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Abstract
Let A be an abelian surface over Q whose geometric endomorphism ring is a maximal order in a non-split
quaternion algebra. Inspired by Mazur’s theorem for elliptic curves, we show that the torsion subgroup of 𝐴(Q) is
12-torsion and has order at most 18. Under the additional assumption that A is of GL2-type, we give a complete
classification of the possible torsion subgroups of 𝐴(Q).
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1. Introduction

1.1. Motivation

Let E be an elliptic curve over Q. In [Maz77], Mazur famously showed that if a prime ℓ divides
the order of the torsion subgroup 𝐸 (Q)tors of 𝐸 (Q), then ℓ ≤ 7. Combining with previous work of
Kubert [Kub76], Mazur deduced that #𝐸 (Q)tors ≤ 16 and that 𝐸 (Q)tors is isomorphic to one of fifteen
finite abelian groups, each of which gives rise to a genus 0 modular curve with a well-known rational
parametrization.

It is not known whether there is a uniform bound on the size of the rational torsion subgroup of
abelian varieties of fixed dimension 𝑔 ≥ 2 over a fixed number field. In fact, there is not even a single
integer N for which it is known that there is no abelian surface over Q with a torsion point of order N.
Indeed, determining rational points on Siegel modular threefolds with level structure seems out of reach
in general.

1.2. Results

In this paper, we study the torsion subgroup of abelian surfaces A overQwhose geometric endomorphism
ring is large. Namely, we suppose that the geometric endomorphism ring End(𝐴

Q
) is a maximal order

O in a division quaternion algebra overQ; we refer to these as O-PQM surfaces (‘potential quaternionic
multiplication’). Such abelian surfaces are geometrically simple, so their torsion subgroup cannot be
studied using torsion subgroups of elliptic curves. However, they give rise to rational points on certain
Shimura curves, much as elliptic curves over Q give rise to rational points on modular curves. Thus,
O-PQM surfaces are a natural place to explore torsion questions in higher dimension.

Our main results show that the torsion behaviour of O-PQM surfaces is rather constrained.

Theorem 1.1. Let A be an O-PQM abelian surface over Q with a rational point of order ℓ, where ℓ is
a prime number. Then ℓ = 2 or ℓ = 3.

Theorem 1.2. Each O-PQM abelian surface A over Q has #𝐴(Q)tors ≤ 18.

The fact that the rational torsion onO-PQM surfaces is uniformly bounded is not new nor is it difficult
to prove. Indeed, since O-PQM surfaces have everywhere potentially good reduction (Lemma 4.1), local
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methods quickly show that ℓ | #𝐴(Q)tors implies ℓ ≤ 19 and that #𝐴(Q)tors ≤ 72 [CX08, Theorem 1.4].
The goal of this paper is instead to prove results which are as precise as possible.

Theorems 1.1 and 1.2 are optimal since it is known that each of the seven groups

{1}, Z/2Z, Z/3Z, (Z/2Z)2

Z/6Z, (Z/3Z)2, Z/2Z × (Z/3Z)2 (1.1)

is isomorphic to 𝐴(Q)tors for some O-PQM surface 𝐴/Q, with the largest group having order 18. Indeed,
each of these groups arises as 𝐴(Q)tors for infinitely many Q-isomorphism classes of such surfaces by
[LS23, Theorem 1.1].

Our methods give the following more precise constraints on the group structure of 𝐴(Q)tors.

Theorem 1.3. Let A be an O-PQM abelian surface over Q. Then 𝐴(Q)tors is isomorphic either to one
of the groups in (1.1) or to one of the following groups:

Z/4Z,Z/2Z × Z/4Z, (Z/2Z)3, (Z/2Z)2 × Z/3Z,
Z/4Z × Z/3Z, (Z/2Z)2 × Z/4Z, (Z/4Z)2. (1.2)

We leave open the question of whether any of the groups of (1.2) arise as 𝐴(Q)tors for some O-PQM
surface or not.

Theorem 1.3 can be interpreted as a non-existence result for non-special rational points on certain
types of Shimura curves with level structure. Since the discriminant of End(𝐴

Q
) and level are uncon-

strained, the result covers infinitely many distinct such curves. However, as we explain below, our proof
of Theorem 1.3 does not make direct use of the arithmetic of Shimura curves.

Whereas the theorems above consider general O-PQM abelian surfaces, one is sometimes interested
in surfaces with additional structure. For example, recall that A is of GL2-type if the endomorphism
ring End(𝐴) is a quadratic ring. Modularity results (see Theorem 5.1) imply that an abelian variety
A of GL2-type over Q is a quotient of the modular Jacobian 𝐽1 (𝑁) for some N. More precisely, the
isogeny class of A arises from a cuspidal newform of weight 2 and level N, where A has conductor 𝑁2.
Specializing our methods to this setting, we obtain the following complete classification.

Theorem 1.4. Let A be an O-PQM surface over Q of GL2-type. Then 𝐴(Q)tors is isomorphic to one of
the following groups:

{1},Z/2Z,Z/3Z, (Z/2Z)2, (Z/3Z)2.

Every one of these groups arises as 𝐴(Q)tors for infinitely many Q-isomorphism classes of O-PQM
surfaces A over Q of GL2-type.

Remark 1.5. The proof shows that if the maximality assumption on O is omitted, then a similar
classification holds, except we do not know whether the group (Z/2Z)3 arises or not.

Another natural class of abelian surfaces is Jacobians of genus two curves. Recall that for geometri-
cally simple abelian surfaces, being a Jacobian is equivalent to carrying a principal polarization. Thus,
the following result gives a near-classification for rational torsion subgroups of genus two Jacobians over
Q in the O-PQM locus of the Siegel modular 3-fold A2 parameterizing principally polarized abelian
surfaces.

Theorem 1.6. Let J be an O-PQM surface over Q which is the Jacobian of a genus two curve over Q.
Then 𝐽 (Q)tors is isomorphic to one of the following groups:

{1},Z/2Z,Z/3Z, (Z/2Z)2,Z/6Z, (Z/3Z)2,

Z/4Z,Z/2Z × Z/4Z, (Z/2Z)2 × Z/3Z,Z/4Z × Z/3Z, (Z/4Z)2.

In particular, #𝐽 (Q)tors ≤ 16.
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The first six groups in the list above can be realized as 𝐽 (Q)tors; see Table 2. We do not know whether
they can be realized infinitely often by O-PQM Jacobians over Q.

1.3. Methods

We first describe the proof of Theorem 1.4, which is almost entirely local in nature. Let A be an
O-PQM surface over Q of GL2-type. We show that A has totally additive reduction at every prime p
of bad reduction, meaning that the identity component of the special fiber of the Néron model at p is
unipotent. It is well known that, in this case, the prime-to-p torsion subgroup of 𝐴(Q𝑝) embeds in the
Néron component group of A at p and that this component group is controlled by the smallest field
over which A acquires good reduction. Our proof of Theorem 1.4 therefore involves an analysis of this
field extension. In particular, we show that its degree is coprime to ℓ for any prime ℓ ≥ 5. Applying
these local arguments requires the existence of suitable primes of bad reduction and breaks down when
A has conductor dividing 2𝑛, 3𝑛, or 64. We handle these cases seperately by invoking the modularity
theorem and using modular forms computations contained in the LMFDB [LMF23]. It turns out there
is a single isogeny class whose conductor is of this form – namely, the isogeny class of conductor 310 –
corresponding to a Galois orbit of newforms of level 35 = 243, with LMFDB label 243.2.a.d.

To prove Theorem 1.1, we need to exclude the existence of an O-PQM surface A over Q such that
𝐴[ℓ] (Q) is nontrivial for some prime ℓ ≥ 5. By studying the interaction between the Galois action on
the torsion points of A and the Galois action on End(𝐴

Q
), we show that such an A must necessarily

be of GL2-type, so we may conclude using Theorem 1.4. The methods of this ‘reduction to GL2-type’
argument are surprisingly elementary. Aside from some calculations in the quaternion order O, the key
observation is that in the non-GL2-type case, the geometric endomorphism algebra End0 (𝐴

Q
) contains

a (unique) Galois-stable imaginary quadratic subfield, which is naturally determined by the (unique)
polarization defined over Q.

To prove Theorems 1.2 and 1.3, we must constrain the remaining possibilities for 𝐴(Q)tors, which
is a group of order 2𝑖3 𝑗 by Theorem 1.1. Our arguments here are ad hoc, relying on a careful analysis
of the reduction of A modulo various primes via Honda–Tate theory (with the aid of the LMFDB) to
constrain the possible torsion groups, reduction types and Galois action on the endomorphism ring. The
proof of Theorem 1.6 is similar, but using the relationship between endomorphisms, polarizations and
level structures.

1.4. Previous work

Rational torsion on O-PQM surfaces was previously considered in the PhD thesis of Clark [Cla03,
Chapter 5], but see the author’s caveat emptor, indicating that the proofs of the main results of that
chapter are incomplete.

1.5. Future directions

Our methods use the maximality assumption on End(𝐴
Q
) in various places. It would be interesting and

desirable to relax this condition, especially since groups of order 12 and 18 can indeed arise in genus
two Jacobians with non-maximal PQM; see, for example, the curve 𝑦2 = 24𝑥5 + 36𝑥4 − 4𝑥3 − 12𝑥2 + 1
and [LS23, Remark 7.17]. It would also be interesting to systematically analyze rational points on
(Atkin–Lehner quotients of) Shimura curves with level structure – for example, to determine whether
the remaining groups (1.2) arise or not.

1.6. Organization

Sections 2-4 are preliminary, and the remaining sections are devoted to proving the main theorems of
the introduction. As explained in §1.3, we start by proving Theorem 1.4 because the other theorems
depend on it.
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Those who wish to take the shortest route to Theorem 1.4 (minus eliminating (Z/2Z)3) only need
to read Sections 3.2, 4 and 5. Eliminating the last group (Z/2Z)3 in Proposition 5.16 requires more
algebraic preliminaries from Section 2 and 3.

1.7. Notation

We fix the following notation for the remainder of this paper:

◦ B: an indefinite (so 𝐵 ⊗ R � Mat2(R)) quaternion algebra over Q of discriminant disc(𝐵) ≠ 1;
◦ trd(𝑏), nrd(𝑏) and 𝑏̄: reduced trace, reduced norm and canonical involution of an element 𝑏 ∈ 𝐵,

respectively;
◦ O: a choice of maximal order of B;
◦ 𝐹̄: a choice of algebraic closure of a field F;
◦ Gal𝐹 : the absolute Galois group of F;
◦ End(𝐴): the endomorphism ring of an abelian variety A defined over F;
◦ End0(𝐴) = End(𝐴) ⊗ Q: the endomorphism algebra of A;
◦ NS(𝐴): the Néron–Severi group of A;
◦ 𝐴𝐾 : base change of 𝐴/𝐹 along a field extension 𝐾/𝐹;
◦

(𝑚,𝑛
𝐹

)
: the quaternion algebra over F with basis {1, 𝑖, 𝑗 , 𝑖 𝑗} such that 𝑖2 = 𝑚, 𝑗2 = 𝑛 and 𝑖 𝑗 = − 𝑗𝑖;

◦ 𝐷𝑛 : the dihedral group of order 2𝑛.

We say an abelian surface A over a field F is anO-PQM surface if there is an isomorphism End(𝐴𝐹̄ ) � O.
O-PQM surfaces over Q are the central object of interest in this paper, but some of our results apply to
abelian surfaces whose geometric endomorphism ring is a possibly non-maximal order in a non-split
quaternion algebra. We call such surfaces simply PQM surfaces.

We emphasize that this is a restrictive definition of ‘PQM’: we require that End(𝐴𝐹̄ ) does not merely
contain such a quaternion order, but is equal to it. In particular, under our terminology, a PQM surface
A is geometrically simple.

Concerning actions: we will view Galois actions as right actions. We will view End(𝐴) as acting on
A on the left. If a group G acts on a set X on the right, we write 𝑋𝐺 for the set of G-fixed points.

2. Quaternionic arithmetic

This section collects some algebraic calculations in the quaternion order O. It can be safely skipped on
a first pass; the reader can return back to it when these calculations are used.

2.1. The normalizer of a maximal order

We recall the following characterization of the normalizer 𝑁𝐵× (O) of O in 𝐵× (with respect to the
conjugation action).

Lemma 2.1. An element of 𝐵×/Q× lies in 𝑁𝐵× (O)/Q× if and only if it can be represented by an element
of O of reduced norm dividing disc(𝐵).

Proof. An element 𝑏 ∈ 𝐵× lies in 𝑁𝐵× (O) if and only if it lies in the local normalizer 𝑁 (𝐵⊗Q𝑝)× (O⊗Z𝑝)
for all primes p. If p does not divide disc(𝐵), then this normalizer group equals Q×

𝑝 (O ⊗ Z𝑝)× [Voi21,
(23.2.4)]. If p divides disc(𝐵), this group equals (𝐵 ⊗ Q𝑝)× ((23.2.8) in op. cit.). If 𝑏 ∈ O has norm
dividing disc(𝐵), then this description shows that b lies in all local normalizer groups. Conversely,
if 𝑏 ∈ 𝐵× normalizes O, then this description shows that there exists a finite adele (𝜆𝑝)𝑝 such that
𝜆𝑝𝑏 ∈ (O⊗Z𝑝)× for all 𝑝 � disc(𝐵) and such that nrd(𝜆𝑝𝑏) has p-adic valuation ≤ 1 for all 𝑝 | disc(𝐵).
Since Z has class number one, there exists 𝜆 ∈ Q× such that 𝜆𝜆−1

𝑝 ∈ Z×𝑝 for all p and so 𝜆𝑏 ∈ O has
norm dividing disc(𝐵), as desired. �
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We recall for future reference that the quotient of 𝑁𝐵× (O)/Q× by the subgroup O×/{±1} is by
definition the Atkin–Lehner group W of O, an elementary abelian 2-group whose elements can be
identified with positive divisors of disc(𝐵).

2.2. Dihedral actions on O
For reasons that will become clear in §3.2, we are interested in subgroups 𝐺 ⊂ Aut(O) isomorphic to
𝐷𝑛 for some 𝑛 ∈ {1, 2, 3, 4, 6}. In this section, we describe these subgroups very explicitly.

By the Skolem–Noether theorem, every ring automorphism of O is of the form 𝑥 ↦→ 𝑏−1𝑥𝑏 for
some 𝑏 ∈ 𝐵× normalising O, and b is uniquely determined up to Q×-multiples. Therefore, Aut(O) �
𝑁𝐵× (O)/Q×.

If 𝑏 ∈ 𝐵×, write [𝑏] for its class in 𝐵×/Q×.

Lemma 2.2. Every element of 𝑁𝐵× (O)/Q× of order 2 is represented by an element 𝑏 ∈ O such that
𝑏2 = 𝑚 ≠ 1 is an integer dividing disc(𝐵). Moreover, O 〈𝑏〉 = {𝑥 ∈ O | 𝑏−1𝑥𝑏 = 𝑥} is isomorphic to an
order in Q(

√
𝑚) containing Z[

√
𝑚].

Proof. By Lemma 2.1, we may choose a representative 𝑏 ∈ 𝑁𝐵× (O) lying in O whose norm nrd(𝑏)
divides disc(𝐵). Since the element has order 2, 𝑚 := 𝑏2 = −nrd(𝑏) is an integer. We have 𝑚 ≠ 1 since
otherwise 𝑏2 = 1; hence, 𝑏 = ±1 ∈ Q×, which is trivial in 𝑁𝐵× (O)/Q×. This implies O 〈𝑏〉 = {𝑥 ∈ 𝐵 |
𝑏−1𝑥𝑏 = 𝑥} is an order in 𝐵 〈𝑏〉 = Q(𝑏) containing Z[𝑏] � Z[

√
𝑚], as claimed. �

Lemma 2.3. Let𝐺 ⊂ 𝑁𝐵× (O)/Q× be a subgroup isomorphic to 𝐷2 = 𝐶2×𝐶2. Then there exist elements
𝑖, 𝑗 , 𝑘 ∈ O such that B has basis {1, 𝑖, 𝑗 , 𝑘}, such that 𝑖2 = 𝑚, 𝑗2 = 𝑛 and 𝑘2 = 𝑡 all divide disc(𝐵), such
that 𝑖 𝑗 = − 𝑗𝑖 and 𝑖 𝑗 ∈ Q×𝑘 , and such that 𝐺 = {1, [𝑖], [ 𝑗], [𝑘]}. Moreover, t equals −𝑚𝑛 up to squares.

Proof. By Lemma 2.2, we can pick representatives 𝑖, 𝑗 , 𝑘 ∈ O of the nontrivial elements of G that each
square to an integer dividing disc(𝐵). Since G is commutative, 𝑗𝑖 = 𝜆𝑖 𝑗 for some 𝜆 ∈ Q×. Comparing
norms shows that 𝜆 = ±1. If 𝜆 = 1, then 𝑖 𝑗 = 𝑗𝑖, but this would imply that B is commutative: a
contradiction. Therefore, 𝑖 𝑗 = − 𝑗𝑖. Finally, since [𝑖] [ 𝑗] = [𝑘], 𝑘 ∈ Q×𝑖 𝑗 . Taking norms, we see that t
equals −𝑚𝑛 up to squares. �

Lemma 2.4. Let 𝐺 ⊂ 𝑁𝐵× (O)/Q× be a subgroup isomorphic to 𝐷4. Then there exists elements 𝑖, 𝑗 ∈ O
such that B has basis {1, 𝑖, 𝑗 , 𝑖 𝑗}, such that 𝑖2 = −1, 𝑗2 = 𝑚 divides disc(𝐵) and 𝑖 𝑗 = − 𝑗𝑖, and such that
𝐺 = 〈[1 + 𝑖], [ 𝑗]〉. Moreover, 2 | disc(𝐵).

Proof. The fact that such 𝑖, 𝑗 ∈ 𝐵 exist follows from [Voi21, §32.5 and §32.6] (itself based on results of
[CF00]). By Q×-scaling j, we may assume that 𝑗2 = 𝑚 is a squarefree integer. Since 1 + 𝑖, 𝑗 ∈ 𝑁𝐵× (O),
Lemma 2.1 shows that 𝑖, 𝑗 ∈ O and 𝑚 | disc(𝐵) and nrd(1 + 𝑖) = 2 | disc(𝐵). �

Lemma 2.5. Let 𝐺 ⊂ 𝑁𝐵× (O)/Q× be a subgroup isomorphic to 𝐷3 or 𝐷6. Then there exist elements
𝜔, 𝑗 ∈ O such that B has basis {1, 𝜔, 𝑗 , 𝜔 𝑗}, such that 𝜔3 = 1, 𝑗2 = 𝑚 | disc(𝐵) and 𝜔 𝑗 = 𝑗 𝜔̄ =
𝑗 (−1 −𝜔), and such that 𝐺 = 〈[1 +𝜔], [ 𝑗]〉 if 𝐺 � 𝐷3 and 𝐺 = 〈[1 −𝜔], [ 𝑗]〉 if 𝐺 � 𝐷6. Moroever, if
𝐺 � 𝐷6, then 3 | disc(𝐵).

Proof. Identical to that of Lemma 2.4, again using [Voi21, §32.5 and §32.6] and Lemma 2.1. �

2.3. Fixed point subgroups modulo N

For reasons similar to those of §2.2, we study the fixed points of G-actions on O/𝑁O for subgroups
𝐺 ⊂ Aut(O) isomorphic to 𝐷𝑛 for some 𝑛 ∈ {1, 2, 3, 4, 6} and integers 𝑁 ≥ 1 of interest.

Theorem 2.6. Let G be a subgroup of Aut(O) isomorphic to 𝐷𝑛 for some 𝑛 ∈ {1, 2, 3, 4, 6}.

(a) Suppose that N is coprime to 2 and 3. Then (O/𝑁O)𝐺 is isomorphic to (Z/𝑁Z)2 if 𝐺 = 𝐷1 and
isomorphic to Z/𝑁Z if 𝐺 = 𝐷2, 𝐷3, 𝐷4 or 𝐷6.
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(b) The group (O/3O)𝐺 is isomorphic to (Z/3Z)2 if 𝐺 = 𝐷1; isomorphic to Z/3Z if 𝐺 = 𝐷2, 𝐷4, 𝐷6;
and isomorphic to Z/3Z or (Z/3Z)2 if 𝐺 = 𝐷3.

(c) We have

(O/2O)𝐺 �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Z/2Z)2, (Z/2Z)3 or (Z/2Z)4 if 𝐺 = 𝐷1,

(Z/2Z)2 or (Z/2Z)3 if 𝐺 = 𝐷2,

(Z/2Z)2 if 𝐺 = 𝐷4,

Z/2Z if 𝐺 = 𝐷3 or 𝐷6.

Proof. The reduction map 𝑟𝑁 : O𝐺 ⊗ Z/𝑁Z→ (O/𝑁O)𝐺 is injective, and its cokernel is isomorphic
to the N-torsion of the group cohomology 𝐻1(𝐺,O). Indeed, this can be seen by taking G-fixed points
of the exact sequence 0 → O → O → O/𝑁 → 0. The group O𝐺 is isomorphic to Z2 if 𝐺 = 𝐷1 and to
Z if 𝐺 = 𝐷2, 𝐷3, 𝐷4 or 𝐷6. Since the finite abelian group 𝐻1 (𝐺,O) is killed by the order of G, Part (a)
immediately follows. To prove (b) and (c), it therefore suffices to prove that 𝐻1(𝐺,O) [6] is a subgroup
of (Z/2Z)2 if 𝐺 = 𝐷1; isomorphic to (Z/2Z) or (Z/2Z)2 if 𝐺 = 𝐷2; a subgroup of Z/3Z if 𝐺 = 𝐷3;
isomorphic to (Z/2Z) if 𝐺 = 𝐷4; and trivial if 𝐺 = 𝐷6. Since 𝐻1 (𝐺,O ⊗ Z𝑝) � 𝐻1 (𝐺,O) ⊗ Z𝑝 for
all primes p and since Aut(O ⊗ Z𝑝) has only finitely many subgroups isomorphic to G up to conjugacy,
this is in principle a finite computation; we give a more detailed proof below.

Case G = D1. Since 𝐺 = 𝐷1 = 𝐶2 has order 2, 𝐻1(𝐺,O) is 2-torsion and is isomorphic to the
cokernel of 𝑟2 : O𝐺 ⊗ Z/2Z → (O/2O)𝐺 . By Lemma 2.2, O𝐺 � Z2, and so this cokernel is either
0,Z/2Z or (Z/2Z)2. It follows that 𝐻1(𝐺,O) � 0,Z/2Z or (Z/2Z)2.

Case G = D2. By Lemma 2.3, there exist 𝑖, 𝑗 , 𝑘 ∈ O such that 𝑖2 = 𝑚, 𝑗2 = 𝑛 and 𝑘2 = 𝑡 are all
integers dividing disc(𝐵), such that 𝑖 𝑗 = − 𝑗𝑖 and 𝑘 ∈ Q×𝑖 𝑗 and such that 𝐺 = {1, [𝑖], [ 𝑗], [𝑘]}. Let
𝑆𝑖 = O∩Q(𝑖), 𝑆 𝑗 = O∩Q( 𝑗), 𝑆𝑘 = O∩Q(𝑘). Then 𝑆𝑖 is an order inQ(𝑖) containing Z[𝑖], and similarly
for 𝑆 𝑗 and 𝑆𝑘 . Since −𝑚𝑛 equals t up to squares, upon reordering {𝑖, 𝑗 , 𝑘}, we may assume that Z[𝑖]
is maximal at 2. Therefore, Z[

√
𝑚] ⊗ (Z/2Z) = 𝑆𝑖 ⊗ (Z/2Z) ⊂ (O/2O) is a subring on which G acts

trivially. It follows that (Z/2Z)2 ⊂ (O/2O)𝐺 . We will now show that G acts nontrivially on (O/2O),
so assume by contradiction that this action is trivial. By the classification of involutions on finite free
Z-modules, every such involution is a direct sum of involutions of the form 𝑥 ↦→ 𝑥, 𝑥 ↦→ −𝑥 and
(𝑥, 𝑦) ↦→ (𝑦, 𝑥). If 𝐺 = 〈[𝑖], [ 𝑗]〉 acts trivially on O/2O, then both [𝑖], [ 𝑗] ∈ Aut(O) are direct sums of
involutions of the first two kinds. It follows that O is a direct sum of the eigenspaces corresponding to
the eigenvalues of [𝑖] and [ 𝑗]. It follows that O = Z1 ⊕ Z𝑖 ⊕ Z 𝑗 ⊕ Z𝑘 . This implies that the discriminant
of O is ±4𝑢, contradicting the fact that O is maximal at 2. We conclude that (O/2O)𝐺 is (Z/2Z)2 or
(Z/2Z)3 and since G is coprime to 3, this proves that 𝐻1(𝐺,O) [6] is isomorphic to Z/2Z or (Z/2Z)2.

Case G = D4. Let 𝑖, 𝑗 ∈ O be elements satisfying the conclusion of Lemma 2.4, so 𝐺 = 〈[1+ 𝑖], [ 𝑗]〉.
SinceZ[𝑖] is maximal at 2, the mapZ[𝑖]⊗Z/2Z→ O/2O is injective. Since G acts trivially on the image
of this map, (O/2O)𝐺 contains (Z/2Z)2. We need to show that (O/2O)𝐺 = (Z/2Z)2. To prove this, it
is enough to show that (O/2O) 〈1+𝑖〉 = (Z/2Z)2. Since O is ramified at 2, there exists a unique conjugacy
class of embeddings Z2 [𝑖] ↩→ OZ2 [Voi21, Proposition 30.5.3]. Therefore, it is enough to verify that
(O/2O) 〈1+𝑖〉 = (Z/2Z)2 in a single example, for which this can be checked explicitly. Indeed, one may
take 𝐵 =

(
−1,6
Q

)
, which has maximal order with Z-basis {1, (1 + 𝑖 + 𝑖 𝑗)/2, (1 − 𝑖 + 𝑖 𝑗)/2, ( 𝑗 + 𝑖 𝑗)/2}.

Since #𝐺 is coprime to 3, we conclude that 𝐻1(𝐺,O) [6] = Z/2Z.
Case: G = D3, D6. Let 𝜔, 𝑗 ∈ O be elements satisfying the conclusion of Lemma 2.5. Let 𝐶𝑛 ≤ 𝐷𝑛

be the cyclic normal subgroup of order n for 𝑛 ∈ {3, 6}. The low terms of the Lyndon–Hochschild–Serre
spectral sequence give rise to the exact sequence

0 → 𝐻1(𝐶2,O𝐶𝑛 ) → 𝐻1(𝐺,O) → 𝐻1(𝐶𝑛,O)𝐶2 → 𝐻2 (𝐶2,O𝐶𝑛 ). (2.1)

The subring O𝐶𝑛 equals O 〈1±𝜔〉 = Z[𝜔], and 𝐶2 = 𝐷𝑛/𝐶𝑛 acts on O𝐶𝑛 via conjugation 𝜔 ↦→ 𝜔̄.
A cyclic group cohomology calculation shows that 𝐻𝑖 (𝐶2,Z[𝜔]) is trivial for all 𝑖 ≥ 1. Therefore,
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𝐻1 (𝐺,O) � 𝐻1 (𝐶𝑛,O)𝐶2 . Assume 𝐺 = 𝐷6. Using the analogous exact sequence to (2.1) for the
subgroup 𝐶3 ≤ 𝐶6, we get 𝐻1 (𝐶6,O) � 𝐻1(𝐶3,O)𝐶2 . Since 𝐶2 acts trivially on 𝐶3 = {1, 𝑔, 𝑔2} and
acts as −1 on {𝑥 ∈ O | 𝑥+𝑔𝑥+𝑔2𝑥 = 0}, it will act as −1 on 𝐻1(𝐶3,O) � (Z/3Z)𝑟 , so 𝐻1 (𝐶3,O)𝐶2 = 0
and so 𝐻1 (𝐺,O) � 𝐻1(𝐶6,O)𝐶2 ⊂ 𝐻1(𝐶6,O) � 𝐻1(𝐶3,O)𝐶2 is zero too in this case. It remains to
consider the case 𝐺 = 𝐷3. Then 𝐻1(𝐺,O) � 𝐻1(𝐶3,O)𝐶2 . Let 𝑔 ∈ 𝐶3 be a generator, given by
conjugating by 1 +𝜔. Let 𝐿 = {𝑥 ∈ O | 𝑥 + 𝑔𝑥 + 𝑔2𝑥 = 0}. Using the basis {1, 𝜔, 𝑗 , 𝜔} of B, we see that
𝐿 = O ∩ Q(𝜔) · 𝑗 . Using the explicit description of group cohomology of cyclic groups, 𝐻1(𝐶3,O) is
isomorphic to 𝐿/(1 − 𝑔)O. Since (1 − 𝑔)O contains (1 − 𝑔)𝐿 = (1 − 𝜔)𝐿, 𝐻1(𝐶3,O) is a quotient of
𝐿/(1 − 𝜔)𝐿. Since (1 − 𝜔)2𝐿 = 3𝐿 and 𝐿/3𝐿 � (Z/3Z)2, 𝐿/(1 − 𝜔)𝐿 is of order 3. This shows that
𝐻1 (𝐶3,O) = 0 or Z/3Z, so 𝐻1 (𝐷3,O) = 0 or Z/3Z, as claimed. �

Remark 2.7. All the possibilities of Theorem 2.6 do occur: whenever the group G and the integer N do
not uniquely determine (O/𝑁O)𝐺 , we give an example for each possibility.

◦ Case (𝐺, 𝑁) = (𝐷1, 2). The action of 𝐺 = 〈[𝑖]〉 on a maximal order O in
(
𝑚,𝑛
Q

)
, for (𝑚, 𝑛) =

(10, 3), (−1, 3), (5, 7) has (O/2O)𝐺 � (Z/2Z)2, (Z/2Z)3, (Z/2Z)4, respectively.
◦ Case (𝐺, 𝑁) = (𝐷2, 2). The action of 𝐺 = 〈[𝑖], [ 𝑗]〉 on a maximal order O in

(
𝑚,𝑛
Q

)
, for (𝑚, 𝑛) =

(5, 7), (−1, 3) has (O/2O)𝐺 � (Z/2Z)2, (Z/2Z)3, respectively.
◦ Case (𝐺, 𝑁) = (𝐷3, 3). The action of 𝐺 = 〈[1 + 𝜔], [ 𝑗]〉 on a maximal order O in

(
𝑚,𝑛
Q

)
, for

(𝑚, 𝑛) = (−3, 2), (−3, 15) has (O/3O)𝐺 � (Z/3Z), (Z/3Z)2, respectively.

Here we use the standard forms of dihedral action onO from §2.2. See our associated GitHub repository1

for a (short) Magma script that verifies these calculations.

The next three lemmas give some more precise information about subgroups 𝐺 ⊂ Aut(O) for which
(O/2O)𝐺 � (Z/2Z)3. In these lemmas, we will use the fact that if 2 | disc(𝐵), there exists a unique
ring homomorphism O/2O → F4; see [Voi21, Theorem 13.3.11].

Lemma 2.8. Let 𝑏 ∈ O ∩ 𝑁𝐵× (O) be an element with 𝑏2 = 𝑚 | disc(𝐵) and 𝑚 ≠ 1. Write 𝐹 ⊂ O/2O
for the subset centralized by the reduction of b in O/2O. Then 𝐹 � (Z/2Z)3 if and only if 2 | disc(𝐵)
and 𝑚 ≡ 3 mod 4. In that case, F equals the subset of elements of O/2O whose image under the ring
homomorphism O/2O → F4 lands in F2.

Proof. Suppose 𝐹 � (Z/2Z)3. We first show that 2 | disc(𝐵). If not, then m is odd by Lemma 2.2,
O/2O � Mat2(F2) and F is the fixed points of conjugating by an element of order dividing 2 in GL2(F2).
Since there is only one involution in GL2 (F2) up to conjugacy, which we may calculate has centralizer
(Z/2Z)2, this shows that 2 | disc(𝐵). We now show that 2 � 𝑚. If 2 | 𝑚, then since m is squarefree,
b is a 2-adic uniformizer of O ⊗ Z2. Then there exists an unramified quadratic subring 𝑆 ⊂ O ⊗ Z2

isomorphic to Z2

[
−1+

√
−3

2

]
such that O ⊗ Z2 = 𝑆 + 𝑆 · 𝑏 [Voi21, Theorem 13.3.11]. This shows that

conjugation by b acts via 𝑥 + 𝑦𝑏 ↦→ 𝑥 + 𝑦̄𝑏. This map has 4 fixed points; hence, we obtain a contradiction
and m is odd. It follows that F is given by the fixed points of conjugating by an element of (O/2O)×.
This element is trivial if and only if 𝑏 ∈ 1+2O. Since O ⊗Z2 consists of all integral elements of 𝐵 ⊗Q2
[Voi21, Proposition 13.3.4] and since 𝑏 ∈ O, this is equivalent to (𝑏 − 1)/2 being integral at 2, that is to
say to 𝑚 ≡ 1 mod 4. This proves the forward direction of the lemma. For the other direction, note that
(O/2O)× (where O is ramified at 2) has a unique involution up to conjugacy, which can be checked to
have (Z/2Z)3 fixed points in the presentation (6.1). �

Lemma 2.9. Let 𝑏 ∈ O ∩ 𝑁𝐵× (O) be an element with 𝑏2 = 𝑚 | disc(𝐵) and 𝑚 ≠ 1. Suppose that the
conjugation action of b on O/2O has fixed points � (Z/2Z)3. Then there exists no 𝑥 ∈ O/4O with
𝑥 ≡ 1 mod 2O and 𝑏−1𝑥𝑏𝑥 = −1.

1https://github.com/ciaran-schembri/QM-Mazur

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://github.com/ciaran-schembri/QM-Mazur
https://doi.org/10.1017/fms.2024.105


Forum of Mathematics, Sigma 9

Proof. Suppose that 𝑥 ∈ O/4O is such an element. Let 𝑦 = 𝑏𝑥. Since 𝑚𝑏−1 = 𝑏, multiplying the
equation 𝑏−1𝑥𝑏𝑥 = −1 by m shows that 𝑦2 = −𝑚 in O/4O. By Lemma 2.8, 2 | disc(𝐵) and 𝑚 ≡ 3
mod 4, so 𝑦2 = 1 in O/4O. Since 𝑥 ≡ 1 mod 2O, 𝑦 = 𝑏𝑥 ≡ 𝑏 mod 2O. We may therefore write
𝑦 = 𝑏 + 2𝑧 for some 𝑧 ∈ O/4O. We compute, in O/4O, that

𝑦2 = (𝑏 + 2𝑧) (𝑏 + 2𝑧) = 𝑏2 + 2(𝑏𝑧 + 𝑧𝑏) + 4𝑧2 = 𝑚 + 2(𝑏𝑧 + 𝑧𝑏) = 3 + 2(𝑏𝑧 + 𝑧𝑏).

Since 𝑦2 = 1, this shows that 2(𝑏𝑧 + 𝑧𝑏) = 2. Write 𝑏̄ and 𝑧 for the mod 2 reductions of b and z. Then
the above identity implies that

𝑏̄𝑧 + 𝑧𝑏̄ = 1. (2.2)

Since 2 is ramified in B andO is maximal, there exists a surjective ring homomorphism 𝜆 : O/2O → F4.
Applying 𝜆 to (2.2) shows that 𝜆(𝑏̄)𝜆(𝑧) +𝜆(𝑧)𝜆(𝑏̄) = 𝜆(1) = 1. Since F4 is commutative, the left-hand
side of this equation also equals 2𝜆(𝑏̄)𝜆(𝑧) = 0, which is a contradiction. �

Recall from Lemma 2.3 that a subgroup 𝐺 ≤ 𝑁𝐵× (O) isomorphic to 𝐶2 × 𝐶2 can be generated by
elements 𝑖, 𝑗 ∈ O with 𝑖 𝑗 = − 𝑗𝑖, 𝑖2 = 𝑚, 𝑗2 = 𝑛 and 𝑚, 𝑛 | disc(𝐵).

Lemma 2.10. Let 𝐺 ⊂ 𝑁𝐵× (O) be a subgroup isomorphic to 𝐶2 × 𝐶2. Then (O/2O)𝐺 � (Z/2Z)3 if
and only if (in the above notation) 2 | disc(𝐵) and 𝑚, 𝑛 ≡ 3 mod 4.

Proof. Suppose first that (O/2O)𝐺 � (Z/2Z)3. Then the conjugation involutions [𝑖] and [ 𝑗] have
both 23 or 24 fixed points on O/2O. At least one of them, say j, has 23 fixed points. By Lemma 2.8,
2 | disc(𝐵) and 𝑛 ≡ 3 mod 4. If 2 | 𝑚, then i is a 2-adic uniformizer and the action of i on O/2O would
have 22 fixed points (by an argument similar to the proof of Lemma 2.8). So m is odd. If 𝑚 ≡ 1 mod 4,
then the 2-adic Hilbert symbol of (𝑚, 𝑛) is trivial, contradicting the fact that 2 | disc(𝐵) and 𝐵 �

(
𝑚,𝑛
Q

)
.

We conclude that 𝑚 ≡ 3 mod 4. The converse follows from Lemma 2.8. �

3. Galois actions, polarizations and endomorphisms

This section collects some preliminaries concerning the arithmetic of PQM surfaces. In particular, we
study the Galois action on the endomorphism algebra, the set of polarizations, the torsion points and
the interaction between these. The most important subsection is §3.2, where the endomorphism field of
a PQM surface is introduced.

3.1. Abelian surfaces of GL2-type

Recall that an abelian surface A over a number field F is said to be of GL2-type if End0 (𝐴) is a quadratic
field extension of Q. We will show that if A is geometrically simple and F admits a real place, then
this field must be real quadratic. (The geometrically simple hypothesis is necessary; for example, the
simple modular abelian surface 𝐽1 (13) satisfies End0 (𝐽1(13)) � Q(

√
−3).) This is well known over Q

(see [Rot08, Lemma 2.3]), which suffices for our purposes – but we also give an argument that works
over any field contained in R that might be of independent interest. (We thank Davide Lombardo for
suggesting it.)

Lemma 3.1. Let 𝐴/R be an abelian surface. Then rk NS(𝐴) ≥ rk NS(𝐴C) − 1.

Proof. There exists a two-dimensional R-vector space W, a lattice Λ ⊂ 𝑊C := 𝑊 ⊗ C stable under
the automorphism 𝜎 induced by complex conjugation on the second factor, and a complex analytic
isomorphism 𝐴(C) � (𝑊C)/Λ that intertwines complex conjugation on 𝐴(C) with 𝜎. Under this
isomorphism, NS(𝐴C) can be identified with the set of Z-bilinear alternating forms 𝐸 : Λ × Λ → Z

with the property that the R-linear extension 𝐸R of E to 𝑊C satisfies 𝐸R (𝑖𝑣, 𝑖𝑤) = 𝐸R (𝑣, 𝑤) for all
𝑣, 𝑤 ∈ Λ ⊗ R = 𝑊C. By [Sil89, Chapter IV, Theorem (3.4)], such an E lies in NS(𝐴) if and only if the
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associated Hermitian form 𝐸R(𝑖𝑣, 𝑤) + 𝑖𝐸R(𝑣, 𝑤) is R-valued on 𝑊 ×𝑊 , that is to say 𝐸R (𝑊,𝑊) = 0.
Since the intersection Λ′ = Λ ∩ 𝑊 is a lattice in W, the condition 𝐸R(𝑊,𝑊) = 0 is equivalent to
𝐸 (Λ′,Λ′) = 0. In conclusion, NS(𝐴) = ker(NS(𝐴C) → Hom(∧2(Λ′),Z)), where the map sends E to
its restriction to Λ′ × Λ′. Since the target of this map is isomorphic to Z, the lemma is proved. �

Proposition 3.2. Let 𝐴/R be a geometrically simple abelian surface. Then End(𝐴) is isomorphic to Z
or an order in a real quadratic field.

Proof. By the classification of endomorphism algebras of simple complex abelian surfaces [BL04,
Proposition 5.5.7, Exercise 9.10(1) and Exercise 9.10(4)], End0(𝐴C) is isomorphic to either Q, a real
quadratic field, a non-split indefinite quaternion algebra or a quartic CM field. The proposition is clear
in the first two cases, so we may assume that we are in one of the latter two cases.

Since End0(𝐴) acts on the Q-homology of 𝐴(R)◦ � 𝑆1 × 𝑆1, there is a (nonzero, hence injective)
map End0(𝐴) ↩→ Mat2(Q). Since End0(𝐴C) does not embed in Mat2 (Q), End0(𝐴) ≠ End0(𝐴C) and
so End0 (𝐴) is at most two-dimensional. It remains to exclude that End0(𝐴) is an imaginary quadratic
field, so assume for contradiction that this is the case. If End0(𝐴C) is a quaternion algebra, Lemma 3.1
shows that rk(NS(𝐴)) ≥ 3 − 1 = 2, contradicting the fact that End0 (𝐴) is imaginary quadratic [DR04,
p. 9]. If End(𝐴C) is a quartic CM field F, this CM field has at least two quadratic subfields (namely,
its unique real quadratic subfield and End0 (𝐴)), so it must be a biquadratic extension of Q. A counting
argument then shows that every CM type of F is imprimitive. This implies [Lan83, Theorem 3.5] that
𝐴C is not simple. We again obtain a contradiction and have completed all cases of the proof. �

3.2. The endomorphism field of a PQM surface

Let F be a field of characteristic zero and 𝐴/𝐹 a PQM surface. The absolute Galois group Gal𝐹 acts on
End(𝐴𝐹̄ ) on the right by ring automorphisms via 𝜙𝜎 (𝑎) = 𝜙

(
𝑎𝜎

−1
)𝜎

for 𝜎 ∈ Gal𝐹 , 𝜙 ∈ End(𝐴𝐹̄ ) and
𝑎 ∈ 𝐴(𝐹̄). The kernel of this action cuts out a Galois extension 𝐿/𝐹 over which all the endomorphisms
of 𝐴𝐹̄ are defined. Following [GK17], we call L the endomorphism field of A. This determines an
injective map 𝜌End : Gal(𝐿/𝐹) → Aut(End(𝐴𝐹̄ )). We recall the results of [DR04] studying this map
which are relevant for our purposes. Write 𝐶𝑛 (resp. 𝐷𝑛) for the cyclic (resp. dihedral) group of order n
(resp. 2𝑛). Note the isomorphisms 𝐷1 � 𝐶2 and 𝐷2 � 𝐶2 × 𝐶2.

Proposition 3.3. Let 𝐴/𝐹 be a PQM surface with endomorphism field L and let 𝐺 = Gal(𝐿/𝐹). Then
𝐺 � 𝐶𝑛 or 𝐷𝑛 for some 𝑛 ∈ {1, 2, 3, 4, 6}. If F admits an embedding into R, then 𝐺 � 𝐷𝑛 for some
𝑛 ∈ {1, 2, 3, 4, 6}.

Proof. The classification of finite subgroups of 𝐵×/Q× shows that G is isomorphic to 𝐶𝑛 or 𝐷𝑛 for
some 𝑛 ∈ {1, 2, 3, 4, 6} [DR04, Proposition 2.1]. It therefore suffices to exclude that G is isomorphic to
𝐶1, 𝐶3, 𝐶4 or 𝐶6 if there exists an embedding 𝜄 : 𝐹 ↩→ R. If G is isomorphic to one of these groups, then
End0(𝐴) is isomorphic to B (if G is trivial) or an imaginary quadratic field [DR04, Theorem 3.4(C)].
This contradicts Proposition 3.2. �

Lemma 3.4. Let A be a PQM surface over a number field F admitting a real place. Then A is of GL2-type
if and only if the endomorphism field 𝐿/𝐹 is a quadratic extension.

Proof. By Proposition 3.2, A is of GL2-type if and only if End(𝐴) ≠ Z. By [DR04, Theorem 3.4(C)],
End(𝐴) ≠ Z if and only if L is a cyclic extension of F. By Proposition 3.3, 𝐿/𝐹 is cyclic if and only if
it is a quadratic extension. �

Assume now that A is an O-PQM surface and fix an isomorphism End(𝐴𝐹̄ ) � O. By the Skolem–
Noether theorem, every ring automorphism of O is of the form 𝑥 ↦→ 𝑏−1𝑥𝑏 for some 𝑏 ∈ 𝐵×

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.105


Forum of Mathematics, Sigma 11

normalising O, and b is uniquely determined up to Q×-multiples. Therefore, Aut(O) � 𝑁𝐵× (O)/Q× ⊂
𝐵×/Q×; hence, the map Gal(𝐿/𝐹) → Aut(End(𝐴𝐹̄ )) can be viewed as an injective homomorphism

𝜌End : Gal(𝐿/𝐹) → Aut(O) � 𝑁𝐵× (O)/Q×, (3.1)

whose image is isomorphic to 𝐶𝑛 or 𝐷𝑛 for some 𝑛 ∈ {1, 2, 3, 4, 6} by Proposition 3.3.

Remark 3.5. The existence of a polarization of a certain type puts restrictions on the Galois group of
the endomorphism field; see [DR04, Theorem 3.4]. In particular, that theorem shows that if an O-PQM
surface A is principally polarized over F, then this Galois group is {1}, 𝐶2 or 𝐶2 × 𝐶2.

For future reference, we record the following result of Silverberg [Sil92, Proposition 2.2].

Proposition 3.6 (Silverberg). Let 𝑁 ≥ 3 be an integer and suppose that the Gal𝐹 -action on 𝐴[𝑁] is
trivial. Then 𝐿 = 𝐹.

We also record the useful fact that the endomorphism field is preserved by quadratic twist.

Lemma 3.7. Let 𝐴/𝐹 be a PQM surface and 𝑀/𝐹 a quadratic extension. Let 𝐴𝑀 be the quadratic
twist of A along 𝑀/𝐹. Then under the identification End(𝐴𝐹̄ ) = End((𝐴𝑀 )𝐹̄ ), 𝜌End,𝐴 = 𝜌End,𝐴𝑀 .

Proof. This follows from the fact that −1 is central in End(𝐴𝐹̄ ). �

3.3. Polarizations and positive involutions

Let A be an abelian surface over a field F of characteristic zero. Recall that a polarization is an ample
class L in NS(𝐴). Such a class gives rise to an isogeny 𝜆𝐿 : 𝐴 → 𝐴∨, and we frequently identify L with
this isogeny. There exists unique positive integers 𝑑1 | 𝑑2 such that ker(𝜆𝐿) (𝐹̄) � (Z/𝑑1)2×(Z/𝑑2)2; the
pair (𝑑1, 𝑑2) is called the type of the polarization, and the integer deg(𝐿) = 𝑑1𝑑2 is called its degree. We
say two polarizations L and 𝐿 ′ areQ×-equivalent if there exist nonzero integers𝑚, 𝑛 such that𝑚𝐿 = 𝑛𝐿 ′,
and we call a Q×-equivalence class of polarizations a Q×-polarization. Every Q×-polarization contains
a unique polarization of type (1, 𝑑) for some 𝑑 ≥ 1, called a primitive polarization.

Recall that a positive involution of B is a Q-linear involution 𝜄 : 𝐵 → 𝐵 satisfying 𝜄(𝑎𝑏) = 𝜄(𝑏)𝜄(𝑎)
and trd(𝑎𝜄(𝑎)) ∈ Q≥0 for all 𝑎, 𝑏 ∈ 𝐵. By the Skolem–Noether theorem, every such involution is of the
form 𝑏 ↦→ 𝜇−1𝑏̄𝜇, where 𝑏̄ = trd(𝑏) − 𝑏 denotes the canonical involution and 𝜇 ∈ 𝐵× is an element
with 𝜇2 ∈ Q<0. Two such elements 𝜇, 𝜇′ ∈ 𝐵× give rise to the same involution if and only if 𝜇 is a
Q×-multiple of 𝜇′.

To combine these two notions, suppose that End(𝐴) = End(𝐴𝐹̄ ) � O; let us fix such an isomorphism
to identify End(𝐴) with O. Given a polarization L of A, the Rosati involution on End0 (𝐴), defined by
𝑓 ↦→ 𝜆−1

𝐿 ◦ 𝑓 ∨ ◦ 𝜆𝐿 , corresponds to a positive involution 𝜄𝐿 of B.

Proposition 3.8. The assignment 𝐿 ↦→ 𝜄𝐿 induces a bijection between the set of Q×-polarizations of A
and the set of positive involutions of B. In addition, if L is a polarization and 𝜇 ∈ 𝐵× is an element such
that 𝜄𝐿 is of the form 𝑏 ↦→ 𝜇−1𝑏̄𝜇, then

deg(𝐿) ≡ disc(𝐵) · nrd(𝜇) mod Q×2. (3.2)

Proof. This can be deduced from [DR04, Theorem 3.1] but can also be proved purely algebraically as
follows. Choose an element 𝜈 ∈ O with 𝜈2 = −disc(𝐵). Then it is well known [Voi21, Lemma 43.6.23]
that A has a unique principal polarization M such that 𝜄𝑀 (𝑏) = 𝜈−1𝑏̄𝜈 for all 𝑏 ∈ 𝐵. To determine all
polarizations of A, consider the maps

(NS(𝐴) ⊗ Q) \ {0} 𝛼−→ {𝑥 ∈ 𝐵× | 𝜈−1𝑥𝜈 = 𝑥}
𝛽
−→ {𝜇 ∈ 𝐵× | 𝜇̄ = −𝜇},

where 𝛼(𝐿) = 𝜆−1
𝑀 ◦ 𝜆𝐿 and 𝛽(𝑥) = 𝜈𝑥. Since 𝐿 ↦→ 𝜆𝐿 induces a bijection NS(𝐴) ⊗ Q → { 𝑓 ∈

Hom(𝐴, 𝐴∨) | 𝑓 ∨ = 𝑓 }, 𝛼 is a bijection. Moreover, 𝛽 is a bijection by a direct computation. In addition,
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one can also compute that the Rosati involution associated to a Neron–Severi class L is given by
conjugation by 𝛽(𝛼(𝐿)). Both (NS(𝐴) ⊗ Q) \ {0} and {𝜇 ∈ 𝐵× | 𝜇̄ = −𝜇} have evident Q×-actions,
and their quotients are given by the set of Q×-polarizations and the set of positive involutions on B,
respectively. Combining these observations shows that 𝐿 ↦→ 𝜄𝐿 is indeed a bijection between the set of
Q×-polarizations and the set of positive involutions. To check (3.2), we compute that for 𝛼(𝐿) = 𝑥 and
𝜇 = 𝜈𝑥: deg(𝐿) = nrd(𝑥) = nrd(𝜇)/nrd(𝜈) ≡ disc(𝐵) · nrd(𝜇) mod Q×2. �

Remark 3.9. If we want to avoid choosing an isomorphism End(𝐴) � O, we may rephrase
Proposition 3.8 as saying that there is a bijection between Q×-polarizations on A and positive invo-
lutions on the quaternion algebra End0(𝐴).

Now suppose that 𝐴/𝐹 is an abelian surface with End(𝐴𝐹̄ ) � O. Recall from §3.2 that Gal𝐹 acts on
End(𝐴𝐹̄ ) by ring automorphisms. If L is a polarization on 𝐴𝐹̄ , the Rosati involution associated to L is
of the form 𝑏 ↦→ 𝜇−1𝑏𝜇 for some 𝜇 ∈ End0 (𝐴𝐹̄ ), uniquely determined up to Q×-multiple. Therefore,
the imaginary quadratic field Q(𝜇) ⊂ End0 (𝐴𝐹̄ ) is independent of the choice of 𝜇.

Corollary 3.10. The map 𝐿 ↦→ Q(𝜇) constructed above induces a bijection between Q×-polarizations
of 𝐴𝐹̄ and imaginary quadratic fields contained in End0(𝐴𝐹̄ ). A polarization descends to A if and only
if the imaginary quadratic field is Gal𝐹 -normalized.

Proof. The bijection part immediately follows from Proposition 3.8, together with the fact that the set
of positive involutions on End0 (𝐴𝐹̄ ) is in bijection with the set of imaginary quadratic subfields of
End0(𝐴𝐹̄ ).

Since taking the Rosati involution is Gal𝐹 -equivariant, this bijection preserves the Galois action on
both sides. This induces a bijection on the Gal𝐹 -fixed points on both sides, justifying the last sentence
of the corollary. �

3.4. The distinguished quadratic subring

If 𝐴/Q is an O-PQM surface of GL2-type, then the torsion groups 𝐴[𝑛] are modules over 𝑆/𝑛𝑆, where
S is the real quadratic ring End(𝐴). If A is not of GL2-type, then End(𝐴) = Z, and so it may seem
that there is no structure to exploit. However, we have seen in Corollary 3.10 that any polarization of A
determines a GalQ-stable imaginary quadratic subring 𝑆 ⊂ End(𝐴

Q
).

Definition 3.3. Let 𝐴/Q be an O-PQM surface. If A is of GL2-type, let 𝑀 = End0(𝐴). Otherwise, let
𝑀 ⊂ End0(𝐴

Q
) be the imaginary quadratic field corresponding to the unique primitive polarization on

A via Corollary 3.10. We call 𝑀 ⊂ End0 (𝐴
Q
) the distinguished quadratic subfield and 𝑆 = 𝑀∩End(𝐴

Q
)

the distinguished quadratic subring of A.

The next proposition describes the distinguished quadratic subring more explicitly.

Proposition 3.11. Let 𝐴/Q be an O-PQM surface and let S be its distinguished quadratic subring, seen
as a subring of O using an isomorphism O � End(𝐴

Q
). Let G be the Galois group of the endomorphism

field of A (as in §3.2).

(a) S is isomorphic to an order of Q(
√
𝑚) containing Z[

√
𝑚] for some 𝑚 ∈ Z≥2 dividing disc(𝐵) if

𝐺 = 𝐶2; to an order ofQ(
√
−𝑚) containing Z[

√
−𝑚] for some𝑚 ∈ Z≥2 dividing disc(𝐵) if𝐺 = 𝐷2;

to Z[𝑖] with 𝑖2 = −1 if 𝐺 = 𝐷4; and to Z[𝜔] with 𝜔3 = 1 if 𝐺 = 𝐷3 or 𝐷6.
(b) S is an order in a quadratic field, maximal away from 2 and unramified away from 6disc(𝐵).

Proof. The description of S in the 𝐶2 case follows from Lemma 2.2. If 𝐺 � 𝐶2 (in other words, if A
is not of GL2-type by Lemma 3.4), then Corollary 3.10 shows that S is the unique imaginary quadratic
subring of End(𝐴

Q
) that is GalQ-stable and that is optimally embedded (i.e., (𝑆 ⊗ Q) ∩O = 𝑆). So to

prove (a), it suffices to find a subring of O satisfying the stated conditions. This follows from the explicit
description of the G-action given in §2.2. Part (b) immediately follows from the first part. �
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3.5. The enhanced Galois representation

Let A be an O-PQM surface over a field F of characteristic zero and fix an isomorphism O � End(𝐴𝐹̄ )
so that O acts on 𝐴𝐹̄ on the left. In §3.2, we have described how Gal𝐹 acts on the endomorphism ring O;
this action is encoded by the homomorphism 𝜌End : Gal𝐹 → Aut(O) of Equation 3.1. However, Gal𝐹
acts on the torsion points of 𝐴𝐹̄ . In this section, we formalize the interaction of these two Gal𝐹 -actions
using a homomorphism that we call the enhanced Galois representation. This basic definition might
be of independent interest and will be used in the proof of Theorem 1.4, more specifically to exclude
(Z/2Z)3 in the GL2-type case in Proposition 5.16.

Let 𝐼 ⊂ O be a Gal𝐹 -stable two-sided ideal – for example, 𝐼 = 𝑁 · O for some integer 𝑁 ≥ 1.
The subgroup 𝐴[𝐼] (𝐹̄) ⊂ 𝐴(𝐹̄) of points killed by I is a Gal𝐹 -module. Let GL(𝐴[𝐼]) be the group of
Z-module automorphisms of 𝐴[𝐼] (𝐹̄), seen as acting on 𝐴[𝐼] (𝐹̄) on the right. The Gal𝐹 -action on
𝐴[𝐼] is encoded in a homomorphism 𝜌𝐼 : Gal𝐹 → GL(𝐴[𝐼]). The left O-action on 𝐴𝐹̄ induces an
O/𝐼-action on 𝐴[𝐼] (𝐹̄) such that

(𝑎 · 𝑃)𝜎 = 𝑎𝜎 · 𝑃𝜎 (3.4)

for all 𝑃 ∈ 𝐴[𝐼] (𝐹̄), 𝑎 ∈ O and 𝜎 ∈ Gal𝐹 . Let Aut◦(𝐴[𝐼]) be the subgroup of pairs (𝛾, 𝜑) ∈
Aut(O) ×GL(𝐴[𝐼]) such that (𝑎 ·𝑃)𝜑 = 𝑎𝛾 ·𝑃𝜑 for all 𝑎 ∈ O and 𝑃 ∈ 𝐴[𝐼] (𝐹̄). The compatibility (3.4)
implies that the product homomorphism 𝜌End × 𝜌𝐼 : Gal𝐹 → Aut(O) ×GL(𝐴[𝐼]) lands in Aut◦(𝐴[𝐼]),
so we obtain a homomorphism

𝜌◦𝐼 : Gal𝐹 → Aut◦(𝐴[𝐼]). (3.5)

We now identity Aut◦(𝐴[𝐼]) with an explicit semidirect product. Consider the group Aut(O) � (O/𝐼)×,
where Aut(O) acts on (O/𝐼)× via restricting the standard right Aut(O)-action on O/𝐼 to (O/𝐼)×.
Multiplication in this group is given by (𝛾1, 𝑥1) · (𝛾2, 𝑥2) = (𝛾1𝛾2, 𝑥

𝛾2
1 𝑥2). The O/𝐼-module 𝐴[𝐼] (𝐹̄)

is free of rank 1 [Oht74]. Let 𝑄 ∈ 𝐴[𝐼] (𝐹̄) be an O/𝐼-module generator. For every (𝛾, 𝑥) ∈ Aut(O) �
(O/𝐼)×, let 𝜑 (𝛾,𝑥) be the element of GL(𝐴[𝐼]) sending 𝑎 · 𝑄 to 𝑎𝛾𝑥 · 𝑄 for all 𝑎 ∈ O/𝐼.

Lemma 3.12. The map (𝛾, 𝑥) ↦→ (𝛾, 𝜑 (𝛾,𝑥) ) induces an isomorphism Aut(O)� (O/𝐼)× ∼−→ Aut◦(𝐴[𝐼]).
Proof. This is a formal verification. The inverse of this isomorphism is given by sending (𝛾, 𝜑) to (𝛾, 𝑥),
where 𝑥 ∈ (O/𝐼)× is the unique element with 𝑄𝜑 = 𝑥 · 𝑄. �

Using Lemma 3.12, we may view the homomorphism (3.5) as a homomorphism

𝜌◦𝐼 : Gal𝐹 → Aut(O) � (O/𝐼)×. (3.6)

Definition 3.7. The homomorphism (3.5) – or, after a choice of O/𝐼-module generator of 𝐴[𝐼] (𝐹̄), the
homomorphism (3.6) – is called the enhanced Galois representation associated to A and I.

Since Aut◦(𝐴[𝐼]) is a subgroup of Aut(O) × GL(𝐴[𝐼]), it comes equipped with projection homo-
morphisms 𝜋1 : Aut◦(𝐴[𝐼]) → Aut(O) and 𝜋2 : Aut◦(𝐴[𝐼]) → GL(𝐴[𝐼]) satisfying 𝜌End = 𝜋1 ◦ 𝜌◦𝐼
and 𝜌𝐼 = 𝜋2 ◦ 𝜌◦𝐼 .
Remark 3.13. Suppose that 𝜌End is trivial; in other words, End(𝐴) = End(𝐴𝐹̄ ) � O. Then the
homomorphism (3.6) lands in the subgroup {1} � (O/𝐼)× and hence simplifies to a homomorphism
Gal𝐹 → (O/𝐼)×. This recovers the well-known description [Oht74] of the Galois representation 𝜌𝐼 in
this case.

We show that, usually, the image of 𝜌◦𝐼 is isomorphic to the image of 𝜌𝐼 , using the following well-
known lemma.
Lemma 3.14. Let G be a finite subgroup of GL𝑛 (Z) for some 𝑛 ≥ 1 and let red𝑁 : 𝐺 → GL𝑛 (Z/𝑁Z)
be the restriction of the reduction map. Then red𝑁 is injective if 𝑁 ≥ 3, and every element of the kernel
of red2 has order 1 or 2.
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Proof. This is a classical result of Minkowski [Min87]; see [SZ95, Theorem 4.1] for an accessible
reference. �

Proposition 3.15. Supppose that 𝐼 = 𝑁 ·O for some integer 𝑁 ≥ 3. Then 𝜋2 is injective on the image 𝜌◦𝐼 .
Consequently, the image of 𝜌◦𝐼 is isomorphic to the image of 𝜌𝐼 .

Proof. Choose a O/𝑁-module generator 𝑄 ∈ 𝐴[𝑁] (𝐹̄). If (𝛾, 𝜑) ∈ ker(𝜋2), then 𝜑 = Id and 𝑎 · 𝑄 =
𝑎𝛾 · 𝑄 for all 𝑎 ∈ O/𝑁 . So 𝑎 = 𝑎𝛾 for all 𝑎 ∈ O/𝑁 . Therefore, 𝛾 ∈ ker(Aut(O) → Aut(O/𝑁)). By
Lemma 3.14, this kernel does not contain any nontrivial element of finite order. However, the image of
𝜌End is finite (Proposition 3.3). We conclude that ker(𝜋2) ∩ image(𝜌◦𝐼 ) = {1}. �

Remark 3.16. We can also define ℓ-adic versions of the enhanced Galois representation: for every
prime ℓ, this is a group homomorphism Gal𝐹 → Aut(O) � (O ⊗ Zℓ)× encoding both the Gal𝐹 -action
on O and on the ℓ-adic Tate module of A.

4. PQM surfaces over local and finite fields

We collect some results about PQM surfaces A over local and finite fields, especially the possible
reduction types. The most important facts for our purposes are as follows: a PQM surface 𝐴/Q of
GL2-type has totally additive reduction at every bad prime (Corollary 4.3); the prime-to-p torsion in the
totally additive case is controlled by the Néron component group (Lemma 4.10); and the latter, in turn,
is controlled by the smallest field extension over which A acquires good reduction (Proposition 4.6).

For the remainder of this section, let R be a henselian discrete valuation ring with fraction field F of
characteristic zero and perfect residue field k of characteristic 𝑝 ≥ 0.

4.1. Néron models of PQM surfaces

We first recall some notions in the theory of Néron models. Let 𝐴/𝐹 be an abelian variety with Néron
model A/𝑅. The special fiber A𝑘 fits into an exact sequence

0 → A◦
𝑘 → A𝑘 → Φ → 0,

where Φ is the component group of A𝑘 , a finite étale k-group scheme. The identity component A0
𝑘 fits

into an exact sequence

0 → 𝑈 × 𝑇 → A0
𝑘 → 𝐵 → 0, (4.1)

where U is a unipotent group, T is a torus and B is an abelian variety over k. The dimensions of𝑈,𝑇 and
B, which we denote by 𝑢, 𝑡 and b, are called the unipotent, toric and abelian ranks of A, respectively. We
have 𝑢 + 𝑡 + 𝑏 = dim 𝐴, and A has bad reduction if and only if 𝑏 < dim 𝐴. Similarly, A has potentially
good reduction over F if and only if its toric rank is 0 over every finite extension of F.

Lemma 4.1. Suppose that 𝐴/𝐹 is an abelian surface such that End0 (𝐴𝐹̄ ) contains a non-split quaternion
algebra. Then there exists a finite extension 𝐹 ′/𝐹 such that 𝐴𝐹 ′ has good reduction. If k is finite, we
may take 𝐹 ′ to be a totally ramified extension of F.

Proof. The fact that A has potentially good reduction is well known; see, for example, [CX08, p. 536].
It follows from the fact that a non-split quaternion algebra does not embed in Mat2(Q) and hence does
not embed in End(𝑇) ⊗ Q for any torus 𝑇/𝑘 of dimension 1 or 2.

If k is finite, the last sentence of the lemma can be justified by taking a lift in Gal𝐹 of the Frobenius
in Gal𝑘 , in a manner analogous to [ST68, p. 498]. �

Proposition 4.2. Suppose that 𝐴/𝐹 is an abelian surface such that End0(𝐴𝐹̄ ) contains a non-split
quaternion algebra. Suppose that A has bad reduction. Then,
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(a) 𝑡 = 0.
(b) If End0(𝐴) contains a real quadratic field, then 𝑢 = dim 𝐴 = 2.
(c) If 𝑢 = 1, then 𝐴𝐾 has good reduction over any field extension 𝐾/𝐹 such that End0(𝐴𝐾 ) contains a

real quadratic field.

Proof. (𝑎) follows from the fact that A has potentially good reduction and the fact that the toric
rank cannot decrease under extension of the base field [CX08, Proposition 2.4]. For (𝑏), we only
need to exclude the possibility that 𝑢 = 𝑏 = 1, so suppose by contradiction that it holds. Let 𝐸 ⊂
End0(𝐴) be a real quadratic subfield. Reducing endomorphisms in (4.1) gives a (nonzero, hence
injective) map 𝐸 ↩→ End0(𝐵). By assumption, B is an elliptic curve. However, this contradicts the
fact that the endomorphism algebra of an elliptic curve (over any field) does not contain a real quadratic
field. Finally, (𝑐) follows from (𝑏), since the abelian rank cannot decrease after base change [CX08,
Proposition 2.4]. �

When 𝑢 = dim 𝐴, one says that A has totally additive reduction.

Corollary 4.3. Let 𝐴/Q be a PQM surface and p a prime of bad reduction. Suppose that A is of
GL2-type. Then A has totally additive reduction at p.

Proof. This follows from Proposition 4.2(b) and the fact that End(𝐴) is real quadratic by
Proposition 3.2. �

Remark 4.4. One can show that if 𝑝 ≥ 5, then the Prym variety of 𝑦3 = 𝑥4 + 𝑥2 + 𝑝 (which has PQM
by [LS23]) has unipotent rank 1 over Q𝑝 . So the GL2-type hypothesis cannot be dropped in general in
Corollary 4.3.

Finally, we state Raynaud’s criterion for 𝐴/𝐹 to have semistable reduction, which in the case of a
PQM surface is necessarily good by Proposition 4.2.

Lemma 4.5. Let 𝐴/𝐹 be a PQM surface and n an integer not divisible by the residue characteristic p,
and suppose that all points in 𝐴[𝑛] are defined over an unramified extension of F. Then

(a) if 𝑛 = 2, then A has good reduction over every ramified quadratic extension of F;
(b) if 𝑛 ≥ 3, then A has good reduction over F.

Proof. See [SZ95, §7]. �

4.2. The good reduction field and component group of a PQM surface

Let 𝐴/𝐹 be an abelian variety with potentially good reduction. If k is algebraically closed, there exists
a smallest field extension 𝑀/𝐹 such that 𝐴𝑀 has good reduction, called the good reduction field of A.
This is a Galois extension, equal to 𝐹 (𝐴[𝑁]) for every 𝑁 ≥ 3 coprime to p [ST68, §2, Corollary 3]. It
is relevant for us because it controls the size of the component group by the following result [ELL96,
Theorem 1].

Proposition 4.6. Suppose that k is algebraically closed. Let 𝐴/𝐹 be an abelian variety with potentially
good reduction and good reduction field 𝑀/𝐹. Then the Néron component group Φ is killed by [𝑀 : 𝐹].

The next lemma constrains the good reduction field of a PQM surface.

Lemma 4.7. Suppose that k is algebraically closed. Let 𝐴/𝐹 be a PQM surface with good reduction
field 𝑀/𝐹. Then [𝑀 : 𝐹] divides 242. In particular, [𝑀 : 𝐹] is coprime to any prime ℓ > 3.

Proof. Let L be the endomorphism field of 𝐴/𝐹 (Section 3.2). By the Néron–Ogg–Shafarevich criterion,
all prime-to-p torsion is defined over M; hence, 𝐿 ⊂ 𝑀 by a result of Silverberg (Proposition 3.6). By
Proposition 3.3, [𝐿 : 𝐹] divides 24. By [JM94, Proposition 4.2] and its proof (whose notation does not
agree with ours), we have [𝑀 : 𝐿] | 24. We conclude that [𝑀 : 𝐹] = [𝑀 : 𝐿] [𝐿 : 𝐹] divides 242. �
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Lemma 4.8. Let 𝐴/𝐹 be a PQM surface and let ℓ ≥ 5. Then the order of Φ is not divisible by ℓ.

Proof. Since formation of Néron models commutes with unramified base change, it is enough to
prove the lemma in the case where F has algebraically closed residue field. This then follows from
Proposition 4.6 and Lemma 4.7. �

We record the following technical lemma that will allow us to sometimes ‘quadratic twist away’ bad
primes. This will be useful in the proof of Proposition 5.8.

Lemma 4.9. Suppose that 𝑝 ≠ 2. Let 𝐴/𝐹 be an abelian variety with totally additive reduction. Suppose
that 𝐴𝑀 has good reduction for some quadratic extension 𝑀/𝐹. Then the quadratic twist 𝐴𝑀 of A by
M has good reduction.

Proof. Let 𝐼𝐹 and 𝐼𝑀 denote the inertia group of Gal𝐹 and Gal𝑀 , respectively. Fix a prime ℓ ≠ 𝑝. By
the Néron–Ogg–Shafarevich criterion, the 𝐼𝐹 -action on the ℓ-adic Tate module 𝑇ℓ𝐴 factors through a
faithful 𝐼𝐹/𝐼𝑀 -action and so acts via an element 𝜎 ∈ GL(𝑇ℓ𝐴) of order 2. Since A has totally additive
reduction, (𝑇ℓ𝐴)𝐼𝐹 = 0 and so 𝜎 = −1. Let 𝜒𝑀 : Gal𝐹 → {±1} be the character corresponding to the
extension 𝑀/𝐹. Then 𝑇ℓ (𝐴𝑀 ) � 𝑇ℓ𝐴 ⊗ 𝜒𝑀 as Gal𝐹 -modules. Therefore, 𝐼𝐹 acts trivially on 𝑇ℓ (𝐴𝑀 )
and 𝐴𝑀 has good reduction. �

4.3. Component groups and torsion

The relevance of the component group is the following well-known fact; see, for example, [Lor93,
Remark 1.3]. If G is an abelian group, write 𝐺 (𝑝) for its subgroup of elements of finite order prime to p.

Lemma 4.10. If 𝐴/𝐹 is an abelian variety with totally additive reduction (i.e., 𝑢 = dim 𝐴), then 𝐴(𝐹) (𝑝)tors
is isomorphic to a subgroup of Φ(𝑘) (𝑝) , where Φ denotes the component group of A𝑘 .

Lorenzini has studied the component groups of general abelian surfaces with potentially good
reduction and totally additive reduction, which leads to the following severe constraint on their torsion
subgroups [Lor93, Corollary 3.25].

Theorem 4.11 (Lorenzini). Let 𝐴/𝐹 be an abelian surface with totally additive and potentially good
reduction. Then 𝐴(𝐹) (𝑝)tors is a subgroup of one of the following groups:

Z/5Z, (Z/3Z)2, (Z/2Z)4, Z/2Z × Z/4Z, Z/2Z × Z/6Z.

We can say more if A has totally additive reduction over any proper subextension of the good reduction
field. The following slight variant of [Lor93, Corollary 3.24] will be very useful in classifying torsion
in the GL2-type case.

Proposition 4.12. Suppose that the residue field of F is algebraically closed. Let 𝐴/𝐹 be an abelian
variety with bad and potentially good reduction. Let 𝑀/𝐹 be the good reduction field of A. Suppose that
𝐴𝐹 ′ has totally additive reduction for every 𝐹 ⊂ 𝐹 ′ � 𝑀 . Suppose that the prime-to-p torsion subgroup
𝐴(𝐹) (𝑝)tors of 𝐴(𝐹) is nontrivial. Then there exists a prime number ℓ ≠ 𝑝 such that [𝑀 : 𝐹] is a power of
ℓ and 𝐴(𝐹) (𝑝)tors � (Z/ℓZ)𝑘 for some 𝑘 ≥ 1.

Proof. Let 𝐺 := Gal(𝑀/𝐹). For every 𝐹 ⊂ 𝐹 ′ � 𝑀 , 𝐴(𝐹) (𝑝)tors ⊂ 𝐴(𝐹 ′) (𝑝)tors is isomorphic to a subgroup
of the component group of 𝐴𝐹 ′ by Lemma 4.10, which is killed by [𝐹 : 𝐹 ′] by Proposition 4.6. By
Galois theory, 𝐴(𝐹) (𝑝)tors is therefore killed by #𝐻 for every nontrivial subgroup 𝐻 ≤ 𝐺. The group
𝐴(𝐹) (𝑝)tors is nontrivial by assumption; let ℓ be a prime dividing its order. We claim that this ℓ satisfies
the conclusions of the proposition. Indeed, by definition of 𝐴(𝐹) (𝑝)tors , we have ℓ ≠ 𝑝. Moreover, if #𝐺
is divisible by another prime ℓ′, then by taking H a Sylow-ℓ′ subgroup of G, we get a contradiction, so
#𝐺 = [𝑀 : 𝐹] is a power of ℓ. By taking H to be an order ℓ subgroup of G, we see that 𝐴(𝐹) (𝑝)tors is
killed by ℓ, as desired. �
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In the general case (not necessarily totally additive reduction), we have the following well-known
result when F is a finite extension of Q𝑝 , which follows from formal group law considerations [CX08,
§2.5 and Proposition 3.1].
Lemma 4.13. Suppose that 𝐹/Q𝑝 is a finite extension of ramification degree e. Let 𝐴/𝐹 be an abelian
variety with Néron model A/𝑅. Let red : 𝐴(𝐹) = A(𝑅) → A(𝑘) be the reduction map.
(a) The restriction of red to prime-to-p part of 𝐴(𝐹)tors is injective.
(b) If in addition 𝑒 < 𝑝 − 1, then red is injective on 𝐴(𝐹)tors.

4.4. The conductor of a PQM surface

Recall that the conductor 𝔣(𝐴) of an abelian variety 𝐴/Q is a positive integer divisible exactly by the
primes of bad reduction of A; see [BK94] for a precise definition and more information. We may write
𝔣(𝐴) =

∏
𝑝 𝑝

𝔣𝑝 (𝐴) , where 𝔣𝑝 (𝐴) denotes the conductor exponent at a prime p.
Lemma 4.14. Let 𝐴/Q be a PQM surface of GL2-type. Let p be a prime such that A has bad reduction
at p but acquires good reduction over a tame extension of Q𝑝 . Then 𝔣𝑝 (𝐴) = 4.
Proof. In that case, 𝔣𝑝 (𝐴) equals the tame conductor exponent at p, which is 2 × (unipotent rank) +
(toric rank). This equals 2 × 2 + 0 = 4 by Proposition 4.2. �

Proposition 4.15. Let 𝐴/Q be a PQM surface of GL2-type. Then the conductor of A is of the form
22𝑖32 𝑗𝑁4, where 0 ≤ 𝑖 ≤ 10, 0 ≤ 𝑗 ≤ 5, and N is squarefree and coprime to 6.
Proof. By Lemmas 4.7 and 4.14, 𝔣𝑝 (𝐴) = 4 for every bad prime 𝑝 ≥ 5. The bounds 𝔣2(𝐴) ≤ 20 and
𝔣3 (𝐴) ≤ 10 follow from a general result of Brumer–Kramer [BK94, Theorem 6.2]. The fact that 𝔣2 (𝐴)
and 𝔣3 (𝐴) are even follows from the fact that End0 (𝐴) is a real quadratic field (Proposition 3.2) and
[Ser87, (4.7.2)]. �

4.5. Finite fields

Let 𝑘 = F𝑞 be a finite field of order 𝑝𝑟 . We will use the following two statements, whose proof can be
found in [Jor86, §2].
Lemma 4.16. Let 𝐴/𝑘 be an abelian surface such that End0 (𝐴) contains the quaternion algebra B.
Then the characteristic polynomial of Frobenius is of the form (𝑇2 + 𝑎𝑇 + 𝑞)2 for some integer 𝑎 ∈ Z
satisfying |𝑎 | ≤ 2√𝑞.

Proposition 4.17. Let 𝐴/𝑘 be an abelian surface such that End0(𝐴) contains the quaternion algebra
B. If r is odd or 𝑝 � disc(𝐵), then A is isogenous to the square of an elliptic curve over k. If r is even
and 𝑝 | disc(𝐵), 𝐴𝑘̄ is isogenous to the square of a supersingular elliptic curve over 𝑘̄ .

5. Proof of Theorem 1.4: PQM surfaces of GL2-type

Before proving Theorems 1.1–1.3, it is useful to first prove Theorem 1.4, which classifies torsion
subgroups of O-PQM abelian surfaces A over Q which are of GL2-type. At a certain point in the
argument, we make use of the modularity of abelian surfaces of GL2-type, which we recall in §5.1 and
classify PQM surfaces of GL2-type with good reduction outside 2 or 3. In §5.2, we deduce that a general
O-PQM surface cannot have a full level 2-structure over Q. In §5.3, we prove Theorem 1.4.

5.1. Abelian surfaces of GL2-type and modular forms

Theorem 5.1. Let A be an abelian surface such that End0(𝐴) is a real quadratic field. Then the
conductor of A is of the form 𝑁2 for some positive integer N, and there exists a unique Galois orbit
[ 𝑓𝐴] ⊂ 𝑆2 (Γ0(𝑁)) having coefficient field 𝐾 � End0 (𝐴) whose local L-factors agree for each prime p:
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𝐿𝑝 (𝐴,𝑇) =
∏

𝜏 : 𝐾↩→C
𝐿𝑝 (𝜏( 𝑓𝐴), 𝑇) ∈ 1 + 𝑇Z[𝑇] . (5.1)

Moreover, we have [ 𝑓𝐴] = [ 𝑓𝐴′ ] if and only if A is isogenous to 𝐴′ (over Q).

Proof. As explained by Ribet [Rib04, Theorem (4.4)], the fact that A is of GL2-type over Q implies that
A is modular assuming Serre’s modularity conjecture [Ser87, §4.7, Theorem 5], which was proven by
Khare–Wintenberger [KW09]. Thus, the equality of L-series (5.1) holds for some newform 𝑓𝐴. Since
End0(𝐴) is real, the character of 𝑓𝐴 is trivial [Rib76, Lemma (4.5.1)]. It follows from a theorem of
Carayol [Car86, Theoreme (A)] (local-global compatibility) that A has conductor equal to 𝑁2, where N
is the level of 𝑓𝐴. Finally, the fact that the Galois orbit of 𝑓𝐴 characterizes A up to isogeny follows from
the theorem of Faltings. �

Recall that if 𝑓 ∈ 𝑆2 (Γ0(𝑁)) is a newform and 𝜓 a primitive Dirichlet character, there exists a
unique newform 𝑔 = 𝑓 ⊗ 𝜓, the twist of f by 𝜓, whose q-expansion satisfies 𝑎𝑛 (𝑔) = 𝑎𝑛 ( 𝑓 )𝜓(𝑛) for
all n coprime to N and the conductor of 𝜓. If 𝑓 = 𝑔, then g is called a self-twist. If f and g are Galois
conjugate, g is called an inner twist.

Proposition 5.2. Let A be an abelian surface over Q such that End0 (𝐴) � Q(
√
𝑚) with 𝑚 ≥ 2. Then A

has PQM if and only if all of the following conditions hold:

(i) 𝑓𝐴 has no self-twists; equivalently, 𝑓𝐴 is not CM;
(ii) 𝑓𝐴 has a nontrivial inner twist by a Dirichlet character associated to a quadratic field Q(

√
𝑑); and

(iii) The quaternion algebra 𝐵𝑑,𝑚 :=
(
𝑑, 𝑚

Q

)
is a division algebra.

If all conditions (i)–(iii) hold, then, in fact, End0(𝐴
Q
) � 𝐵𝑑,𝑚.

Proof. See Cremona [Cre92, §2]. �

This reduces the enumeration of isogeny classes of GL2-type PQM surfaces A over Q with fixed
conductor to a computation in a space of modular forms.

Corollary 5.3. There are no PQM surfaces A over Q of GL2-type with good reduction outside {2}.

Proof. By Proposition 4.15, it is enough to check that there is no eigenform corresponding to a PQM
surface of level 2𝑘 for any 𝑘 ≤ 10. This information is contained in the LMFDB [LMF23] or [GG09,
Table 1]. �

Corollary 5.4. There is exactly one isogeny class of PQM surfaces A over Q of GL2-type with good
reduction outside {3}: it has conductor 310, any abelian surface A in the isogeny class satisfies 𝐴(Q)tors ≤
Z/3Z.

Proof. The fact that there is exactly one such isogeny class again follows from Proposition 4.15 and
information in the LMFDB or [GG09, Table 1]. The corresponding Galois orbit of weight two newforms
has LMFDB label 243.2.a.d. From 𝐿2 (1) = 3 and 𝐿13 (1) = 225, we conclude that #𝐴(Q)tors | 3 for
every A in this isogeny class. (In fact, the corresponding optimal quotient of 𝐽0 (243) has Z/3Z torsion
subgroup by considering the image of the cuspidal subgroup of 𝐽0 (243).) �

Remark 5.5. The isogeny class of Corollary 5.4 has minimal conductor among all PQM surfaces A of
GL2-type. It would be interesting to produce an explicit model over Q; see also [LS23, Question 2].

For the purposes of proving Theorem 1.4, the modular form computations contained in Corollaries
5.3 and 5.4 will suffice. However, the next proposition, which might be of independent interest, goes
further than these corollaries by computing modular forms of higher level.

Proposition 5.6. There are exactly 44 isogeny classes of PQM surfaces over Q of GL2-type with good
reduction outside {2, 3}.

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/243/2/a/d/
https://doi.org/10.1017/fms.2024.105


Forum of Mathematics, Sigma 19

Proof. Again, we use Propositions 4.15 and 5.2 to reduce the question to computing the number of
Galois orbits of newforms in 𝑆2 (Γ0(𝑁)), where 𝑁 | 21035, with quadratic Hecke coefficient field, having
an inner twist but no self-twist. However, here we need to do a new computation in a large dimensional
space. The code is available at https://github.com/ciaran-schembri/QM-Mazur; we provide a few details
to explain how we proceeded, referring to the book by Stein [Ste07] on modular symbols and, more
broadly, [BBB21] for a survey of methods to compute modular forms.

We work with modular symbols, and we loop over all possible (imaginary) quadratic characters 𝜓
supported at 2, 3, corresponding to the inner twist. For each character 𝜓, of conductor d:

◦ For a list of split primes 𝑝 ≥ 5, we inductively compute the kernels of 𝑇𝑝 − 𝑎 where |𝑎 | ≤ 2√𝑝.
◦ For a list of inert primes 𝑝 ≥ 5, we further inductively compute the kernels of 𝑇2

𝑝 − 𝑑𝑏2, where
𝑑𝑏2 ≤ 4𝑝.

The first bound holds since 𝜓(𝑝) = 1 so 𝑎𝑝 ( 𝑓 )𝜓(𝑝) = 𝜏(𝑎𝑝 ( 𝑓 )) = 𝑎𝑝 ( 𝑓 ) so 𝑎𝑝 ( 𝑓 ) ∈ Z, and the
Ramanujan–Petersson bound holds; the second bound holds since 𝜓(𝑝) = −1 now gives 𝜏(𝑎𝑝 ( 𝑓 )) =
−𝑎𝑝 ( 𝑓 ) so 𝑎𝑝 ( 𝑓 ) =

√
𝑑𝑏 with again

√
𝑑 |𝑏 | ≤ 2√𝑝. It is essential to compute the split primes first, and

only compute the induced action of 𝑇𝑝 on the kernels computed in the first step.
To simplify the linear algebra, we work modulo a large prime number q, checking that each Hecke

matrix 𝑇𝑝 (having entries in Q) has no denominator divisible by q. The corresponding decomposition
gives us an ‘upper bound’: if we had the desired eigenspace for 𝑇𝑝 , it reduces modulo q, but a priori
some of these spaces could accidentally coincide or the dimension could go down (corresponding to a
prime of norm q in the Hecke field). To certify the ‘lower bound’, we compute a small linear combination
of Hecke operators supported at split primes and use the computed eigenvalues to recompute the kernel
over Q working with divisors 𝑁 ′ | 𝑁 , and when we find it, we compute the dimension of the oldspace
for the form at level 𝑁 ′ inside level N and confirm that it matches the dimension computed modulo q.

In fact, we find that 𝑁 | 2835 or 𝑁 | 21034. (Indeed, a careful analysis of the possible endomorphism
algebra can be used to show this a priori.)

To certify that the form is not PCM, we find a coefficient for an inert prime that is nonzero. To certify
that the form has inner twist by 𝜓, we apply the bound [BBB21, Lemma 11.2.1(a)] on the level of the
twist: in particular, we find that the twist has the same level whenever ord𝑝 (cond(𝜓))2 ≠ ord𝑝 (𝑁) for
𝑝 = 2, 3, and this condition happened to hold in all cases that arose for certification. (In general, we
could also check up to the Sturm bound as in [BBB21, Theorem 11.2.4].) We similarly certify and
discard the forms with PCM, using the LMFDB for this certification for a handful of cases when the
level of the twist was different.

Finally, we compute the split PQM forms by identifying the quaternion algebra above using
Proposition 5.2. �

The complete data is available online (https://github.com/ciaran-schembri/QM-Mazur); we give a
summary in Table 1, listing forms in a fixed level, up to (quadratic) twist.

For example, Table 1 says that up to twist, there are 3 newforms of level 𝑁 = 20736 = 2834, each
having 4 Galois newform orbits for a total of 12 newform orbits.

Corollary 5.7. If A is a PQM abelian surface of GL2-type overQwith good reduction outside {2, 3} and
#𝐴(Q)tors nontrivial, then A corresponds to either 243.2.a.d or 972.2.a.e. In particular, #𝐴(Q)tors ≤ 9.

Proof. Direct calculation as in Corollary 5.4. �

5.2. Full level 2-structure

Before imposing the GL2-type assumption in the next subsection, we show that O-PQM surfaces cannot
have full level 2-structure over Q.

Proposition 5.8. Let 𝐴/Q be an O-PQM surface. Then 𝐴(Q) [2] � (Z/2Z)4.
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Table 1. Twist classes of modular forms corresponding to PQM abelian surfaces
over Q of GL2-type with good reduction outside {2, 3}.

N 𝜓 disc 𝐵 num LMFDB labels

243 = 35 −3 6 1 243.2.a.d
972 = 2235 −3 6 1 972.2.a.e
2592 = 2534 −4 6 2 2592.2.a.l, 2592.2.a.p
2592 = 2534 −4 6 2 2592.2.a.m, 2592.2.a.r
3888 = 2435 −3 6 2 3888.2.a.b, 3888.2.a.t
5184 = 2634 −4 6 2 5184.2.a.bl, 5184.2.a.bx
5184 = 2634 −4 6 2 5184.2.a.bk, 5184.2.a.bv
15552 = 2635 −3 6 2
15552 = 2635 −3 6 2
20736 = 2834 −4 6 4
20736 = 2834 −4 22 4
20736 = 2834 −8 10 4
62208 = 2835 −3 6 4
62208 = 2835 −3 6 4
82944 = 21034 −24 6 4
82944 = 21034 −24 6 4

Proof. Suppose 𝐴(Q) [2] � (Z/2Z)4. Since 𝐴[2] is free of rank one as an O/2O-module and contains
a Q-rational generator, we have 𝐴[2] � O/2O as GalQ-modules. By Theorem 2.6 and Proposition 3.3,
this implies that the endomorphism field 𝐿/Q is quadratic, so that A has GL2-type by Lemma 3.4.

Let K be a quadratic field ramified at all primes 𝑝 ≥ 3 of bad reduction of A and unramified at all
primes 𝑝 ≥ 3 of good reduction. Corollary 4.3 and Lemmas 4.5(a), 4.9 and 3.7 show that the quadratic
twist of A by K is an O-PQM surface of GL2-type with good reduction outside {2}. But by Corollary 5.3,
no such surface exists. �

5.3. Torsion classification in the GL2-type case

Now we assume 𝐴/Q is a PQM surface of GL2-type. By Lemma 3.4, there exists a quadratic extension
𝐿/Q (the endomorphism field) such that End(𝐴𝐿) = End(𝐴

Q
).

Lemma 5.9. If ℓ is a prime such that 𝐴[ℓ] (Q) ≠ 0, then ℓ ≤ 7.

Proof. By Lemma 4.1, there exists a finite extension 𝐿 ′/𝐿 that is totally ramified at 2 and such that 𝐴𝐿′

has good reduction. Let 𝔮 be a prime in 𝐿 ′ above 2 and let k be its residue field. Since 𝐿/Q is quadratic,
k is isomorphic to F2 or F4. Therefore, the reduction of 𝐴𝐿′ at 𝔮 is an abelian surface B over k such
that End0(𝐵) contains End0 (𝐴𝐿). By Lemma 4.13, 𝐵[ℓ] (𝑘) ≠ 0 and so ℓ divides #𝐵(F4). However,
Lemma 4.16 shows that the L-polynomial of 𝐵F4 is of the form (𝑇2 + 𝑎𝑇 + 4)2 with 𝑎 ∈ Z satisfying
|𝑎 | ≤ 2

√
4 = 4. Therefore, ℓ divides (1 + 𝑎 + 4)2; hence, ℓ divides (1 + 𝑎 + 4) ≤ 9, hence ℓ ≤ 9. �

Lemma 5.10. If ℓ ≥ 5 is a prime such that 𝐴[ℓ] (Q) ≠ 0, then 𝐴/Q has good reduction away from ℓ.

Proof. Let p be a prime of bad reduction of A. Since A is of GL2-type, the algebra End0(𝐴) is a
quadratic field; it is real quadratic by Proposition 3.2. Proposition 4.2(c) implies that A has totally
additive reduction at p. By Lemmas 4.8 and 4.10, we must have 𝑝 = ℓ. We conclude that A has good
reduction outside {ℓ}. �

Proposition 5.11. If ℓ is a prime such that 𝐴[ℓ] (Q) ≠ 0, then ℓ ∈ {2, 3}.

Proof. Suppose that ℓ ≥ 5. By Proposition 3.2, the quadratic extension 𝐿/Q is imaginary quadratic.
Moreover, by a result of Silverberg [Sil92, Theorem 4.2], the surface A has bad reduction at all primes
ramifying in L. By Lemma 5.10, L is therefore only ramified at ℓ. If ℓ = 5, this is already a contradiction
since there are no imaginary quadratic fields ramified only at 5. If ℓ = 7, then we conclude that

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/243.2.a.d
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/972.2.a.e
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2592.2.a.l
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2592.2.a.p
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2592.2.a.m
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/2592.2.a.r
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3888.2.a.b
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/3888.2.a.t
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5184.2.a.bl
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5184.2.a.bx
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5184.2.a.bk
http://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5184.2.a.bv
https://doi.org/10.1017/fms.2024.105


Forum of Mathematics, Sigma 21

𝐿 = Q(
√
−7). Since 2 splits in L, this means that the residue field in the proof of Lemma 5.9 is equal

to F2. Continuing with the proof there, we deduce the stronger inequality |𝑎 | ≤ 2
√

2, and we find that ℓ
divides 1 + 𝑎 + 2 < 6, which is a contradiction. �

Remark 5.12. We can also deduce Proposition 5.11 from Lemma 5.10 by invoking modularity (Propo-
sition 5.2), the fact that such an abelian surface must have conductor ℓ4 (Proposition 4.15) and the fact
that there are no PQM eigenforms in 𝑆2(Γ0 (25)) or 𝑆2(Γ0 (49)). We also note that Schoof has proven that
there are no abelian varieties with everywhere good reduction over Q(𝜁ℓ) for various small ℓ, including
5 and 7 [Sch03].

Proposition 5.13. Either 𝐴(Q)tors ⊂ (Z/2Z)3 or 𝐴(Q)tors ⊂ (Z/3Z)2.

Proof. By Proposition 5.11, 𝐴(Q)tors is a group of order 2𝑖3 𝑗 . We may assume that 𝐴(Q)tors ≠ 0; let
ℓ ∈ {2, 3} be such that 𝐴[ℓ] (Q) ≠ 0.

Suppose there exists a prime 𝑝 ≥ 5 of bad reduction. Then A has totally additive reduction over every
finite extension 𝐹/Q𝑝 over which it has bad reduction by Proposition 4.2. Therefore, the assumptions
of Proposition 4.12 apply for 𝐹 = Qnr

𝑝 (the maximal unramified extension of Q𝑝), and so 𝐴(Q)tors =

𝐴(Q) (𝑝)tors ⊂ 𝐴(Qnr
𝑝 )

(𝑝)
tors � (Z/ℓZ)𝑘 for some 1 ≤ 𝑘 ≤ 4. If ℓ = 2, then 𝑘 ≤ 3 by Proposition 5.8. If ℓ = 3,

then 𝑘 ≤ 2, since 𝐴(Q) (2)tors ↩→ 𝐴2 (F2) for some abelian surface 𝐴2/F2 (using Lemmas 4.1 and 4.13) and
#𝐴2 (F2) ≤ 25 for all such surfaces. We conclude 𝐴(Q)tors ⊂ (Z/2Z)3 or 𝐴(Q)tors ⊂ (Z/3Z)2, as desired.

It remains to consider the case that A has good reduction outside {2, 3}. A computation with modular
forms of level dividing 210 · 35 shows that #𝐴(Q)tors | 9 for such surfaces by Corollary 5.7, but we give
an argument that only involves computing modular forms of much smaller level. We may assume A has
bad reduction at both of these primes by Corollaries 5.3 and 5.4. If 𝐴[2] (Q) = 0, then Proposition 4.12
shows again that 𝐴(Q)tors = 𝐴(Q) (2)tors ⊂ 𝐴(Qnr

2 )
(2)
tors ⊂ (Z/3Z)2. Similarly, 𝐴(Q)tors ⊂ (Z/2Z)3 if

𝐴[3] (Q) = 0. Thus, it remains to rule out the possibility that 𝐴(Q) contains a point of order 6. In that case,
Proposition 4.12 shows that the extensions 𝑀2/Qnr

2 and 𝑀3/Qnr
3 over which A attains good reduction

have degrees that are powers of 3 and 2, respectively, and hence are tamely ramified. Hence, A has
conductor 2434 by Lemma 4.14 and corresponds to an eigenform of level 2232 = 36, by Theorem 5.1.
However, there are no PQM eigenforms of level 36 [GG09, Table 1]. �

Next we constrain the torsion even further and show that (Z/2Z)3 does not occur. For this, we
combine a cute fact from linear algebra with a purely local proposition that makes use of the enhanced
Galois representation of §3.5.

Lemma 5.14. Let k be a field and 𝑉 ⊂ O𝑘 := O ⊗Z 𝑘 a 3-dimensional k-subspace. Then V contains an
O𝑘 -module generator of O𝑘 .

Proof. If O𝑘 is a division algebra, every nonzero element of V is an O𝑘 -generator. If the characteristic
of k divides disc(𝐵), the lemma follows from Lemma 6.3 and the fact that the ideal J described
there is 2-dimensional. It suffices to consider the case when O𝑘 � Mat2(𝑘) and to prove that in this
case, V contains an invertible matrix. (This is well known; we give a quick proof here.) Suppose
otherwise. If k admits a quadratic field extension 𝑘 ′, then embedding 𝑘 ′ ⊂ Mat2(𝑘), we compute
dim(𝑉 + 𝑘 ′) = dim𝑉 + dim 𝑘 ′ − dim(𝑉 ∩ 𝑘 ′) = 3 + 2 − 0 = 5, which is a contradiction. In general,
the subspace V is defined over a subfield 𝑘 ′′ of k which is finitely generated over its prime field. The
previous argument then applies over 𝑘 ′′. �

Recall that Qnr
𝑝 denotes the maximal unramified extension of Q𝑝 .

Proposition 5.15. Let p be an odd prime, F a finite extension of Qnr
𝑝 and 𝐴/𝐹 an O-PQM surface with

(Z/2Z)3 ⊂ 𝐴[2] (𝐹). Then A acquires good reduction over every quadratic extension of F.

Proof. If 𝐴[2] (𝐹) � (Z/2Z)4, this immediately follows from Raynaud’s criterion (Lemma 4.5(a)),
so assume that 𝐴[2] (𝐹) � (Z/2Z)3. By Lemma 5.14, there exists an F-rational O/2O-generator
𝑃 ∈ 𝐴[2] (𝐹), and hence, 𝐴[2] � O/2O as Gal𝐹 -modules.
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Let 𝐿/𝐹 be the endomorphism field of 𝐴𝐹 and let 𝑀/𝐹 be the smallest field over which 𝐴𝐹
acquires good reduction. By the Néron-Ogg-Shafarevich criterion, 𝑀 = 𝐹 (𝐴[4]). By Proposition 3.6,
𝐿 ⊂ 𝑀 . Since 𝐴[2] � O/2O as GalQ-modules, 𝐹 (𝐴[2]) ⊂ 𝐿. We therefore have a chain of inclusions
𝐹 ⊂ 𝐹 (𝐴[2]) ⊂ 𝐿 ⊂ 𝑀 = 𝐹 (𝐴[4]). Since 𝐴[2] (Q) � (Z/2Z)3, 𝐹 (𝐴[2])/𝐹 is a (2, 2, . . . , 2)-
extension. The same is true for 𝐹 (𝐴[4])/𝐹 (𝐴[2]). Since p is odd and the residue field is algebraically
closed, both these extensions are cyclic, so at most quadratic. Therefore, 𝐹 (𝐴[2])/𝐹 is a quadratic
extension. If 𝐿 ≠ 𝐹 (𝐴[2]), then 𝐿/𝐹 would be cyclic of order 4, and there would be an order 4 element
𝑔 ∈ Aut(O) whose fixed points on O/2O is (Z/2Z)3. A calculation similar to the proof of the 𝐷4 case
in Theorem 2.6 shows that this is not possible. We conclude that 𝐿 = 𝐹 (𝐴[2]) and that 𝑀/𝐿 is at most
quadratic.

To prove the proposition, it suffices to prove that 𝑀/𝐹 is quadratic, so assume by contradiction that
this is not the case. Then 𝑀/𝐿 and 𝐿/𝐹 are both quadratic, and Gal(𝑀/𝐹) = {1, 𝑔, 𝑔2, 𝑔3} is cyclic of
order 4.

Consider the mod 4 Galois representation 𝜌 : Gal𝐹 → GL(𝐴[4]), which factors through Gal𝐹 →
Gal(𝑀/𝐹). Let 𝑄 ∈ 𝐴[4] (𝑀) be a lift of the O/2O-generator 𝑃 ∈ 𝐴[2] (𝐹). Then Q is an O/4O-
generator for 𝐴[4], and hence, by the enhanced Galois representation construction, we know that 𝜌 � 𝜌◦4
lands in Gal(𝐿/𝐹) � (O/4O)× (see §3.5 and Proposition 3.15). The situation can be summarized as
follows:

Gal(𝑀/𝐿) (O/4O)×

Gal(𝑀/𝐹) Gal(𝐿/𝐹) � (O/4O)×

Gal(𝐿/𝐹) Gal(𝐿/𝐹) � (O/2O)×.

𝜌◦4

𝜌◦2

𝜌◦4 |Gal𝐿

The horizontal maps are the enhanced Galois representations for L mod 4, F mod 4 and F mod 2,
respectively. Write Gal(𝐿/𝐹) = {1, 𝜎}. Since P is F-rational, the bottom map sends 𝜎 to (𝜎, 1). By
commutativity of the bottom square, 𝜌◦4 (𝑔) = (𝜎, 𝑥), where 𝑥 ∈ (O/4O) satisfies 𝑥 ≡ 1 mod 2O.
Since 𝐴𝐿 has bad and hence totally additive reduction by Proposition 4.2, the nontrivial element of
Gal(𝑀/𝐿) maps to −1 in (O/4O)×. (In fact, the generator of Gal(𝑀/𝐿) even maps to −1 in GL(𝑇2𝐴)
by an argument identical to the proof of Lemma 4.9.) By the commutativity of the top diagram,
(𝜎, 𝑥)2 = (1,−1). The involution 𝜎 acts on (O/4O)× by conjugating by an element 𝑏 ∈ O ∩ 𝑁𝐵× (O)
whose fixed points on O/2O are (Z/2Z)3. Therefore, (𝜎, 𝑥)2 = (1,−1) is equivalent to 𝑏−1𝑥𝑏𝑥 = −1.
By Lemma 2.9, no such x exists, obtaining the desired contradiction. �

Proposition 5.16. Let 𝐴/Q be an O-PQM surface of GL2-type. Then (Z/2Z)3 ⊄ 𝐴(Q) [2].

Proof. Let K be a quadratic field ramified at all primes 𝑝 ≥ 3 of bad reduction of A and unramified at
all primes 𝑝 ≥ 3 of good reduction. Corollary 4.3, Proposition 5.15 and Lemmas 4.9 and 3.7 show that
the quadratic twist of A by K is an O-PQM surface of GL2-type with good reduction outside {2}. But
no such O-PQM surface exists by Corollary 5.3. �

We are finally ready to prove our classification result for torsion subgroups of O-PQM surfaces of
GL2-type.

Proof of Theorem 1.4. By Propositions 5.13 and 5.16, we have ruled out all groups aside from those
listed in the theorem. It remains to exhibit infinitely many abelian surfaces 𝐴/Q of GL2-type with torsion
subgroups isomorphic to each of the groups

{0},Z/2Z,Z/3Z, (Z/2Z)2, (Z/3Z)2.
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Let O6 be the maximal quaternion order of discriminant 6 (unique up to isomorphism). In [LS23, §9],
one-parameter families of GL2-type O6-PQM surfaces with generic torsion subgroups {0},Z/2Z, Z/3Z
and (Z/3Z)2 are given among Prym surfaces of bielliptic Picard curves. In Proposition 5.17 below, we
give a one-parameter family of GL2-type O6-PQM Jacobians J with (Z/2Z)2 ⊂ 𝐽 (Q)tors. �

To state the next result, we define the rational functions

𝑗 (𝑇) = (−64𝑇20 + 256𝑇16 − 384𝑇12 + 256𝑇8 − 64𝑇4)
(𝑇24 + 42𝑇20 + 591𝑇16 + 2828𝑇12 + 591𝑇8 + 42𝑇4 + 1)

;

𝐽2 (𝑇) = 12( 𝑗 + 1);
𝐽4 (𝑇) = 6( 𝑗2 + 𝑗 + 1);
𝐽6 (𝑇) = 4( 𝑗3 − 2 𝑗2 + 1);
𝐽8 (𝑇) = (𝐽2𝐽6 − 𝐽2

4 )/4;
𝐽10 (𝑇) = 𝑗3.

Proposition 5.17. For all but finitely many 𝑡 ∈ Q, there exists a genus two curve 𝐶𝑡/Q with Igusa
invariants (𝐽2 (𝑡) : 𝐽4(𝑡) : 𝐽6 (𝑡) : 𝐽8 (𝑡) : 𝐽10 (𝑡)), whose Jacobian 𝐽𝑡/Q is an O6-PQM surface of
GL2-type and satisfies 𝐽𝑡 (Q)tors ⊃ (Z/2Z)2.
Proof. In [BG08, p.742], the authors have an expression for Igusa-Clebsch invariants (which we have
translated to Igusa invariants) of genus 2 curves defining O-PQM surfaces for every value of a parameter
j (which is a coordinate on the full Atkin-Lehner quotient of the discriminant 6 Shimura curve). The
field of moduli for 𝑘𝑅3 , in their notation, is Q(

√
−27 − 16 𝑗−1), and the obstruction for these genus 2

curves to be defined over Q is given by the Mestre obstruction
(
−6 𝑗 ,−2(27 𝑗+16)

Q

)
. A short computation for

the family 𝑗 (𝑇) shows that −27 − 16 𝑗−1 is a square in Q(𝑇)×, and hence, 𝑘𝑅3 = Q for all non-singular
specializations. Furthermore, one checks that the Mestre obstruction also vanishes for all such t. Thus,
the Igusa invariants in the statement of the proposition give an infinite family of O-PQM Jacobians 𝐽/Q
of GL2-type with End0(𝐽) � Q(

√
3). (Only finitely many 𝑗 ∈ Q correspond to CM points [BG08, §5,

Table 1], so J is geometrically simple for all but finitely many 𝑡 ∈ Q.)
Using Magma, one can write down an explicit sextic polynomial 𝑓𝑇 (𝑥) such that 𝐶𝑡 has model

𝑦2 = 𝑓𝑡 (𝑥). The coefficients of 𝑓𝑇 (𝑥) are too large to include here, but they can be found on our
associated GitHub repository.2 We find that there is a factoriztion

𝑓𝑇 (𝑥) = 𝑞1,𝑇 (𝑥)𝑞2,𝑇 (𝑥)𝑞3,𝑇 (𝑥),

where each 𝑞𝑖,𝑇 is a quadratic polynomial in Q(𝑇) [𝑥]. From this, we see that for all but finitely many t,
the group (Z/2Z)2 is a subgroup of 𝐽𝑡 (Q)tors. Indeed, 𝐽𝑡 = Pic0 (𝐶𝑡 ), and for each 𝑖 ∈ {1, 2, 3}, the divisor
class (𝛼, 0) − (𝛼′, 0), where 𝑞𝑖,𝑡 (𝑥) = (𝑥 −𝛼) (𝑥 −𝛼′), is defined over Q and has order 2. In future work,
we will explain how the special family 𝑗 (𝑇) was found using the arithmetic of Shimura curves. �

6. Proof of Theorem 1.1: Reduction to GL2-type

In this section, we prove Theorem 1.1. By Theorem 1.4, it is enough to prove the following:
Theorem 6.1. Let 𝐴/Q be an O-PQM surface and let ℓ ≥ 5 be a prime number such that 𝐴[ℓ] (Q) ≠ 0.
Then A is of GL2-type.

Theorem 6.1 follows from combining Propositions 6.8 and 6.10 below. The proofs consist mostly of
careful semi-linear algebra over noncommutative rings, combined with a small drop of global arithmetic
input.

2https://github.com/ciaran-schembri/QM-Mazur
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6.1. Linear algebra

Let ℓ be a prime and Oℓ := O ⊗ Fℓ . If ℓ � disc(𝐵), then Oℓ � Mat2 (Fℓ), since O is maximal. If
ℓ | disc(𝐵), then Oℓ is isomorphic to the nonsemisimple algebra [Jor86, §4]{(

𝛼 𝛽
0 𝛼ℓ

)
| 𝛼, 𝛽 ∈ Fℓ2

}
⊂ Mat2 (Fℓ2 ). (6.1)

In both cases, we will describe all left ideals of Oℓ . Equivalently, given a left Oℓ-module M, free of
rank one, we will describe all its (left) Oℓ-submodules.

First, we suppose that ℓ � disc(𝐵); fix an isomorphism Oℓ � Mat2(Fℓ) and a free rank one left
Oℓ-module M. Let 𝑒1, 𝑒2, 𝑤 be the elements of Oℓ corresponding to the matrices(

1 0
0 0

)
,

(
0 0
0 1

)
,

(
0 1
1 0

)
,

respectively. Then 𝑒1,𝑒2 are idempotents satisfying 𝑒1𝑒2 = 0, 𝑒1 + 𝑒2 = 1 and 𝑒1𝑤 = 𝑤𝑒2. Set
𝑀𝑖 = ker(𝑒𝑖 : 𝑀 → 𝑀) ⊂ 𝑀 . Then 𝑀 = 𝑀1 ⊕ 𝑀2, and w induces mutually inverse bijections
𝑀1 → 𝑀2 and 𝑀2 → 𝑀1. Given an Oℓ-submodule 𝑁 ⊂ 𝑀 , define 𝑁𝑖 := 𝑁 ∩𝑀𝑖 . Since N is Oℓ-stable,
𝑁 = 𝑁1 ⊕ 𝑁2 and 𝑤(𝑁1) = 𝑁2.

Lemma 6.2 (Unramified case). The map 𝑁 ↦→ (𝑁1, 𝑁2) induces a bijection between leftOℓ-submodules
of M and pairs of Fℓ-subspaces (𝑁1 ⊂ 𝑀1, 𝑁2 ⊂ 𝑀2) satisfying 𝑤(𝑁1) = 𝑁2.

Proof. This is elementary, using the fact that Oℓ is generated (as a ring) by 𝑒1, 𝑒2 and w. �

Next, suppose that ℓ divides disc(𝐵) and fix an isomorphism between Oℓ and the ring described in
(6.1). The set of strictly upper triangular matrices is a two-sided ideal 𝐽 ⊂ Oℓ that satisfies Oℓ/𝐽 � Fℓ2 .
The following lemma is easily verified [Jor86, §4].

Lemma 6.3 (Ramified case). The only proper left ideal of Oℓ is J. Consequently, the only proper
Oℓ-submodule of M is 𝑀 [𝐽] = {𝑚 ∈ 𝑀 | 𝑗 · 𝑚 = 0 for all 𝑗 ∈ 𝐽}.

6.2. The subgroup generated by a torsion point

Let 𝐴/Q be an O-PQM surface and ℓ be a prime number. Let Oℓ := O⊗Fℓ and 𝑀 := 𝐴[ℓ] (Q̄). Then M
is a free Oℓ-module of rank one, and GalQ acts on Oℓ by ring automorphisms (as studied in §3.2) and
on M by Fℓ-linear automorphisms. These actions satisfy (𝑎 · 𝑚)𝜎 = 𝑎𝜎 · 𝑚𝜎 for all 𝜎 ∈ GalQ, 𝑎 ∈ Oℓ

and 𝑚 ∈ 𝑀 .

Lemma 6.4. Suppose that the GalQ-modules Oℓ and M are isomorphic. Then ℓ ≤ 3.

Proof. This follows by comparing determinants. On one hand, the GalQ-action onOℓ has determinant 1.
Indeed, the determinant of left/right multiplication by 𝑏 ∈ 𝐵 acting on B is the square of the reduced
norm, so conjugation has determinant 1. On the other hand, the determinant of the GalQ-action on M
is the square of the mod ℓ cyclotomic character 𝜒̄ℓ . This implies that 𝜒̄2

ℓ = 1, so Q(𝜁ℓ + 𝜁−1
ℓ ) = Q, so

ℓ ≤ 3. �

Remark 6.5. When ℓ = 3, we know of no examples of O-PQM surfaces over Q with Oℓ � 𝑀 as
GalQ-modules. Such examples do exist for ℓ = 2; see [LS23, Corollary 7.5].

Lemma 6.6. If 𝑚 ∈ 𝑀GalQ is nonzero and ℓ ≥ 5, then Oℓ · 𝑚 ⊂ 𝑀 has order ℓ2.

Proof. By Lemmas 6.2 and 6.3, it suffices to show that Oℓ · 𝑚 ≠ 𝑀 . But if Oℓ · 𝑚 = 𝑀 , then
Oℓ → 𝑀, 𝑥 ↦→ 𝑥 · 𝑚 is an isomorphism, contradicting Lemma 6.4. �

To analyze the case ℓ | disc(𝐵), we use the following theorem attributed to Ohta.

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.105


Forum of Mathematics, Sigma 25

Theorem 6.7. Let F be a number field and let 𝐴/𝐹 be an abelian variety with End(𝐴) � O. Suppose O
is ramified at a prime ℓ and let 𝐽 ⊂ O be the maximal ideal above ℓ. Then the composition of the Galois
representation Gal𝐹 → AutFℓ2 𝐴[𝐽] � F×ℓ2 with the norm F×

ℓ2 → F×ℓ is equal to the mod ℓ cyclotomic
character Gal𝐹 → Aut(𝜇ℓ) � F×ℓ .
Proof. See [Jor86, Proposition 4.6]. �

Proposition 6.8. If ℓ | disc(𝐵) and 𝑀GalQ ≠ 0, then ℓ ≤ 3.
Proof. Choose a nonzero 𝑚 ∈ 𝑀GalQ and suppose that ℓ ≥ 5. By the previous lemma, Oℓ ·𝑚 is a proper
submodule of M. Therefore, Oℓ · 𝑚 = 𝑀 [𝐽] by Lemma 6.3. Let 𝐿/Q be the endomorphism field of A.
Then the GalQ-action on M restricts to a Gal𝐿-action on 𝑀 [𝐽] through elements of F×

ℓ2 (after choosing
an isomorphism Oℓ/𝐽 � Fℓ2 ), giving a homomorphism 𝜖 : Gal𝐿 → F×

ℓ2 . Since m is GalQ-invariant, the
Gal𝐿-action on 𝑀 [𝐽] is trivial, so 𝜖 is trivial. However, the composition 𝑁Fℓ2/Fℓ ◦ 𝜖 : Gal𝐿 → F×ℓ equals
the mod ℓ cyclotomic character 𝜒̄ℓ , by Theorem 6.7. It follows that 𝜒̄ℓ |Gal𝐿 = 1, or in other words,
Q(𝜁ℓ ) ⊂ 𝐿. Thus, Gal(𝐿/Q) surjects onto Gal(Q(𝜁ℓ)/Q) � (Z/ℓZ)× � Z/(ℓ − 1)Z. Since Gal(𝐿/Q) is
dihedral (Proposition 3.3), every nontrivial cyclic quotient of Gal(𝐿/Q) has order 2, and we conclude
that ℓ ≤ 3. �

We now treat the unramified case, using the following key linear-algebraic lemma, which we call the
‘torus trick’.
Lemma 6.9. Suppose that ℓ � disc(𝐵). Let 𝑆 ⊂ Oℓ be a 2-dimensional semisimple commutative
GalQ-stable subalgebra such that 𝑆 · 𝑚 = Oℓ · 𝑚 for some nonzero 𝑚 ∈ 𝑀GalQ . Then every 𝜎 ∈ GalQ
acting trivially on S also acts trivially on Oℓ .
Proof. Let 𝜎 ∈ GalQ be an element acting trivially on S and let 𝑚 ∈ 𝑀GalQ \ {0} be an element such
that 𝑆 · 𝑚 = Oℓ · 𝑚. Let 𝑘 = F̄ℓ . It suffices to prove that 𝜎 acts trivially on O𝑘 := Oℓ ⊗Fℓ 𝑘 . The
assumptions imply that 𝑆𝑘 � 𝑘 × 𝑘 , and we may fix an isomorphism O𝑘 � Mat2(𝑘) of k-algebras such
that 𝑆𝑘 is identified with the subalgebra of diagonal matrices of Mat2(𝑘). Lemma 6.2 and the fact that
𝑆𝑘 is 2-dimensional shows that dim𝑘 (𝑆𝑘 · 𝑚) = dim𝑘 (O𝑘 · 𝑚) = 2. Let 𝐼 = {𝑥 ∈ O𝑘 | 𝑥 · 𝑚 = 0} be the
annihilator of m, an ideal of O𝑘 of dimension 2. Using the analogue of Lemma 6.2 over k, such an ideal
is necessarily of the form {(

𝑎𝑥 𝑏𝑥
𝑎𝑦 𝑏𝑦

)
| 𝑥, 𝑦 ∈ 𝑘

}

for some 𝑎, 𝑏 ∈ 𝑘 which are not both zero. The assumption that 𝑆 · 𝑚 = Oℓ · 𝑚 implies that 𝑆𝑘 ∩ 𝐼 = 0.
It follows that a and b must be nonzero and O𝑘 = 𝑆𝑘 ⊕ 𝐼 as GalQ-modules. Let 𝑁 ⊂ O𝑘 be the subspace
normalising but not centralising 𝑆𝑘 . Then the above calculation also shows that 𝑁 ∩ 𝐼 = 0. Moreover,
N is GalQ-stable since S is. The relation O𝑘 = 𝑆𝑘 ⊕ 𝐼 shows that 𝜎(𝑥) − 𝑥 ∈ 𝐼 for all 𝑥 ∈ O𝑘 . It follows
that 𝜎(𝑥) − 𝑥 ∈ 𝐼 ∩ 𝑁 = 0 for all 𝑥 ∈ 𝑁 . Since O𝑘 is spanned by 𝑆𝑘 and N, the claim follows. �

Proposition 6.10. Suppose that ℓ � disc(𝐵) and 𝑀GalQ ≠ 0 and ℓ ≥ 5. Then A is of GL2-type.
Proof. We apply the torus trick using the distinguished quadratic subring 𝑆 ⊂ O of A (Definition 3.3).
Write 𝑆ℓ = 𝑆 ⊗Z Fℓ . Then 𝑆ℓ ⊂ Oℓ is a commutative semisimple subalgebra since S is unramified
at ℓ by Proposition 3.11. Suppose that A is not of GL2-type. Then GalQ acts nontrivially on S since
End(𝐴) = Z; let 𝐾/Q be the quadratic extension splitting this action. We claim that the Gal𝐾 -action
on Oℓ is trivial. Indeed, let 𝑚 ∈ 𝑀GalQ be a nonzero element. By Lemma 6.9, it suffices to prove that
𝑆ℓ · 𝑚 = Oℓ · 𝑚. But the set {𝑥 ∈ 𝑆ℓ | 𝑥 · 𝑚 = 0} is a proper GalQ-invariant ideal of 𝑆ℓ . Since the only
such ideal is 0 (using the fact that the GalQ-action on S is nontrivial and ℓ ≠ 2), the map 𝑆 ·𝑚 → O ·𝑚
is injective and hence by dimension reasons (and Lemma 6.6) it must be surjective. This proves that the
Gal𝐾 -action on Oℓ is trivial. By Lemma 3.14, this even implies that that Gal𝐾 -action on O is trivial.
We conclude that the quadratic field K is the endomorphism field of A; hence, A is of GL2-type by
Lemma 3.4, contradiction. �
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7. Proof of Theorems 1.2 and 1.3: Eliminating groups of order 2𝑖3 𝑗

Let 𝐴/Q be an O-PQM surface. By Theorem 1.1, we have #𝐴(Q)tors = 2𝑖3 𝑗 for some 𝑖, 𝑗 ≥ 0. Since A
has potentially good reduction, local methods show that 2𝑖3 𝑗 ≤ 72 [CX08, Theorem 1.4]. In this section,
we will improve this bound and constrain the group structure of 𝐴(Q)tors as much as possible using the
O-action on 𝐴

Q
. We may assume A is not of GL2-type since we have already proven Theorem 1.4.

For each prime p, there exists a totally ramified extension 𝐾/Q𝑝 such that 𝐴𝐾 has good reduction
(Lemma 4.1). The special fiber of the Néron model of 𝐴𝐾 is an abelian surface over F𝑝 which we denote
by 𝐴𝑝 . We call 𝐴𝑝 the good reduction of A at p, though it is only uniquely determined up to twists (since
a different choice of totally ramified extension 𝐾 ′ would give rise to a possibly non-isomorphic twist
of 𝐴𝑝).

Lemma 4.13 shows that the prime-to-p subgroup of 𝐴(Q)tors injects into 𝐴𝑝 (F𝑝). Moreover,
End(𝐴

Q
) ⊂ End(𝐴F̄𝑝 ); hence, 𝐴𝑝 is F̄𝑝-isogenous to the square of an elliptic curve 𝐸/F̄𝑝 by

Proposition 4.17, so its isogeny class is rather constrained. This leads to the following slight strength-
ening of [CX08, Theorem 1.4] in our case:
Proposition 7.1. We have #𝐴(Q)tors = 2𝑖3 𝑗 for some 𝑖 ∈ {0, 1, 2, 3, 4} and 𝑗 ∈ {0, 1, 2}. Moreover,
#𝐴(Q)tors ≤ 48.
Proof. By the above remarks, to bound the prime-to-2 (resp. prime-to-3) torsion, it is enough to bound
𝑋 (F2) [3∞] (resp. 𝑋 (F3) [2∞]), as X varies over all abelian surfaces over F2 (resp. F3) that are geometri-
cally isogenous to the square of an elliptic curve. For this, it is enough to compute max𝑋 gcd( 𝑓𝑋 (1), 3100)
(resp. max𝑋 gcd( 𝑓𝑋 (1), 2100)), where 𝑓𝑋 is the L-polynomial of X and the maximum is over all the
aforementioned isogeny classes. This computation is easily done with the help of the LMFDB’s database
of isogeny classes of abelian varieties over finite fields [LMF23], and the conclusion is the first sentence
of the proposition.

The second sentence is equivalent to the claim that #𝐴(Q)tors cannot equal 144 nor 72. We cannot
have 144 since #𝐴5 (F5) ≤ 100, and we cannot have 72 since the only isogeny class of abelian surfaces
𝑋/F5 with 72 | #𝑋 (F5) (which has LMFDB label 2.5.f𝑞) is not geometrically isogenous to a square of
an elliptic curve. �

The remainder of the proof of Theorems 1.2 and 1.3 will be similar (but more difficult) to that
of Proposition 7.1, using the good reduction model 𝐴𝑝 at various primes p and the O-action. In what
follows, we will freely use the Honda-Tate computations conveniently recorded in the LMFDB [LMF23],
so the careful reader will want to follow along in a web browser. We use the LMFDB’s method of labeling
isogeny classes (e.g., 2.5.d𝑒 is an isogeny class of abelian surfaces over F5 with label 𝑑𝑒).

7.1. Torsion constraints arising from the endomorphism field

Before analyzing specific groups, we state the following useful proposition, which uses techniques
similar to the proof of Theorem 6.1, including the torus trick.
Proposition 7.2. Let G be the Galois group of the endomorphism field 𝐿/Q.
(a) If 𝐺 � 𝐷3 or 𝐷6, then 𝐴[2] (Q) ⊂ Z/2Z. If in addition 𝐴[2] (Q) = Z/2Z, then 𝐴[2] � O/2O as

GalQ-modules or 2 | disc(𝐵).
(b) If 𝐺 � 𝐷2 or 𝐷4, then 𝐴[3] (Q) ⊂ Z/3Z. If in addition 𝐴[3] (Q) = Z/3Z, then 𝐴[3] � O/3O as

GalQ-modules or 3 | disc(𝐵).
Proof.
(a) Let 𝑆 ⊂ O be the distinguished quadratic subring of A (Definition 3.3). By Proposition 3.11,

𝑆 � Z[𝜔], where 𝜔2 + 𝜔 + 1 = 0. Let 𝐾/Q be the quadratic field trivializing the Galois action on
S, so End(𝐴𝐾 ) = 𝑆. Let 𝑆2 := 𝑆 ⊗ F2 and O2 := O ⊗ F2. If 𝐴[2] � O2 as GalQ-modules, then
𝐴[2] (Q) � (O/2O)GalQ is isomorphic to Z/2Z by Theorem 2.6, so indeed, 𝐴[2] (Q) ⊂ Z/2Z in
this case. We may therefore assume that 𝐴[2] (Q) � O2 in what follows.
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It suffices to show that if there exists a nonzero 𝑚 ∈ 𝐴[2] (Q), then 𝐴[2] (Q) has order 2. By the
classification of O2-submodules of 𝐴[2] of §6.1 and the fact that O2 is not isomorphic to 𝐴[2], the
submodule O2 · 𝑚 ⊂ 𝐴[2] has order 4. Since 𝑆2 � F4 has no GalQ-stable nonzero proper ideals,
the map 𝑆2 → 𝐴[2], 𝑥 ↦→ 𝑥 · 𝑚 is injective; hence, 𝑆2 · 𝑚 ⊂ O2 · 𝑚 has order 4 too. Therefore,
𝑆2 · 𝑚 = O2 · 𝑚. Suppose first that 2 � disc(𝐵). We can then apply Lemma 6.9 to conclude that
Gal𝐾 acts trivially on O2. Since Gal𝐾 acts on O2 through Gal(𝐿/𝐾) � 𝐶3 or 𝐶6, this contradicts
Lemma 3.14 and proves the second claim of (a). It remains to consider the case 2 | disc(𝐵). In that
case, there exists a unique proper nonzero left ideal J of O2, and 𝐴[𝐽] is the unique nonzero proper
O2-submodule of 𝐴[2] (Lemma 6.3). It follows that 𝑆2 · 𝑚 = O2 · 𝑚 = 𝐴[𝐽]. Since 𝐴[2] � O2 as
GalQ-modules, no element of 𝐴[2] (Q) is an O2-generator, so 𝐴[2] (Q) = 𝐴[𝐽] (Q). However, the
equality 𝑆2 · 𝑚 = 𝐴[𝐽] shows that 𝑆2 � 𝐴[𝐽] as GalQ-modules. Since GalQ acts nontrivially on
𝑆2 = F4, 𝐴[𝐽] (Q) = 𝐴[2] (Q) has order 2.

(b) The argument is very similar to the proof of (a), using that in the 𝐷4 case, the distinguished quadratic
subring Z[𝑖] is unramified at 3. In the 𝐷2 case, the distinguished quadratic subring might be ramified
at 3, but by Lemma 2.3, there exist three squarefree integers 𝑚, 𝑛, 𝑡 and embeddings of Z[

√
𝑚],

Z[
√
𝑛] and Z[

√
𝑡] into GalQ whose image is GalQ-stable. Since 𝑡 = −𝑚𝑛 up to squares, at least one

of these three subrings is unramified at 3, and the argument of (a) can be carried out using this
subring. �

7.2. Groups of order 48

Lemma 7.3. Let E be an elliptic curve over the finite field F𝑝𝑛 , and assume either that E is ordinary
or that 𝑛 = 1. Then any abelian surface 𝑋/F𝑝𝑛 isogenous to 𝐸2 is isomorphic to a product of elliptic
curves over F𝑝𝑛 .

Proof. Let 𝜋 ∈ End(𝐸) be the Frobenius. Replacing E by an isogenous elliptic curve, we may assume
that End(𝐸) = Z[𝜋] [JKP18, §7.2-7.3]. By [JKP18, Theorem 1.1], the functor 𝑋 ↦→ Hom(𝑋, 𝐸) is
an equivalence between the category of abelian varieties isogenous to a power of E and isomorphism
classes of finitely generated torsion-free End(𝐸)-modules. Since End(𝐸) is an order in a quadratic
field, any finitely generated torsion-free End(𝐸)-module is a direct sum of rank 1 modules [JKP18,
Theorem 3.2], so the lemma follows. �

Lemma 7.4. If 𝐺 ⊂ 𝐴(Q)tors is a subgroup of order 16, then G is isomorphic to (Z/4Z)2 or (Z/2Z)2 ×
Z/4Z.

Proof. There is a unique isogeny class of abelian surfaces X over F3 with 16 | #𝑋 (F3) – namely, the
square of the elliptic curve 𝐸/F3 with EndF𝑝 (𝐸) � Z[

√
−3] and #𝐸 (F3) = 4. By Lemma 7.3, 𝐴𝑝 is

isomorphic to a product of two elliptic curves both of which have four F3-rational points. Since such an
elliptic curve has its group of F3-points isomorphic to either Z/4Z or (Z/2Z)2, 𝐴𝑝 (F3) is isomorphic
to (Z/4Z)2 or (Z/4Z) × (Z/2Z)2 or (Z/2Z)4. By Proposition 5.8, the latter cannot happen. The lemma
now follows since 𝐴(Q) [16] ↩→ 𝐴𝑝 (F3). �

Proposition 7.5. #𝐴(Q)tors < 48.

Proof. By Proposition 7.1, it is enough to show that 𝐴(Q)tors ≠ 48. Assume for the sake of contradic-
tion that #𝐴(Q)tors = 48. The reduction 𝐴5/F5 must then be in the isogeny class 2.5.d𝑒. We see that
End0((𝐴𝑝)F5𝑛 ) contains a quaternion algebra if and only if 3 divides n. Therefore, the Galois group
of the endomorphism field of A has order divisible by 3, and so by Proposition 3.3 must be 𝐷3 or
𝐷6. Proposition 7.2 then implies 𝐴[2] (Q) ⊂ Z/2Z, contradicting the fact that 𝐴[2] (Q) has size ≥ 4
(Lemma 7.4). �

7.3. Groups of order 36

Lemma 7.6. If 36 | #𝐴(Q)tors, then 𝐴(Q)tors � (Z/6Z)2.

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://www.lmfdb.org/Variety/Abelian/Fq/2/5/d_e
https://doi.org/10.1017/fms.2024.105


28 J. Laga et al.

Proof. Over F5 there is exactly one isogeny class of abelian surface X with 36 | #𝑋 (F5) and whose
geometric endomorphism algebra contains a quaternion algebra – namely, 2.5.a𝑘 – which is isogenous
to the square of an elliptic curve. Thus, the reduction 𝐴5 is isomorphic to a product of two elliptic
curves (Lemma 7.3). Every elliptic curve in this isogeny class has 𝐸 (F5) � Z/6Z; hence, 𝐴5(F5) �
(Z/6Z)2. �

Proposition 7.7. #𝐴(Q)tors < 36.

Proof. By Proposition 7.5 and Proposition 7.1, it is enough to show that 𝐴(Q)tors does not have order
36. By Lemma 7.6, such an A would have 𝐴(Q)tors � (Z/6Z)2. By Proposition 7.2, A cannot have
endomorphism field 𝐷𝑛 for every 𝑛 ∈ {2, 3, 4, 6}, so A has GL2-type, which we have also already ruled
out. �

It follows that #𝐴(Q)tors ≤ 24. Before we show that this inequality is strict, we rule out the existence
of rational points of order 9 and 8.

7.4. Rational points of order 9

Proposition 7.8. 𝐴(Q)tors contains no elements of order 9.

Proof. Suppose 𝐴(Q) has a point of order 9. Then the reduction 𝐴2/F2 must live in the isogeny class
2.2.a𝑒 or 2.2.b𝑏 . The latter has commutative geometric endomorphism algebra and so cannot be the
reduction of a O-PQM surface by Proposition 4.17. The former is the isogeny class of the square of an
elliptic curve E over F2 with #𝐸 (F2) = 3, so by Lemma 7.3, we have 𝐴2 (F2) � (Z/3Z)2. �

7.5. Rational points of order 8

Proposition 7.9. 𝐴(Q)tors contains no elements of order 8.

Proof. Suppose otherwise. The reduction 𝐴3/F3 must be in the isogeny class 2.3.a𝑎𝑐 , which is simple
with endomorphism algebra Q(𝜁8) = Q(

√
2,
√
−2). (It cannot be in the isogeny class 2.3.a𝑔 by the proof

of Lemma 7.4.) Since #𝐴3 (F3) = 8, we must have 𝐴3(F3) = Z/8Z. This eliminates the possibility that
𝐴(Q) contains a prime-to-3 subgroup any larger than Z/8Z. Note also that #𝐴3 (F9) = 64 and A is
isomorphic to a product of ordinary elliptic curves over F9 by Lemma 7.3, at least one of which has
𝐸 (F9) � Z/8Z. It follows that the F2-dimension of 𝐴3 [2] (F9) is at most 3, and in particular, not all
2-torsion points are defined over F9. However, all endomorphisms of (𝐴3)F̄3 are defined over F9, so we
conclude by Lemmas 6.2 and 6.3 that the O/2O-module generated by any F9-rational point of order 2
has order 4.

Suppose first that 2 divides disc(𝐵). Then the aforementioned O-module must be 𝐴[𝐽], where J is
the ideal in O such that 𝐽2 = 2O (see §6.1). Let 𝑡 ∈ 𝐽 be any element not in 2O. Then over F9, we have
an exact sequence

0 → 𝐴3 [𝐽] → 𝐴3 [2] → 𝐴3 [𝐽] → 0

with the last map being multiplication by t. Let 𝑃 ∈ 𝐴3 [4] (F9) be a point of order 4. Without loss of
generality, we may assume 𝑄 = 𝑡𝑃 has order 2 (if not, just replace P by 𝑡𝑃) and 𝑄 ∉ 𝐴3 [𝐽]. Then we
have seen that O · 𝑄 ≠ 𝐴3 [2], so O · 𝑄 = 𝐴3 [𝐽], but this contradicts 𝑄 ∉ 𝐴3 [𝐽].

Now suppose that 2 does not divide disc(𝐵) so that O � Mat2 (F2). Let 𝐿/Q be the endomorphism
field. If Gal(𝐿/Q) � 𝐷2, then at least one of the quadratic subfields of L is not inert at 3. So EndF3 (𝐴3)
must contain a quadratic order S inZ[𝑖] orZ[

√
2] or inZ[

√
−2]. But we saw in Lemma 2.2 that S contains

Z[
√
𝑚] with m squarefree. So S is Z[𝑖] or Z[

√
2] or Z[

√
−2]. In all cases, there exists 𝑡 ∈ 𝑆 such that

𝑡2𝑆 = 2𝑆, and so we have an endomorphism (defined over F3) which behaves like
√

2 on 𝐴3 [2]. But we
also have a rational point P of order 4. Without loss of generality, the orders of 𝑡𝑃 and 𝑡2𝑃 are both 2. But
𝑡2𝑃 ≠ 𝑡𝑃, so dimF2 𝐴3 [2] (F3) > 1, which contradicts 𝐴3(F3) � Z/8Z. The case Gal(𝐿/Q) = 𝐷4 does
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not happen when disc(𝐵) is odd by Lemma 2.4, so we consider the case where Gal(𝐿/Q) is 𝐷3 or 𝐷6.
By Proposition 7.2(a), 𝐴[2] � O/2O as GalQ-modules. But then 𝐴3 [2] � O/2O as GalF3 -modules,
contradicting the fact that 𝐴3 [2] (F3) contains no O/2O-generator.

We are left to consider the case Gal(𝐿/Q) = 𝐷1 = 𝐶2 (i.e., the GL2-type case), which we have
already treated in Proposition 5.13. �

7.6. Groups of order 24

If 𝐴(Q)tors has order 24, then by Proposition 7.9, the group structure is either (Z/2Z)3 × Z/3Z or
Z/2Z×Z/4Z×Z/3Z. We show below that in fact neither can occur. First, we gather some facts common
to both cases.

Lemma 7.10. Suppose #𝐴(Q)tors = 24, and let 𝐿/Q be the endomorphism field of A. Then

(a) Gal(𝐿/Q) is isomorphic to 𝐷2 or 𝐷4,
(b) Q(𝜁3) ⊂ 𝐿, and
(c) if Gal(𝐿/Q) � 𝐷4 then A has unipotent rank 1 over Q3 (in the terminology of §4.1).

Proof. Since A is not of GL2-type, Proposition 7.2 implies that Gal(𝐿/Q) is isomorphic to 𝐷2 or 𝐷4,
proving (𝑎).

Checking isogeny classes over F5, we see that the reduction 𝐴5 is in the isogeny class 2.5a𝑎𝑐; the
isogeny class 2.5d𝑒 is ruled out since it only acquires QM over F53 , which is not compatible with
(𝑎). The fact that #𝐴5 (F25) [3∞] = 9 shows that the point of order 3 in 𝐴(Q) is not an O-module
generator of 𝐴[3] (since the O-action on 𝐴5 is defined over F25). By Proposition 7.2, we deduce that the
quaternion algebra B is ramified at 3. Since 𝐴[3] (Q) has a rational point, it follows from Theorem 6.7
that Q(

√
−3) = Q(𝜁3) ⊂ 𝐿, proving (𝑏).

Since 3 ramifies in L, A has bad reduction over Q3 by Proposition 3.6. If 𝐴[2] (Q) � (Z/2Z)3, then
A achieves good reduction over every ramified quadratic extension of Q3 by Proposition 5.15. If 𝐴/Q3
has totally additive reduction, then the quadratic twist of A by Q(

√
3), say, will have good reduction at

3 by Lemma 4.9. But quadratic twisting does not change the endomorphism field by Lemma 3.7, so any
quadratic twist of A must have endomorphism field which contains Q(

√
−3) and hence must have bad

reduction at 3. We conclude that A must have unipotent rank 1 over Q3 by Proposition 4.2.
If 𝐴[2] (Q) � (Z/2Z)2 and Gal(𝐿/Q) � 𝐷4, then Gal(𝐿/Q) � 𝐷2 and so 𝐿/Q is a biquadratic field

containing Q(𝜁3). It follows that A has all of its endomorphisms defined over Qnr
3 (𝜁3). If A still has bad

reduction over Q3(𝜁3), then it must have totally additive bad reduction (since it has QM after enlarging
the residue field) by Proposition 4.2, and we obtain a contradiction with Proposition 4.12 and the fact
that A has a point of order 4. Thus, A attains good reduction over Q3 (𝜁3), and arguing as above, we
conclude that A has unipotent rank 1 over Q3. �

Proposition 7.11. 𝐴(Q)tors � (Z/2Z)3 × Z/3Z.

Proof. Assume otherwise, for the sake of contradiction. Theorem 2.6 and Lemma 5.14 show that the
endomorphism field 𝐿/Q has Galois group Gal(𝐿/Q) � 𝐷2.

First, assume there exists a prime 𝑝 > 3 of bad reduction for A. By Theorem 4.11, A must have
unipotent rank 1 overQ𝑝 , and hence, p must ramify in L by Proposition 4.2. Next, recall that there are three
GalQ-stable quadratic subfields of B, one of which is imaginary. Let 𝐿1, 𝐿2 and 𝐿3 be the corresponding
quadratic subfields of L, labeled so that 𝐵Gal𝐿1 is imaginary quadratic. Since L is biquadratic, exactly one
of the 𝐿𝑖 must be unramified over Q𝑝 . Since A has unipotent rank 1, it must be 𝐿1 (by Proposition 4.2).
But by Lemma 7.10(b), we have Q(𝜁3) ⊂ 𝐿, and Q(𝜁3) is also unramified at p, so 𝐿1 = Q(

√
−3).

Now, 𝐴/Q3 has unipotent rank 1 by Lemma 7.10(c). As above, Proposition 4.2 implies that the unique
sub-extension 𝐿𝑖 unramified at 3 must be 𝐿1. This contradicts 𝐿1 = Q(

√
−3).

Thus, it remains to consider the possibility that A has good reduction outside {2, 3}. This forces the
endomorphism field to be unramified outside {2, 3}. Moreover, A has unipotent rank 1 reduction overQ3,
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so L must contain an imaginary quadratic subfield that is unramified at 3. Hence, L is isomorphic to
Q(

√
−3, 𝑖) or Q(

√
−3,

√
−2). We also know that 𝐵Gal

Q(
√
−3) is a real quadratic field, and 𝐿1 is either Q(𝑖)

or Q(
√
−2).

Over F7, there are two possible isogeny classes: 2.7a𝑎𝑐 and 2.7i𝑏𝑒. Since 7 is inert in 𝐿1, L does not
split completely at 7. The isogeny class is therefore not 2.7𝑖𝑏𝑒 since all its endomorphisms are defined
over F7; hence, the isogeny class is 2.7𝑎𝑎𝑐 . Thus, End0 (𝐴7) � Q(

√
−3) × Q(

√
−3). Since 7 splits in

Q(
√
−3), we see that 𝐵Gal

Q(
√
−3) = Q(

√
−3), which shows that 𝐿1 = Q(

√
−3), contradicting what was

said above. �

Proposition 7.12. 𝐴(Q)tors � (Z/2Z) × (Z/4Z) × (Z/3Z).
Proof. Assume otherwise, for the sake of contradiction. We separate cases according to the size of
𝐺 = Gal(𝐿/Q). First suppose 𝐺 � 𝐷4, so that the distinguished subring S of Definition §3.3 is
isomorphic to Z[𝑖]. Then 2 | disc(𝐵) by Lemma 2.4. Since B is ramified at 2 and 3 and 𝐴(Q) contains
points of order 4 and 3, we see that L contains both Q(𝑖) and Q(𝜁3), by Theorem 6.7. Over one of these
two quadratic subfields, the GalQ-action on 𝑆 = Z[𝑖] trivializes. Indeed, the GalQ-action on Z[𝑖] cannot
be trivialized by the third quadratic subfield Q(

√
3) of L, by Proposition 3.2. Looking over F5, we see

that Q(𝑖) could only trivialize a ring isomorphic to Z[
√

3]. Looking over F7, we see that Q(𝜁3) could
only trivialize a ring isomorphic to Z[

√
−3]. So neither trivialize Z[𝑖], and we have a contradiction.

So we may now assume that 𝐺 � 𝐷2. Arguing as above, we may also assume that L does not contain
Q(𝑖). We know A has unipotent rank 1 reduction overQ3 by Lemma 7.10(c). It also has unipotent rank 1
reduction at all bad primes 𝑝 > 3, by Theorem 4.11. By Proposition 4.2, the imaginary quadratic subfield
𝐿1 ⊂ 𝐿 that trivializes the distinguished imaginary quadratic subring of O is unramified outside {2}.
Since 𝐿1 ≠ Q(𝑖), we must have 𝐿1 = Q(

√
−2), but this field does not embed in B (which is ramified

at 3), giving a contradiction. �

As a corollary, we are now able to finish the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Propositions 7.9, 7.11 and 7.12 show that #𝐴(Q)tors < 24. Hence, #𝐴(Q)tors ≤
18. �

By the results of this section and the previous one, the group 𝐴(Q)tors has order 2𝑖3 𝑗 ≤ 18 and does
not contain any subgroup of the form Z/8Z, Z/9Z, or (Z/2Z)4. We deduce the following result, which
is equivalent to Theorem 1.3.
Theorem 7.13. Let 𝐴/Q be an abelian surface such that End(𝐴

Q
) is a maximal order in a non-split

quaternion algebra. Then 𝐴(Q)tors = 𝐴[12] (Q) and #𝐴(Q)tors ≤ 18. Moreover, 𝐴(Q)tors does not
contain a subgroup isomorphic to (Z/2Z)4. In other words, 𝐴(Q)tors is isomorphic to one of the groups

{1},Z/2,Z/3,Z/4, (Z/2Z)2,Z/6, (Z/2Z)3,Z/2Z × Z/4Z, (Z/3Z)2,

Z/12,Z/2Z × Z/6Z, (Z/2Z)2 × Z/4Z, (Z/4Z)2,Z/3Z × Z/6Z.

Not all of the groups above are known to be realized as 𝐴(Q)tors for some O-PQM surface 𝐴/Q.
However, all groups that have been realized (including the largest one of order 18) have been realized in
the family of bielliptic Picard Prym surfaces [LS23]. It would be interesting to systematically analyze
rational points on Shimura curves of small discriminant and with small level structure, to try to find
more examples. It would also be interesting to see which groups can be realized by Jacobians, which is
the topic we turn to next.

8. Proof of Theorem 1.6: PQM Jacobians

In this section, we consider O-PQM surfaces 𝐴/Q equipped with a principal polarization. Since A is
geometrically simple, there exists an isomorphism of polarized surfaces 𝐴 � Jac(𝐶), where C is a
smooth projective genus two curve over Q [Sek82, Theorem 3.1]. To emphasize this, we use the letter J

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://www.lmfdb.org/Variety/Abelian/Fq/2/7/a_ac
https://www.lmfdb.org/Variety/Abelian/Fq/2/7/i_be
https://doi.org/10.1017/fms.2024.105


Forum of Mathematics, Sigma 31

Table 2. O-PQM Jacobians 𝐽/Q with torsion.

𝐽 (Q)tors D End(𝐽 )Q 𝐽 = Jac(𝐶 : 𝑦2 = 𝑓 (𝑥))

(Z/2Z) 10 Q 𝑦2 = −145855𝑥6 − 729275𝑥5 + 2187825𝑥3 − 1312695𝑥
(Z/2Z)2 6 Q(

√
3) 𝑦2 = −180𝑥6 − 159𝑥5 + 894𝑥4 + 1691𝑥3 + 246𝑥2 − 672𝑥 + 80

(Z/3Z) 15 Q 𝑦2 = 17095𝑥6 + 345930𝑥5 + 602160𝑥4 + 234260𝑥3 − 43680𝑥2 − 540930𝑥 − 634465
(Z/3Z)2 6 Q(

√
2) 𝑦2 = −15𝑥6 − 270𝑥5 + 315𝑥4 − 270𝑥3 − 45𝑥2 + 270𝑥 + 105

(Z/6Z) 6 Q 𝑦2 = 5𝑥6 + 21𝑥5 − 63𝑥4 − 49𝑥3 + 294𝑥2 − 343

instead of A. The goal of this section to prove some additional constraints on the torsion group 𝐽 (Q)tors
(i.e., we prove Theorem 1.6).

Lemma 8.1. Let M be the imaginary quadratic subfield of End0 (𝐽Q̄) corresponding to a principal
polarization on J under Corollary 3.10. Then 𝑀 � Q(

√
−𝐷), where 𝐷 = disc(𝐵).

Proof. This is a direct consequence of the relation (3.2) of Proposition 3.8. �

Lemma 8.2. The endomorphism field 𝐿/Q has Galois group 𝐷1 = 𝐶2 or 𝐷2 = 𝐶2 × 𝐶2.

Proof. See [DR04, Theorem 3.4 A(1)]. �

Proposition 8.3. #𝐽 (Q)tors < 18.

Proof. By Theorem 1.3, we need only exclude (Z/2Z)×(Z/3Z)2. By Proposition 7.2(b) and Lemma 8.2,
the endomorphism field of J would be a 𝐶2-extension. In other words, J is of GL2-type, but this
contradicts Theorem 1.4. �

Finally, we rule out the group (Z/2Z)3 from appearing in 𝐽 [2] (Q). We have already proven this
when J is of GL2-type (Proposition 5.16), so it remains to consider the case Gal(𝐿/Q) � 𝐶2 × 𝐶2. We
deduce this from the following more general result.

Proposition 8.4. Suppose that 𝐴/Q is O-PQM, has 𝐶2 × 𝐶2 endomorphism field and has 𝐴[2] (Q) �
(Z/2Z)3. Let d be the degree of the unique primitive polarization of A. Then 2 | disc(𝐵), and there exists
an integer 𝑚 ≡ 1 mod 4 such that disc(𝐵) and 𝑑𝑚 agree up to squares. In particular, d is even and A is
not a Jacobian.

Proof. Let 𝐿/Q be the endomorphism field of A with Galois group G. By Lemma 5.14, there exists
a Q-rational O/2O-generator 𝑃 ∈ 𝐴[2] (Q); hence, 𝐴[2] � O/2O as GalQ-modules. Therefore, the
G-action on O/2O has (Z/2Z)3 fixed points. By Lemma 2.10, 2 | disc(𝐵) and there exist positive
integers 𝑚, 𝑛 with 𝑚 ≡ 1 mod 4 and 𝑛 ≡ 3 mod 4 such that the three GalQ-stable quadratic subfields
of B are Q(

√
−𝑚),Q(

√
𝑛) and Q(

√
𝑚𝑛). Under Corollary 3.10, the unique primitive polarization of A

corresponds to the subfield Q(
√
−𝑚), and the relation (3.2) of Proposition 3.8 shows that 𝑑disc(𝐵) and

m agree up to squares. In other words, disc(𝐵) and 𝑑𝑚 agree up to squares. Since disc(𝐵) is even and
squarefree and m is odd, d must be even too. �

Proof of Theorem 1.6. Combine Theorem 1.3 and Propositions 8.3 and 8.4. �

In Table 2, we give some examples of Jacobians with nontrivial torsion subgroups and O𝐷-PQM,
where O𝐷 is a maximal quaternion order of discriminant D. These were found by computing the
relevant covers of Shimura curves of level 1 and their full Atkin-Lehner quotients and then substituting
into the Igusa-Clebsch invariants in [LY20, Appendix B]. The torsion and endomorphism data can be
independently verified using MAGMA.3

Acknowledgements. We would like to thank Davide Lombardo for interesting discussions related to this project and the
anonymous referee for their careful reading of the paper.

3https://github.com/ciaran-schembri/QM-Mazur

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://github.com/ciaran-schembri/QM-Mazur
https://doi.org/10.1017/fms.2024.105


32 J. Laga et al.

Competing interests. The authors have no competing interest to declare.

Funding Statement. Schembri and Voight were supported by a Simons Collaboration Grant (550029, to JV). Shnidman was
funded by the European Research Council (ERC, CurveArithmetic, 101078157).

Data Availability Statement. Code can be found in the GitHub repository: https://github.com/ciaran-schembri/QM-Mazur.

References

[BBB21] A. J. Best, J. Bober, A. R. Booker, E. Costa, J. E. Cremona, M. Derickx, M. Lee, D. Lowry-Duda, D. Roe,
A. V. Sutherland and J. Voight, ‘Computing classical modular forms’, in Arithmetic Geometry, Number Theory, and
Computation (Simons Symp.) (Springer, Cham, 2021), 131–213.

[BG08] S. Baba and H. Granath, ‘Genus 2 curves with quaternionic multiplication’, Canad. J. Math. 60(4) (2008), 734–757.
[BK94] A. Brumer and K. Kramer, ‘The conductor of an abelian variety’, Compos. Math. 92(2) (1994), 227–248.
[BL04] C. Birkenhake and H. Lange, Complex Abelian Varieties (Grundlehren der mathematischen Wissenschaften

[Fundamental Principles of Mathematical Sciences]) vol. 302, second edn. (Springer-Verlag, Berlin, 2004).
[Car86] H. Carayol, ‘Sur les représentations l-adiques associées aux formes modulaires de Hilbert’, Ann. Sci. École Norm. Sup.

(4) 19(3) (1986), 409–468.
[CF00] T. Chinburg and E. Friedman, ‘The finite subgroups of maximal arithmetic Kleinian groups’, Ann. Inst. Fourier

(Grenoble) 50(6) (2001), 1765–1798.
[Cla03] P. L. Clark, ‘Rational points on Atkin-Lehner quotients of Shimura curves’, PhD thesis, Harvard University, 2003.
[Cre92] J. E. Cremona, ‘Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields’,

J. London Math. Soc. (2) 45(3) (1992), 404–416.
[CX08] P. L. Clark and X. Xarles, ‘Local bounds for torsion points on abelian varieties’, Canad. J. Math. 60(3) (2008), 532–555.
[DR04] L. V. Dieulefait and V. Rotger, ‘The arithmetic of QM-abelian surfaces through their Galois representations’, J. Algebra

281(1) (2004), 124–143.
[ELL96] B. Edixhoven, Q. Liu and D. Lorenzini, ‘The p-part of the group of components of a Néron model’, J. Algebraic Geom.

5(4) (1996), 801–813.
[GG09] J. González and J. Guàrdia, ‘Genus two curves with quaternionic multiplication and modular Jacobian’, Math. Comp.

78(265) (2009), 575–589.
[GK17] R. Guralnick and K. S. Kedlaya, ‘Endomorphism fields of abelian varieties’, Res. Number Theory 3(Paper No. 22)

(2017), 10.
[JKP18] B. W. Jordan, A. G. Keeton, B. Poonen, E. M. Rains, N. Shepherd-Barron and J. T. Tate, ‘Abelian varieties isogenous

to a power of an elliptic curve’, Compos. Math. 154(5) (2018), 934–959.
[JM94] B. W. Jordan and D. R. Morrison, ‘On the Néron models of abelian surfaces with quaternionic multiplication’, J. Reine

Angew. Math. 447 (1994), 1–22.
[Jor86] B. W. Jordan, ‘Points on Shimura curves rational over number fields’, J. Reine Angew. Math. 371 (1986), 92–114.

[Kub76] D. S. Kubert, ‘Universal bounds on the torsion of elliptic curves’, Proc. London Math. Soc. (3) 33(2) (1976), 193–237.
[KW09] C. Khare and J.-P. Wintenberger, ‘Serre’s modularity conjecture. I’, Invent. Math. 178(3) (2009), 485–504.
[Lan83] S. Lang, Complex Multiplication (Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Math-

ematical Sciences]) vol. 255 (Springer-Verlag, New York, 1983).
[LMF23] The LMFDB Collaboration, ‘The L-functions and modular forms database’, https://www.lmfdb.org, 2023. [Online;

accessed 21 February 2023].
[Lor93] D. J. Lorenzini, ‘On the group of components of a Néron model’, J. Reine Angew. Math. 445 (1993), 109–160.
[LS23] J. Laga and A. Shnidman, ‘The geometry and arithmetic of bielliptic Picard curves’, Preprint, 2023.
[LY20] Y.-H. Lin and Y. Yang, ‘Quaternionic loci in Siegel’s modular threefold’, Math. Z. 295(1–2) (2020), 775–819.

[Maz77] B. Mazur, ‘Modular curves and the Eisenstein ideal’, Inst. Hautes Études Sci. Publ. Math. 47 (1978), 33–186. With an
appendix by Mazur and M. Rapoport.

[Min87] H. Minkowski, ‘Zur Theorie der positiven quadratischen Formen’, J. Reine Angew. Math. 101 (1887), 196–202.
[Oht74] M. Ohta, ‘On l-adic representations of Galois groups obtained from certain two-dimensional abelian varieties’, J. Fac.

Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 299–308.
[Rib76] K. A. Ribet, ‘Galois action on division points of Abelian varieties with real multiplications’, Amer. J. Math. 98(3)

(1976), 751–804.
[Rib04] K. A. Ribet, ‘Abelian varieties over Q and modular forms’, in Modular Curves and Abelian Varieties (Progr. Math.)

vol. 224 (Birkhäuser, Basel, 2004), 241–261.
[Rot08] V. Rotger, ‘Which quaternion algebras act on a modular abelian variety?’, Math. Res. Lett. 15(2) (2008), 251–263.
[Sch03] R. Schoof, ‘Abelian varieties over cyclotomic fields with good reduction everywhere’, Math. Ann. 325(3) (2003),

413–448.
[Sek82] T. Sekiguchi, ‘On the fields of rationality for curves and for their Jacobian varieties’, Nagoya Math. J. 88 (1982),

197–212.

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://github.com/ciaran-schembri/QM-Mazur
https://doi.org/10.1017/fms.2024.105


Forum of Mathematics, Sigma 33

[Ser87] J.-P. Serre, ‘Sur les représentations modulaires de degré 2 de Gal(𝑄/𝑄)’, Duke Math. J. 54(1) (1987), 179–230.
[Sil89] R. Silhol, Real Algebraic Surfaces (Lecture Notes in Mathematics) vol. 1392 (Springer-Verlag, Berlin, 1989).
[Sil92] A. Silverberg, ‘Fields of definition for homomorphisms of abelian varieties’, J. Pure Appl. Algebra 77(3) (1992),

253–262.
[ST68] J.-P. Serre and J. Tate, ‘Good reduction of abelian varieties’, Ann. of Math. (2) 88 (1968), 492–517.
[Ste07] W. Stein, Modular Forms, a Computational Approach (Graduate Studies in Mathematics) vol. 79 (American Mathe-

matical Society, Providence, RI, 2007). With an appendix by Paul E. Gunnells.
[SZ95] A. Silverberg and Y. G. Zarhin, ‘Semistable reduction and torsion subgroups of abelian varieties’, Ann. Inst. Fourier

(Grenoble) 45(2) (1995), 403–420.
[Voi21] J. Voight, Quaternion Algebras (Graduate Texts in Mathematics) vol. 288 (Springer, Cham, 2021).

https://doi.org/10.1017/fms.2024.105 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2024.105

	1 Introduction
	1.1 Motivation
	1.2 Results
	1.3 Methods
	1.4 Previous work
	1.5 Future directions
	1.6 Organization
	1.7 Notation

	2 Quaternionic arithmetic
	2.1 The normalizer of a maximal order
	2.2 Dihedral actions on O
	2.3 Fixed point subgroups modulo N

	3 Galois actions, polarizations and endomorphisms
	3.1 Abelian surfaces of GL2-type
	3.2 The endomorphism field of a PQM surface
	3.3 Polarizations and positive involutions
	3.4 The distinguished quadratic subring
	3.5 The enhanced Galois representation

	4 PQM surfaces over local and finite fields
	4.1 Néron models of PQM surfaces
	4.2 The good reduction field and component group of a PQM surface
	4.3 Component groups and torsion
	4.4 The conductor of a PQM surface
	4.5 Finite fields

	5 Proof of Theorem 1.4: PQM surfaces of GL2-type
	5.1 Abelian surfaces of GL2-type and modular forms
	5.2 Full level 2-structure
	5.3 Torsion classification in the GL2-type case

	6 Proof of Theorem 1.1: Reduction to GL2-type
	6.1 Linear algebra
	6.2 The subgroup generated by a torsion point

	7 Proof of Theorems 1.2 and 1.3: Eliminating groups of order 2i3j
	7.1 Torsion constraints arising from the endomorphism field
	7.2 Groups of order 48
	7.3 Groups of order 36
	7.4 Rational points of order 9
	7.5 Rational points of order 8
	7.6 Groups of order 24

	8 Proof of Theorem 1.6: PQM Jacobians

