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Foldable fans, cscK surfaces and local K-moduli

Carl Tipler

Abstract

We study the moduli space of constant scalar curvature Kähler (cscK) surfaces around
toric surfaces. To this end, we introduce the class of foldable surfaces: smooth toric
surfaces whose lattice automorphism group contains a non-trivial cyclic subgroup. We
classify such surfaces and show that they all admit a cscK metric. We then study the
moduli space of polarised cscK surfaces around a point given by a foldable surface,
and show that it is locally modelled on a finite quotient of a toric affine variety with
terminal singularities.

1. Introduction

The construction of moduli spaces of varieties is a central problem in complex geometry.
Pioneered by Riemann, the case of moduli spaces of curves is now fairly well understood.
In higher dimensions, however, the situation becomes much more delicate. Indeed, iterated
blow-ups (see e.g. [Kol13, Example 4.4]) or the presence of non-discrete automorphisms induce
non-separatedness in moduli considerations. It is then remarkable that, despite their very simple
combinatorial description, toric surfaces are subject to these two issues, and typically correspond
to pathological points in the moduli space of surfaces. In this paper, we will show that when
one restricts to constant scalar curvature Kähler (cscK) surfaces, the moduli space enjoys a very
nice structure near its toric points.

Our motivation to restrict to cscK surfaces comes from the Yau–Tian–Donaldson conjec-
ture (YTD conjecture, see [Yau93, Tia97, Don02]), which predicts that the existence of a cscK
metric on a given polarised Kähler manifold should be equivalent to (a uniform version of)
K-polystability. In the Fano case, the proof of this conjecture led to the recent construction
of the moduli space of K-polystable Fano varieties by Odaka [Oda15] and Li, Wang and Xu
[LWX18, LWX19]. See [Tia97, Ber16, CDS15, Tia15] for the YTD conjecture and also [Xu21,
Part II] and the references therein for a historical survey on the related moduli space. Moreover,
from Odaka’s work [Oda12, Oda13], in the canonically polarised case K-stability is equivalent
to having semi-log canonical singularities, a class that was successfully introduced to construct
the so-called KSBA moduli space (see [Kol13] for a survey of the moduli of varieties of general

Received 25 June 2024, accepted 9 July 2025.
2020 Mathematics Subject Classification 14D22 (primary), 53C25, 14J10, 14M25 (secondary)
Keywords: K-moduli, cscK surfaces, toric surfaces, deformation theory.
c© The Author(s), 2025. Published by Cambridge University Press on behalf of the Foundation Compositio
Mathematica, in partnership with the London Mathematical Society. This is an Open Access article, distributed
under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.

https://doi.org/10.1112/mod.2025.10005 Published online by Cambridge University Press

https://moduli.nl
https://doi.org/10.1112/mod.2025.10005
https://ams.org/msc
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1112/mod.2025.10005


Carl Tipler

type). While a general algebraic construction of a moduli space for K-polystable varieties seems
out of reach at the moment, on the differential geometric side Dervan and Naumann recently
built a separated coarse moduli space for compact polarised cscK manifolds [DN20], extend-
ing Fujiki and Schumacher’s construction that dealt with the case of discrete automorphism
groups [FS90] (see also Inoue’s work on the moduli space of Fano manifolds with Kähler–Ricci
solitons [Ino19]).

However, it seems to the author that the Fano case and its log or pair analogues are the
only sources of examples of those moduli spaces, when non–discrete automorphism groups are
allowed (see also the discussion in [DN20, Example 4.16], which may lead to further examples
via moduli of polystable bundles). Restricting to surfaces, moduli spaces of Kähler–Einstein del
Pezzo surfaces were explicitly constructed in [OSS16]. Our focus will then be on the moduli space
of polarised cscK surfaces, and its geometry around points corresponding to the toric points.
Given that they satisfy the YTD conjecture, by Donaldson’s work [Don02], toric surfaces attract
a lot of attention, and they appear as natural candidates on which to test the general machinery
(compare also with [KP21, Pet22]). As the full classification of cscK toric surfaces is yet to be
carried out, we will consider a subclass whose fans carry further symmetries, which we introduce
now.

Definition 1.1. Let N be a rank two lattice and Σ a complete smooth fan in NR :=N ⊗Z R.
The fan Σ is called foldable if its lattice automorphism group Aut(N,Σ) contains a non-trivial
cyclic subgroup. The associated toric surfaces will be called foldable surfaces.

In order to understand this class of surfaces amongst the toric ones, we show that all crys-
tallographic groups arise as lattice automorphism groups of two dimensional smooth fans (see
Section 3.1).

Proposition 1.2. Let N be a rank two lattice and Σ a complete smooth fan in NR. Then
Aut(N,Σ) is isomorphic to one of the groups in the following set

{C1, C2, C3, C4, C6, D1, D2, D3, D4, D6}.
Moreover, any group in the above list is isomorphic to the lattice automorphism group of some
complete two dimensional smooth fan.

In Proposition 1.2, we denote the cyclic group of order p by Cp and the dihedral group of
order 2p by Dp. We make a distinction between C2 and D1 by assuming that C2 acts via −Id on
N while D1 acts through a reflection (see Section 3.1). Then, from Proposition 1.2, a complete
and smooth two dimensional fan Σ in NR is foldable if and only if Aut(N,Σ) is not isomorphic
to C1 or D1. The associated class of toric surfaces then provides a wide class of examples of cscK
surfaces (see Proposition 3.14).

Proposition 1.3. Let X be a foldable surface. Then X admits a cscK metric in some Kähler
class.

This result relies on the classification of foldable surfaces (Section 3.2) and an application of
Arezzo, Pacard, Singer, and Székelyhidi’s blow-up theorem for extremal Kähler metrics [APS11,
Szé15]. Similar arguments were used in [Tip14] to show that any toric surface admits an iterated
toric blow-up with a cscK metric.

Remark 1.4. To our knowledge, all known examples of toric cscK surfaces are foldable (see
e.g. [Tip14] for a family of examples with unbounded Picard rank, and [WZ11] for a complete
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classification of polarised cscK toric surfaces up to Picard rank 4). It would be interesting to
produce examples of non-foldable toric cscK surfaces.

Our main result shows that the moduli space of polarised cscK surfaces, which is known to
be a complex space [FS90, DN20], is quite well behaved around a foldable surface, as it is locally
modelled on a finite quotient of a toric terminal singularity (see Section 4.3 for a definition of
this class of singularities, which originated in the MMP).

Theorem 1.5. Let (X, [ω]) be a polarised cscK foldable surface with fan Σ in NR, and let
G=Aut(N,Σ). Denote by [X]∈M the corresponding point in the moduli space M of polarised
cscK surfaces. Then there are:

(i) a Gorenstein toric affine G-variety W with at worst terminal singularities, and

(ii) open neighbourhoods W and U of, respectively, (the image of) the torus fixed point x∈W⊂
W/G and [X]∈U⊂M,

such that (U, [X]) and (W, x) are isomorphic as pointed complex spaces.

This result sheds some light on the singularities that may appear on the moduli space of
polarised cscK surfaces. Note that by [BGLJ24, Theorem 4], the good moduli space of smooth
K-polystable Fano manifolds of fixed dimension and volume has klt type singularities (see Section
4.3 for definitions). Also, a combination of Braun, Greb, Langlois and Moraga’s work on GIT
quotients of klt type singularities [BGLJ24, Theorem 1], together with the construction of Dervan
and Naumann’s moduli space for cscK polarised manifolds [DN20, Section 3], directly implies
that the moduli space of polarised cscK surfaces has klt type singularities around its toric points
(see Proposition 2.3). Hence Theorem 1.5 provides a refinement of Proposition 2.3, showing that,
up to a finite covering, the toric structure is locally preserved on the moduli space, and that the
singularities are terminal, at a foldable point. On the other hand, one might not expect such a
nice structure at toric boundary points of a (still hypothetical) compactification M. Indeed, the
local structure of the K-moduli space of Fano varieties was studied around singular toric varieties
in [KP21, Pet22], where much wilder phenomena were observed, mainly due to the existence of
obstructed deformations.

Remark 1.6. It would be interesting to understand whether or not the finite quotient W/G in
Theorem 1.5 is still terminal. Note, however, that it is a non-trivial problem to discover whether
a finite quotient of a terminal singularity is terminal (see [KM98, Remark, p. 161]).

Remark 1.7. Because of cohomology vanishings for toric surfaces, the germ of the moduli space
of polarised cscK surfaces at a toric point does not depend on the chosen cscK polarisation. See,
however, [ST22] for local wall-crossing type phenomena when the polarisation is pushed away
from the cscK locus of the Kähler cone.

Remark 1.8. Theorem 1.5 provides another instance in which canonical Kähler metrics, or K-
polystability, become useful in moduli problems. We would like to mention two other approaches
to producing moduli spaces for (or around) toric varieties. In [Mee19], the notion of an analytic
stack is introduced to produce moduli spaces of integrable complex structures modulo diffeo-
morphisms. Those spaces carry more information, as they classify a wider class of varieties,
but are typically non-separated. In another direction, turning from the classical setting to the
non-commutative one, quantum toric varieties admit moduli spaces which are orbifolds; see
[KLMV21].
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We proceed now to an overview of the proof of Theorem 1.5. If (X, [ω]) is a cscK foldable sur-
face, relying on [Szé10, DN20] and an observation in [RT14], the deformation theory of (X, [ω]) is
entirely encoded by the set of unobstructed polystable points in H1(X, TX) under the action of
Aut(X), the latter being reductive by Matsushima and Lichnerowicz’s theorem [Mat57, Lic58].
Nill’s study of toric varieties with reductive automorphism groups [Nil06] then shows that either
X is isomorphic to CP2 or CP1 ×CP1, in which case it is rigid, or Aut0(X)� T , where T is the
torus of X. Then, by Ilten’s work [Ilt11], H2(X, TX) = 0, so that, locally, the moduli space we
are after is given by (a neighbourhood of the origin in) the GIT quotient H1(X, TX)//Aut(X),
where Aut(X)� T �G. Using [Ilt11] again, the deformation theory of toric surfaces is explicitly
described in terms of their fan, and the affine toric variety W :=H1(X, TX)//T in Theorem 1.5
can be explicitly computed. The proof of Theorem 1.5 then goes as follows. By a classifica-
tion result (see Lemma 4.3), X can be obtained by successive Cp-equivariant blow-ups of some
‘minimal’ models in a list of six toric surfaces. We then use the combinatorial description of
toric terminal singularities (see e.g. [CLS11, § 11.4]) to prove the result for surfaces in that list.
Then, using convex geometry, we show that the desired properties for the local moduli space are
preserved after the Cp-equivariant blow-ups, and hold around [X].

Remark 1.9. In Section 4.4, we produce an example of a toric surface X such that Aut(X)� T
and the quotient H1(X, TX)//T is not Q-Gorenstein. We do not know whether this surface
carries a cscK metric. If not, the expectation is that the theory should be extended to smooth
pairs (X,D) where D⊂X is a simple normal crossing divisor, considering singular or Poincaré
type cscK metrics that are non-singular away from D, such as in [AAS21].

The paper is organised as follows. In Section 2, we settle the necessary background material
on cscK manifolds. Section 3 is devoted to the classification of foldable surfaces and the proofs
of Proposition 1.2 and Proposition 1.3. In Section 4, we carry over the construction of the local
moduli spaces, and prove Theorem 1.5. Finally, in Section 5.1, we provide maps between the
local moduli spaces and speculate about their Weil–Petersson geometry, while in Section 5.2 we
discuss the higher dimensional case.

1.1 Notation

We will use the notation from [CLS11]. For a toric varietyX, Aut(X) stands for its automorphism
group, and Aut0(X)⊂Aut(X) the connected component of the identity. We denote by T the
torus of X, and by N the lattice of its one-parameter subgroups, with dual lattice M and pairing
〈m, u〉, for (m, u)∈M ×N . The fan of X will be denoted by Σ (or ΣX) and the letters τ, σ will
be used for cones in Σ. For 0� j � dim(X), Σ(j) is the set of j-dimensional cones in Σ. For
K∈ {Q,R,C}, we let NK :=N ⊗Z K, and similarly MK =M ⊗Z K. Finally, XΣ may be used to
refer to the toric variety associated to Σ.

2. Background on cscK metrics and their moduli

Let (X,Ω) be a compact Kähler manifold with Kähler class Ω. We will give a very brief overview
of extremal metrics and their deformations, and refer the reader to [Gau, Szé14] for a more
comprehensive treatment.
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2.1 Extremal Kähler metrics

Extremal Kähler metrics were introduced by Calabi [Cal21a] and provide canonical representa-
tives of Kähler classes. They are defined as the critical points of the so-called Calabi functional,
which assigns to each Kähler metric in Ω the L2-norm of its scalar curvature. They include, as spe-
cial cases of interest, cscK metrics and thus Kähler–Einstein metrics. The following obstruction
to the existence of a cscK metric is due to Matsushima and Lichnerowicz [Mat57, Lic58].

Theorem 2.1 [Mat57, Lic58]. Assume that X carries a cscK metric. Then the automorphism
group of X is reductive.

Later on, Futaki discovered another obstruction to the existence of a cscK metric on (X,Ω):
the vanishing of the so-called Futaki invariant [Fut83, Fut88]. Moreover, from [Cal21b], an
extremal Kähler metric in the Kähler class Ω is cscK precisely when the Futaki invariant FutΩ
vanishes. Together with Arezzo, Pacard, Singer, and Székelyhidi’s results on blow-ups of extremal
Kähler metrics, we deduce the following existence result for toric surfaces.

Theorem 2.2 [APS11, Szé15]. Let (X,Ω) be a smooth compact polarised toric surface with
cscK metric ω ∈Ω. Let Z ⊂X be a finite set of torus fixed points, and G⊂Aut(X) a finite
subgroup such that:

(i) the set Z is G-invariant;

(ii) the class Ω is G-invariant; and

(iii) the adjoint action of G on Lie(Aut(X)) has no fixed point but zero.

Then, there is ε0 > 0 such that (BlZ(X),Ωε) carries a cscK metric in the class Ωε := π∗Ω−
εc1(E) for ε∈ (0, ε0), where π : BlZ(X)→X stands for the blow-down map and E =

∑
z∈Z Ez

is the exceptional locus of π.

Proof. From [APS11, Szé15], there is ε0 such that (BlZ(X),Ωε) admits an extremal Kähler
metric for ε∈ (0, ε0). We only need to show the vanishing of the Futaki invariant FutΩε

. This
will follow from its equivariance, as already used in [ST24, Proposition 2.1]. Define X̃ =BlZ(X).
By (i) and (ii),G lifts to a subgroup of Aut(X̃) such that Ωε isG-invariant. Then, by equivariance
of FutΩε

∈ (Lie(Aut(X̃)))∗ (see e.g. [Fut88, Chapter 3] or [LS94, § 3.1]), we have, for all g ∈G
and v ∈ (Lie(Aut(X̃))),

FutΩε
(Adg(v)) = FutΩε

(v).

Let w̃ ∈ Lie(Aut(X̃)). Then w̃ is the lift of an element w ∈ Lie(Aut(X)) that vanishes on Z.
Moreover,

w̃0 :=
∑
g∈G

Adg(w̃)

is a fixed point under the adjoint action of G on Lie(Aut(X̃)). As Z is G-invariant, we deduce
that it is the lift of a fixed point w0 ∈ Lie(Aut(X)) under the adjoint action of G. From (iii), we
deduce that w̃0 = 0. Hence, by equivariance of FutΩε

,

0 = FutΩε
(w̃0) =

∑
g∈G

FutΩε
(Adg(w̃)) = |G|FutΩε

(w̃)

where |G| is the cardinal of G. This concludes the proof. �
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2.2 Local moduli of polarised cscK manifolds

A moduli space M for polarised cscK manifolds was constructed in [DN20], generalising the
results in [FS90] by taking care of non-discrete automorphisms by means of [Szé10, Ino19]. This
space is Hausdorff and is endowed with a complex space structure. It is a coarse moduli space
in the following sense: its points are in bijective correspondence with isomorphism classes of
polarised cscK manifolds and, for any complex analytic family (X,L)→S of polarised cscK
manifolds over some reduced analytic space S (L stands for the relative polarisation of X→S),
there is an induced map S→M. In what follows, we will restrict to the connected components
corresponding to the moduli space of polarised cscK surfaces, still denoted by M. Roughly, M is
constructed by patching together local moduli spaces (MX)X∈S parameterised by S, the set of
polarised cscK surfaces, each MX being obtained as some open set in an analytic GIT quotient
WX//G. Our case of interest is when X is a cscK toric surface. The first cohomology group of
the tangent sheaf, namely H1(X, TX), plays a central role in our study. Indeed, it naturally
arises as the space of infinitesimal deformations for X, and will play the role of the tangent
space at X to the base of a semi-universal family of deformations of X (see e.g. [Kod05, Chapter
4]). The tangent bundle TX is naturally Aut(X)-equivariant, meaning that the Aut(X)-action
lifts to an action on TX in such a way that the projection map TX →X is equivariant (the
lift is given by the differential of the action). Using pullbacks, we see that the bundles Λp,qTX∗

are also equivariant. Then, Λp,qTX∗ ⊗ TX is equivariant, from which we deduce that Aut(X)
acts naturally on TX-valued (p, q)-forms. More explicitly, for any Aut(X)-equivariant bundle
E →X, we deduce an action of Aut(X) on the sections of E by setting, for s∈ Γ(E), g ∈Aut(X)
and x∈X:

(g · s)(x) := g(s(g−1x)).

From holomorphicity of the action, we deduce that the Aut(X)-action on TX-valued (0, p)-forms
commutes with the Dolbeault operator, and hence induces a representation of Aut(X) on

H1(X, TX)� ker (∂ : Ω0,1(TX)→Ω0,2(TX))

Im (∂ : Ω0,0(TX)→Ω0,1(TX))
.

In a more formal way, we could say that the Dolbeault resolution of the holomorphic tangent
bundle is actually a resolution by injectives in the category of Aut(X)-equivariant sheaves, and
thus that the right derived functors of the global sections functor Γ, namely the cohomology
groups H•(X, TX), inherit an Aut(X)-structure. We then extract from [DN20] the following
proposition.

Proposition 2.3. Let (X,Ω) be a polarised cscK toric surface. Then the local moduli space
MX is given by an open neighbourhood of π(0) in the GIT quotient

π :H1(X, TX)→H1(X, TX)//Aut(X).

In particular, its singularities are of klt type.

The above GIT quotient in this affine setting is given by the good categorical quotient that
we now recall. Let R be the ring of regular functions on H1(X, TX). The Aut(X)-action on
H1(X, TX) induces an Aut(X)-module structure on R, given by

g · f := f(g · )
for any g ∈Aut(X) and f ∈R. We then introduce RAut(X) as the set of Aut(X)-invariant ele-
ments. By a classical result of Hilbert and Nagata, RAut(X) is finitely generated as soon as
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Aut(X) is reductive. In that case, the GIT quotient is given by

H1(X, TX)//Aut(X) := Spec(RAut(X)),

with quotient map

π : Spec(R)→ Spec(RAut(X))

corresponding to the inclusion of the finitely generated algebras

RAut(X) →R.

We will then say that a point in H1(X, TX) is polystable if its Aut(X)-orbit is closed and that
it is stable if, in addition, its stabiliser is discrete. We refer the reader to [CLS11, § 5.0] for a
short account of good categorical quotients and to [CLS11, § 14.1] for the special case of toric
GIT quotients. Finally, we refer to Section 4.3 for the definition of klt type singularities.

Proof of Proposition2.3. The tangent space at X, denoted H̃1(TX), of the base of a semi-
universal family of complex deformations of X compatible with the polarisation Ω is constructed
in [CS14, Lemma 6.1] (see also [Szé10]). In general, the construction of H̃1(TX) goes as follows.
First, the usual Kuranishi complex for deformations of complex structures on X is

· · · →Ω0,k(TX)
∂→Ω0,k+1(TX)→ · · · ,

where the extension of ∂ to (0, p)-forms is given in local coordinates, for β =
∑

j βj ⊗ ∂
∂zj , by

∂β =
∑
j

∂βj ⊗ ∂

∂zj
.

We are interested in deformations that are compatible with some cscK metric ω ∈Ω. Following
[FS90], we define maps

ιk• : Ω0,k(TX) → Ω0,k+1

β 	→ ιβω

where ιβω is obtained by the composition of first contraction and then alternation operators.
For k� 1, we then set

Ω0,k
ω (TX) := ker ιk•,

while we define

Ω0,0
ω (TX) :=C∞(X,C).

Together with the restriction of ∂, and the map ∂
0
:=D defined, for f ∈C∞(X,C), by

D(f) := ∂(∇1,0
ω f),

where ∇1,0
ω f is given by ∂f = ω(∇1,0

ω f, ·), we obtain another elliptic complex (Ω0,•
ω (TX), ∂

•
).

We denote by H̃•(TX) the associated cohomology groups. Then, from this complex, follow-
ing Kuranishi’s techniques, one can build a semi-universal family (X,L)→Z of polarised
deformations of (X,Ω), where Z ⊂B ⊂ H̃1(TX) is an analytic subspace (corresponding to
integrable infinitesimal deformations) of some open ball B centred at zero (again, we refer
to [CS14, Lemma 6.1] for the detailed construction). As in [Doa22], setting K := Aut(X, ω),
the group of holomorphic isometries of (X, ω), this construction can actually be made K-
equivariantly, and even locally KC-equivariantly on Z, for the natural KC-action on H̃1(TX).
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From [DN20, § 3], MX is given by an open neighbourhood of 0 in the analytic GIT quotient
WX//G, where G=KC, and where WX ⊂ H̃1(TX) is the smallest G-invariant Stein space con-
taining Z. As noted in [RT14, Lemma 2.10], as X is toric, by Bott, Steenbrink and Danilov’s
vanishing of h0,1(X) and h0,2(X) (see [CLS11, Theorem 9.3.2]), the vector space H̃1(TX) is
G-equivariantly isomorphic to H1(X, TX). Also, for a toric surface, Aut(X) is a linear alge-
braic group, so that G�Aut(X), as the Lie algebra of Aut(X) has no parallel vector field (see
[Gau, Chapter 2]). Finally, H2(X, TX) = 0 by [Ilt11, Corollary 1.5], so that any small element
of H1(X, TX) is integrable, and Z =B ⊂H1(X, TX). Hence WX =H1(X, TX), and putting
all this together, we obtain the first part of Proposition 2.3. The statement about klt type sin-
gularities follows directly from [BGLJ24, Theorem 1], which asserts that the GIT quotient of
a klt type singularity is of klt type, and which implies in particular that the GIT quotient of
H1(X, TX) (which is smooth) by Aut(X) is of klt type. �

3. Foldable toric surfaces

Let N be a rank two lattice and Σ be a fan in NR with associated toric surface X. We will
assume Σ to be smooth, that is, that each cone σ ∈Σ is generated by elements in N that form
part of a Z-basis, and to be complete, i.e. ⋃

σ∈Σ
σ=NR.

Hence, X is a smooth and compact toric surface.

3.1 Lattice automorphisms and fans

We will be interested in automorphism groups of smooth toric surfaces. Denote by T :=N ⊗Z

C∗ the torus of X, and by Aut(N,Σ) the group of lattice automorphisms of Σ. Recall that
Aut(N,Σ) is the subgroup of GLZ(N) consisting of elements g ∈GLZ(N) such that the induced
isomorphisms g ∈GLR(NR) send Σ bijectively to Σ. By a result of Demazure [Dem70, Proposition
11], the automorphism group Aut(X) of X is a linear algebraic group isomorphic to

Aut0(X)�G,

where G is a quotient of Aut(N,Σ). We will later on be interested in the GIT quotient of
H1(X, TX) by Aut(X), assuming X to admit a cscK metric. A combination of Matsushima
and Lichnerowicz’s obstruction together with Nill’s work on toric varieties with reductive
automorphism group [Nil06] implies the following proposition.

Proposition 3.1. Assume that X is a toric surface that admits a cscK metric. Denote by Σ
its fan and by N its lattice of one-parameter subgroups. Then either

X ∈ {P2, P1 × P1},
or

Aut(X)� T �Aut(N,Σ).

Proof. By Matsushima and Lichnerowicz’s theorem [Mat57, Lic58], Aut(X) is reductive. The
result then follows from Nill’s result [Nil06, Theorem 1.8] together with Demazure’s structure
theorem [Dem70, Proposition 11, p. 581], which we now recall. Demazure’s root system for
(N,Σ), which we denote here by R (it corresponds to Rac(Σ) in Demazure’s notation [Dem70]),
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is the set

R := {m∈M | ∃ρ∈Σ(1) with 〈m, uρ〉= 1 but ∀ρ′ ∈Σ(1), ρ′ 
= ρ, 〈m, uρ′〉� 0},
where we use the notation uρ ∈N for the primitive generator of the ray ρ. Demazure’s structure
theorem then asserts that the identity component Aut(X)0 of Aut(X) is generated by T and
some unipotent elements {Um, m∈R}. In particular,

dim(Aut(X)) = dim(T ) + |R|.
Then, the quotient Aut(X)/Aut(X)0 is finite and isomorphic to a quotient of Aut(N,Σ) by
a subgroup W (N,Σ)⊂Aut(N,Σ) that is the Weyl group of a maximal reductive subgroup of
Aut(X) with root system R∩−R. Then Nill’s theorem [Nil06, Theorem 1.8] gives an upper
bound for the dimension of the automorphism group of a smooth complete toric variety, when
it is reductive. In the case of a smooth toric surface X with reductive automorphism group, the
outcome is that either X is a product of projective spaces or dim(Aut(X)) = 2. In the latter case,
from the previous discussion on Demazure’s result, this implies that the set of Demazure’s roots
R for (N,Σ) is empty. Hence, Aut(X)0 = T and Aut(X)/Aut(X)0 �Aut(N,Σ), which concludes
the proof. �

As P2 and P1 × P1 are rigid, we will now focus on the case

Aut(X)� T �Aut(N,Σ),

and characterise the possible finite groups that arise as lattice automorphism groups of rank two
complete fans.

Lemma 3.2. Let g ∈Aut(N,Σ), and denote by m∈N the order of g. Then

m∈ {1, 2, 3, 4, 6}.
Moreover, the complex linear extension of g to NC is conjugated (in GL(NC)�GL2(C)) to the
following:

(i) if m= 1, then g∼ Id,

(ii) if m= 2 and det(g) = 1, then g∼−Id,

(iii) if m= 2 and det(g) =−1, then g∼
[
1 0
0 −1

]
,

(iv) if m= 3, then g∼
[
j 0
0 j2

]
,

(v) if m= 4, then g∼
[
i 0
0 −i

]
, and

(vi) if m= 6, then g∼
[−j 0

0 −j2

]
,

where we write j = ei
2π

3 and denote by ∼ the equivalence relation given by conjugation, and
where we use an isomorphism NC �C2.

The proof is an elementary exercise in linear algebra. We include it for convenience of the
reader.
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Proof. Fix an isomorphism N �Z2 and identify g with an element of GL2(Z). The characteristic
polynomial of

g=

[
a b
c d

]
then reads

χ(Y ) = Y 2 − (a+ d)Y + (ad− bc).

On the other hand, Jordan’s normal form for the C-linear extension of g implies that it is
conjugated (in M2(C)) to [

α δ
0 β

]

for (α, β)∈C2 and δ ∈ {0, 1}. As g is both invertible and of finite order, we deduce that δ = 0
and g is conjugated to [

α 0
0 β

]
.

Moreover, αm = βm = 1, so that α and β are m-th roots of unity in C. On the other hand, by
conjugation invariance, we also have

det(g) = αβ = ad− bc∈ {−1,+1}
as g ∈GL2(Z) and

trace(g) = α+ β = a+ d∈Z.

If α and β belong to {−1,+1}, that is if m= 2, then we are done. If not, at least one of α or β
is not real, and thus α and β must be complex conjugated roots of χ(Y ). Hence

trace(g) = α+ α∈Z,

but also

|α+ α|< 2

so that

α+ α∈ {−1, 0, 1}.
Hence

α∈ {±i,±j,±j2},
from which the result follows easily. �

Recall that we denote by Cp the cyclic group of order p and by Dp the dihedral group of
order p. We then have the following proposition.

Proposition 3.3. The group Aut(N,Σ) is isomorphic to one of the groups in the following set

{C1, C2, C3, C4, C6, D1, D2, D3, D4, D6}.
Proof. As Aut(N,Σ) is finite, we can fix an Aut(N,Σ)-invariant euclidean metric on NR (again
considering the R-linear extension of Aut(N,Σ)). Then, by the classification of finite subgroups
of the group of orthogonal transformations of the plane, we deduce that Aut(N,Σ) is isomorphic

10

https://doi.org/10.1112/mod.2025.10005 Published online by Cambridge University Press

https://doi.org/10.1112/mod.2025.10005


Foldable fans, cscK surfaces and local K-moduli

• • • • •

• • •
e2

��

e1 ��

��

��

• •

• • • • •

• • • • •
Figure 1. Fan Σ′

1 of F2.

• • • • •
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e2

��

e1 ��

��

• •

• • • • •
Figure 2. Fan Σ′

3 of P2.

to Cp or Dp, for some p∈N∗. As those groups admit elements of order p, by Lemma 3.2, the
result follows. �

Remark 3.4. This proposition simply recovers the well-known classification of crystallographic
groups in dimension 2.

We will now show that all the groups listed above arise as lattice automorphism groups of
rank two complete smooth fans. Note that C2 and D1 will be distinguished by the fact that their
generator is −Id in the first case and a reflection in the second case. Consider then the following
fans in Z2, where we denote by {e1, e2} the standard basis of Z2.

Example 3.5. Let Fn be the nth Hirzebruch surface, that is, the total space of the fibration

P(OP1 ⊕OP1(n))→CP1.

Note that F0 =CP1 ×CP1. Then, up to isomorphism, the fan ΣFn
of Fn is described by

ΣFn
(1) = {R+ · (0,−1), R+ · (1, 0), R+ · (0, 1), R+ · (−1,−n)}.

As an example, F2 admits the fan description of Figure 1, which we will denote by Σ′
1. In this

figure, and those that follow, the dots represent the lattice points, and we only represent the ray
generators of the complete two dimensional fan.

Example 3.6. In Figures 2 and 3, respectively, the fans ΣP2 =Σ′
3 and ΣP1×P1 =Σ′

4 of P2 and
P1 × P1 are depicted (the numbering of the fans is motivated by Proposition 3.9 below).

Example 3.7. Recall that blowing up a smooth toric surface along a torus fixed point produces
a new smooth toric surface. By the orbit cone correspondence, such a fixed point corresponds to
a two dimensional cone

σ=R+ · ei +R+ · ei+1
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Figure 3. Fan Σ′
4 of CP1 ×CP1.
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Figure 4. Fan Σ′
2: iterated blow-up of P1 × P1.

• • • • •
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Figure 5. Fan Σ′
6: blow-up of P2 along its three fixed points.

in the fan of the blown-up surface, and the fan of the resulting surface is obtained by adding
the ray generated by ei + ei+1 to the set of rays of the initial surface (see [CLS11, Chapter 3,
§ 3]). By iterated blow-ups, we obtain the following fans. Figure 4 represents an iterated blow-up
of P1 × P1. The following Figure 5 is a two points blow-up of P1 × P1 and, at the same time, a
three points blow-up of CP2.

Example 3.8. Here are further examples to complete our classification of lattice automorphism
groups of rank two complete smooth fans (Figures 6, 7, 8, 9 and 10). The first is a single blow-
up of F2, which cancels the symmetry of Σ′

1 =ΣF2
(Figure 6). The next (Figure 7) is obtained

from Σ′
2 by blowing up in a C2-equivariant way (recall that C2 = 〈−Id〉). The third example

is obtained from the fan of P2 by three successive blow-ups of three distinct fixed points, in a
symmetric way (Figure 8). The next example is obtained by two successive blow-ups of P1 × P1

at four fixed points (Figure 9). The last is obtained from Σ′
6 by two successive blow-ups at six

fixed points (Figure 10).

Proposition 3.9. Let p∈ {1, 2, 3, 4, 6}. Then we have

Aut(Z2,Σp)�Cp

and

Aut(Z2,Σ′
p)�Dp.

Proof. The proof is straightforward, although a bit tedious, so we will only give a sketch of it.
Fix an orientation of R2, and pick a two dimensional cone σ of Σp (the proof is the same for Σ′

p).
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Figure 6. Fan Σ1: one-point blow-up of F2.
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Figure 7. Fan Σ2.
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Figure 8. Fan Σ3.

Let g ∈Aut(Z2,Σp). Then g · σ ∈Σp(2). Moreover, g maps the two facets of σ to the two facets
of g · σ. As the fan Σp is explicitly described, for each possible τ = g · σ ∈Σp(2), we deduce the
possible matrix coefficients for g,

g=

[
aτ bτ
cτ dτ

]
∈GL2(Z).

For any possible τ , one can then explicitly compute the images of the rays of Σp by g. They
should all belong to Σp(1), and this enables us to select the allowed cones τ for g to be a lattice
automorphism of Σp. The result then follows easily. �
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Figure 9. Fan Σ4.
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Figure 10. Fan Σ6.

Remark 3.10. One can show similarly that for any Hirzebruch surface Fn with n� 1 and with
fan ΣFn

, one has Aut(N,ΣFn
)�D1.

3.2 Classification of foldable surfaces

We first recall the following definition.

Definition 3.11. We say that a smooth and complete two dimensional fan is foldable if its
lattice automorphism group contains a non-trivial cyclic group. A foldable surface is a toric
surface whose fan is foldable.

We now proceed to a partial classification of foldable toric surfaces. Notice that if G⊂
Aut(N,Σ), then we can find a G-action onX that is faithful as soon as Aut(X)� T �Aut(N,Σ).

Definition 3.12. A G-equivariant blow-up of X is a blow-up of X along a G-orbit of torus fixed
points. We say that a smooth toric surface X̃ is obtained from X by successive G-equivariant
blow-ups if there is a sequence of G-equivariant blow-ups:

X̃ =Xk →Xk−1 → · · ·→X1 →X0 =X.
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Denote by Blp1,p2,p3
(P2) the toric surface associated to the fan of Figure 5, that is, the blow-up

of P2 at its three torus fixed points.

Proposition 3.13. Let X be a foldable surface with fan Σ. Assume that Aut(N,Σ) contains
a subgroup isomorphic to Cp, p� 2.

(i) If p∈ {2, 4}, then X is obtained from P1 × P1 by successive Cp-equivariant blow-ups.

(ii) If p= 3, then X is obtained from P2 by successive Cp-equivariant blow-ups.

(iii) If p= 6, then X is obtained from Blp1,p2,p3
(P2) by successive Cp-equivariant blow-ups.

Proof. Through its representation

Cp →GLR(NR),

the subgroup Cp of Aut(N,Σ) acts on NR by rotations (once an invariant euclidean metric is
fixed), and hence has no fixed points. We deduce that the action of Cp on Σ(1) is free, and then
p divides |Σ(1)|, the number of rays of Σ.

On the other hand, from the classification of toric surfaces (see e.g. [CLS11, Chapter 10]),
we must have |Σ(1)|� 3. Moreover, if |Σ(1)|= 3, then X � P2, while if |Σ(1)|= 4, then X � Fn

for some n∈N. By Remark 3.10, we see that X � P1 × P1 in that case.
So we may assume that |Σ(1)|� 5, and that p divides |Σ(1)|. By the classification of toric

surfaces, we know that X is obtained by successive blow-ups from Fn, n� 0, or from P2. Then,
there is a ray ρi in Σ(1) generated by the sum of two primitive elements

ui = ui−1 + ui+1

generating adjacent rays ρi−1 and ρi+1 in Σ(1) (that is both ρi + ρi−1 and ρi + ρi+1 belong to
σ(2)). Note that

det(ui+1, ui−1) = det(ui − ui−1, ui−1) = det(ui, ui−1) = 1

so the contraction to a point of the divisor associated to the ray ρi is smooth. By linearity, for
any g ∈Cp we have

g · ui = g · ui−1 + g · ui+1,

and hence we can contract to points the Cp-orbit of the torus invariant divisor Dρi
associated

to ρi and obtain a smooth toric surface whose fan still admits Cp as a subgroup of its lattice
symmetry group. By an inductive argument on |Σ(1)|, we obtain the result. �

From the classification, we obtain the following proposition.

Proposition 3.14. Let X be a foldable surface. Then X admits a cscK metric.

Proof. This is simply an induction on the number of Cp-equivariant blow-ups in Proposition
3.13, using Theorem 2.2 at each step, and the fact that P1 × P1, P2 and Blp1,p2,p3

(P2) admit cscK
metrics in Cp-equivariant classes (for Blp1,p2,p3

(P2), this follows again from Theorem 2.2 applied
to P2). �

4. The local cscK moduli around a foldable surface

Let X be a smooth and complete toric surface with fan Σ and one-parameter subgroups
lattice N . We will denote by (ui)0�i�r the primitive elements of N that generate the rays

ρi =R+ · ui ∈Σ(1),
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labelled in counterclockwise order, so that, for each i, (ui, ui+1) is a positively oriented Z-basis
of N , and ρi + ρi+1 ∈Σ(2), with the convention u0 = ur.

4.1 Deformation theory of toric surfaces

We recall here some results from [Ilt11] regarding the deformation theory of toric surfaces. As
X is toric, dualising the generalised Euler sequence yields (see e.g. [CLS11, Theorem 8.1.6])

0→Pic(X)∗ ⊗Z OX →
r⊕

i=1

OX(Dρi
)→ TX → 0,

where Pic(X) stands for the Picard group ofX andDρi
is the torus invariant divisor associated to

the ray ρi ∈Σ(1). This sequence is actually a short exact sequence of Aut(X)-equivariant bundles,
and induces a long exact sequence of Aut(X)-modules in cohomology. From a classical vanishing
theorem (see e.g. [CLS11, Theorem 9.3.2]), we have H1(X,OX) = 0 and H2(X,OX) = 0, and
this long exact sequence induces an isomorphism of Aut(X)-modules:

r⊕
i=1

H1(X,OX(Dρi
))�H1(X, TX). (1)

In particular, the action of the torus T on X induces a representation of T on

V :=H1(X, TX)

compatible with the above isomorphism. The complete reducibility theorem for torus actions (see
[CLS11, Proposition 1.1.2] and the references therein) provides a weight space decomposition
that we will denote by

V =
⊕
m∈M

Vm.

More precisely, V splits into T -invariant subspaces Vm ⊂ V where the T -action on Vm is given
by

t · x= χm(t) x

for t∈ T , x∈ Vm, and where χm : T →C∗ is the character associated to the weight m∈M . Using
the isomorphism (1), Ilten obtained, for each weight m∈M =HomZ(N,Z) ([Ilt11, Corollary
1.5]),

dim(Vm) = �

{
ρi ∈Σ(1)

∣∣∣∣∣ 〈m, ui〉=−1

〈m, ui±1〉< 0

}
. (2)

where � stands for the cardinal.

Example 4.1. We will provide explicit examples of weight space decompositions for V =
H1(X, TX), when X is the smooth toric surface associated to a foldable fan. First, P1 × P1,
P2 and Blp1,p2,p3

(P2) are rigid, as can be checked directly using Formula (2). In those cases,
V = 0. We denote by Y2 the foldable toric surface associated to the fan Σ′

2 of Figure 4. We also
introduce the foldable toric surfaces Y4 and Y3 associated to the fans in Figures 11 and 12.

One can compute directly that, for i∈ {2, 3, 4},
Aut(N,ΣYi

)�Di.
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Figure 11. Fan of Y4.
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Figure 12. Fan of Y3.

Set Vi =H1(Yi, TYi). Denote by (e1, e2) the standard basis of N =Z2 and by (e∗1, e∗2) the dual
basis of M = (Z2)∗ �Z2. Testing the conditions in Formula (2) for each ray generator gives

V2 = V 1
+e∗2

⊕ V 1
−e∗2

⊕ V 1
−e∗1+e∗2

⊕ V 1
e∗1−e∗2

,

V3 = V 2
−e∗2

⊕ V 2
e∗1
⊕ V 2

−e∗1+e∗2
,

V4 = V 1
+e∗1

⊕ V 1
−e∗1

⊕ V 1
+e∗2

⊕ V 1
−e∗2

, (3)

where V j
m stands for a j-dimensional weight m representation of T .

Remark 4.2. One can check, by unravelling the isomorphisms used in [Ilt11, § 1], that the
C3-action on Y3 induces an action on the coordinates χm

j of V3, with two orbits given by{
χ
−e∗2
j , χ

e∗1
j , χ

−e∗1+e∗2
j

}
, j ∈ {1, 2}

where χm
j , for 1� j � dim(Vm), stand for the generators of the weight m space Vm. Similarly, the

D2 (respectively D4) action on Y2 (respectively Y4) induces a transitive action on the coordinates
of V2 (respectively V4).
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4.2 The toric GIT quotient

We will assume from now on that X carries a cscK metric, so, by Proposition 3.1, we have

Aut(X)� T �Aut(N,Σ).

We will set

G := Aut(N,Σ).

From Proposition 2.3, the local moduli space MX of polarised cscK surfaces around [X]∈M is
given by a neighbourhood of the origin in the GIT quotient of V by T �G. Assume now that
X is foldable. To prove Theorem 1.5, it is then enough to show that the GIT (or categorical)
quotient

W := V//T

is toric, Gorenstein and terminal. We will end this section by showing that W is indeed an affine
toric variety. We first need the following lemma, where by Cp ⊂G we mean that there is an
injection of Cp in G.

Lemma 4.3. Let X be a foldable toric surface. Then one of the following holds:

(i) If X is rigid, then X ∈ {P2, P1 × P1,Blp1,p2,p3
(P2)}.

(ii) If X is not rigid and C2 ⊂G, X ∈ {Y2, Y4} or X is obtained from Y2 or Y4 by successive
C2-equivariant blow-ups.

(iii) If X is not rigid and C3 ⊂G, X = Y3 or X is obtained from Y3 by successive C3-equivariant
blow-ups.

Recall that Y2, Y3 and Y4 were defined in Example 4.1.

Proof. Note that, by Example 4.1, P2, P1 × P1 and Blp1,p2,p3
(P2) are rigid. If X is not one

of those three foldable surfaces, then, from Proposition 3.13, it either belongs to {Y2, Y3, Y4}
or is obtained from Yj by successive Cp-equivariant blow-ups, where p= 2 for j ∈ {2, 4} and
p= 3 for j = 3. From [Ilt11, Corollary 1.6], H1(Yj , TYj) injects in H1(X, TX). Hence, from the
computations of Example 4.1, we see that X is not rigid, and the result follows. �

Proposition 4.4. The GIT quotient W inherits the structure of a normal toric affine variety.

Although the proof is straightforward, we should warn the reader that our setting is slightly
different from the standard quotient construction of toric varieties (see e.g. [CLS11, Chapter 5]),
as the weight spaces Vm may have dimension greater than 1, and the quotient map σ̃→ σ (see
the proof below) may send several rays to the same ray. This detailed proof will also settle the
necessary notation for the following section.

Proof. If V = 0, then there is nothing to prove. We then assume that X is not rigid. From
Lemma 4.3, X is obtained from Yj by successive Cp-equivariant blow-ups, where j ∈ {2, 3, 4},
for suitable p∈ {2, 3}.

Denote by d=dim(V ) and by Ñ �Zd the lattice of one-parameter subgroups of T̃ � (C∗)d

acting on V �Cd by multiplication on each coordinate:

∀(t, x)∈ T̃ × V, t · x= (tixi)1�i�d.
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The T -module structure of V is then equivalent to the injection T → T̃ , or the lattice
monomorphism

B :N → Ñ

defined by

B(u) = (〈mi, u〉)1�i�d

where the weights mi run through all the weights in the weight space decomposition of V (with
multiplicities when dim(Vm)� 2). The fact that B is injective comes again from the injection
Vj ⊂ V (cf. [Ilt11, Corollary 1.6]) and the explicit computation of Vj in Example 4.1. We then
consider the quotient

N ′ := Ñ/N,

where we identify N with B(N) by abuse of notation. We claim that N ′ is again a lattice, that
is, that N is saturated in Ñ . If X = Yj , for j ∈ {2, 3, 4}, then this can be checked directly using
the description of Vj in Example 4.1. If X is a blow-up of Yj , then Vj ⊂ V , so that B can be
written B = (Bj , B+), where

Bj :N → Ñj

is the injection corresponding to the weight space decomposition of Vj , with

Ñj �Zdj ,

for dj =dim(Vj). Then, the fact that Bj(N) is saturated in Ñj ⊂ Ñ implies that B(N) is
saturated in Ñ . Thus, we have a short exact sequence of lattices

0−→N
B−→ Ñ

A−→N ′ −→ 0 (4)

where

A : Ñ → Ñ/N

denotes the quotient map.
Introduce (ẽi)1�i�d, the basis of V dual to the coordinates χmi of the weight spaces Vmi

.
This corresponds to a Z-basis of Ñ , still denoted (ẽi)1�i�d. The cone

σ̃=

d∑
i=1

R+ · ẽi ⊂ ÑR

satisfies

Spec(C[σ̃∨ ∩ M̃ ]) = V,

where

M̃ =HomZ(Ñ ,Z).

Consider the cone of N ′
R

σ=A(σ̃) =

d∑
i=1

R+ ·A(ẽi)

(we will still denote by A and B their R-linear extensions). Our goal is then to show that W is
isomorphic to the affine toric variety defined by σ. We first need to prove that σ has the required
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properties to define such a variety. The cone σ is clearly rational, convex and polyhedral. We
now prove that σ is strictly convex, that is

−σ ∩ σ= {0}.
So let v ∈−σ ∩ σ. Then there is (u+, u−)∈ (σ̃)2 such that A(u±) =±v. We deduce that

u+ + u− ∈ ker(A)∩ σ̃= Im(B)∩ σ̃.

We will then show that

Im(B)∩ σ̃= {0}, (5)

which implies u+ = u− = 0 by strict convexity of σ̃. Notice that it is enough to show (5) for
X = Yj . Indeed, using the decomposition B = (Bj , B+) as before, if

u=B(x)∈ σ̃,

then

uj =Bj(x)∈ σ̃j ,

where σ̃j ⊂ (Ñj)R is the cone corresponding to Vj . If

Im(Bj)∩ σ̃j = {0}, (6)

then by injectivity of Bj we deduce that x= 0 and then u= 0. It remains to prove (6), which
follows again from the explicit description of the weights of the T action on Vj . For example, if
j = 2, and if

B2(x1, x2) = (x2,−x2,−x1 + x2, x1 − x2)∈ σ̃2,

then by definition of σ̃2 we deduce ⎧⎪⎪⎨
⎪⎪⎩

x2 � 0,
−x2 � 0,

−x1 + x2 � 0,
x1 − x2 � 0,

and thus x1 = x2 = 0. The cases j ∈ {3, 4} are similar. We have just proved that σ is a strongly
convex rational polyhedral cone, and it thus defines an affine toric variety.

We now claim that

W � Spec(C[σ∨ ∩M ′])

with

M ′ =HomZ(N
′,Z).

It is equivalent to show that

C[σ∨ ∩M ′]�C[χm1 , . . . , χmd ]T .

The latter equality follows easily from the definitions. Indeed, considering the dual sequence
to (4),

0−→M ′ A∗−→ M̃
B∗−→M −→ 0 (7)
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for m′ ∈M ′, if m̃=A∗(m′), then

χm′ ∈ σ∨ ⇐⇒ ∀i∈ [[1, d]], 〈m′, A(ẽi)〉� 0

⇐⇒ ∀i∈ [[1, d]], 〈A∗(m′), ẽi〉� 0

⇐⇒
{

B∗(m̃) = 0
∀i∈ [[1, d]], 〈m̃, ẽi〉� 0

⇐⇒ χm̃ ∈C[χm1 , . . . , χmd ]T ,

where in the last equivalence we used the facts that, from the definition of the basis (ẽi)1�i�d,

χm̃ ∈C[χm1 , . . . , χmd ]⇐⇒∀i∈ [[1, d]], 〈m̃, ẽi〉� 0,

and the T -module structure on C[χm1 , . . . , χmd ] reads, for any one-parameter subgroup λu :
C∗ → T generated by some u∈N ,

λu(t) · χm̃ = t〈m̃,B(u)〉 χm̃.

This proves the claim, and the result follows. �

4.3 Singularities

We keep the notation from the previous section (see, in particular, the proof of Proposition 4.4).
Our goal here is to conclude the proof of Theorem 1.5, by showing that W is Gorenstein and
terminal. Let us first recall the definitions of these notions, and their combinatorial characteri-
sation in the toric case (we refer the reader to [KM98, Introduction and Chapter 5] for a more
general treatment of these notions).

Definition 4.5. Let Z be a normal toric variety.
1

Then Z is Gorenstein if the canonical divisor
KZ is Cartier (Q-Gorenstein if KZ is Q-Cartier). In that case, Z has terminal singularities if
there is a resolution of singularities π : Z̃ →Z such that if we set

KZ̃ = π∗KZ +
∑
i

aiEi,

where the divisors Ei are distinct and irreducible, then for all i, we have ai > 0.

One can check that the above definition does not depend on the choice of resolution. Terminal
singularities play an important role in the minimal model programme, being the singularities of
minimal models. Their logarithmic version has also turned out to be very useful. Recall that a log
pair is a normal variety Z together with an effective Q-divisor D with coefficients in [0, 1]∩Q.
A log resolution for a log pair (Z,D) is a resolution of singularities π : Z̃ →Z such that the
exceptional locus Exc(π) of π is a divisor and such that π−1(Supp(D))∪Exc(π) is a simple
normal crossing divisor.

Definition 4.6. Let (Z, D) be a log pair such that KZ +D is Q-Cartier (the pair is then called
Q-Gorenstein). In that case, (Z,D) has klt singularities if there is a log resolution π : Z̃ →Z

1Being normal is not required in the most general definition of Gorenstein singularities. However, we will only
deal with normal toric varieties, which are rational [CLS11, Theorem 11.4.2], and hence Cohen–Macaulay, which
is usually required to define Gorenstein singularities.
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such that if we set

KZ̃ = π∗(KZ +D) +
∑
i

aiEi,

where the divisors Ei are distinct and irreducible, then for all i, we have ai >−1. Following
[BGLJ24], we say that a normal variety Z is of klt type if there exists an effective Q-divisor D
such that (Z,D) is a Q-Gorenstein log pair with klt singularities.

At this stage, from [BGLJ24, Theorem 1], we know that W is of klt type. Also, by [CLS11,
Corollary 11.4.25], ifW is Gorenstein, then it has log terminal singularities, meaning that the pair
(W, 0) is klt. We will give a direct proof that it is actually Gorenstein with terminal singularities,
using the following characterisation from [CLS11, Proposition 11.4.12] (where we use the notation
σ(1) to denote the set of rays in a cone σ and uρ to denote the primitive generator of a ray ρ in
σ(1)).

Proposition 4.7. Consider W =Spec(C[σ∨ ∩M ′]), the affine toric variety associated to the
rational strictly convex polyhedral cone σ⊂N ′

R (with lattice N ′). Then

(i) W is Gorenstein if and only if there exists m∈M ′ such that for all ρ∈ σ(1), 〈m, uρ〉= 1;
and

(ii) in that case, W has terminal singularities if and only if the only lattice points in

Πσ :=

⎧⎨
⎩
∑

ρ∈σ(1)
λρuρ |

∑
ρ∈σ(1)

λρ � 1, 0� λρ � 1

⎫⎬
⎭⊂N ′

R

are given by its vertices.

From the discussion in Section 4.2, the following proposition concludes the proof of
Theorem 1.5.

Proposition 4.8. The affine toric variety W is Gorenstein and has terminal singularities.

Proof. We will exclude the rigid cases, and, as in the proof of Proposition 4.4, assume that
X is obtained from Yj by successive Cp-equivariant blow-ups, where j ∈ {2, 3, 4}, for suitable
p∈ {2, 3}.

We use the characterisation in Proposition 4.7, and first need to describe the rays of σ
and their primitive generators. Note that, by construction, the rays of σ belong to the set
{R+ ·A(ẽi), 1� i� d}. Let ρi =R+ ·A(ẽi) be such a ray. We claim that A(ẽi) is primitive in N ′.
The argument is similar to the one used to prove strict convexity in the proof of Proposition 4.4.
Suppose, for a contradiction, that there is a∈N, a� 2, and ẽ∈ σ̃ ∩ Ñ such that A(ẽi) = aA(ẽ).
Note that there is x∈N such that

B(x) = (Bj(x), B+(x)) = ẽi − aẽ. (8)

By injectivity of Bj , if Bj(x) = 0, then x= 0 hence ẽi = aẽ. This is absurd as ẽi is primitive. So we
may assume Bj(x) 
= 0. Similarly, using Equation (6), we may assume as well that Bj(x) /∈−σ̃j
and Bj(x) /∈ σ̃j . Hence Bj(x) must have at least one positive and one negative coordinate in the
basis (ẽk)1�k�dj

. As ẽ∈ σ̃ ∩ Ñ , its coordinates in the basis (ẽk)1�k�d are non-negative integers,
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and, as a� 2, we can write

aẽ=

d∑
k=1

akẽk

with ak = 0 or ak � 2. Then, from Equation (8), Bj(x) has exactly one coordinate equal to 1,
while its other non-zero coordinates are all less than or equal to −2. A case-by-case analysis using
the description of Vj in Equation (3) (cf. Example 4.1) shows that this is impossible. Indeed, for
V2, the map B2 is

B2(x1, x2) = (x2,−x2,−x1 + x2, x1 − x2),

with x= (x1, x2)∈R2 =NR, so if one coordinate of B2(x) equals 1, there is another coordinate
that equals −1. A similar argument leads to the same conclusion for B4. For B3, we can simply
use the fact that the weight spaces are two dimensional, and we have

B3(x) = (−x2,−x2, x1, x1,−x1 + x2,−x1 + x2),

so the value 1 would appear at least twice in the coordinates of B3(x), if it ever does.
We will then prove that there is m′ ∈M ′ such that

∀i∈ [[1, d]] , 〈m′, A(ẽi)〉= 1,

which implies that W is Gorenstein. So let m′ ∈M ′. Set

m̃=A∗(m′)∈ ker(B∗).

Then,

∀i∈ [[1, d]] , 〈m′, A(ẽi)〉= 1 ⇐⇒ ∀i∈ [[1, d]] , 〈m̃, ẽi〉= 1

⇐⇒ m̃= (1, . . . , 1)

where we used the basis (ẽi) to produce the coordinates of m̃. Hence, it is equivalent to show
that

(1, . . . , 1)∈ ker(B∗),

which, by definition of B, is equivalent to

d∑
i=1

mi = 0∈M

where the weightsmi describe the T -action on V . This is where we use the fact thatX is foldable.
Recall that G=Aut(N,Σ). The G-action on N naturally induces a G-action on M by duality,
in such a way that the duality pairing is G-invariant. Explicitly, for m∈M =Hom(N,Z), and
g ∈G, we have

g ·m :=m(g−1 ·)
and thus

〈g ·m, g · u〉= 〈m, u〉
for any u∈N . By the characterisation of the weights (mi) in Equation (2), we see that this
G-action preserves the set of weights appearing in the decomposition V =

⊕
m∈M Vm. As G

contains a non-trivial cyclic group, there is an element g ∈Aut(N) of order p with no fixed point
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but 0. This element generates a cyclic group that acts freely on {mi, 1� i� d} (freeness comes
from the fact that the action is free on the whole of MR). Hence

d∑
i=1

mi =
∑
i′

p−1∑
k=0

gk ·m′
i

where we picked a single element m′
i in each orbit under this action. As g 
= Id, we have

Id + g+ · · ·+ gp−1 = 0

so that for each orbit
p−1∑
k=0

gk ·m′
i = 0.

We then deduce the existence of the required m′, and that W is Gorenstein.
We proceed to the proof of the fact that W has terminal singularities. Let

Πσ :=

⎧⎨
⎩
∑

ρ∈σ(1)
λρuρ |

∑
ρ∈σ(1)

λρ � 1, 0� λρ � 1

⎫⎬
⎭ .

As described above, we may fix a subset of

{A(ẽi), 1� i� d}
as a set of generators for the rays in σ(1). Let u′ ∈Πσ ∩N ′ be given by

u′ =
d∑

i=1

λiA(ẽi),

with

0� λi � 1,

and

λ1 + · · ·+ λd � 1,

assuming λi = 0 when A(ẽi) is not in our fixed chosen set of ray generators. Assume that there
is i0 with λi0 
= 0. We need to show that λi0 = 1 and λi = 0 for i 
= i0. By the assumptions on the
λi, it is enough to show that λi ∈Z for all i. As u′ ∈N ′, there exists ũ∈ Ñ such that

A(ũ) =A

(
d∑

i=1

λiẽi

)
,

and then there is x∈NR such that

ũ−
d∑

i=1

λiẽi =B(x) = (Bj(x), B+(x)),

where we recall that we still denote by A and B their R-linear extensions to ÑR and NR. By
injectivity of Bj again, we only need to consider the case when Bj(x) 
= 0 and 1� i0 � dj . Indeed,
if Bj(x) = 0 then by injectivity x= 0, and ũ being in Ñ forces the λi to be integral, whereas if
λi = 0 for all i� dj , then Bj(x)∈ Ñ (recall that Bj maps to the first dj-coordinates) and so by
saturation of Bj(N) we have x∈N and thus B(x)∈ Ñ which, together with ũ∈ Ñ , implies that
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the λi are integral. Hence, we have reduced the problem to the case when X = Yj . We will again
use the explicit descriptions of the spaces Vj from Example 4.1. For V3, we find the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ũ1 − λ1 =−x2,
ũ2 − λ2 =−x2,
ũ3 − λ3 = x1,
ũ4 − λ4 = x1,
ũ5 − λ5 =−x1 + x2,
ũ6 − λ6 =−x1 + x2,

where x= (x1, x2)∈R2 =NR and ũ= (ũ1, . . . , ũ6)∈Z6 � Ñ (using the basis (ẽi)1�i�6), from
which we obtain

(λ1 + λ3 + λ5, λ1 + λ3 + λ6, λ1 + λ4 + λ6, λ1 + λ4 + λ5)∈N4

and

(λ2 + λ3 + λ5, λ2 + λ3 + λ6, λ2 + λ4 + λ6, λ2 + λ4 + λ5)∈N4,

where we used the fact that the ũi are integers and λi � 0 for all i. Together with

0� λ1 + · · ·+ λ6 � 1, (9)

we deduce that actually

(λ1 + λ3 + λ5, λ1 + λ3 + λ6, λ1 + λ4 + λ6, λ1 + λ4 + λ5)∈ {0, 1}4
and

(λ2 + λ3 + λ5, λ2 + λ3 + λ6, λ2 + λ4 + λ6, λ2 + λ4 + λ5)∈ {0, 1}4.
Let us then assume that i0 = 1, to fix our ideas, so λ1 > 0, the other cases being similar. We
must then have λ1 + λ3 + λ5 = 1, and summing with λ2 + λ4 + λ6, we see with (9) that λ2 + λ4+
λ6 = 0. Hence λ2 = λ4 = λ6 = 0. Then, λ1 + λ4 + λ6 = λ1 > 0 so λ1 = 1. Considering λ1 + λ3 +
λ6 = 1 and λ1 + λ4 + λ5 = 1 yields λ3 = λ5 = 0, and the result follows in that case. The cases of
V2 and V4 are similar, so we will only treat V4. In that case, in the coordinates x̃= (x̃1, . . . , x̃4)∈
R4 � ÑR given by (ẽ1, . . . , ẽ4), the map A is given by

A(x̃1, x̃2, x̃3, x̃4) = (x̃1 + x̃2, x̃3 + x̃4).

Hence {
A(ẽ1) = A(ẽ2),
A(ẽ3) = A(ẽ4),

so we can pick the ray generators (A(ẽ1), A(ẽ3)) for the two dimensional cone σ. The description
of V4 then implies ⎧⎪⎪⎨

⎪⎪⎩
ũ1 − λ1 = x1,

ũ2 = −x1,
ũ3 − λ3 = x2,

ũ4 = −x2,

hence x∈N and the result follows. �
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4.4 Examples

We first provide two examples of local moduli spaces and then an example of a quotient

H1(X, TX)//T

that is not Q-Gorenstein, for a smooth toric surface X.

4.4.1 A smooth example: Y4 We consider the toric variety W4 which is the quotient of V4

by T (recall the definition of Y4 in Example 4.1, and that V4 =H1(Y4, TY4)). As seen in the
proof of Proposition 4.8, the generators of σ in that case can be taken to be A(ẽ1) and A(ẽ3),
so that σ is isomorphic to the cone

R+ · (1, 0) +R+ · (0, 1)⊂R2.

Then,

W4 �C2,

and the G-action on V4 (see Remark 4.2) descends to a D1-action on W4 �C2 generated by a
reflection

(x, y) 	→ (y, x).

Hence, we conclude that the local moduli space is modelled on

W4//G�C2.

4.4.2 A singular example: Y3 Let us now consider W3, given by the GIT quotient of V3

by T . We can pick isomorphisms N �Z2, Ñ �Z6 and

N ′ = Ñ/N �Z4

such that the map B :N → Ñ is given by

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −1
0 −1
1 0
1 0
−1 1
−1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

and the map A : Ñ →N ′ by

A=

⎡
⎢⎢⎣
−1 1 0 0 0 0
0 0 −1 1 0 0
1 0 1 0 1 0
1 0 1 0 0 1

⎤
⎥⎥⎦ .

Hence, W3 is the toric variety associated to the cone

σ=

6∑
i=1

R+ · e′i ⊂R4

where the (e′i)1�i�6 are given by the columns of the matrix A. This toric affine variety is singular.
It is not even simplicial, as the (e′i)1�i�6, which are the primitive generators of the six rays
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Figure 13. Fan of X.

in σ(1), do not form a Q-basis for N ′
Q. The G-action descends to a D3-action on W3. Indeed, as

explained in the proof of Proposition 4.8, G�D3 acts on the set of weights mi that appear in the
weight space decomposition of V3 �C6. This action results in permutations of the χmi , and thus
in permutations of the elements of the basis (ẽi)1�i�6 (we use the notations from the previous
proofs of Propositions 4.4 and 4.8). Then, this D3-action descends to N ′ �Z4, by permutations
of the e′i. Explicitly, we compute that the associated representation

D3 →GL4(Z)

is generated by ⎡
⎢⎢⎣
0 0 −1 1
1 0 0 0
0 0 1 0
0 1 1 0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣
−1 0 0 0
0 −1 0 0
1 1 0 1
1 1 1 0

⎤
⎥⎥⎦

where the first matrix represents an element of order 3 and the second one a reflection. The final
quotient W3//D3 provides a singular example of a local moduli space.

4.5 A non–Gorenstein example

Here we produce an example of a toric surface X with Aut(X)� T and H1(X, TX)//T a non
Q-Gorenstein toric variety (see Figure 13). For this, simply blow up Y4 in a single point to
produce the fan within Figure 13.

As X is blown up from Y4, we have Aut0(X)� T . We can also check that we actually have
Aut(X)� T . Moreover, the arguments in Section 4.2 go through, and we find that, if X were
cscK, its local moduli space would be modelled on the GIT quotient ofH1(X, TX) by T . A direct
computation again, using the method in Section 4.1, provides the weight space decomposition

H1(X, TX) = V 1
+e∗1

⊕ V 2
−e∗1

⊕ V 1
+e∗2

⊕ V 1
−e∗2

⊕ V 1
e∗1−e∗2

.

Given that the sum of the weights that appear in this decomposition does not vanish, the quotient
H1(X, TX)//T is not Q-Gorenstein (see the proof of Proposition 4.7).

5. Discussion and perspectives

5.1 Relations between local moduli and Weil–Petersson metrics

In this section we will discuss the fact that the local moduli spaces we considered are related by
toric fibrations. Assume that π :X →X0 is a G-equivariant blow-up between two foldable toric
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surfaces. We keep the notation from the previous sections, using the subscript 0 to refer to the
spaces associated to X0. From [Ilt11, Corollary 1.6], the corresponding space V0 injects in V . It
is a straightforward exercise to check that we have the following commutative diagram:

0 −→ N
B−→ Ñ

A−→ N ′ −→ 0
↓ ↓ ↓

0 −→ N
B0−→ Ñ0

A0−→ N ′
0 −→ 0

where the first vertical arrow is the identity and the last two are surjective. By construction, one
sees that the surjective map N ′ →N ′

0 is compatible with σ and σ0, and induces a toric locally
trivial fibration W →W0 whose fibre is itself an affine toric variety. The whole construction is
G-equivariant, and provides maps between the associated local moduli spaces (up to shrinking
the neighbourhoods we consider).

The cscK metric on X lives in the class π∗[ω0]− εEi, where ω0 is cscK on X0, ε is small and
the Ei stand for the exceptional divisors of the blow-up. It would be interesting to understand
the behaviour of the associated Weil–Petersson metrics (ΩWP

ε )0<ε<ε0 on the local moduli spaces
Wε ⊂W/G as constructed in [DN20] when ε goes to zero. It seems natural to expect that the
volume of the fibres of the fibration W/G→W0/G would go to zero, so that Wε would converge
in a Gromov–Hausdorff sense to W0.

5.2 Higher dimensional case

Many features that hold for toric surfaces fail in a higher dimensions. First, even when it is
reductive, the identity component of the automorphism group of a non-rigid toric variety will
not a priori be isomorphic to the torus (see [Nil06]). Then, from dimension 3, toric varieties may
be obstructed (see [IT20]). Finally, the toric MMP (which produces the classification of toric
surfaces) in general produces singular varieties. Our main ingredients for proving Theorem 1.5
therefore do not generalise, a priori, in higher dimensions.

Nevertheless, it would be interesting to study what survives the new difficulties. We expect
the right extension of the notion of foldable fans in higher dimension to be fans whose lat-
tice automorphism group admits a subgroup that acts with no fixed point. This raises several
questions:

(i) Do all crystallographic groups arise as lattice automorphism groups of smooth complete
fans?

(ii) Do all foldable toric varieties admit a cscK metric?

(iii) Are foldable toric varieties unobstructed?

(iv) What are the singularities of the moduli space of cscK metrics around cscK foldable toric
varieties?
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(2) 66 (2014), 15–29.

[WZ11] X.-J. Wang and B. Zhou, On the existence and nonexistence of extremal metrics on toric
Kähler surfaces , Adv. Math. 226 (2011), 4429–4455.

[Xu21] C. Xu, K-stability of Fano varieties: an algebro-geometric approach, EMS Surv. Math. Sci.
8 (2021), 265–354.

[Yau93] S. T. Yau, Open problems in geometry, Differential geometry. Part 1: Partial differen-
tial equations on manifolds , in Proceedings of a Summer Research Institute, held at the
University of California, Los Angeles, CA, USA, July 8-28, 1990 (American Mathematical
Society, Providence, RI, 1993, 1–28.

Carl Tipler carl.tipler@univ-brest.fr
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