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Summary

A Bayesian model and variable dimensional parameter estimation based on Markov chain Monte
Carlo was applied to map quantitative trait loci (QTLs) in a doubled haploid mapping population
of rainbow trout. To increase power, the analysis was performed using the multiple-QTL model,
which simultaneously accounted for all the environmental and genetic main effects that influence the
expression of early development life history traits. By doing so we obtained the posterior estimated
effects for the environmental factors as well as the number, positions, and the effects for the QTLs.
The analyses revealed QTLs for time at hatching, embryonic length and weight at swim-up stage.
The posterior expectation of the number of QTLs in different linkage groups shows that at least four
QTLs are needed to explain the observed differences in early development between the clonal lines.
The Bayesian method effectively combined all the information available to accurately position these

QTLs in the rainbow trout genome.

1. Introduction

During the last decade, quantitative trait loci (QTLs)
have been mapped using linkage disequilibrium gen-
erated by crosses between inbred (or outbred) lines
that differ widely in their values for the trait of interest.
In classical QTL analysis using interval mapping,
the LOD-score profile is constructed over different
genomic positions and the highest LOD value in each
chromosome (which is also higher than a predeter-
mined significance threshold) is taken as evidence of
putative QTL position. The estimate of the position
of the QTL obtained in this way generally coincides
with the maximum likelihood estimate of position
(Sorensen & Gianola, 2002). Alternatively, the full
maximum likelihood (ML) analysis of Lander &
Botstein (1989) can be approximated by regressing
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QTL genotype probabilities onto the phenotypes and
using least squares (LS) estimation available in most
statistical packages (Martinez & Curnow, 1992;
Haley & Knott, 1992). The genetic model used in
interval mapping can be expanded to include simul-
taneous contributions of more than one QTL.
Inferring the number of QTLs and estimating their
genomic positions requires model selection and search
strategies (Sillanpdd & Corander, 2002; Broman &
Speed, 2002). There are also methods which approxi-
mate QTLs by fitting markers or ‘virtual markers’ as
covariates in order to capture background variation
caused by QTLs other than the one tested (Zeng,
1994; Jansen, 1993).

Bayesian analysis provides a straightforward
framework in which the posterior distributions of
all the unknowns (parameters and missing values)
in the QTL mapping problem can be estimated using
Markov chain Monte Carlo (McMC) sampling
methods. Under this framework, rather than maxi-
mizing the likelihood of obtaining the maximum
likelihood (point) estimate of the parameter, inference
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is based on the whole (posterior) distribution of
parameters (Hoeschele et al., 1997; Hoeschele, 2001 ;
Sorensen & Gianola, 2002; Tanner, 1996). The
posterior distribution is obtained by combining
prior distribution with the likelihood of the data (the
sampling model) through Bayes’ formula (Shoemaker
et al., 1999). The analytical solution of the posterior
distribution necessitates integrating (or summing)
over high-dimensional parameter spaces, which is
often impossible in practice. These integrals can be
approximated using McMC. In particular, the
Bayesian model implemented via McMC provides
a means of treating the number of parameters
of a model as an unknown, to be inferred from the
data at hand (Green, 1995).

Surprisingly, in many QTL mapping analyses
environmental (non-genetic) effects are not included
explicitly in the genetic model used for analysis (see,
for example, experiments with various objectives,
e.g. De Koning et al., 1999; Bidanel et al., 2001;
Hawthorne & Via, 2001). One usual practice is to first
adjust phenotypic observations for environmental
factors and then carry out a separate QTL analysis
where residuals of the first analysis are treated as
phenotypes, either with (residual) maximum likeli-
hood or least squares (Basten et al., 2002). By doing
so, uncertainty in estimates of environmental factors
is underestimated and power of subsequent QTL
analysis could be reduced. This is especially true when
the number of environmental factors is large. On the
other hand, the simulations of Martinez (2003)
suggest that if environmental factors are omitted
completely from the model, the power loss is clear
compared with the joint analysis, whose power,
on average, is constant irrespective of the actual
magnitude of the environmental effects.

The objective of the present study was to obtain
the posterior distribution of all the parameters of
interest in the QTL mapping problem, such as a
number, location and effects of QTLs, as well as of the
environmental factors in a doubled haploid popu-
lation of rainbow trout. We adopted a Bayesian
mapping approach, designed for inbred line crosses,
to obtain posterior samples of all the unknowns
given the data and the prior distribution (Sillanpdé
& Arjas, 1998). We incorporated environmental co-
variates into the genetic model of Sillanpdd & Arjas
(1998).

The benefit of the joint analysis approach in terms
of accuracy of position has been shown previously
using simulation (Martinez, 2003). In this paper we
present a real-data analysis of a mapping population
derived from crosses between clonal lines of rainbow
trout that differ in the rate of early development. The
data have been analysed previously without incorpor-
ating environmental cofactors (Robison et al., 2001;
Martinez et al., 2002 b).
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2. Materials and methods

(1) Implementing the Bayesian method for the
doubled haploid design with environmental effects

(a) Genetic model

Let us consider the analysis of the doubled haploid
design as obtained from a cross between clonal lines.
We use the extended model of Sillanpdd & Arjas
(1998), where we include control of environmental
conditions and covariates (e.g. age, sex or treatment).
It is assumed that the trait, conditionally on effects of
QTL and environment, follows a normal distribution
(i.e. this is used for construction of the likelihood).
The marker map is assumed to be known and some
fraction of marker genotypes may be missing. The
notation used throughout is: vector of phenotypes for
the quantitative trait ( y), the number of QTL (Ng7y),
the number of genotypes (Ngezv=2, a;=AA and
a,=BB, for the two homozygous genotypes of the
doubled haploid design), QTL genotype matrix (X),
i.e. the QTL genotype of all individuals obtained
from the current location sampled, genotypic effects
of QTL (b, for the jth genotype of QTL ¢) and of
background controls (BC; ¢, for the jth genotype
of background control k, which are included in the
model to control variation of QTLs in other link-
age groups (Zeng, 1994; Jansen, 1993; Sillanpdd &
Arjas, 1998). In this setting, the following over-
parameterized regression model is used to explain the
observation for individual i:

Norr Nggy

yi=pBi+ Y Y byl .,
g=1 j=1
Npc Ngen

+ 2 ) Gylixga e
k=1 j=1

Here, 1, - and 1 (Xi—qy are indicator variables,
such that they take values of one when the individual
is of genotype o, and zero otherwise (see Sillanpdd &
Arijas, 1998). We assume that p=(p®, p®) (environ-
mental effects) is a vector of regression coefficients of
quantitative covariates p® and class means of quali-
tative covariates p®. Moreover, B,=(B,,) is the vector
of environmental covariates for individual i. In case of
no covariates, the model reduces to the original (in-
cluding the intercept). More specifically,

N Ni+Ne N© ©
p'Bi=Y PE)Ba“f‘ DY Pe Lipa=p-
c=1

c=Np+1 j=1

Here, Ny is a number of linear regression (quantitat-
ive) covariates and N¢ is a number of classification
(qualitative) covariates. Similarly, a vector of re-
gression coefficients p is divided into linear regression
coefficients p®W=(p®:°), {¢c=1,..., N} and class
means pP=(p@:9) {c=N;+1,..., N +Ng,
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j=1, ..., N(c)}, where N(c) is a number of categories
in covariate c. Indicator variable 1;5,_; takes the
value one when the value of covariate ¢ in individual i
belongs to category j, and zero otherwise.

(b) Priors

Independent bounded uniform prior distributions for
most of the parameters (including the environmental
covariates) are used in order to diminish as much as
possible the influence of the priors on the posterior.
For the number of QTLs, the prior distribution
used was an accelerated truncated Poisson with mean
equal to 0-76 (Gaffney, 2001; Jannink & Fernando,
2004; Sillanpdd et al., 2004). The QTL genotype
probabilities (prior) were calculated conditionally
on flanking markers using an algorithm for doubled
haploid lines which is actually the same as that used
previously for the backcross design (Knapp et al.,
1990; Sillanpdd & Arjas, 1998).

(c) Estimation

As in Sillanpdd & Arjas (1998) the Bayesian model
is fitted using McMC sampling to estimate the
parameters. In this paper, instead of sampling each
parameter at a time, the regression parameters
are here updated in two separate blocks, which are
described below in detail, as (1) and (2). In general,
use of block-updating for a set of parameters can
improve the mixing properties of the chain when
highly correlated variables are sampled (Sorensen &
Gianola, 2002; Richardson & Spiegelhalter, 1996).
The reversible jump McMC is used to make esti-
mation and model selection simultaneously. During
the estimation, the algorithm visits (or jumps) be-
tween model dimensions, corresponding to different
numbers of QTLs, and the time spent in each model
(on average) is proportional to the posterior prob-
ability of the model. In other words, this strategy
of jumping between model dimensions (during the
simulation) allows one to collect samples to sum-
marize the relative importance of each model. This
algorithm is an extension of the Metropolis—Hastings
algorithm, where the acceptance probabilities are of
the form min[1, (posterior ratio) x (proposal ratio) x
(Jacobian of the transformation)]. A more detailed
explanation can be found elsewhere (Hoeschele, 2001 ;
Waagepetersen & Sorensen, 2001; Gaffney, 2001).
Here we summarize the changes to the sampling
strategy of Sillanpdd & Arjas (1998).

(1) The intercept, residual variance and environ-
mental effect coefficients form a single block. The
random walk (Chib & Greenberg, 1995; Richardson
& Spiegelhalter, 1996) proposal is generated for each
parameter by using a uniform symmetric distribution
around the current value (x=+¢). The value of ¢ is
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chosen such that the acceptance rate enables sufficient
mixing of the chain (Chib & Greenberg, 1995;
Richardson & Spiegelhalter, 1996) in order to achieve
convergence to the stationary (posterior) distribution.

(2) All the QTLs and background control effect
coefficients are updated together as a single block.
Their proposals are also generated by using random
walk.

If a covariate is of a categorical type then its first
effect coeflicient is restricted to zero, and the value
zero is repeatedly proposed for the corresponding
coefficient in each round. The acceptance of the block
proposal is verified by using the ratio of likelihoods
evaluated at the new and current values, respectively.
If a proposal is not accepted, the whole block is
discarded and current values are maintained.

The posterior distribution of the QTL effects was
estimated only for those regions that showed a high
QTL intensity, conditional on the interval of 1 cM
around the peak of the QTL intensity, i.e. in the more
informative areas of the linkage groups (Fig. 4). Note,
however, that in practice the posterior distributions
here differ little whether or not all the information
from the linkage group was used or not. Due to the
fact that we used an over-parameterized regression
model (as explained above), the point estimate of
the posterior distribution of additive QTL effects was
calculated as the mean of the difference between the
homozygous effects from the original clonal lines used
to generate the mapping population.

At every iteration, a ‘new’ QTL is accepted (or
rejected/modified) when applying the reversible jump
McMC algorithm and therefore we do not keep track
of any ‘particular’ QTL. This means that the location
of a particular QTL is irrelevant. Instead, the location
of the QTL in the chromosome is obtained as the
proportion of times in which one (or more) QTL is
assigned to a particular interval: this is the so-called
QTL intensity. This is not a posterior distribution
of locations of the QTL; rather it is the posterior
probability that a QTL is located in each particular
interval (of a certain length), which is in fact a model-
averaged estimate of location in the linkage group
(across the number of QTLs). See Hoti et al. (2002)
for an alternative formulation.

(1) Doubled haploid mapping population of
rainbow trout

The doubled haploid mapping population was
developed at Washington State University (Pullman)
from an all-male (XY) F; population obtained using
crosses between two clonal lines, OSU and Swanson
(SW), that differed in the average time at hatching.
The clonal lines were formed by two successive
generations of androgenesis. In the first generation,
parents were sampled from the outbred population
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in order to produce homozygous, individually distinct
doubled haploid progeny, from which males or
females were selected to form the clonal lines. The
expected sex ratio of androgenetic progeny is equal
to 50% for males and females, since males are
heterogametic. A second generation of androgenesis
or gynogenesis was used to produce the clonal lines
that were raised in the laboratory. From this set of
clones, two lines were selected in order to produce
the F; population (Robison et al., 1999). The first is
an all-male line derived from a natural population
from Alaska (YY-SW) and the second is an all female
(XX-0OSU) line obtained from a domesticated strain
obtained from Oregon State University (Robison
et al., 1999). These clonal lines show divergent
hatching times in the laboratory, with the SW line
showing accelerated early development. The iso-
genicity of these clonal lines has been confirmed using
DNA fingerprinting (Robison et al., 1999). The sperm
of these F; individuals was used to obtain two groups
of androgenetic rainbow trout (group 1, n=>57; group
2, n=149) that were raised at slightly different tem-
peratures (10-4 °C versus 11-6 ©). Successful andro-
genesis from a F; parent resulted in diploid organisms
that contained two sets of identical paternal chromo-
somes with an equal proportion of male (YY) and
female (XX) individuals. Three traits related to
early development were examined: time at hatch-
ing (TTH: mean 705-6 h, sp=76-8 h), embryonic
length (LEN: mean 63-0 mm, sp=19-8 mm) and
weight (WEI: mean 20-2 mg, sb =2-5 mg). The marker
map comprised a total of 27 linkage groups, spanning
974:6 cM (about 40 % of the rainbow trout genome),
obtained from segregation of 222 AFLP markers. The
mean distance between markers in the linkage groups
was about 8 cM, with 10 cM standard deviation.
A more detailed outline of the procedure to produce
the AFLP marker map is presented by Robison et al.
(2001), and power-related issues regarding doubled
haploid individuals were discussed by Martinez et al.
(2002 a).

An initial analysis, performed using the forward
and backward stepwise regression analysis as im-
plemented in QTL Cartographer (Basten et al., 2002),
revealed six linkage groups showing association be-
tween markers and phenotypes. These groups were
selected for further analysis using the Bayesian
method, and these markers were used as cofactors
to control background genetic variation in linkage
groups other than the one currently analysed. This
greatly reduces the computational demand of the
method (but see Section 4). During incubation, devel-
opment may be disrupted giving rise to the presence
of mild deformities. A preliminary analysis showed
that including (and using the presence of deformities
as a fixed effect in the analysis) or excluding these
individuals in the analysis of length gave very similar

https://doi.org/10.1017/5S0016672305007871 Published online by Cambridge University Press

212

Table 1. Prior uniform distributions used in the
analysis of time of hatching (TTH), embryonic length
(LEN) and weight (WEI)

Trait
Parameter TTH LEN WEI
Intercept U500, 500) U0, 10) U—s0. 50)
s? ) U(o, 2000) U(o, 65) U(o, 387)
QTL coefﬁments U100, 100) U1, 10) U 20, 20)
BG coefficients U~ 100, 100) U1, 10) U 20, 20)
Location U, 120) U0, 120) U-o, 120)

results in terms of position of the QTL in the linkage
groups pre-selected, but the likelihood ratio test
scores at the most likely position were much lower
when individuals were discarded. The slight increase
in environmental temperature between the groups
also produced a significant effect in TTH. For these
reasons, in the final analysis the presence of defor-
mities and temperature at incubation were used as
an environmental covariate for LEN and TTH,
respectively. The range of proposal distributions
was specified after several preliminary test runs in
each of the linkage groups analysed. For the final
analysis, proposals giving adequate mixing of the
chains were used to run a single long chain (1x10°%),
All samples were retained for further analysis.
Features of these posterior distributions can be
analysed using standard measures of convergence
such as that of Geweke (1992). This analysis relies
upon the fact that if the chain is stationary then the
means of the first and last part of the chains should be
similar. The Z statistic is calculated as the difference
between the two means divided by the asymptotic
standard error, where the variance is obtained in
such a way that the correlation between samples is
accounted for, using spectral density estimation
(Geweke, 1992; Tanner, 1996; Smith, 2003). The
ranges of the prior distributions for the different
traits are presented in Table 1.

3. Results
(1) Mixing properties of the chain

For different traits and chromosomes, we performed
a series of exploratory analyses in order to find suit-
able ranges of the proposal distributions. This is
paramount for obtaining adequate mixing properties
of the sampler. The mixing was monitored by visually
inspecting the sample paths of different parameters
and using the cumulative occupancy posterior prob-
abilities of a model with 0, 1, 2 or 3 QTLs to monitor
convergence of the number of QTLs (Heath, 1997;
Uimari & Sillanpdd, 2001). After this tuning stage,
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Fig. 1. Sample paths (a, ¢) and cumulative occupancy probabilities for different QTL models (b, d, according to the
number of QTLs) obtained from linkage group V for time at hatching (TTH) (a, ) and embryonic length (LEN) (c, d).

the McMC sampler was able to move well across
the entire parameter space of the number of QTLs.
Fig. 1a and ¢ present an example of the sample paths
for TTH and LEN on linkage group V. Changes
between a single-QTL and a two-QTL model were
more regular than changes from the models of zero
or three QTLs. Based on the cumulative occupancy
probabilities, it was apparent that, after an initial
period where the cumulative probability of a zero-
QTL model was as likely as the probability of a single-
QTL model, this state moves rapidly towards a
distribution in which a single QTL is many times more
likely than a model in which there is no QTL (Fig. 15).
A similar degree of mixing was found for other traits
and linkage groups.

The same behaviour was seen for other parameters
in the model. It was clear that after the tuning stage
the values of the proposal ranges enable enough
mixing to obtain posterior distributions that converge
to a stationary distribution. The value of the proposal
for the QTL effect was the most important to tune
in order to obtain adequate mixing of the chains.
Acceptance rates for most of the parameters were
between 0-23 and 0-50. The trace plot shows that
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the chain moves quickly into the region where the
posterior mass was found for the QTL effect in link-
age group V (Fig. 2). The Geweke convergence
diagnostic shows that there is no difference in the
mean between the first 10% and the last 50% of
the observations of the chain with a Z value of 1-4
(P=0-16). The same was found for time at hatching in
the same linkage group (Z=0-91; P=0-36).

(i1) Posterior distribution of environmental
parameters

In general, features of the distribution of the contrast
of the two levels of the environmental effects were
quite similar for all the linkage groups, irrespective
of whether there was evidence of linkage or not.
The posterior distributions overlap substantially, as
shown in Table 2. For TTH the slight change in
temperature between the two groups decreased the
time of hatching greatly, with a posterior mean for
the contrast over all linkage groups equal to 94-4 h.
As expected, the presence of deformities decreased
the length of the fry; the estimated posterior mean
of the contrast between the two levels of these effects
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Table 2. Posterior estimates of the mean, variance (s*) and 95 % credible regions (95 % CR) for the
environmental regression coefficients fitted (b,) and residual variance (s*>*°) of time of hatching (TTH) and

embryonic length (LEN) and weight (WEI)

Trait Mean (b,) s2 (be) 95% CR (b,) Mean (%) s2 (s2¢) 95% CR (s*)
TTH LG-IV —-90 39 [—105; —=77] 1294 25790 [973; 1667]
LG-V —94 38 [—107; —79] 1226 31840 [892; 1629]
LG-XII —95 36 [—108; —81] 1169 23849 [862; 1503]
LG-XV —99 56 [—114; —81] 1001 37662 836 1434]
LEN LG-V —272 0-09 [—3-34; —2-21] 279 0-11 [2:14; 3-56]
LG-XI —2:62 0-09 [—3-28; —2-02] 3-06 0-10 [2-48; 3-78]
LG-XII —2:64 0-09 [—3-32; —2-01] 2-89 0-13 [2-18; 3-64]
|
WEI LG-VI 19-7 7-5 [14-1; 25:9] 256 988 [200; 328]
LG-X 20-0 67 [14-8; 25-6] 251 784 [199; 314]
LG-XV 20-4 62 [15-3; 25-7] 229 713 [183; 293]
12 5
(a) ()
! 0
08 | ‘ | | ‘
| | l
06 ‘
04
02} ’
of

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

Fig. 2. Description of the McMC sampler (trace plots) of QTL effects for time at hatching (TTH) and embryonic length
(LEN) in linkage group V. (a) QTL effect LEN; LG-V. (b) QTL effect TTH; LG-V.

was about —2:65 mm. There was only a slight in-
crease in the posterior mean of the residual standard
deviation in cases where the linkage group did not
show evidence of linkage and a small decrease when
there was evidence of linkage.

(ii1) Posterior probability of model parameters and
location of putative QTLs

The posterior probabilities of number of QTLs in
different linkage groups are presented in Table 3 for
the three traits analysed. The posterior distribution
of number of QTLs can be interpreted directly as
the posterior probability of linkage for the model in
which at least a single QTL or zero QTL (no linkage)
is present. Although these posterior distributions
summarize all the information regarding QTL activity
in the linkage groups, this does not necessarily mean
that the QTLs can be positioned accurately in the
linkage groups. For this reason, the interpretation of
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the whole Bayesian analysis requires that the marginal
posterior distribution of all the parameters in the
model be assessed jointly.

(a) Posterior probability of the number of QTLs

The analyses of the traits LEN and TTH both
strongly supported presence of a single QTL in link-
age groups V and XII. In other words, these linkage
groups had large probabilities for a single QTL and
small probabilities for no QTL. In the trait WEI, the
evidence for a single QTL was much weaker, except
on linkage groups X and XV which both provided a
clear signal. Additionally in the trait TTH and linkage
group XV, the posterior probability of two QTLs
is 5 (or even higher) times more likely than 0, 1 or
3 QTLs. Two QTLs also appeared highly probable
for the trait WEI in linkage group VI. As we will
show below, these QTLs appear to be isolated, with-
out having any evidence of QTL activity in adjacent
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Table 3. Posterior probability of number of QTL (Ngry) given the data in the different linkage groups (LG)
LG

Trait No. of QTL Prior \Y% IX XI XII XV

LEN 0 0-402 0-101 0-802 0-862 0-010 0-873
1 0-454 0-869 0-192 0-134 0912 0-119
2 0-128 0-031 0-006 0-004 0-078 0-008
3 0-016 0-000 0-000 0-000 0-000 0-000
E(Ngr|data) 0-758 0-93 0-20 0-14 1-07 0-13

TTH 0 0-402 0025 0-205 0-568 0-000 0-000
1 0-454 0-905 0-656 0-242 0-968 0-159
2 0-128 0-065 0-137 0-173 0-032 0-809
3 0-016 0-005 0-002 0-018 0-000 0-031
E(Ngr|data) 0-758 1-05 0-94 0-64 1-03 1-87

WEI 0 0-402 0-521 0-085 0-277 0-649 0-352
1 0-454 0-301 0-095 0-640 0-222 0-513
2 0-128 0-148 0-713 0-077 0-127 0-127
3 0-016 0-030 0-107 0-005 0-009 0-009
E(Nory|data) 0-758 0-69 1-84 0-81 0-50 0-79

intervals surrounded by the two QTL (Whittaker
et al., 1996).

The posterior probabilities of no QTL for TTH
were relatively high in linkage group XI. In linkage
group IX, the probability of a single QTL is equal to
0-65, which is 3 times the value for no QTL (Table 3).
However, this result should be interpreted with
caution since the QTL intensity was bimodal with
two peaks at marker positions 82 and 86 (results
not shown). In addition, 95% credible regions over-
lap was 0 (mean (sp), —7-4 (8-5); median, —7-5;95%
CR, —2544,11-17). The most parsimonious interpret-
ation of these results is that there is not sufficient
information in the data to accurately summarize the
underlying process or there are other sources of genetic
variation present in the data (i.e. interaction between
QTLs). This is consistent with the fact that the mean
estimate of the posterior distribution of the QTL effect
is only a third of the mean value obtained in other
linkage groups, suggesting that this QTL has a small
effect. A larger sample size would be needed in order
for the data to be informative enough to confirm this
preliminary finding.

(b) Location estimates from QTL intensity

The QTLs were located using the posterior QTL in-
tensity for those linkage groups that showed a high
posterior probability of at least one QTL segregating
(Fig. 3). Note that there is a broad area in which the
QTL may reside for TTH in LG-V. This may be due
to the fact that the marker bracket in which the QTL
was located is rather large (about 50 cM) so that there
may not be enough information to precisely locate
this QTL. The most likely position is at 107-8 cM
between the marker positioned at 67-8 cM and the
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right telomeric marker of this linkage group. In the
same linkage group, the most likely position of
the QTL for LEN was found at position 20-8 cM,
almost in the middle of the second interval; about
53% of all the hits were found in this interval.
About 33 % of all the iterations in which there was at
least a single QTL sampled fall in the same interval
as found for TTH. This suggests that there may be
two linked QTLs influencing LEN and TTH in this
linkage group, and a second with pleiotropic effects
on TTH and LEN at the right end of the chromo-
some. However, no evidence of more than a single
QTL for LEN and TTH was obtained in the present
analysis (see Table 3).

The most likely positions for the QTLs for LEN
and TTH on linkage group XII were very similar:
149 and 10-7 cM, respectively (Fig. 3). The QTL
intensities overlap substantially, even though the
QTL intensity for LEN was much more peaked. This
suggests that the effects of these two QTLs could
arise from a single pleiotropic locus (see Fig. 3).
Further support for this interpretation is provided
by Martinez et al. (20025b).

On linkage group XV the posterior probability
of the number of QTLs was sharply centred at two
QTLs. This finding is consistent with what is ob-
tained for the QTL intensity in this linkage group.
Two modes were found at marker positions 36-7 and
75-5 cM on linkage group XV. Note that the posterior
QTL intensities were very peaked, presumably due
to the fact that at marker positions there is more
information to detect a QTL when it is completely
linked with the marker. Note that the QTL intensity
is multi-modal in the region between 23 and 45 cM.
In general, some discontinuity in the posterior QTL
intensity can be observed at marker positions when
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the QTL is not completely linked with the marker, as
has been shown previously (Bink ez al., 2000; Hoti
et al., 2002). Note that when using the Bayesian
method there is not the bias expected towards mar-
kers as found when using the bootstrapping method
in cases where the power for detecting the QTL is low
(Yi & Xu, 1999). In our analysis, the posterior QTL
intensity falls sharply at the position where the next
marker to the left is situated in this linkage group.

Although on linkage group X there is evidence of
a single QTL (the probability of a single QTL doubled
the probability of no QTL), the location was quite
inaccurate since bimodality of the QTL intensity was
seen in the interval between the sixth and the seventh
markers in this linkage group (Fig. 3).

(c) Posterior distributions of QTL effects

In general, there was sharp posterior information for
QTL effects, and the distributions were peaked and
quite symmetrically distributed around the mean
(Fig. 4).

The putative QTL detected for TTH explained in
total about 40 % of the observed variance and these
QTLs explained most of the difference between the
two clonal lines, which was about 2-5 standard
deviations, calculated from results of Robison et al.
(1999). In linkage group XV, the point estimates
of the posterior distribution of QTL effects have
opposite effects, decreasing the hatching time (as
calculated from the first mode of the QTL intensity at
position 36-7 cM) and the other of similar magnitude
but with positive sign. It is likely that the QTLs were
in repulsion in the F; population.

About 18% of the total variance is explained by
the effects as obtained from linkage group V and XII
for LEN. The point estimates have the same sign and
explain a relatively similar percentage of the observed
variance. The information obtained from WEI in
linkage group VI and X explains overall around 20 %
of the phenotypic variance. The two telomeric QTLs
in linkage VI have opposite signs, suggesting that
both were in repulsion in the F;.

4. Discussion

The objective of the present study was to illustrate the
utility of joint analysis of environmental and genetic
effects in QTL mapping and to obtain posterior
evidence of segregation of QTL in a doubled haploid
mapping population. We prepared a new version
of the Bayesian model of Sillanpdd & Arjas and

incorporated all the environmental data available in
the experiment in order to obtain the posterior dis-
tribution of the number of QTL, environmental
effects, locations and effects of the different QTL that
are segregating. The data were derived from a cross
between clonal lines that diverge in early development
rate that has previously been analysed without in-
cluding environmental effects explicitly in the model
(Robison et al., 2001; Martinez et al., 2002b). By
including the environmental effects in the Bayesian
model we obtained further evidence of other multiple
QTL segregating for the different traits examined.
From an evolutionary perspective the study of early
development in natural populations is important,
since these traits can have fitness implications through
their effect on timing emergence from the redd, which
is a milestone of the population dynamics of many
salmonid species (Robison ez al., 1999). Previous
work used only phenotypes to study the genetics of
these traits. This study showed evidence of major
genes segregating which explain a large proportion of
the observed differences between the clonal lines in
development rate.

The Bayesian analysis used cofactors selected
using a forward and backward elimination (stepwise
regression) procedure implemented in QTL Carto-
grapher (Basten et al., 2002). Such pre-selection was
done for computational efficiency. In general, how-
ever, the use of marker cofactors may be not ideal
since, especially in small populations, unlinked
markers can be correlated with markers in the
chromosome under investigation. Fitting markers
in other chromosomes has a high impact on the pos-
terior probability of linkage of the current chromo-
some, i.e. fitting a cofactor can change the evidence
of linkage in contrast to when no marker cofactors
are included (Maliepaard er al., 2001). A sensible
alternative would be to model the genome in a single
multiple QTL analysis and, rather than include
marker cofactors as ‘known’ quantities, to include
them as ‘unknowns’, further reversible jumps being
required to add or delete QTLs in other chromo-
somes. Further investigation is required to test this
alternative. Nevertheless, this analysis would be
computationally very expensive and the convergence
would be complicated to assess, which may impair
its applicability in practical situations. More suitable
alternatives in this respect are provided by the recent
Bayesian shrinkage estimation methods (Xu, 2003;
Wang et al., 2005).

We have used a simple genetic model for QTL de-
tection in which only additive effects are considered.

Fig. 3. Posterior QTL intensities on linkage groups showing a high posterior probability of at least one QTL for the
different traits analysed. (¢) TTH; LG-V. (b) LEN; LG-V. (¢) TTH; LG-XII. (d) LEN; LG-XII. (¢) TTH; LG-XV.

( f) WEI; LG-VI. (g) WEI; LG-X.

https://doi.org/10.1017/5S0016672305007871 Published online by Cambridge University Press


https://doi.org/10.1017/S0016672305007871

218

V. Martinez et al.
(a) 0:09 r . r r — r (b) 014 T T —r r r T r
el _“a’\
008} AT ] 71 .
TTH AR 012 —~ |
007} LINKAGE GROUP - V _, H . | LINKAGE GROUP -V
MEAN =-128 { \ 01 Fo MEAN =0-56 -
006} MEDIAN =-12.7 ] E 1 | MEDIAN = 0.56
SD=34 ; |
) 1 =) £ =0 -
£ oos} 95% Cl=-1925 ; -5.72 ; | { £ o0 | SD=015
:5 H ) :g b 95% Cl = 026 ; 0-85
& 00 : 1 £ o0 ]
003 i .
. 004 F
002} . -
! ooz}
ool f . ]
o . . 0 . . L
—40 35 -30 -10 -5 0 0 06 12 14
(c) 012 r r r T (d) 012 T r r
TTH - M LEN
o1} LINKAGE GROUP - XII Ml H - o1} N LINKAGE GROUP - XII
MEAN =-213 MEAN = 0-64
MEDIAN = -21.2 MEDIAN = 0-67
SD =60 i M SD =023
008} 95% Cl=-33.7 ;-11-7 n E 008 | M
z i K z T4
£ oo B {1 £ oos} My
S /| S /
~ / " = K
0-04 i E 0-04
0-02f ; 4 0-02
0 0 2=
-50 —40 -30 -20 0 1 15 2
(e) 0-08 T T T T (f) 0-14 T T T T T
_ TTH
007 b i LINKAGE GROUP -XV
N o2} AGCACAI1275:5 cM |
AN TINKAGE GROUP - XV AN T ]
0-06 N K AGCACAS 367 cM ol YEDIAN=-1sd AR
Y 95% Cl = -28.9 ;2.9
005 | ] i MEAN =22.1 ]
/ L MEDIAN = 22.0
z in SD = 5.4 = 008}
= i 95% Cl1=109;333 B
2 004 F o i 1 3
° Y 1
S g
= £ o006}
003 F -
004 F
002 F -
ool | i ooz}
0 0
0 20 50 250 0
® T T T (M) o14 T r r
o014 } — E m
WEI ok we
o1z} LINKAGE GROUP - VI ] ] LINKAGE GROUP - VI AN
M'Il;LA ;1\! L,_N[S } ; ! QTL 73 cM / !
s / i 01} MEAN=-57 4 ;
| MEDIAN = 5.5 ] | MEDIAN = -5.7 {
01 SD =20 i SD=19 / i
9 =17:9. I =1t 3 kY
0% CR=17;93 / 90% CR =—9:0;-1.9 K
= ; z oos} [ E
= 008 F 1 = H
2 2 H .
2 3 , L
& £ o006} 5
006 | i 006 ‘
0-04 F A 0-04
002 F 4 0-02 F
0 L 0 .
-5 0 5 15 15 -5

Fig. 4. For legend see opposite page.
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More complex models such as those involving
interaction between QTL can also be implemented.
However, this would require analysing the genome
as a whole in order to allow interactions between
QTLs in different linkage groups. Recently, Yi & Xu
(2002) developed a Bayesian model in which pairwise
interactions within a single linkage group are always
sampled for the epistatic model given that at least
two QTLs (with marginal effects) are accepted in the
linkage group and inferences about QTL effects are
carried out by inspecting the posterior distributions
(see also Conti et al., 2003). An optimal strategy that
deserves further investigation would be to include
the epistatic effect as a variable in the model and apply
a reversible jump McMC algorithm (Yi et al., 2003;
Narita & Sasaki, 2004). Again, an interesting alterna-
tive is provided by the recent Bayesian shrinkage
estimation methods (see Zhang & Xu, 2005), but
also application of partition approaches (see Seaman
et al., 2002) deserves further consideration.

We have used AFLP markers in order to provide
a large number of marker for the QTL analysis (Vos
et al., 1995; Young et al., 1998). The main advantage
of using the AFLP technique is that it does not
require previous knowledge of the DNA sequence,
generates fingerprinting profiles that can be repro-
duced and allows the amplification of a high number
of DNA fragments per reaction, thus enabling the
cost-effective detection of specific amplified fragments
(Alves et al., 2002). However, because they can only
be scored as presence or absence, their utilization in
other types of designs, such as F, or four-way crosses
or outbred populations requires modification of the
algorithms used for QTL mapping analysis (Gessler
& Xu, 1999).

The use of doubled haploids for detecting QTLs,
provided that clonal lines are available, has been
shown to be much more efficient than a standard F,
design (Martinez, 2003). The increase in power is due
to the large increase in the genetic variance in the
doubled haploid population, which is double that
expected in the F, because the genotype frequencies
in the doubled haploid population are redistributed
compared with the F,. One disadvantage, however,
is that it is not possible to estimate other important
sources of genetic variation such as dominance.
Another potential complication is the possibility
of segregation distortion, which is most likely due
to association between markers and deleterious
mutations. In our experiment, severely deleterious
mutations were likely to be eliminated when forming
the clonal lines. We found no evidence of segregation

distortion in the linkage groups under analysis (data
not shown). This type of design can be used to map
viability genes (Ritland, 1996; Vogl & Xu, 2000; Luo
& Xu, 2003) and it is expected that this analysis
would have more power than classical designs used
to study deleterious mutations (McCune et al., 2002).
In the long term, the clonal populations produced
through androgenesis may provide a unique source
for studies on accumulation of deleterious mutations
in the absence of recombination (Guex et al., 2002).
A related approach has been successfully used for
mapping viability genes in the tilapia (Palti et al.,
2002).

A new version of the Multimapper software
(version 1.0), used for analyses in this paper, is now
generally available for research purposes from http://
www.rni.helsinki.fi/~mjs.
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