptions and from the fact that the left-hand term
of (7.2) is differentiable and therefore continuous at #,.
By (7.1) and (7.2)

t(H)X™ (L) # 0 forall t € N.
We can therefore norm g(¢) such that
(7.3) (XM (o) = 1 forallt € N.
Then the differentiability of (7.2) at ¢, implies that of r(f) there. In particular,

1(¢) will be continuous at #,.
Define the points Yo, Yy, ..., Y, through

1 k=1
(7.4) DX (4) = if ,k=0,1,...,n
0 k#1

Thus
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([)07 nly ceey I)n) (x(") (to), %(n—l) (to)) s ey %(to)) =
In particular
(on t’l) s ey I)TL) # 0

Hence for each 7 the points Y, Y1, - . . , §; span an z-space. Since they lie in each
of the spaces X(to), ..., X" *D(4), they must lie in A;(¢).
This implies

LemMA 1. The points Yo, Y1, ..., 9: span A(to); 2=0,1,...,n — 1.

LEMMa 2.
S k=1
(n—k)
lim g(t()t%_ ; )(f o) _ 1 if 7, k=01, M
i 0 E>1

Proof. Let 0 < 1+ < B < n. We have

' 1 E=0
lim 1 ()X () = ()X (o) = if )

o 0 E>0
This verifies our statement if ¢ = 0. Suppose it is proved up to 7 —1 >0
[thus & > O].

By Theorem 1.1,
x(n—k)(t) x(n-k)(t ) + Z tO) x(n k+h)(t ) + ( to) xn— (t)

lim %'é_k(t) = XTI ().

510
Hence
rEP@ ¥ P | R 1 r(t)?é‘”"‘*"’(to) —
(t _ to)i - (t . t())i + hz._l h' (t t ) i—h |E(t)% (t>
Here
WX o
lfi?o t— ) —im0=0
_ 1 k=1
lim (%7 (¢t) = t(t)X" (1) = if .
o 0 E>1

By our induction assumption

§<— 1) :
- k=1
i x(t)%(n—k-l—h) (to) _ (1 — h)!

= if 1<k —1.
o (=t " ! oSS
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Hence

. I(t)%(n_k) (to)
Ly, = lim 8% Yo
wT e =t

exists and we have L;; = 0 if £ > 4. Finally

b B (B () - o) -

This proves Lemma 2. We only need the following observation:

R IOLARI (D)
@) T

By making the neighbourhood N of ¢, smaller, we may therefore assume

(7.6) t()X"=D(t) #0forallt € N, t#t;2=0,1,...,n

exists and 1is not zero; 1 =0,1,..., n.

Furthermore (7.5) implies

LeMMA 3. Let 0 < 1 < k < n. Then

(X" (1)
im OE(10)

The point r(¢) must be a linear combination

= 0.

n

L) = ZO a(£)Ws

of the » + 1 linearly independent points Y. Multiplying this equation by
X9 (ty) we determine the a,(¢) and obtain

LEmMma 4.

H) = 3 HOE 0w

Trivially Lo(te) = Ao(te). Thus Theorem 7.1 holds true for ¢ = 0. Suppose
it is proved up to 2 — 1 > 0. Thus L;_1(t0) = A;_1(%0) is spanned by Y, ¥;,
., 9;1. By Lemma 4,

S t(t) = i rOX" () - m 4 tX" (1) - 3:0),

7.7) (n—%)
tOE (@)
s - > srmig

By Lemma 3

1= 3]

On account of (7.7), the i-space through L; () and r(¢) is spanned by the
points Yo, Y1, - - - 5 Yi1, §:(8); cf. (7.6). By (7.8) it converges to the i-space
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spanned by Yo, 91, . . ., Yi1, Y4, that is, to A;(4) if ¢ tends to ¢,. This proves
our theorem.

8. Osculating spheres. Given a curve
C: P=P@); tel

in conformal n-space T',. Thus C is the continuous image in T, of the interval I.

Let to, t1, {2 be three mutually distinct parameter values. If the circle through
P(to), P(t1), P(t2) is uniquely determined for all #; and ¢, sufficiently close to
to and if it converges to the circle T'((¢o) if {1 and ¢, converge independently to
to, then T'i(fp) is called the osculating circle or the osculating 1-sphere of C
at lo.

Let ty € I be fixed, ¢ # t,. Suppose we have already defined T';(¢), T'2(to),
..., I'w_1(to) and they exist; £ > 2. It can happen that the k-sphere through
the (B — 1)-sphere T'x_1(fo) and P(¢) is unique if ¢ lies sufficiently close to ¢,
and that it converges if ¢ tends to fo. Then the limit k-sphere T'x(fy) will be
called the osculating k-sphere of C at t,.

We can formulate conditions for the existence of I'x(¢) in terms of arbitrary
polyspherical co-ordinates. The following approach seems convenient. Let
£1, ..., £, be the co-ordinates of a point P in euclidean n-space with respect
to some normed orthogonal co-ordinate system; & = 21" £22. We associate
with P the homogeneous co-ordinate vector

I = (xl) X2y« ooy Xny Xnt1y xﬂ+2) = p(Ely 221 LR 7£7L? %(EO - 1)) %(EO + 1))
where p # 0 is an arbitrary scalar. If

t) = (ylr ceey yn+2)1
put
n+1
M= D XY — Tnpodnte

1

Thus 1z = 0 and ¢ can also be interpreted as the homogeneous co-ordinate
vector of a point P on the unit sphere T, if the latter is imbedded into pro-
jective R,4. If we adjoin an ideal point with the co-ordinate vector

0,0,...,0, Ty, Tusr)

to euclidean #n-space, we arrive at conformal n-space T',. The mapping P — P
will then be a homeomorphism of T, onto T,.
An (n — 1)-sphere I',_; in T, is given by equations

(8.1) ar =0, rix=0.

It corresponds to the (# — 1)-sphere T, ; in which the hyperplane ax = 0
in R,y intersects I',. Thus it contains real points if and only if aa > 0. If
aa = 0, T',_; contains exactly one real point, viz. the point P with the co-
ordinate vector a. We then identify I',_; with P.
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Suppose the curve C is given by means of the vector function
r=1(; w=0; te L
Its image in R, is a curve
C: P=P(); t €I
THEOREM 8.1. Let £(t) be twice differentiable at to,
t(to) A t'(to) A ¥''(t0) # 0.
Then C has an osculating circle T1(to) at to. It satisfies the equations
(8.2) Y A r(t) A t'(l) A" () =0,y =0.
Thus T';(fo) has a parametric representation
) = Not(to) + M2’ (o) + Nat”’ (o)

where the \; are subject to the condition yy = 0.

Proof. Let &, t1, ts be mutually distinct. Theorem 5.1 implies: If ¢ and ¢,
lie sufficiently close to t,, the three points P(¢;) span a plane which converges
to the osculating plane L, of C at o if #; and ¢, converge to t,. Hence the circle
through the P(¢;) then converges to the circle

Fl = I-/z f\ I_‘,L
Since the first equation of (8.2) represents L; in R,.;, I'; is given by (8.2).
The mapping T, — T, being topological, the image of the circle through the

P(t;) converges to the image of I';. This proves our theorem.
The theorems of 4 and 5 are now readily translated.

THEOREM 8.2. Let m > 2. If t(t) ts m-times differentiable at to and if
(8.3) t(to) AT'(t) A ..o A L™ () # 0,

then C has osculating spheres of every dimension <m — 1 at to and Tp_1(to)
has the equations

DA LE) AL () Ao AL™(t) = 0; yy = 0.

THEOREM 8.3. Let m > 2. Let t(¢) be m-times [continuously] differentiable
at ty and satisfy (8.3). Suppose

tO) tly s ey tm [tl) s e ey tmy tm+1]

are mutually distinct. Then if the t; lie sufficiently close to to, there exists exactly
one (m — 1)-sphere through the points

x(to)r I(tl)y s ey I(tm) [I(tl)y s ey I(tm)r I(tm+l)]-
It converges to Tp1(to) of the t; tend to t,.
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