395 ### Systemic Administration of miR-451 Improves Autophagy Response in an Accelerated Mouse Model of Diabetic Kidney Disease* Sadaf Ghaderzadeh¹, Baiyeendang Agbor-Baiyee¹, Chidera Obiwuma¹, Neal Mohit¹, Kanwal K. Gambhir¹, Carolyn M. Ecelbarger² and Maurice B. Fluitt¹ ¹Division of Endocrinology and Metabolism, Deparmtent of Medicine, Howard University College of Medicine and ²Division of Endocrinology and Metabolism, Department of Medicine, Georgetown University OBJECTIVES/GOALS: Diabetic Kidney Disease (DKD) is a common diabetes complication, often linked to end-stage renal disease in the United States (US). While autophagy and miRNAs are pivotal, miR-451's specific role remains understudied. Our study explores its renoprotective effects in an accelerated DKD mouse model. METHODS/STUDY POPULATION: We assessed the effect of miR-451 mimic treatment on Diabetic Kidney Disease (DKD) in BTBR ob/ob mice, known for their rapid DKD-like renal lesions. Mice were divided into four groups: WT (wild-type), BTBR ob/ob, WT+miR-451 (wild-type with miR-451 mimic), and BTBR ob/ob +miR-451 (BTBR ob/ob with miR-451 mimic). MiR-451 mimics were administered at 2mg/kg body weight once weekly for three consecutive weeks. We collected spot urine and monitored blood glucose levels at each time point. After the treatment period, mice were euthanized for kidney and blood samples. Western blot analysis assessed autophagy-related protein markers. Statistical analysis included Student's t-test and ANOVA (p<0.05). RESULTS/ ANTICIPATED RESULTS: The study assessed the impact of miR-451 mimic treatment in BTBR ob/ob mice. Albumin:creatinine ratio increased fourfold (p=0.01) in BTBR ob/ob mice at 5 weeks. MiR-451 mimic treatment had no impact on body weight. Blood glucose levels were notably higher in both treated and untreated BTBR ob/ob mice at 12 (425±33.1 mg/dL; p=0.04) and 13 weeks (383±25.3 mg/dL; p=0.007). However, a significant drop occurred from week 13 (554.7±10.8 mg/dL) to week 14 (289±13.3 mg/dL; p=0.0002) in BTBR ob/ob miR-451 treated mice. Western blot analysis in whole kidney homogenates showed a 91% reduction (p=0.02) in YWHAZ, a predicted miR-451 target, in treated BTBR ob/ob mice and a 95% reduction (p=0.01) in WT mice. Furthermore, miR-451 mimic treatment led to a 68% increase (p=0.01) in ATG101 and a 44% increase in Beclin-1 in BTBR ob/ob mice. DISCUSSION/SIGNIFICANCE: The study uncovers miR-451-based interventions as a promising avenue to counter Diabetic Kidney Disease by modulating autophagy, potentially introducing novel therapies for at-risk individuals. However, practical DKD treatments will require further research and rigorous clinical validation to harness the full potential of these insights. #### 396 # Unraveling the Immunological Basis of Lobular Involution in Breast Cancer Development Jaida Lue¹, Derek Radisky², Mark Sherman², Amy Degnim², Stacey Windam², Morian Curtis² and Melody Stallings-Mann² ¹Mayo Clinic Graduate School of Biomedical Sciences and ²Mayo Clinic OBJECTIVES/GOALS: Reveal common immune mechanisms in dysregulated age-related lobular involution (ARLI) and post-partum lobular involution (PPLI) to understand their link to increased breast cancer risk, challenging the traditional view of their distinctiveness. Ultimately, to improve breast cancer risk assessment and personalized prevention METHODS/STUDY POPULATION: The Mayo Clinic Benign Breast Disease (BBD) cohort comprises of ~20,000 women with benign biopsies, including ~1000 women with sequential benign biopsies. Lobular involution (LI) status was assessed by selecting perimenopausal women, ages 45-55, with sequential biopsies, comparing acini number and lobule size between initial and subsequent biopsies. NanoString IO360/ BC360 RNA profiling identified differentially expressed genes associated with dysregulated LI. Using multiplex immunofluorescence (mIF), I'll analyze and spatially map immune biomarkers related to dysregulated ARLI and PPLI in BBD tissue from perimenopausal women who did or did not go on to develop breast cancer, assessing the commonality of ARLI and PPLI markers and exploring their potential as risk biomarkers for breast cancer. RESULTS/ANTICIPATED RESULTS: Preliminary findings link patients who display dysregulated ARLI with an increased breast cancer risk and identify vital PPLI biomarkers in perimenopausal women. I expect the biopsies of women who developed post-menopausal breast cancer (PMBC) and postpartum breast cancer (PPBC) to exhibit elevated levels of dysregulated ARLI immune biomarkers and PPLI biomarkers. Spatially mapping these markers promises to provide a more comprehensive understanding of their interactions, potentially revealing common immunological pathways. These findings could transform our current paradigm of ARLI and PPLI as distinct processes and demonstrate their interconnection in shaping breast cancer risk. DISCUSSION/SIGNIFICANCE: PMBC and PPBC dominate majority of breast cancer cases. Both involve activation of the understudied process of lobular involution, which has been shown to have pro-tumorigenic traits. Elucidating these mechanisms will aid more efficient risk stratification and personalized prevention to reduce incidence and mortality of breast cancer. ### 399 ## Source Localization of Burst Suppression in Post-Cardiac Arrest Patients Gerardo Hernandez Velasquez, Pravinkumar Kandhare, Bo Zhou, Jason F Talbott, Evan Calabrese, Matheus Otero, J. Claude Hemphill, M. Brandon Westover, Jong Woo Lee and Edilberto Amorim University of California, San Francisco OBJECTIVES/GOALS: Burst suppression is a neurophysiological marker associated with severe hypoxic-ischemic injury following cardiac arrest. The goal of this study is to identify the anatomical regions of the brain associated with burst suppression post-cardiac arrest. METHODS/STUDY POPULATION: 86 comatose patients post-cardiac arrest admitted to the neurological-ICU from Massachusetts General Hospital and Brigham and Women's Hospital were included in this study. EEG data after return of spontaneous circulation were preprocessed and artifact was rejected. Burst segments were extracted for source localization analysis from epochs with burst suppression. Four bursts for each patients were manually selected. The source of the bursts were obtained using the Champagne algorithm and mapped on the Desikan-Killiany atlas. The source for each burst was defined as any region of interest (ROI) with power > = 75th percentile relative to all ROIs. The power of the bursts at each source was correlated with the burden of brain injury measured using apparent diffusion coefficient (ADC) per ROI. RESULTS/ANTICIPATED RESULTS: 48 (56%) patients had burst