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We study large sample properties of likelihood ratio tests of the unit-root hypothesis
in an autoregressive model of arbitrary order. Earlier research on this testing problem
has developed likelihood ratio tests in the autoregressive model of order 1, but
resorted to a plug-in approach when dealing with higher-order models. In contrast,
we consider the full model and derive the relevant large sample properties of
likelihood ratio tests under a local-to-unity asymptotic framework. As in the simpler
model, we show that the full likelihood ratio tests are nearly efficient, in the sense
that their asymptotic local power functions are virtually indistinguishable from the
Gaussian power envelopes. Extensions to sieve-type approximations and different
classes of alternatives are also considered.

1. INTRODUCTION

In their seminal contribution, Elliott, Rothenberg, and Stock (1996; henceforth
ERS) derived Gaussian power envelopes for the unit-root testing problem in
autoregressive models and demonstrated how to construct tests that are “nearly
efficient” in the sense that their asymptotic local power functions are virtually
indistinguishable from the Gaussian power envelopes. In particular, they showed
that generalized least squares (GLS) detrended versions of the well-known
augmented Dickey–Fuller (ADF) tests (Dickey and Fuller, 1979, 1981) are nearly
efficient. More recently, Jansson and Nielsen (2012; henceforth JN) developed a
class of tests that are also nearly efficient, yet distinct from the tests proposed by
ERS. In the autoregressive model of order 1, the tests proposed by JN admit a
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quasi-likelihood ratio (QLR) interpretation, but for higher-order autoregressive
models, the method of proof employed by JN forces them to use a “two-
step”/“plug-in” approach, where the nuisance parameters arising from the lag
augmentation are replaced with consistent estimators when defining the criterion
function used to construct the test.

Although nearly efficient, the tests of JN therefore do not admit a QLR
interpretation in the higher-order case. In fact, even after several decades of intense
research into this testing problem, it would appear that a nearly efficient QLR
test of the unit-root hypothesis in an autoregressive model of arbitrary order has
still not been developed and investigated. In this paper, we fill this apparent hole
in the literature. Our analysis is motivated partly by a desire to make the theory
of univariate unit-root testing more complete by developing QLR tests in the
workhorse model of the literature, and showing that these tests belong to the
class of nearly efficient tests. Moreover, and perhaps just as importantly, with
an eye toward other nonstandard testing problems, it is of interest to understand
the consequences of (and demonstrate the feasibility of) handling all nuisance
parameters in a unified way in this canonical nonstandard testing problem.

The remainder of the paper is organized as follows. In the next section, we
present the model, derive the test statistics, and characterize their large sample
properties. In Section 3, we analyze a sieve version of our QLR test. In Section 4,
we present the results of a small simulation study of the finite-sample properties
of the new test and compare with some existing tests. Section 5 discusses different
classes of alternatives, and Section 6 offers some concluding remarks. Finally, the
proofs of our main results are given in the Appendix.

2. MODEL AND QLR TEST STATISTIC

Our goal is to develop unit-root tests that are of QLR type, are easy to implement,
and enjoy good size and power properties in a model of the type considered in ERS.
To this end, suppose that the observed time series {yt : 1 ≤ t ≤ T} is generated as

yt = β ′dt +ut, (1)

where dt = 1 or dt = (1,t)′, β is an unknown parameter, and the error term ut is
generated by the AR(p+1) model

(1−ρL)γ (L)ut = εt, (2)

with ρ ≤ 1 a scalar parameter of interest and γ (z) = 1 − γ1z − ·· · − γpzp a
lag polynomial of order p satisfying the stability condition γ = (γ1, . . . ,γp)

′ ∈{
γ ∈ R

p : min|z|≤1 |γ (z)| > 0
} = �. When developing formal results, we will

complete the specification of the model by assuming that max
{|u0|, . . . ,|u−p|

} =
op(T1/2) and that the εt form a conditionally homoskedastic martingale difference
sequence with (unknown) variance σ 2 and supt E|εt|r < ∞ for some r > 2.
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In the model characterized by (1) and (2), an implication of assuming γ ∈ � is
that the order of integration of ut is governed solely by ρ. In particular, the unit-root
testing problem is the problem of testing

H0 : ρ = 1 versus H1 : ρ < 1.

The Gaussian quasi-log-likelihood function corresponding to the model given by
(1) and (2) with initial conditions u0 = ·· · = u−p = 0 depends on the parameter
of interest, ρ, and the nuisance parameters β, γ , and σ 2. To be specific, setting
y0 = ·· · = y−p = 0 and d0 = ·· · = d−p = 0, the Gaussian quasi-log-likelihood
function can be expressed, up to an additive constant, as

LT(ρ,β,γ,σ 2) = −T

2
logσ 2 − 1

2σ 2

T∑
t=1

((1−ρL)γ (L)(yt −β ′dt))
2.

The QLR test statistic associated with the problem of testing H0 versus H1 is

LRT = max
ρ≤1,β,γ∈�,σ 2>0

LT(ρ,β,γ,σ 2)− max
β,γ∈�,σ 2>0

LT(1,β,γ,σ 2).

In general, the problem of maximizing LT(ρ,β,γ,σ 2) with respect to γ ∈ � does
not have a closed-form solution. For this reason, LRT can be tedious to compute
unless p is small, which reduces the practical usefulness of LRT . A separate
concern of a more technical nature is that the lack of a closed-form expression
for maxγ∈� LT(ρ,β,γ,σ 2) makes the development of large sample theory for LRT

quite challenging when p is allowed to grow with the sample size (see Section 3).
For these reasons, it is natural to ask whether the model (2) can be embedded in a
model whose associated QLR unit-root test statistic is analytically tractable even
when p is large, yet enjoys attractive large sample (power) properties.

Analytical tractability could be restored by simply dropping the constraint
γ ∈ �, as the problem of maximizing LT(ρ,β,γ,σ 2) with respect to γ ∈ R

p

has a well-known solution. Because the constraint γ ∈ � implies that the order
of integration of ut is governed solely by ρ, dropping the constraint could have
consequences for power, however. To anticipate those consequences, notice that
when p = 1, ρ and γ are not separately identified in (2), implying that maximizing
the quasi-likelihood with a restriction on ρ, but not on γ , is equivalent to
maximizing it with a restriction on γ , but not on ρ. The associated test statistic is
therefore equivalent to a statistic associated with the two-sided problem of testing
H0 : ρ = 1 versus H2 : ρ �= 1. In fact, it can be shown that the QLR test statistic
implemented without restrictions on γ behaves like a “two-sided” test statistic
in the sense that its limiting distribution is that of maxc̄∈R�c(c̄) (maxc̄∈R�τ

c (c̄))
under the assumptions of part (a) (part (b)) of Theorem 1. In other words, although
dropping the constraint γ ∈ � is computationally convenient, the resulting model
is not asymptotically equivalent (in the appropriate sense) to the model imposing
γ ∈ �.

Fortunately, the model (2) can be embedded in a model that is locally equivalent
to it in a suitable sense, yet generates a QLR test statistic that is relatively easy to
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compute. To be specific, the model (2) can be embedded in a model of ADF type,
namely

η(L)�ut = πut−1 + εt, (3)

where {ut} and {εt} are as before, π ≤ 0, and η(z) = 1 − η1z − ·· · − ηpzp is an
unrestricted lag polynomial of order p; that is, η = (η1, . . . ,ηp)

′ ∈ R
p.

When (ρ,γ ) and (π,η) are unrestricted, the models (2) and (3) are equivalent
in the sense that one is a reparameterization of the other. In particular, as pointed
out by a referee, (3) can be obtained from (2) by setting π = (ρ −1)γ (1) and

η(z) = (1−ρ)γ (1)+ (1−ρz)γ (z)− (1−ρ)γ (1)

1− z
.

However, the equivalence between (2) and (3) breaks down once the parameter
restrictions mentioned in the above text are imposed. On the one hand, when ρ ≤ 1
and γ ∈ � in (2), the parameter π in (3) satisfies π = (ρ − 1)γ (1) ≤ 0, so the
(single) restriction π ≤ 0 imposed in (3) is implied by restrictions ρ ≤ 1 and γ ∈ �

imposed in (2). On the other hand, not all models of the form (3) with π ≤ 0 can
be written in the form (2) with ρ ≤ 1 and γ ∈ �. Perhaps the easiest way to see
this is to observe that, whereas the model (3) can generate I(d) processes for any
d = 0,1, . . . ,p+1, the model (2) can only generate I(0) and I(1) processes (when
−1 < ρ ≤ 1). There is therefore a meaningful “global” sense in which the models
(2) and (3) differ (once the parameter restrictions mentioned in the above text are
imposed), with the latter being a strict generalization of the former.

Precisely for this reason, one might reasonably worry that QLR tests developed
for the model (3) would suffer from power losses when applied to data generated
by the model of interest in this paper, namely (2). Fortunately, and perhaps
surprisingly, that turns out not to happen. Indeed, Theorem 1 implies, among
other things, that QLR tests developed for the model (3) are nearly efficient in
the model (2). Loosely speaking, the model (3) (with π ≤ 0) therefore enjoys
the “Goldilocks” property of being just flexible enough relative to the model (2)
(with ρ ≤ 1 and γ ∈ �) to achieve tractability on the part of QLR statistics, yet
restrictive enough to ensure that no loss of power is suffered by the resulting QLR
test. More precisely, our findings demonstrate by example that the models (2) and
(3) are “locally” equivalent in a neighborhood of the null hypothesis ρ = 1 in a
meaningful sense. In particular, although (2) imposes multiple restrictions on the
parameters ρ ≤ 1 and γ ∈ � that are not imposed by (3), an implication of our
results is that the only asymptotically relevant restriction imposed in (2) is captured
by the single restriction π ≤ 0 imposed in (3).

To summarize, following ERS (and many others), we are interested in develop-
ing tests that are powerful in the model (2). To this end, it turns out to be attractive
to use the model (3) because it gives rise to QLR test statistics that are not only
(computationally and analytically) tractable, but also powerful when applied to
data generated by the model of interest, namely (2). In large part, the fact that
working with (3) enables us to achieve the dual objectives of tractability and power
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is attributable to the property of the model (3) that, with or without restrictions on
η, the restriction π ≤ 0 turns out to incorporate the main statistical content of the
restrictions ρ ≤ 1 and γ (1) > 0 imposed in (2).

The problem of testing H0 versus H1 in the model characterized by (1) and (2)
is subsumed in the problem of testing

HADF
0 : π = 0 versus HADF

1 : π < 0

in the model characterized by (1) and (3). In terms of the parameter of interest
π and the nuisance parameters β, η, and σ 2, the Gaussian quasi-log-likelihood
function associated with the model given by (1) and (3) with initial conditions
u0 = ·· · = u−p = 0 can be expressed, up to an additive constant, as

LADF
T (π,β,η,σ 2) = −T

2
logσ 2 − 1

2σ 2

T∑
t=1

((η(L)(1−L)−πL)(yt −β ′dt))
2,

and the QLR test statistic associated with the problem of testing HADF
0 versus

HADF
1 is

LRADF
T = max

π≤0,β,η,σ 2>0
LADF

T (π,β,η,σ 2)− max
β,η,σ 2>0

LADF
T (0,β,η,σ 2).

The statistic LRADF
T is relatively easy to compute and analyze. The main reason is

that, because η is unrestricted, the profile quasi-log likelihood for (π,β) obtained
by maximizing LADF

T (π,β,η,σ 2) with respect to (η,σ 2) is available in closed form.
For any (π,β), define Vπ,β and Zβ as the matrices with row t = 1, . . . ,T given by
(1−L−πL)(yt −β ′dt) and (1−L)(yt−1 −β ′dt−1, . . . ,yt−p −β ′dt−p), respectively.
Employing this notation, LADF

T (π,β,η,σ 2) can be written as

LADF
T (π,β,η,σ 2) = −T

2
logσ 2 − 1

2σ 2
(V −Zη)′(V −Zη)

∣∣
V=Vπ,β,Z=Zβ

.

It follows from standard least-squares arguments that

argmaxη LADF
T (π,β,η,σ 2) = (Z′Z)−1Z′V

∣∣
V=Vπ,β,Z=Zβ

and

argmaxσ 2 LADF
T (π,β,η,σ 2) = 1

T
(V −Zη)′(V −Zη)

∣∣
V=Vπ,β,Z=Zβ

.

As a consequence, up to an additive constant, the profile quasi-log likelihood for
(π,β) is given by

LADF
T (π,β) = −T

2
log (V ′V −V ′Z(Z′Z)−1Z′V)

∣∣
V=Vπ,β,Z=Zβ

.

Therefore, the statistic LRADF
T admits the representation

LRADF
T = max

π≤0,β
LADF

T (π,β)−max
β

LADF
T (0,β), (4)

where both terms on the right-hand side are relatively easy to evaluate numerically.
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In addition, and perhaps more importantly, LRADF
T turns out to have attractive

large sample power properties. For any c, let Wc denote the Ornstein–Uhlenbeck
process given by

Wc(r) =
∫ r

0
exp(c(r − s))dW(s), (5)

where W is a standard Wiener process.

Theorem 1. Suppose that {yt} is generated by (1) and (2) and that c = T(ρ −1)

is held fixed as T → ∞.

(a) If dt = 1, then LRADF
T →d maxc̄≤0 �c(c̄), where

�c(c̄) = c̄
∫ 1

0
Wc(r)dWc(r)− 1

2
c̄2

∫ 1

0
Wc(r)

2dr.

(b) If dt = (1,t)′, then LRADF
T →d maxc̄≤0 �τ

c (c̄), where

�τ
c (c̄) = �c(c̄)+ 1

2

(
(1− c̄)Wc(1)+ c̄2

∫ 1
0 rWc(r)dr

)2

1− c̄+ c̄2/3
− 1

2
Wc(1)2.

A proof of Theorem 1 is provided in the Appendix. The asymptotic distributions
obtained in the theorem coincide with those obtained by JN for their statistic L̂R

d
T .

As a consequence, LRADF
T shares with L̂R

d
T the property that a test based on

it is nearly efficient in the sense that its asymptotic local power function is
indistinguishable from the Gaussian power envelope. Moreover, the critical values
obtained by JN are applicable to LRADF

T as well. For completeness, we reproduce
these in Table 1.

In the spirit of JN, one can obtain statistics that are asymptotically equivalent
to LRADF

T by replacing judiciously chosen nuisance parameters with estimators
and then maximizing the resulting plug-in version of the quasi-likelihood under
HADF

0 and HADF
1 . To be specific, a natural ADF version of the statistic L̂R

d
T of JN

is given by

max
π≤0,β

LADF
T (π,β,η̃T,σ̃

2
T )−max

β
LADF

T (0,β,η̃T,σ̃
2
T ),

where η̃T and σ̃ 2
T are estimators of η and σ 2, respectively. It can be shown that,

under the assumptions of Theorem 1, this statistic is asymptotically equivalent to
LRADF

T if η̃T and σ̃ 2
T are consistent.

The ADF test and the DF-GLS test of ERS are both asymptotically equivalent
to tests based on a statistic of the form

max
π≤0,η,σ 2>0

LADF
T (π,β̃T,η,σ

2)− max
η,σ 2>0

LADF
T (0,β̃T,η,σ

2),
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Table 1. Quantiles of the distribution of LRADF
T .

T 80% 85% 90% 95% 97.5% 99% 99.5% 99.9%

Panel A: constant mean case, dt = 1

100 0.81 1.07 1.45 2.14 2.84 3.74 4.42 5.93

250 0.78 1.02 1.36 1.99 2.65 3.56 4.25 5.86

500 0.77 1.00 1.33 1.93 2.56 3.44 4.11 5.70

1,000 0.77 0.99 1.32 1.91 2.52 3.36 4.01 5.57

∞ 0.76 0.98 1.31 1.88 2.48 3.29 3.92 5.40

Panel B: linear trend case, dt = (1,t)′

100 2.50 2.86 3.34 4.14 4.91 5.89 6.60 8.17

250 2.47 2.82 3.29 4.09 4.88 5.89 6.65 8.38

500 2.46 2.80 3.28 4.07 4.85 5.86 6.63 8.36

1,000 2.46 2.80 3.27 4.05 4.83 5.84 6.59 8.31

∞ 2.45 2.79 3.26 4.05 4.82 5.82 6.57 8.29

Notes: Entries for finite T are simulated quantiles of LRADF
T with known (γ,σ 2) and with εt ∼

i.i.d. N (0,1). Entries for T = ∞ are simulated quantiles of maxc̄≤0 �0(c̄) and maxc̄≤0 �τ
0(c̄),

respectively, where Wiener processes are approximated by 104 discrete steps with standard Gaussian
innovations. All entries are based on 107 Monte Carlo replications.
Source: This table is taken from Table 1 of JN.

where β̃T is an estimator of β. This statistic differs from LRADF
T (only) because

the nuisance parameter β has been replaced by the estimator β̃T . The ADF test
employs an OLS estimator of β, whereas the DF-GLS test employs a GLS-type
estimator, but irrespective of the choice of β̃T , the displayed statistic turns out to
be asymptotically distinct from LRADF

T when dt = (1,t)′. In other words, although
η and/or σ 2 can be replaced with well-behaved estimators without any asymptotic
consequences, a plug-in version of LRADF

T in which β has been replaced by an
estimator turns out to be distinct from LRADF

T , even in the limit. Similarly, the point
optimal test statistic of ERS is asymptotically distinct from LRADF

T , being of the
form

max
β

LADF
T (T−1c̄ERS,β,0,ω̃2

T)−max
β

LADF
T (0,β,0,ω̃2

T),

where c̄ERS is a negative constant and ω̃2
T is an estimator of γ (1)−2σ 2, the long-run

variance of (1−ρL)ut. For additional details and further discussion, see Section 3
of JN.

3. SIEVE QLR TEST STATISTIC

It would be of interest, both practically and theoretically, to allow for more general
short-run dynamics than the AR(p) model considered in (2). In particular, as

https://doi.org/10.1017/S0266466622000652 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000652


1166 SAMUEL BRIEN ET AL.

alluded to earlier, the fact that the dimension of (π,β) does not depend on p
suggests that LRADF

T will be well behaved also when p is allowed to grow with T,
in which case the model (2) can be interpreted as a sieve-type approximation to a
more general model (e.g., Berk, 1974; Said and Dickey, 1984). Following Chang
and Park (2002), these heuristics can be made precise by replacing (2) with the
ARMA(1,∞) model

(1−ρL)ut = ψ(L)εt, (6)

where u0 = Op(1), the εt form a conditionally homoskedastic martingale difference
sequence with (unknown) variance σ 2 and supt Eε4

t < ∞, and ψ(z) = ∑∞
j=0 ψjzj

satisfies
∑∞

j=0 j|ψj| < ∞ and min|z|≤1 |ψ(z)| > 0.
In this more general situation, the model (2) with a finite lag order p is a

sieve approximation to the process (6) (cf. Remark 2.1 of Chang and Park, 2002).
The quality of the approximation improves as p increases, so we let p increase with
the sample size, and to make this explicit, we sometimes write p = pT . Letting
LRADF

T be calculated as in (4), the method of proof of Theorem 1 can be adapted
with the help of results from Chang and Park (2002) and Phillips and Solo (1992)
to show the following result (the proof of which is given in the Appendix).

Theorem 2. Suppose that {yt} is generated by (1) and (6) and that c = T(ρ −1)

is held fixed as T → ∞. Suppose also that p = pT satisfies pT → ∞ and pT =
o(T1/3) as T → ∞. Then the results of parts (a) and (b) of Theorem 1 continue to
hold.

4. MONTE CARLO SIMULATIONS

To assess the finite-sample properties of LRADF
T and some of its rivals, we conduct

a small Monte Carlo simulation experiment. For specificity, we consider data
generating processes (DGPs) of the form (1) and (2) with β = 0, p = 3, u0 = u−1 =
·· · = u−3 = 0, and εt ∼ i.i.d.N (0,1). For each of 105 replications, we simulate data
from the model with sample size T ∈ {300,1,000} and the parameter of interest ρ

either equal to 1, mildly explosive, or belonging to a grid chosen to ensure that the
rejection frequencies of the various tests are around 0.4, 0.7, and 0.9, respectively.
Regarding the nuisance parameter γ , we employ a parameterization of the form
γ (z) = ∏3

i=1(1 − φiz), where φi are the inverse roots of the polynomial γ (z). A
range of values of φ = (φ1,φ2,φ3) was considered, but to conserve space, we only
report results for some representative cases, where φ equals (0,0,0), (0.2,0.4,0.6),
(0.4,0.4,0.4), and (0.6,0.6,0.6), respectively. These all correspond to roots that are
outside the unit circle.

For each DGP, we implement three tests. The first of these is the test based on
LRADF

T using a lag length selected by applying the modified Akaike information
criterion (MAIC) of Perron and Qu (2007) (see also Ng and Perron, 2001) to the
ADF model characterized by (1) and (3). The other two are the tests based on
the statistic L̂R

d
T of JN and the DF-GLS statistic of ERS, each using the lag length
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Table 2. Rejection frequencies of unit-root tests, constant mean case.

DGP T = 300 T = 1,000

φ1, φ2, φ3 ρ LRADF
T L̂R

d
T DF-GLS ρ LRADF

T L̂R
d
T DF-GLS

0, 0, 0 1.020 0.001 0.835 0.001 1.006 0.001 0.775 0.001

1.000 0.043 0.040 0.048 1.000 0.048 0.047 0.050

0.980 0.338 0.321 0.367 0.994 0.384 0.376 0.391

0.960 0.747 0.725 0.770 0.988 0.840 0.831 0.843

0.940 0.911 0.899 0.916 0.982 0.980 0.977 0.980

0.2, 0.4, 0.6 1.020 0.001 0.811 0.002 1.006 0.001 0.805 0.002

1.000 0.034 0.041 0.100 1.000 0.044 0.075 0.095

0.980 0.268 0.265 0.448 0.994 0.351 0.430 0.493

0.960 0.632 0.552 0.708 0.988 0.798 0.787 0.826

0.940 0.848 0.781 0.877 0.982 0.967 0.958 0.970

0.4, 0.4, 0.4 1.020 0.001 0.818 0.002 1.006 0.001 0.801 0.001

1.000 0.033 0.035 0.084 1.000 0.045 0.060 0.078

0.980 0.267 0.235 0.393 0.994 0.356 0.370 0.427

0.960 0.637 0.549 0.697 0.988 0.802 0.769 0.808

0.940 0.854 0.794 0.883 0.982 0.969 0.958 0.969

0.6, 0.6, 0.6 1.020 0.001 0.769 0.003 1.006 0.001 0.824 0.003

1.000 0.038 0.056 0.160 1.000 0.046 0.135 0.153

0.980 0.265 0.329 0.550 0.994 0.359 0.535 0.569

0.960 0.576 0.521 0.692 0.988 0.787 0.775 0.813

0.940 0.774 0.663 0.805 0.982 0.959 0.919 0.938

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d
T ),

and the DF-GLS test of ERS. Simulations are based on 105 replications of the autoregressive DGP,
allowing for a constant mean only in the regression model. The lag orders are chosen by minimization
of the MAIC of Perron and Qu (2007) applied to the ADF model (3) for the LRADF

T test, and to the
DF-GLS regression for the other two tests.

chosen by the MAIC applied to the DF-GLS regression. In all cases, the maximum
lag order is pmax = ⌊

12(T/100)1/4
⌋

. Table 2 reports rejection frequencies of tests
with nominal size 5% for the constant mean case, whereas the corresponding
results for the linear trend case are reported in Table 3.

The LRADF
T test exhibits excellent size and power properties across all cases

considered in Tables 2 and 3. The other tests also have good power properties, but
tend to exhibit size distortions, especially so in the model with the largest degree
of persistence, namely when φ = (0.6,0.6,0.6).

Because the testing problem is one-sided, one might expect good tests to have
low power against those alternatives that are on the “wrong” side of the null
(as happens when testing hypotheses about the mean of a normal distribution,
for instance). Interestingly, the L̂R

d
T test seems to reject against ρ > 1. This
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Table 3. Rejection frequencies of unit-root tests, linear trend case.

DGP T = 300 T = 1,000

φ1, φ2, φ3 ρ LRADF
T L̂R

d
T DF-GLS ρ LRADF

T L̂R
d
T DF-GLS

0, 0, 0 1.020 0.001 0.801 0.000 1.006 0.001 0.774 0.000

1.000 0.039 0.034 0.029 1.000 0.045 0.042 0.032

0.950 0.471 0.429 0.394 0.985 0.552 0.529 0.451

0.900 0.861 0.832 0.820 0.970 0.972 0.963 0.939

0.850 0.913 0.886 0.884 0.955 0.996 0.992 0.988

0.2, 0.4, 0.6 1.020 0.000 0.626 0.001 1.006 0.000 0.797 0.001

1.000 0.028 0.021 0.110 1.000 0.039 0.096 0.109

0.950 0.303 0.193 0.355 0.985 0.472 0.490 0.485

0.900 0.712 0.541 0.652 0.970 0.943 0.913 0.893

0.850 0.851 0.761 0.811 0.955 0.993 0.986 0.980

0.4, 0.4, 0.4 1.020 0.000 0.664 0.001 1.006 0.000 0.793 0.001

1.000 0.025 0.020 0.089 1.000 0.040 0.075 0.084

0.950 0.301 0.184 0.312 0.985 0.476 0.444 0.432

0.900 0.726 0.575 0.668 0.970 0.945 0.914 0.892

0.850 0.864 0.788 0.826 0.955 0.994 0.987 0.982

0.6, 0.6, 0.6 1.020 0.000 0.374 0.003 1.006 0.001 0.769 0.002

1.000 0.028 0.003 0.233 1.000 0.043 0.163 0.203

0.950 0.231 0.059 0.466 0.985 0.460 0.532 0.551

0.900 0.512 0.288 0.538 0.970 0.918 0.833 0.826

0.850 0.678 0.508 0.655 0.955 0.988 0.962 0.952

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d
T ),

and the DF-GLS test of ERS. Simulations are based on 105 replications of the autoregressive DGP,
allowing for a constant mean and linear trend in the regression model. The lag orders are chosen by
minimization of the MAIC of Perron and Qu (2007) applied to the ADF model (3) for the LRADF

T test,
and to the DF-GLS regression for the other two tests.

happens because the plug-in estimates of the autoregressive parameters capture
the explosive root, which leaves only stationary roots and hence cause rejection.
This phenomenon does not occur for the LRADF

T test.
We next report some results for the notoriously difficult case of a moving

average process with a negative root. The DGP is similar to that above, except
we replace (2) with (6), for which we simulate from the moving average model
ψ(z) = 1+ψz with ψ ∈ {−0.25, −0.50, −0.75}.

The simulation results for the moving average DGP are reported in Table 4.
These show a clear size-power trade-off. For the smaller sample size and the largest
negative root, the QLR test is somewhat oversized, but has much higher power than
the DF-GLS test. The size distortion is reduced for the larger sample size.
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Table 4. Rejection frequencies of unit-root tests, linear trend case, moving
average DGP.

DGP T = 300 T = 1,000

ψ ρ LRADF
T L̂RT DF-GLS ρ LRADF

T L̂RT DF-GLS

−0.25 1.030 0.000 0.954 0.000 1.010 0.000 0.997 0.797

1.000 0.047 0.040 0.035 1.000 0.049 0.045 0.035

0.940 0.592 0.536 0.503 0.985 0.562 0.534 0.459

0.920 0.754 0.700 0.670 0.980 0.791 0.765 0.693

0.860 0.896 0.852 0.828 0.970 0.966 0.954 0.927

−0.50 1.030 0.000 0.972 0.000 1.010 0.000 0.997 0.779

1.000 0.060 0.046 0.039 1.000 0.058 0.052 0.039

0.940 0.578 0.495 0.436 0.985 0.576 0.537 0.454

0.920 0.724 0.641 0.572 0.980 0.790 0.755 0.671

0.860 0.895 0.821 0.722 0.970 0.960 0.944 0.897

−0.75 1.030 0.000 0.989 0.000 1.010 0.000 0.996 0.714

1.000 0.092 0.063 0.045 1.000 0.076 0.064 0.044

0.940 0.611 0.475 0.325 0.985 0.602 0.541 0.403

0.920 0.763 0.623 0.419 0.980 0.790 0.735 0.564

0.860 0.952 0.872 0.582 0.970 0.951 0.923 0.756

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d
T ),

and the DF-GLS test of ERS. Simulations are based on 105 replications of the moving average DGP,
allowing for a constant mean and linear trend in the regression model. The lag orders are chosen by
minimization of the MAIC of Perron and Qu (2007) applied to the ADF model (3) for the LRADF

T test,
and to the DF-GLS regression for the other two tests.

Results for other values of the autoregressive parameter φ and the moving
average parameter ψ are qualitatively similar and are omitted to conserve space.
Overall, the simulation results are consistent with the theory developed in this
paper, suggesting in particular that the test based on LRADF

T is competitive with
(if not superior to) its natural rivals also in samples of moderate size.

5. DIFFERENT CLASSES OF ALTERNATIVES

The models considered so far all have the feature that, under local departures from
the unit-root hypothesis, the weak limit of the process T1/2u	T·
 is the Ornstein–
Uhlenbeck process (5). This section briefly explores the properties of QLR tests
in two distinct types of models giving rise to different weak limits on the part of
T1/2u	T·
. More specifically, Section 5.1 allows for a nonnegligible initial condition
in the model for {ut}, whereas Section 5.2 is concerned with functional local-to-
unity models.

To conserve space and focus on the main issues, we abstract from the presence
of short-run dynamics and consider models for {ut} that can be interpreted as
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generalizations of the AR(1) version of the model (2). In other words, our point of
departure in both subsections of this section is the model characterized by (1) and
(2) with γ (z) = 1 and u0 = op(T1/2). We would expect, though, that very similar
results could be obtained for the model with p > 1 and for the model characterized
by (3) instead of (2).

5.1. (Possibly) Nonnegligible Initial Condition

As noted by Elliott (1999), if u0 is drawn from the stationary distribution of the
model (2) under local departures from the unit-root hypothesis, then the initial
condition is nonnegligible in the sense that T−1/2u0 = Op(1), but T−1/2u0 �= op(1).
Following Müller and Elliott (2003), an interesting way of accommodating a
(possibly) nonnegligible initial condition is to model u0 as a (possibly diverging)
parameter. Doing so, the initial condition acts as an unidentified nuisance param-
eter under the null hypothesis of a unit root. Even in otherwise standard testing
problems, the presence of nuisance parameters that are unidentified under the null
renders these testing problems nonstandard (e.g., Andrews and Ploberger, 1994)
and affects the optimality properties of likelihood ratio tests (e.g., Andrews and
Ploberger, 1995).

As shown by Müller and Elliott (2003), similar phenomena occur in a unit-root
testing context. We have no new results regarding general optimality theory for
testing problems of this sort. Instead, the purpose of this subsection is to document
the consequences of treating u0 as an unknown/unrestricted nuisance parameter
when developing QLR tests associated with the problem of testing H0 versus H1

in the model characterized by (1) and (2). As already indicated, we simplify the
exposition by setting γ (z) = 1 in (2).

Setting γ (z) = 1 and letting ξ denote the value of u0, the Gaussian quasi-
log-likelihood function corresponding to the model given by (1) and (2) can be
expressed, up to an additive constant, as

LIC
T (ρ,β,σ 2,ξ)

= −T

2
logσ 2 − 1

2σ 2
(YIC

ρ −DIC
ρ β)′(YIC

ρ −DIC
ρ β)− 1

2σ 2
(y1 −β ′d1 −ρξ)2,

where YIC
ρ and DIC

ρ are defined as the matrices with row t = 1, . . . ,T − 1 given
by yt+1 −ρyt and dt+1 −ρdt, respectively. Under H0 (i.e., when ρ = 1), the first
column of DIC

ρ is zero and ξ is not separately identified, although the sum of ξ and
the first element of β is identified. More importantly (for the present purposes at
least), for any ρ �= 0, it is remarkably straightforward to eliminate ξ by profiling
it out. Thus, setting ξ = ρ−1(y1 −β ′d1), the last term in LIC

T (ρ,β,ξ,σ 2) drops out
and we obtain

max
ξ

LIC
T (ρ,β,σ 2,ξ) = −T

2
logσ 2 − 1

2σ 2
(YIC

ρ −DIC
ρ β)′(YIC

ρ −DIC
ρ β).
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We therefore find that the QLR test statistic associated with the problem of testing
H0 versus H1 satisfies

LRIC
T = max

ρ≤1,β,ξ,σ 2>0
LIC

T (ρ,β,σ 2,ξ)− max
β,ξ,σ 2>0

LIC
T (1,β,σ 2,ξ)

= max
ρ≤1

LIC
T (ρ)−LIC

T (1),

where, up to an additive constant,

LIC
T (ρ) = −T

2
log (Y ′Y −Y ′D(D′D)−D′Y)

∣∣
Y=YIC

ρ ,D=DIC
ρ

is the profile quasi-log-likelihood obtained by maximizing maxξ LIC
T (ρ,β,σ 2,ξ)

with respect to (β,σ 2). Note that LIC
T (ρ) involves the Moore–Penrose inverse,

denoted (·)−, because D′D
∣∣
D=DIC

ρ
is singular when ρ = 1.

To interpret LRIC
T , we rewrite it as

LRIC
T = T

T −1
LRCL

T ,

where

LRCL
T = max

ρ≤1,β,σ 2>0
LCL

T (ρ,β,σ 2)− max
β,σ 2>0

LCL
T (1,β,σ 2)

is the QLR test statistic based on

LCL
T (ρ,β,σ 2) = −T −1

2
logσ 2 − 1

2σ 2
(YIC

ρ −DIC
ρ β)′(YIC

ρ −DIC
ρ β).

Here, LCL
T (ρ,β,σ 2) is the conditional (on y1) quasi-likelihood function corre-

sponding to the model given by (1) and (2). The latter is precisely the quasi-
likelihood upon which the Dickey and Fuller (1979, 1981) tests are based. Thus,
apart from the factor T/(T − 1), the QLR statistic LRIC

T is numerically identical
to the conditional QLR statistic LRCL

T , and consequently LRIC
T is asymptotically

equivalent to the one-sided Dickey–Fuller t-statistic.
In other words, treating the initial condition as a nuisance parameter and

profiling it out of the likelihood in the ERS-type model results in the same QLR
test as when conditioning on the first observation as in the work of Dickey and
Fuller (1979, 1981). Although expected in hindsight, this is an interesting and, to
the best of our knowledge, new insight.

The advantages and disadvantages of the Dickey–Fuller t-statistic are well
understood in models with and without a nonnegligible initial condition. As a
practical matter, Harvey, Leybourne, and Taylor (2009) recommend combining a
test of DF-GLS type with the Dickey–Fuller t-test (using a union of rejections
decision rule) when there is uncertainty about whether the initial condition is
asymptotically negligible or not. A (purely) likelihood-based version of their
proposal could employ a union of rejections decision rule based on LRADF

T and
a version of LRIC

T (or LRCL
T ) adapted to a model with γ (z) �= 1.
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5.2. Functional Local-to-Unity Models

Setting γ (z) = 1 and assuming that c = T(ρ − 1) is held fixed, the model (2) can
be written as

�ut = c

T
ut−1 + εt.

As an interesting generalization of this model, Bykhovskaya and Phillips (2020)
proposed the functional local-to-unity model

�ut = C(t/T)

T
ut−1 + εt, (7)

where C(·) is some (possibly) nonconstant function (see also Bykhovskaya and
Phillips, 2018). Letting C denote a set of functions containing the zero function,
we assume that the maintained hypothesis is of the form C(·) ∈ C, in which case
the unit-root testing problem is the problem of testing

HFLU
0 : C(·) = 0 versus HFLU

1 : C(·) ∈ C\{0}.

Specializing to the case where HFLU
1 is simple, Bykhovskaya and Phillips (2020)

characterized the large sample properties of QLR tests in the case where β in
(1) is known (and normalized to zero), εt ∼ i.i.d. N (0,σ 2) with σ 2 known (and
normalized to one) in (7), and the initial condition is u0 = 0. By the Neyman–
Pearson lemma, these tests are point optimal and the power of the tests can
therefore be used to obtain Gaussian power envelopes. In this subsection, our goal
is to describe (some of) the consequences of allowing HFLU

1 to be composite. To
facilitate comparison with our earlier results, we once again treat β and σ 2 as
unknown nuisance parameters.

The Gaussian quasi-log-likelihood function corresponding to the model given
by (1) and (7) with initial condition u0 = 0 can be expressed, up to an additive
constant, as

LFLU
T (C̄,β,σ 2) = −T

2
logσ 2 − 1

2σ 2
(YFLU

C̄
−DFLU

C̄
β)′(YFLU

C̄
−DFLU

C̄
β),

where, setting y0 = 0 and d0 = 0, YFLU
C̄

and DFLU
C̄

are defined as the matrices

with row t = 1, . . . ,T given by �yt − T−1C̄(t/T)yt−1 and �dt − T−1C̄(t/T)dt−1,
respectively. The corresponding QLR test statistic associated with the problem of
testing HFLU

0 versus HFLU
1 is therefore given by

LRFLU
T = max

C̄(·)∈C,β,σ 2>0
LFLU

T (C̄,β,σ 2)− max
β,σ 2>0

LFLU
T (0,β,σ 2)

= max
C̄(·)∈C

LFLU
T (C̄)−LFLU

T (0),
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where, up to an additive constant,

LFLU
T (C̄) = −T

2
log (Y ′Y −Y ′D(D′D)−1D′Y)

∣∣
Y=YFLU

C̄
,D=DFLU

C̄

is the profile quasi-log-likelihood obtained by maximizing LFLU
T (C̄,β,σ 2) with

respect to (β,σ 2).
In important respects, the distributional properties of LRFLU

T are similar to those
obtained for LRADF

T in Theorem 1. To state the results, let

WC(r) =
∫ r

0
exp

(∫ r

s
C(τ )dτ

)
dW(s),

where W is a standard Wiener process. If dt = 1, then it follows as in Lemma 2
of Bykhovskaya and Phillips (2020) that, under mild conditions on C(·) and C̄(·),
we have

LFLU
T (C̄)−LFLU

T (0) →d �FLU
C (C̄),

where

�FLU
C (C̄) =

∫ 1

0
C̄(r)WC(r)dWC(r)− 1

2

∫ 1

0
C̄(r)2WC(r)2dr.

Under mild conditions on C(·) and C, we therefore obtain the following general-
ization of the result reported in Theorem 1(a):

LRFLU
T →d maxC̄∈C �FLU

C (C̄).

Similarly, if dt = (1,t)′ and under mild conditions on C(·) and C, we obtain the
following generalization of the result reported in Theorem 1(b):

LRFLU
T →d maxC̄∈C �

FLU,τ
C (C̄),

where

�
FLU,τ
C (C̄) = �FLU

C (C̄)

+ 1

2

(
WC(1)− ∫ 1

0 C̄(r)(rdWC(r)+WC(r)dr)+ ∫ 1
0 C̄(r)2rWC(r)dr

)2

1−2
∫ 1

0 C̄(r)rdr + ∫ 1
0 C̄(r)2r2dr

− 1

2
WC(1)2

is the pointwise (in C̄(·)) weak limit of LFLU
T (C̄)−LFLU

T (0).
As observed by JN, the fact that �c(c̄) is quadratic in c̄ implies that the functional

maxc̄≤0 �c(c̄) in Theorem 1(a) admits the closed-form representation
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maxc̄≤0 �c(c̄) = 1

2

min
{∫ 1

0 Wc(r)dWc(r),0
}2

∫ 1
0 Wc(r)2dr

.

A similar representation is available for maxC̄∈C �FLU
C (C̄) in many cases. To be

specific, suppose that C is a cone of the form

C = {
c̄C̄λ(·) : c̄ ≤ 0,λ ∈ �

}
, (8)

where, for each λ in some set �, C̄λ(·) is a known function. In this case, the
parameter of interest is c̄, whereas λ is a nuisance parameter that is unidentified
under the null, and we have

maxC̄∈C �FLU
C (C̄) = max

λ∈�

1

2

min
{∫ 1

0 C̄λ(r)WC(r)dWC(r),0
}2

∫ 1
0 C̄λ(r)2WC(r)2dr

.

In particular, if � = {1/2} (implying in particular that there are no unidentified
nuisance parameters under HFLU

0 ), then

maxC̄∈C �FLU
C (C̄) = 1

2

min
{∫ 1

0 C̄1/2(r)WC(r)dWC(r),0
}2

∫ 1
0 C̄1/2(r)2WC(r)2dr

.

On the other hand, maxC̄∈C �
FLU,τ
C (C̄) shares with maxc̄≤0 �τ

c (c̄) in Theorem 1(b)
the property that it does not seem to admit a closed-form representation.

The list of classes C satisfying (8) is long, but for specificity, we mention some
prominent examples here. A particularly simple class is the one where � = {1/2}
and C̄1/2(·) is given by the triangular function,

C̄1/2(τ ) = min {τ,1− τ } = λmin

{
τ

λ
,

1− τ

1−λ

}∣∣∣∣
λ=1/2

.

This class is motivated by Section 2.2.2 of Bykhovskaya and Phillips (2020),
wherein the function c̄C̄1/2(·) is denoted c∗

c̄/2(·). Similarly, the following classes
exhibiting a (possibly) nontrivial dependence on λ, are inspired by Section 2.2.1
of Bykhovskaya and Phillips (2020):

C̄λ(τ ) = I(τ < λ), � ⊂ (0,1),

C̄λ(τ ) = I(τ > λ), � ⊂ (0,1),

C̄λ(τ ) = I(|τ −1/2| < λ), � ⊂ (0,1/2),

C̄λ(τ ) = I(|τ −1/2| > λ), � ⊂ (0,1/2),

where I(·) denotes the indicator function.
It would be of interest to explore the power properties of LRFLU

T for various
choices of C. Among other things, it may be useful to isolate a class C for which
LRFLU

T is nearly efficient in the sense that its local asymptotic power function is
indistinguishable from the Gaussian power envelope. For instance, it seems natural
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Table 5. Rejection frequencies of unit-root tests, functional case.

ρ LRADF
T L̂R

d
T DF-GLS LRFLU

T

λ = 0.25 λ = 0.5 λ = 0.75

Panel A: constant mean case

1.000 0.048 0.047 0.049 0.047 0.048 0.050

0.993 0.472 0.462 0.479 0.352 0.366 0.374

0.990 0.721 0.710 0.726 0.547 0.557 0.565

0.985 0.940 0.934 0.940 0.801 0.808 0.807

1−0.03C̄1/2(·) 0.737 0.728 0.735 0.876 0.947 0.828

Panel B: linear trend case

1.000 0.045 0.042 0.031 0.035 0.044 0.054

0.990 0.277 0.263 0.212 0.179 0.207 0.233

0.980 0.795 0.773 0.700 0.547 0.588 0.616

0.970 0.972 0.963 0.940 0.834 0.858 0.869

1−0.06C̄1/2(·) 0.763 0.744 0.641 0.885 0.976 0.906

Notes: Rejection frequencies for the QLR test (LRADF
T ), the plug-in likelihood ratio test of JN (L̂R

d
T ),

the DF-GLS test of ERS, and the QLR test with triangular functional alternatives (LRFLU
T with λ ∈

{0.25,0.5,0.75}). Simulations are based on 105 replications of the autoregressive DGP with γ (z) = 1
and T = 1,000, allowing for either a constant mean only (Panel A) or a linear trend (Panel B) in the
regression model. The lag orders are chosen by the minimization of the MAIC of Perron and Qu (2007)
applied to the relevant model.

to ask whether LRFLU
T is nearly efficient when C is of the form (8) with � = {1/2}

and C̄1/2(·) equal to the triangular function or some other plausible alternative to
the conventional constant function. In addition, and perhaps even more so, it would
be interesting to know whether it is possible to isolate a class C for which LRFLU

T
has good power properties even when C is misspecified. Bykhovskaya and Phillips
(2020) argue convincingly that this property fails when C consists only of constant
functions and present evidence to suggest that setting � = {1/2} and letting C̄1/2(·)
be given by the triangular function might be an attractive alternative to the more
conventional approach of (implicitly) letting C consist only of constant functions.

Although it is beyond the scope of this paper to do so, we hope that future
work will answer these questions and more generally shed additional light on the
properties of functional local-to-unity models. To motivate such analysis, we report
in Table 5 rejection frequencies for the LRADF

T test, the L̂R
d
T test of JN, the DF-

GLS test, and the QLR test with triangular functional alternatives, i.e., LRFLU
T with

λ ∈ {0.25,0.5,0.75}. The results in Table 5 show that the LRFLU
T tests suffer some

power loss relative to the other tests under the “usual” alternatives with ρ < 1
being constant. On the other hand, the LRFLU

T tests are more powerful against the
functional alternative. Moreover, the LRFLU

T test with correctly specified λ = 0.5 is
substantially more powerful than the LRFLU

T tests with λ = 0.25 and λ = 0.75.
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6. CONCLUDING REMARKS

This paper has developed and analyzed QLR test statistics in an autoregressive
model of arbitrary order, whose deterministic components and short-run dynamics
are governed by unknown nuisance parameters. Previous work, notably that of
ERS and JN, has developed tests that can be interpreted as “plug-in” versions of
QLR test statistics, developed under the counterfactual assumption that nuisance
parameters governing either deterministic components or short-run dynamics
are known. In particular, our work generalizes that of JN by allowing the nuisance
parameters that are “profiled out” to include those of a finite-order autoregressive
process governing short-run dynamics. Our main theoretical result shows that this
generalization can be achieved without sacrificing analytical tractability or statis-
tical efficiency. In addition, the resulting test is attractive from a practical point
of view, being simple to compute and enjoying good properties in a simulation
experiment. We have also considered extensions of the finite-order autoregressive
model to sieve-type approximations and to different classes of alternatives.

Although doing so is beyond the scope of this paper, it would be of both theoret-
ical and practical interest to explore whether the generalizations of JN developed
in this paper could be extended to other unit-root-type models. For example,
an interesting model related to the functional local-to-unity model considered
in Section 5.2 is the hybrid stochastic local unit-root model of Lieberman and
Phillips (2020), which leads to nonlinear diffusions that match certain financial
models with high kurtosis (see also Lieberman and Phillips (2014, 2017)). It would
be of interest to develop and study QLR tests of the unit-root hypothesis also
in models of that type. Furthermore, it seems likely that the methods could be
developed to cover seasonally integrated models as in Jansson and Nielsen (2011)
or cointegrated vector autoregressive models as in Boswijk, Jansson, and Nielsen
(2015). It would also be of interest to develop and analyze QLR tests for unit roots
in more complicated settings such as panel data models. Important progress on
understanding optimal unit-root testing in such models has been made by, among
others, Moon, Perron, and Phillips (2007, 2014) and Becheri, Drost, and van den
Akker (2015), but to the best of our knowledge, it is still an open question whether
optimality can be achieved by tests admitting a QLR interpretation.

APPENDIX. Proofs of Main Results

A.1. Proof of Theorem 1

Because LADF
T (·) is invariant under transformations of the form yt → yt + b′dt, we can

assume without loss of generality that β = 0. Furthermore, the proof of part (a) is a special
case of the proof of part (b), so we only give the proof of part (b).

In what follows, we employ a local (around π = 0, β = 0, and η = γ ) reparameterization
of the form π = πT (c̄) = γ (1)c̄/T , β = βT (b̄) = γ (1)−1b̄diag(1,T−1/2), and η = ηT (h̄) =
γ + h̄T−1/2, where c̄ ∈ R, b̄ ∈ R

2, and h̄ ∈ R
p. To reiterate, the model of interest is that
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given by (1) and (2) with γ and c = T(ρ − 1) kept fixed, but (solely) for the purpose of
analyzing LADF

T , it is natural to work with (and reparameterize) η and π .

For any (π,β), define Vγ
π,β as the vector with row t = 1, . . . ,T given by (γ (L)(1−L)−

πL)(yt −β ′dt). Moreover, define

σ̃ 2
T = 1

T
(V ′V −V ′Z(Z′Z)−1Z′V)

∣∣∣
V=Vγ

0,0,Z=Z0
= T−1

T∑
t=1

ε2
t +op(1) →p σ 2,

and for any (c̄,b̄), let

λADF
T (c̄,b̄) = λDF

T (c̄,b̄)+ 1

2σ̃ 2
T

(V ′Z(Z′Z)−1Z′V)

∣∣∣
V=Vγ

πT (c̄),βT (b̄)
,Z=ZβT (b̄)

− 1

2σ̃ 2
T

(V ′Z(Z′Z)−1Z′V)

∣∣∣
V=Vγ

0,0,Z=Z0
,

where

λDF
T (c̄,b̄) = 1

2σ̃ 2
T

V ′V
∣∣
V=Vγ

0,0
− 1

2σ̃ 2
T

V ′V
∣∣
V=Vγ

πT (c̄),βT (b̄)

.

Because

LADF
T (πT (c̄),βT (b̄))−LADF

T (0,0) = GT (λADF
T (c̄,b̄)),

where

GT (x) = −T

2
log

(
1− 2

T
x

)
, x <

T

2
,

is monotonically increasing in x, the statistic LRADF
T admits the representation

LRADF
T = GT

(
max

c̄≤0,b̄
λADF

T (c̄,b̄)

)
−GT

(
max

b̄
λADF

T (0,b̄)

)
.

Suppose(
max

c̄≤0,b̄
λADF

T (c̄,b̄), max
b̄

λADF
T (0,b̄)

)
→d

(
max

c̄≤0,b̄
�ADF

c (c̄,b̄), max
b̄

�ADF
c (0,b̄)

)
, (A.1)

where the process �ADF
c is of the form

�ADF
c (c̄,b̄) = �c(c̄)+ b̄′

( E
(1− c̄)Wc(1)+ c̄2

∫ 1
0 rWc(r)dr

)
− 1

2
b̄′

(
K 0
0 1− c̄+ c̄2/3

)
b̄,

with K a positive constant (possibly depending on γ ) and E a random variable independent
of Wc (but possibly depending on γ ). Then

LRADF
T = max

c̄≤0,b̄
λADF

T (c̄,b̄)−max
b̄

λADF
T (0,b̄)+op(1)

→d max
c̄≤0,b̄

�ADF
c (c̄,b̄)−max

b̄
�ADF

c (0,b̄)
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= max
c̄≤0

⎛⎜⎝�c(c̄)+ 1

2

(
(1− c̄)Wc(1)+ c̄2

∫ 1
0 rWc(r)dr

)2

(1− c̄+ c̄2/3)
+ 1

2

E2

K

⎞⎟⎠−
(

1

2
Wc(1)2 + 1

2

E2

K

)
= max

c̄≤0
�τ

c (c̄),

where the first equality follows from the facts that (i) the left-hand side of (A.1) is Op(1)

and (ii) limT→∞ sup|x|≤M |GT (x)−x| = 0 for any 0 ≤ M < ∞. The proof can therefore be
completed by verifying (A.1). We shall do so by showing that

(ĉT,b̂T ) = arg max
c̄≤0,b̄

λADF
T (c̄,b̄) = Op(1) and b̃T = argmax

b̄
λADF

T (0,b̄) = Op(1),

(A.2)

and that λADF
T converges to �ADF

c in the topology of uniform convergence on compacta.
We first show (A.2). To this end, let

et = γ (L)�yt, QTt = (q′
Tt,r

′
Tt,s

′
Tt)

′, θT = (θ ′
q,T,θ ′

r,T,θ ′
s,T )′,

with

qTt =

⎛⎜⎜⎝
T−1γ (1)yt−1

I(t = 1)−∑p
j=1 γjI(t = j+1)

T−1/2

T−3/2(t −1)

⎞⎟⎟⎠, rTt =
⎛⎜⎝ I(t = 2)

...
I(t = p+1)

⎞⎟⎠, sTt =
⎛⎜⎝ T−1/2�yt−1

...
T−1/2�yt−p

⎞⎟⎠,

and

θq,T (c̄,b̄,h̄) =

⎛⎜⎜⎝
c̄

γ (1)−1(1+T−1c̄γ (1))b̄1 +T−1/2γ (1)−1b̄2ι′ηT (h̄)

γ (1)−1(1−T−1/2ι′h̄)b̄2 −T−1/2c̄b̄1
−c̄b̄2

⎞⎟⎟⎠,

θr,T (c̄,b̄,h̄) = T−1c̄b̄1γ +T−1/2γ (1)−1b̄2ι′ηT (h̄)γ

−T−1/2γ (1)−1b̄1h̄+T−1/2γ (1)−1b̄2UηT (h̄),

θs,T (c̄,b̄,h̄) = h̄,

where I(·) is the indicator function, ι is a p-vector of ones, and U is a p × p strictly upper
triangular matrix with ones above the main diagonal.

The pair (ĉT,b̂T ) satisfies

(ĉT,b̂T,ĥT ) = arg min
c̄≤0,b̄,h̄

λT (c̄,b̄,h̄),

where

λT (c̄,b̄,h̄) =
T∑

t=1

(et −Q′
TtθT (c̄,b̄,h̄))2 −

T∑
t=1

e2
t

= −2G′
Tθ + θ ′HTθ

∣∣
θ=θT (c̄,b̄,h̄)

,
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with

GT =
⎛⎝ Gq,T

Gr,T
Gs,T

⎞⎠ =
T∑

t=1

⎛⎝ qTt
rTt
sTt

⎞⎠et =
T∑

t=1

QTtet

and

HT =
⎛⎝ Hqq,T Hqr,T Hqs,T

Hrq,T Hrr,T Hrs,T
Hsq,T Hsr,T Hss,T

⎞⎠ =
T∑

t=1

⎛⎝ qTt
rTt
sTt

⎞⎠⎛⎝ qTt
rTt
sTt

⎞⎠′
=

T∑
t=1

QTtQ
′
Tt.

Defining θ̂T = θT (ĉT,b̂T,ĥT ), we therefore have

0 ≥ λT (ĉT,b̂T,ĥT ) = −2G′
T θ̂T + θ̂ ′

T HT θ̂T

≥ −2‖GT‖‖θ̂T‖+λmin(HT )‖θ̂T‖2 (A.3)

by the Rayleigh–Ritz theorem, where ‖·‖ denotes the Euclidean norm and where λmin (·)
denotes the smallest eigenvalue of the argument. This rearranges straightforwardly as

‖θ̂T‖ ≤ 2‖GT‖/λmin(HT ).

It follows from standard results (e.g., Chan and Wei, 1987; Phillips, 1987) that (GT,HT ) →d
(Gc,Hc) for some (Gc,Hc) depending on c (and γ ) with Hc positive definite. In particular,
GT = Op(1) and 1/λmin(HT ) = Op(1), and therefore θ̂T = Op(1).

Consequently, ĥT = Op(1), ĉT = Op(1), and⎛⎝ (1+op(1))b̂1,T + b̂2,T op(1)

(1+op1))b̂2,T − ĉT b̂1,T o(1)

−ĉT b̂2,T

⎞⎠ = Op(1),

implying in turn that also b̂T = Op(1). This proves the first statement of (A.2).
Similarly, the representation

(b̃T,h̃T ) = argmin
b̄,h̄

λT (0,b̄,h̄)

can be used to show that h̃T = Op(1) and(
b̃1,T + b̃2,T op(1)

(1+op(1))b̃2,T

)
= Op(1),

which implies that b̃T = Op(1). This proves the second statement of (A.2).
Next, we prove that λADF

T converges to �ADF
c in the topology of uniform convergence

on compacta. For any compact set K, it can be shown that

sup
(c̄,b̄′)′∈K

∣∣∣λADF
T (c̄,b̄)−λDF

T (c̄,b̄)

∣∣∣ = Op(T−1/2) = op(1).

It therefore follows from Prohorov’s theorem (e.g., Kallenberg, 2002, Thm. 16.5) that λADF
T

converges to �ADF
c in the topology of uniform convergence on compacta if λDF

T converges
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to �ADF
c in the sense of weak convergence of finite-dimensional projections and if the

process
{
λDF

T (c̄,b̄) : (c̄,b̄′)′ ∈ K
}

is tight for any compact set K.

For any fixed (c̄,b̄), it follows from standard results (e.g., Chan and Wei, 1987; Phillips,
1987) that

λDF
T (c̄,b̄) →d �ADF

c (c̄,b̄).

Moreover, the Cramér–Wold device can be used to show that λDF
T converges to �ADF

c
in the sense of weak convergence of finite-dimensional projections. Finally, letting VT ,
V̇T , DT , and ḊT be matrices with row t = 1, . . . ,T given by γ (L)�yt, T−1γ (1)yt−1,
γ (1)−1γ (L)�d′

t diag(1,T−1/2), and d′
t−1 diag(T−3/2,T2), respectively, λDF

T admits a rep-
resentation of the form

λDF
T (c̄,b̄) = F(c̄,b̄,ST ),

where F is continuous and where

ST = (
V ′

T V̇T,V̇ ′
T V̇T,V ′

TDT,V ′
T ḊT,V̇ ′

TDT,V̇ ′
T ḊT,D′

TDT,D′
T ḊT,Ḋ′

T ḊT
) = Op(1)

by standard results (e.g., Chan and Wei, 1987; Phillips, 1987). Because F is continuous,
it follows from the Arzelà–Ascoli theorem (Dudley, 2002, Thm. 2.4.7) that for any
compact sets K and K, the set {F(·,S)|K : S ∈ K} is relatively compact (i.e., has compact
closure), where F(·,S)|K is the restriction of F(·,S) to K. As a consequence, the fact that

ST = Op(1) implies that, for any compact set K, the process
{
λADF

T (c̄,h) : (c̄,h′)′ ∈ K
}

={
F(c̄,h,ST ) : (c̄,h′)′ ∈ K

}
is tight.

A.2. Proof of Theorem 2

Define γ̄ (z) = 1−∑∞
j=1 γ̄jz

j = ψ(z)−1, which exists under our conditions on ψ(z). For any

p, letting γ = (γ1, . . . ,γp)′ = (γ̄1, . . . ,γ̄p)′ and proceeding as in the proof of Theorem 1, it
suffices to show that (A.2) holds and that λADF

T converges to �ADF
c in the topology of

uniform convergence on compacta.
The fact that λADF

T converges to �ADF
c in the topology of uniform convergence on

compacta can be shown by adapting the proof of Theorem 1 with the help of results and ideas
from Chang and Park (2002) and Phillips and Solo (1992). Specifically, when p = pT → ∞,
it holds that (i) for any compact set K,

sup
(c̄,b̄′)′∈K

∣∣∣λADF
T (c̄,b̄)−λDF

T (c̄,b̄)

∣∣∣ = Op(T−1/2pT ),

which is op(1) because pT = o(T1/3), (ii) λDF
T converges to �ADF

c in the sense of weak
convergence of finite-dimensional projections, and (iii) ST = Op(1). To conserve space, we
do not report the details of those derivations.

Relative to the proof of Theorem 1, the most difficult part of the proof of Theorem 2 is
to show that (A.2) holds. Proceeding as in the proof of Theorem 1, and using in particular
the argument in (A.3), we have that

‖θ̂T‖ ≤ 2‖GT‖/λmin(HT ) = Op(p1/2
T ).
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Here, the equality uses the facts that, when p = pT → ∞,

‖Gq,T‖+p−1/2
T ‖Gr,T‖+p−1/2

T ‖Gs,T‖ = Op(1)

and

λmax(HT )+1/λmin(HT ) = Op(1),

where λmax(·) denotes the largest eigenvalue of the argument, the first display follows
from the Chebyshev inequality and the fact that the elements of GT have bounded second
moments, and the second display uses

∑∞
j=1 γ̄ 2

j < ∞ and the fact (also noted by Berk,
1974) that

λmax(�)+1/λmin(�) = O(1),

where

� = E(v̆t v̆
′
t), v̆t = γ (L)−1(εt, . . . ,εt−p+1)′.

In particular, this implies that ĥT = Op(p1/2
T ), ĉT = Op(p1/2

T ), and, using pT = o(T),⎛⎝ (1+op(1))b̂1,T + b̂2,T op(1)

(1+op(1))b̂2,T − ĉT b̂1,T O(T−1/2)

−ĉT b̂2,T

⎞⎠ = Op(p1/2
T ),

implying in turn that also b̂T = Op(p1/2
T ).

To sharpen these rates and prove that (A.2) holds, we first note that ĥT = Op(p1/2
T ),

ĉT = Op(p1/2
T ), and b̂T = Op(p1/2

T ) together with pT = o(T1/3) imply that

G′
T θ̂T = G′

q,T θ̂q,T +G′
s,T θ̂s,T +op(1)

and

θ̂ ′
T HT θ̂T = θ̂ ′

q,T Hqq,T θ̂q,T + θ̂ ′
s,T Hss,T θ̂s,T +op(1).

Consequently,

min
c̄≤0,b̄,h̄

λT (c̄,b̄,h̄) = −2G′
T θ̂T + θ̂ ′

T HT θ̂T

= −2G′
q,T θ̂q,T + θ̂ ′

q,T Hqq,T θ̂q,T −2G′
s,T θ̂s,T + θ̂ ′

s,T Hss,T θ̂s,T +op(1),

where

−2G′
s,T θ̂s,T + θ̂ ′

s,T Hss,T θ̂s,T = λT (0,0,h̄) ≥ min
h̄

λT (0,0,h̄).

Therefore,

0 ≥ min
c̄≤0,b̄,h̄

λT (c̄,b̄,h̄)−min
h̄

λT (0,0,h̄)

≥ −2G′
q,T θ̂q,T + θ̂ ′

q,T Hqq,T θ̂q,T +op(1),
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which implies that, with probability converging to 1,

‖θ̂q,T‖ ≤ 2‖Gq,T‖/λmin(Hqq,T )+op(1)/‖θ̂q,T‖ ≤ 2‖Gq,T‖/λmin(Hqq,T )+1 = Op(1).
(A.4)

Here, the first inequality follows by the Rayleigh–Ritz theorem as in (A.3), the second
inequality follows by noting that the op(1) term is smaller than one in absolute value
with probability converging to 1 and then considering separately the cases ‖θ̂q,T‖ ≤ 1 and

‖θ̂q,T‖ ≥ 1, and the equality follows because Gq,T = Op(1) and 1/λmin(Hqq,T ) = Op(1).
Using (A.4) and the fact that

θ̂q,T =

⎛⎜⎜⎝
ĉT

γ (1)−1b̂1,T
γ (1)−1b̂2,T
−ĉT b̂2,T

⎞⎟⎟⎠+op(1),

we have∥∥∥∥∥∥∥∥
⎛⎜⎜⎝

ĉT
γ (1)−1b̂1,T
γ (1)−1b̂2,T
−ĉT b̂2,T

⎞⎟⎟⎠
∥∥∥∥∥∥∥∥ ≤ ‖θ̂q,T‖+op(1) = Op(1),

implying in particular that ĉT = Op(1) and b̂T = Op(1). By a very similar proof, it can be
shown that b̃T = Op(1).
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