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PARTS FORMULAS INVOLVING
CONDITIONAL FEYNMAN INTEGRALS

SEUNG JUN CHANG AND DAVID SKOUG

In this paper we first obtain a basic formula for the conditional analytic Feynman
integral of the first variation of a functional on Wiener space. We then apply this
basic result to obtain several integration by parts formulas for conditional analytic
Feynman integrals and conditional Fourier-Feynman transforms.

1. INTRODUCTION

Let Co[0, T] denote the one-parameter Wiener space, that is the space of R-valued
continuous functions x(t) on [0, T] with x(0) — 0. Let M denote the class of all Wiener
measurable subsets of Co[0,T] and let m denote Wiener measure. (Co[0,T], M,m)
is a complete measure space and we denote the Wiener integral of a Wiener integrable
functional F by

f F(x)m(dx).
JC0[0,T]

A subset E of Co[0,T] is said to be scale-invariant measurable ([7, 13]) provided
pE 6 JM for all p > 0, and a scale-invariant measurable set N is said to be scale-
invariant null provided m(pN) = 0 for each p > 0. A property that holds except
on a scale-invariant null set is said to hold scale-invariant almost everywhere. If two
functionals F and G are equal scale-invariant almost everywhere , we write F ss G.
For a rather detailed discussion of scale-invariant measurable and its relation with other
topics see [13]. It was also pointed out in [13] that the concept of scale-invariant mea-
surable, rather than Borel measurability or Wiener measurability, is precisely correct for
the analytic Fourier-Feynman transform theory and the analytic Feynman integration
theory. Thus throughout this paper we shall assume that each functional F (or G or
H) we consider satisfies the conditions:

(1.1) F
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is defined scale-invariant almost everywhere and is scale-invariant measurable.

(1.2) / \F(px)\m(dx) <oo for each p> 0.
Jco[o,T]

Let Cf and C+ denote the complex numbers with positive real part and the nonzero
complex numbers with nonnegative real part respectively. Let F satisfy conditions
(1.1) and (1.2) above, and for A > 0, let

J(A) = f
Jco[O,T]

If there exists a function J*{\) analytic in C+ such that J*{\) = J{\) for all
A > 0, then J*(A) is defined to be the analytic Wiener integral of F over Co[0,r]
with parameter A, and for A in C+ we write

/-anwA

(1.3) / F(x)m{dx) = J*{\).
JC0{0,T]

Let q ̂  0 be a real parameter and let F b e a functional whose analytic Wiener integral
exists for all A € C + . If the following limit exists, we call it the analytic Feynman
integral of F with parameter q and we write

/•anf, (-anwA

(1.4) / F(x)m(dx) = lim / F(x)m(dx)
JC0[0,T] x^-^Jc0[0,T]
/
C0[0,T]

where A —> — iq through values in C+.

The concept of an i i analytic Fourier-Feynman transform was introduced by Brue

in [1], while in [4], Cameron and Storvick introduced an Li analytic Fourier-Feynman

transform. In [12], Johnson and Skoug developed an Lp analytic Fourier-Feynman

transform which extended the results in [1, 4] and gave various relationships between

the L\ and L2 theories.

Next we state the definition of the Lp analytic Fourier-Feynman transform ([12])

using (1.3) and (1.4) above. First for A <E C+ and y 6 C0[Q,T], let

(1.5) Tx(F)(y)= [ A F(x + y)m(dx).
JC0[0,T]

In the standard Fourier theory the integrals involved are often interpreted in the mean;
a similar concept is useful in the Fourier-Feynman transform theory ([12, p. 104]).
Let p e (1,2] and let p and p' be related by 1/p + 1/p' = 1. Let {Hn} and H be
scale-invariant measurable functional such that for each p > 0.

lim / \Hn(py) - H(py)fm(dy) = 0.
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Then we write

HatLL m. Hn
n~¥oo

and we call H the scale-invariant limit in the mean of order p'. A similar definition

is understood when n is replaced by the continuously varying parameter A. Let real

q ^ 0 be given. For 1 < p ^ 2 we define the Lp analytic Fourier-Feynman transform,

T,(p3(F) of F, by the formula (A € C+),

(1.6) T^(F)(y) li.m.

if it exists. We define the L\ analytic Fourier-Feynman transform, Tq of F, by the

formula (A € C+),

(1.7) l?HF)(y) = lim Tx(F)(y)

if it exists. We note that for 1 ̂  p ^ 2, Tq (F) is defined only scale-invariant almost

everywhere . We also note that if T^p)(Fi) exists and if Fx « F2, then T^p)(F2) exists

Next we give the definition of the first variation 5F of a functional F [2, 6].

DEFINITION: Let F be a Wiener measurable functional on Co[0,T], and let w €

C 0 [0 , r ] . Then

(1.8) SF(x | w) = -^rF(x + kw)
OK /s=0

(if it exists) is called the first variation of F(x). However throughout this paper we

shall always choose w to be an element of A where

(1.9) A = {w € Co[0,T] : w is absolutely continuous on [0,T] with w' 6 L2[0,T}}.

See [10, 14, 19] for some relationships which exist between the Fourier-Feynman

transform and the first variation for various classes of functionals.

Throughout this paper, for u and v in L2[0,T] and x € CQ[0,T], we let (u,x)

denote the Paley-Wiener-Zygmund integral / 0 u(s)dx(s) and {u,v) = / 0 u(s)v(s)ds.

We finish this section by stating the following well-known translation theorem using

the above notation ([3]).

TRANSLATION THEOREM. For A > 0 and we A,

(1.10) / F(x + w)m(dx) = exp\--\\w'\\2\ F(x)exp{X(w',x)}m(dx)
JC0[0,T) l l } JC0[0,T)

where = means that if either side of equation (1.10) exists, both side exist and equality

holds.
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2. CONDITIONAL FEYNMAN INTEGRALS AND TRANSFORMS

For the definitions and related work involving conditional Feynman integrals and

transforms see [8, 9, 1 1 , 15, 16, 17, 20]. Throughout this paper we shall always con-

dition by

(2.1) X(x) = x(T).

For A > 0 and rj € H let

(2.2) Jx(r,) = E(F{\-WVx) II \-Wx(T) = r,)

denote the conditional Wiener integral of F(A~(1/2'a;) given X~^^2^x(T). If for almost
all 77 € R, there exists a function JJ (77), analytic in A on C + such that J£ (77) = J\ (77)
for A > 0, then Jy{rf) is defined to be the conditional analytic Wiener integral of F(x)

given x(T) with parameter A and for A € C+ we write

(2.3) J'X(V) = E*™*{F(x) || x(T) = 77).

If for fixed real q ^ 0, lim Jf (77) exists for almost all 77 e K, we denote the value of
A—f — iq

this limit by

(2.4) E™{*{F(x)\\x(T)=r1)

and we call it the conditional analytic Feynman integral of F given X with parameter

R E M A R K 1. In [16], Park and Skoug give a formula for expressing conditional Wiener

integrals in terms of ordinary Wiener integrals; namely that for A > 0,

(2.5) (

= f FU-WVXC) ~ ̂ A-(1/a)*(T) + ̂  W ) .
/C0[0,T]

Thus we have that

(2.6) ^ a n w ^ (F(x) || x(T) =v)= F[x{-) ~ 7fX(T) + -r,)m(dx)
JC0[0,T] V J J '

and

(2.7) E™f*(F(x) || x(T) =ii)= F(x(-) - -x(T) + -n)m{dx)
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where in (2.6) and (2.7) the existence of either side implies the existence of the other

side and their equality.

Next we state the definition of the conditional Fourier-Feynman transform us-

ing (1.6), (1.7), (2.6) and (2.7) above. For A e C+, n € R and y € Co[0,T],

let T\(F\\X)(y, 77) denote the conditional analytic Wiener integral of F(x + y) given

X(x) = x(T); that is to say

TxiFWX^y^) = £ a n w * (F(y + x) || x(T) = IJ)

(2-8) /-anwA .
- / Fly(-) + x(-) - -x(T) + -ri)m(dx).

JC0{Q,T] V 1 1 1

Then for p € [1,2] we define the conditional Fourier-Feynman transform, Tq(F\\X)

of F , by the formula (A € C+),

(2.9) TW(F\\X)(y,ri)= I %q

9 I l im. Tx(F\\X){ytt,)t- p = \

if it exists. Note that for p = 1,

/•anf,/•anf,
,V)^ /

JC0[0,T]

3. MAIN RESULTS

Our first result is a fundamental theorem in which we express the conditional

analytic Feynman integral of the first variation of a functional in terms of an ordinary

(that is, non-conditional) analytic Feynman integral. In [2], Cameron (see [6, Theorem

A, p. 145]) expressed the Wiener integral of the first variation of a functional F in terms

of the Wiener integral of the product of F by a linear functional, and in [6, Theorem

1], Cameron and Storvick obtained a similar result for analytic Feynman integrals.

REMARK 2. Throughout this paper the main conditions we impose upon the functionals
F , G and H, in addition to conditions (1.1) and (1.2) above, are the conditions (3.1),
(3.8), (3.9), et cetera, below. These conditions ensure the existence of various integrals
(or conditional integrals), and they justify the various interchanges of differentiation
and integration used in the proofs.

THEOREM 1 . Let w\ e A and r) e M be given. For each p > 0, assume that

F(px) has a first variation SF(px | pvj\) for all x € Co[0, T] such that for some positive

function j(p),

(3.1) sup 6F(px(-) - —px(T) + -pn + pkwx
\k&-tip) K i 1
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is a Wiener integrable function of x over CQ[0,T]. Then for all q 6 l , q ^ 0,

(3.2) £a n f« (jSF(x \wi)\\ x(T) = TJ)

= -iq " - -x{T) + ^ii)(w'1,x)m(dx)

where = means that if either side exists, both sides exist and equality holds. Further-
more, if (3.1) also holds with wi(t) replaced with wo(t) = t/T on [0, T], and if either
side of (3.2) exists, then

Ean{i [SF(x | Wl) || x(T) =v)= -iqE^o (F(X)(W[,X) \[ x(T) = r,)

(3.3) + T(w'o, w'JE"** (SF(x \ w0) \\ x(T) - V

+ iqV(w'o, w[)E^ (F{x) II x(T) = v).

PROOF: First proceeding formally with A > 0, and then using equation (1.10), we
see that

(5F(x | Wl) || x(T) = r,)

U=o

= A r " ^ F(X(-) - -x(T) + -r,)(w[,x)m(dx).
JC0[0,T] V J l '

But condition (3.1) justifies the above interchanges of differentiation and integration,
and so the existence of either side of equation (3.2) implies the existence of all the
expressions in equation (3.4) and their equality. Hence for all A > 0,

(3.5) x(T) =

= A / F[x() - -x(T) + - t jW.iMdz).

https://doi.org/10.1017/S0004972700020402 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020402


[7] Conditional Feynman integrals 359

Next we note that if either side of (3.2) exists for all real q ^ 0, then equation (3.5)
holds for all A € C + . Finally, letting A —»• — iq through values in C+, we obtain
equation (3.2).

To establish equation (3.3), note that for all A > 0,

/ F(x(-) - -x(T) + -r,) K,x)m(dx)
JC0[0,T] K 1 X '
/
C0[0,T]

= A / F(x(-) - -x(T) + =^)<wi,a:(0 - -x(T) + -v)m(dx)
Jco[o,T] v I 1 ' T T

/•anwA

+ A / F[x(-) - -x(T) + -n) (w'lt -x(T))m{dx)
JC0[0,T] K * 1 ) 1

(3-6) /-an^A . .

Jco[o,T] v T T / N T

= \E*™>>(F{x){w'l,x)\\x{T)=T1)

(x | w0) || x(T) = r,)

ix) || x(T) = r,).

Then, if the right hand of (3.2) holds for all real q ^ 0, equation (3.6) holds for all
A € C+. Finally letting A —» — iq through values in C+, we obtain equation (3.3) as
desired. • 0

Our first corollary of Theorem 1 follows from a careful examination of equation (3.3)
and yields a formula for the conditional analytic Feynman integral of F multiplied by
the linear factor (w[, x).

COROLLARY 1. Let wi, wo, r), and F be as in Theorem 1 above and assume
that E&n(i(5F(x \ wi)\\x{T) = ryj exists. Then

x(T) =rij = -Ean("{5F{x | wx) || x{T) =

(3.7) - — W , w[)E™f< (5F(x | wo) || x(T) =
q \

r){w0,w'1)E™i*(F{x)\\x{T)=r1).

In our next theorem we obtain an integration by parts formula for conditional

analytic Feynman integrals.

THEOREM 2 . Let w\ 6 A and r? € M be given. For each p > 0 assume that
G{px) and H(px) have first variations 5G(px \ pw\) and 6H(px | pw\) for all x 6
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Co[0. T] such that for some positive function j(p),

(3.8) sup G (px(-) - -px(T) + -W + kpwi)

— pn pwx

and

(3.9) sup H(px(-)--px(T) + -
I*=K7(P) v 1 L

- -px{T) + —prj + kpwx

are Wiener integrable functions of x over Co[0, T]. Then for all q € R, q ^ 0,

6G{x | wx)H{x) \\ x(T) = r

(3.10)
C0[0,T]

-x(T) + ^ri

Furthermore, if either side of equation (3.10) exists, then

(3.11)

(G{X)5H{X 6G(x | wx)H{x) || x(T) = r?

{w'x,x) || ar(T) = T?)

T(w'o, Wl)E
Aaf<> (G{X)5H{X I too) + SG(x

iqr,(w'0,w'1)E?u*' (G(X)H(X)

where two(O = i / r o n I0*1!-

PROOF: Let F(x) = G{x)H{x). Then, since

5F(pi | pw{) = G(px)SH(px | pwi) + 5G{px

for all p > 0, Theorem 2 follows immediately from Theorem 1.

We obtain our next corollary by letting H(x) = G(x) in Theorem 2 above.

D
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COROLLARY 2 . Let w\ € A and r\ £ H be given. For each p > 0 assume that
G(px) has a first variation SG(px | pw\) for all x € Co[0, T] such that for some positive
function

sup rp r I • ••»f**'ji w l f w \ / rpr \ J ' rrtr

is a Wiener integrable function of x over Co[0,T]. Then for all q e l , q ̂  0,

(3.12) £anf« ( G ( I ) « G ( I I u»i) || x(T) =

>CO[O,T]

Furthermore, if either side of (3.12) exists, then

Eanfi (G(X)6G{X I iui) || x(T) = T?)

c) ] 2K,x) || X(T) = T?
(3.13) /

+ T(w'Q,w'1)E
anfo[G(x)5G(x | w0) || x(T) =

Y ( [ ( x ) ] 2 \\x(T) =

where wo(t) = t/T on [0,T].

In our next corollary we obtain a formula for the conditional analytic Feynman
integral of a functional G multiplied by the two linear factors (w^, x) and (w'2, x).

COROLLARY 3 . Let w\ and W2 be elements of A, let r\ G K, and let F(x)
= G(x)(w'2,x). For each p > 0, assume that F(px) has a first variation SF(px | pw\)
for all x G Co[0, T] such that for some positive function j(p), the expression given
by (3.1) is a Wiener integrable function of x over Co[0, T). Also assume that
E™f9(5F(x | wi) || x(T) = 7?) exists. Then

(3.14)

Eanf"(G(x){w2,x){w'1,x) || x(T) - r?)

(w'2!x)SG(x | u>i) || x(T) = rj)

(x | wo)(w'2!x) || x(T) = V

x(T) =
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where wo(t) = t/T on [0,T].

P R O O F : Let H{x) = {w'2,x). Then a direct calculation shows that SH(x

= (w^w^). Now equation (3.14) follows directly from equation (3.7) with F{x)

= G(x)(w'2,x) or from equation (3.11) with H{x) = (w'2,x). D

Our next corollary involves the Fourier-Feynman Transforms, Tq(G) of G, for

fixed p G [1,2] and q€R, q=£0.

COROLLARY 4 . Let wx G A and rj G E be given. For each p > 0, assume that

T^p){G){px) has a first variation ST^p)(G)(px | pw{) for all x € C0[0,T] such that for

some positive function j(p),

(3.15) sup \6T^{G) (px(-) - -px(T) + -(rq +

is a Wiener integrable function of x over CQ[0,T]. Then

(3.16) £a n f* (*T,W(G)(i | ti/i) || x(T) = rj)

kpwx I

/•anf,
= -i« /

Jco[o,CO[O,T]

Furthermore, if the expression in (3.15) is aiso a Wiener integrable function of x when

w\(t) is replaced with wo(t) = t/T, and if either side of equation (3.16) exists, then

(3-17)
x(T) =

X I w0) || x(T) = r,)

P R O O F : Simply apply Theorem 1 with F(x) = T^\G)(x). D
Our next integration by parts formula involves the Fourier-Feynman Transforms,

\ and T<jp)

THEOREM 3 . Let w\ G A and rj E K be given. For each p > 0 assume that

T^p)(G)(px) and TJjp){H)(px) have first variations 6T^p)(G)(px | pwx) and 5T^p){H)

(px | pw\) for all x G Co[O, T] such that for some positive function -y(p),

(3.18) sup

- -px(T) + - pwx
) |
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and

(3.19) sup \T^(H)(Px(-)-~px(T) + -pi1 + kpwl)

• 5T^{G)[px{-) - -px(T) + -pv + kpwt | pw1)\

are Wiener integrable functions of x over Co[0, T]. Then,

E^f"(T^(G)(x)6T^(H)(x | w,) + 8T^{G){x \ Wl)T^{H){x) \\ x(T) = n)

(3.20) = -iq / rW(G)N-) - -x{T) + -r?)
Jco[o,T] v •* T >

• TW(H)(X(-) - -x{T) + -r,)(w[,x)m(dx).

Furthermore, if either side o/(3.20) exists, then

(3.21)

^(H)(x) || x(T) = r,)

(T) = V)

T(W'0,W[)E™{<>(TW(G)(X)6TW(H)(X I too)

(X) I x(T) = )

x(T) - V)

where wo(t) = t/T on [0,T].
PROOF: Simply apply Theorem 1 with F(x) = T!JP)(G)(X)T!JP)(H)(X). D

The following corollary follows by choosing H(x) = G(x) in Theorem 3 above.

COROLLARY 5 . Let w\ e A and r\ 6 K be given. For each p > 0, assume that

T,(p)(G)(/9x) has a first variation ST^p)(G)(px | pwx) for all x £ Co[0,T] such that for

some positive function j(p),

(3.22) sup

- -px(T) + -(*} + kpwl

is a Wiener integrable function of x over Co[0, T]. Then,

(3.23) E™{* (T^(G)(X)5T^(G)(X | Wl) || x{T) = n)

(X(.) - -x(T) + -V)]2(w'1,x)m(dx).
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Furthermore, if either side of (3.23) exists, then (3.21) also holds with each H replaced

with G.

COROLLARY 6 . Let w-y € A and -q e M be given. For each p > 0, assume that

G{px) and T^p)(H)(px) have first variations SG(px \ pwi) and ST^p){H)(px \ pWl) for

all x S Co[0,T] such that for some positive function j(p),

(3.24) sup G(px{-) - -px(T) + -prj + kpwA
|fc|<7(p) v 1 1 '

• 6TW(H)(px(-) - -px(T) + -pr, + kpw, | pw1) |

and

(3.25) sup 6G(px(-) - -px(T) + -pr, + kpWl \ pwA
|fc|<7(p) V 1 X '

• TM(H) (px() - -px(T) + -pv + kpWl) |

are Wiener integrable functions of x over CQ[0,T}. Then,

+5G(x | w^T^imix) \\ x(T) = r,)

Jc
rniq

(3.26) k Jco[Q,T]

- -x(T) + -^)(ioi,x)m(dx).

Furthermore, if either side of equation (3.26) exists, then

(3.27)
+ SG(x | Wl)T^{H){x) \\ x{T) = n)

x){v1'1,x) \\ x(T) - t,)

x \ w0) + 5G(x | wo)T^(H)(x) || x(T) = r,)

i ) || x(T) = 77).

PROOF: Simply apply Theorem 1 with F(x) = G{X)T^\H){X) . D

4. ADDITIONAL RESULTS

In our first result below we obtain an interesting integration by parts formula

involving the conditional Fourier-Feynman transform's, T^p)(G\\X) and T^p)(H\\X);

see equation (2.9) above.
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THEOREM 4 . Let wi e A and 771,772,% e R be given. For each p > 0 as-
sume that T^p)(G\\X)(px,j]i) and T^]*(H\\X){px,r)2) have 6rst variations 6T}jp) (G\\X)
(px I pwi,r)i) and STq (H\\X)(px | pwi,r]2) for all x € Co[0, T] such that for some
positive function

(4.1) sup \dT^(G\\X)(px{-) - -px(T) + -pn3 + kpw^ Pw1,r11)

• T<f)(H\\X)(px(-) - -px(T) + -pr,3

and

(4.2) sup \TW(G\\X) (px() - -px(T) + -CT3 + kpw1,m)

• 5TW(H\\X)(px(-) - -px(T) + -PT73 +

are Wiener integrable functions of x over CQ[0, T]. Then

(x I w1,r]l)T^(H\\X)(x,r]2) || x(T) =

(4-3) /-anf, . .
= -iq / TW(G\\X)(X(-) - -x(T) + -773,7?!)

- -x(T) + -m,

Furthermore, if either side of (4.3) exists, then

x(T) = 773)

,x) || x (T) = 773)
(4-4)

+ dTJip)(G\\X)(x | wo,T?i)TlP)(ff||X)(x,772) || x(T) =

where, as usual, wo(t) — t/T on [0, T].

PROOF: Simply apply Theorem 1 with F(x) = T^\G\\X){x, th)T^\H\\X)(xt m) • •

Choosing H(x) to be identically equal to one on Co[0, T] yields our next corollary;
to obtain Corollary 8 we simply choose H(x) = G(x).
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COROLLARY 7 . Let wi € A and 771,773 e R be given. For each p > 0 as-
sume that T^p)(G\\X)(px,rjl) has a first variation 6TJjp) (G\\X)(px
x € Co[0,T] such that for some positive function 'y(p),

for all

(4.5) sup
I*I<7(P)

- -px(T) + -
T T kpwx \ pwi,r,i

is an Wiener integrable function of x over Co[0, T], Then

(4.6) Ean{" (&TW(G\\X)(x I «/!, m) || x(T) -

= - i q f ^ "
JCO[O,CO[O,T]

Furthermore, if either side of equation (4.6) exists, then

x \wl,Th)\\ x(T) =

(4-7)

X(-) - -x(T) + -7}3,
l 1

x(T)=m)

x(T) = 773)

COROLLARY 8 . Assume that condition (4.1) holds with H(x) — G(x). Then

(4.8)

/c0[o,r]

Furthermore, if either side of (4.8) exists, then

(4.9)

We finish this paper by mentioning that the hypotheses (and hence the conclusions)
of Theorems 1-4 and Corollaries 1-8 above are indeed satisfied by several large classes
of functionals; we shall very briefly discuss two such classes.
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1. The Banach algebra S, introduced by Cameron and Storvick in [5], consists

of functional expressible in the form

(4.10) F(x)= f exp{i(u,x)}df(u)
JL2{O,T] "• '

for scale-invariant almost everywhere x G CQ[0,T], where the associated measure / is
an element of M(L2[Q,T]), the space of C-valued countably additive Borel measures
on L2[0,T]. Now let

(4.11) K={FeS: f ||u||2|4f(u)| < ooi.
I JL2[O,T\ )

Then, all of the above theorems and corollaries are valid provided that all of the func-
tionals F, G and H involved are elements of K. For example for G € K., a direct
calculation shows that

I
L2[0,T]

and hence,

8TW(G\\X)(x Iw^rn)

-^- f [u(s) - b]2ds)dg(u),
l1 JO J

= / i(u,w'1)exp\i(u,x) + iriib- — / \u(s) - b] ds\dg(u)
JL2[0,T] { l1 JO )

for scale-invariant almost everywhere x € Co[0, T] where b — 1/T Jo u(s)ds.
Thus for scale-invariant almost everywhere x £ CQ[0, T], we easily obtain that

f \dg(u)\ <oo
JL2[O,T]

and
r

CXD.f
JL2

f
L2[O,T)

Hence, by carrying out the same calculations for H € K, we see that the expressions in
(4.1) and (4.2) are certainly integrable functions of x over CQ[0,T] since m(Ca[0,T])
— 1. Thus Theorem 4 and Corollaries 7 and 8 hold for all G and H in K.. The results
in Section 3 for F, G and H in /C follow by similar calculations.

2. In [18], Park and Skoug obtained various integration by parts formulas involv-
ing analytic Feynman integrals for functionals of the form

(4.12) F(s) = / « a i , * ) , . . . , (on.x))
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for scale-invariant almost everywhere x € Co[O,r] where {a\,... , an} is an orthonor-
mal set of functions in L2[0,T}. Proceeding formally we see that

n

SF(x | Wl) = J2 (<Xj,«>i)fi{(c*ux),..., < a n , x » ,

i=i

and that

= (-^-)"/2 f
V Z7T/ ,/gn

- (oti,x)) + • • • + (vn-(an,x)) J | \dvi ...dvn.

Thus, putting appropriate continuity and integrability conditions on / : Kn —» E and its
partial derivatives /1 : Mn —> K,... , /„ : Rn —> R, one can show that the four theorems
and eight corollaries established above hold for various functionals of the form (4.12).
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