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EMBEDDINGS OF L-GROUPS
D. SHELSTAD

To a real reductive group G there is attached a family of (real) groups,
each of lower dimension but sharing Cartan subgroups with G (cf. [8]).
The purpose of these groups is to provide ‘‘building blocks" (in a specific
sense (cf. [11])) for analysis on G. Their definition is via an L-group
construction; the connected component of the identity, ZH° in the
L-group of such a group H is naturally a subgroup of £G?, but the require-
ment that H ‘‘share” Cartan subgroups with G precludes defining *H,
the full L-group of H, as a subgroup of “G. Nevertheless, the principle of
functoriality in the L-group suggests that the embeddings of *H in G
will play a role in analysis. In this paper, we study the embeddings of ZH in
LG in order toresolve a problem about the normalization of orbital integrals.

Our method is based on the proof of the Langlands correspondence for
discrete series representations of real groups ([7]). Thus we attach to an
embedding of “H in *G two elements in a certain vector space, and then
show that these elements satisfy some congruence relations. We thereby
attach to the embedding quasicharacters on various Cartan subgroups of
G. The arguments for the congruences are very simply summarized in
terms of the embeddings of the L-group £7 of a Cartan subgroup T of G
in £G. Such embeddings are severely constrained; if 7" is common to H
and G then given T S ZH and YH S G we obtain T S LG and so
have information about H & £G.

We defer the recovery of an embedding of ZH in G from its congruences
until after the normalization of orbital integrals, as the results there offer
some guidance.

In order to transfer certain (‘“‘x-"’ (cf. [10])) orbital integrals from G to
stable orbital integrals on H, it is essential first to normalize the integrals
on G (cf. [10, esp. Theorem 8.3]); thus we must specify some functions on
the Cartan subgroups common to H and G. The roots in H of such a
Cartan subgroup 7 may be identified as roots in G. We write a potential
normalizing function on T as

+c(v) I1 (1 —am™

« positive root,
not in H,
imaginary

X T le” —aty)™, veT.

a positive root,
not in H,
not imaginary
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The role of the term ¢(vy) is to match the transformation of the function
under a certain Weyl group with that of unnormalized k-orbital integrals,
and to make the various functions ‘‘compatible’” as we move among the
Cartan subgroups common to H and G.

In [10] we assumed

c(y) = [T e

a positive root
not in H,

not imaginary
to be well-defined (and more, to ensure compatibility) and showed that,
for consistent choice of 2, the resultant normalizing functions do provide
a transfer of orbital integrals from G to H. While no embedding of *H in
LG is present explicitly in that example, one consequence of the main
result in the present paper (Theorem 8.0.1) will be that one does exist.

The assumptions above are undesirable because they fail in some simple
cases, and no ‘‘natural’ remedy appears available. There is also a func-
torial reason for not always using those ¢(y)'s: given an embedding of ZH
in G we may ask that the terms ¢(y) be compatible with the embedding
in the sense that dual to the transfer of orbital integrals from G to H
provided by the ¢(y)’s we get a lifting of tempered characters from H to
G, which is consistent with the map on L-packet parameters (that is, the
map ®(H) — ®(G) ([3])) induced by *H & LG (cf. [11]). We do not
pursue this explicitly in the present paper.

Consider an embedding of YH in G and its attached quasicharacters.
We prove two properties of the quasicharacters and then abstract these
properties in the definition of a ‘‘set of correction characters’. An exami-
nation of [10] shows that any set of correction characters can be used as
¢(v)’s; that is, for consistent choice of =, the resulting set of normalizing
functions provides a transfer of orbital integrals from G to H. As our
terminology suggests, correction characters are the only quasicharacters
which will do for the ¢(vy)’s.

We come then to recovering an embedding of “H in G from its con-
gruences. We know that these congruences must be ‘‘correction con-
gruences’’; that is, that the attached quasicharacters must form a set of
correction characters. From now on, assume that G is quasi-split. We will
construct an embedding whose attached quasicharacters are a given set of
correction characters. We will also prove that two embeddings have the
same attached quasicharacters if and only if they are ®-equivalent in the
sense that they induce the same map ®(H) — ®(G) on L-packet param-
eters. Our main result thus follows: a one to one correspondence between
d-equivalence classes of embeddings of ZH in G and sets of correction
characters (equivalently, correction congruences).

We have not attempted to solve correction congruences and so deter-
mine the existence of an embedding of ZH in £G. Recall that, according to
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[8], there is always an embedding of YH in ZG if the center of £GO is
connected, and a counter-example (in type E; X 4,) if the center of ZG°
is not connected. As an exercise, we will use one simple congruence to
generate examples and counterexamples for the case that H shares a
fundamental Cartan subgroup of G, and this subgroup is compact
modulo the center of G.

On the other hand, a standard construction and our main result give a
simple answer to the question of uniqueness for ®-equivalence classes of
embeddings of ZH in LG, or sets of correction characters.

The section headings indicate the organization of the paper. Notation
follows [9] and [10] whenever possible.

Our arguments owe much to [8] and the unpublished manuscript [7].
It is Lemma 3.2 of [7] which explains why ‘‘one half the sum of the
positive imaginary roots’’ plays a central role in the embeddings of
L-groups of real groups, and which we use frequently in this paper. With
the author’s permission, we have included his proof of the lemma in an
appendix.

1. L-groups. In this and the next section we emphasize some technical
points, in order to make matters easier for the later sections. As an
introduction to embeddings of L-groups, we will examine the embeddings
of LT in LG, for T a Cartan subgroup of G, compact modulo the center of
G. The results hinge on Lemma 3.2 of [7].

We follow our earlier conventions for algebraic groups ([9]): G will be a
connected reductive linear algebraic group defined over R and G the
group of its R-rational points. When convenient, we identify G with its
C-rational points. If 7' is a maximal torus in G defined over R, we call 7" a
Cartan subgroup, in accordance with Lie group terminology. For any
torus over R or C we write L( ) for the lattice of rational characters and
LV () for the cocharacters; { , ) denotes the pairing between L( ) and
LV().

(1.1) Notation. For once and for all we fix data for an L-group of G:

(1.1.1) a quasi-split inner form G* of G and an inner twist ¢ : G — G¥,

(1.1.2) a Borel subgroup B* of G* over R containing a maximal torus
T* over R,

(1.1.3) a connected reductive group “G° over G and Borel subgroup
LBY containing a maximal torus £7°, such that L(*7°) = LV (T*) and
the simple roots of *7 in “BY are the coroots of the simple roots of T*
in B¥*,

(1.1.4) for each simple root ¥ of 79 in B9, a root vector X,v.

We write L for L(T*) and LY for LV (T*) = L(*T°). We denote by o7«
the Galois action on T* (and its usual transfer to L, LY and £7°) and by
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o ¢ that extension of ¢+ to LG which satisfies
(el Xav = XU‘G av-.

Finally, LG = £G® X W, where W is the Weil group of G/R, which we
realize as

{zX7r:2¢€ CX 1€ (l,oa),
with multiplication
(21 X T}) (2'2 X 7'2) = (171'722171(22) X T1T2,

where a11 =01 =1, =1, ¢y, = —1; on G’ CX X 1 is to act
trivially and 1 X ¢ by og.

It is the pair (YG, ¥) that defines an L-group for G, although we usually
omit ¢ in notation. When we restrict our attention to a quasi-split group
(for example, the group “H"’ to be introduced) we may take G* = G and
omit ¢ altogether.

(1.2) Standard Levi subgroups in “G. If 1 is a maximal torus in G
defined over R we write Sy (or just S) for the maximal R-split torus in T°
and My (or just M) for the centralizer of Sy in G.

We consider first a torus 7 in G*. By [9] there exists ¢ € A(7T’) such that
Syro-1 € Sy For our purposes it will be enough to consider instead
gTg™'. Thus we assume also that Sr € Sr«. Working with (I, B* N
M, T*) we see that “M is naturally a subgroup of *G; “M° is the subgroup
of G generated by *7° and the coroots of the simple roots of 7* in
B* M M, and o is the restriction of o to *M° (see [7, § 2] for more
general considerations).

Passing to G, suppose now that 7" is a maximal torus in G. We may fix
x € G* so that

Y, =adxoy: T —G*

is defined over R ([7]). Let 77 be the image of 7. We may and do require
of ¥ that Sz» © Spx. The map ¢, is an inner twist from M, to My and
(B(Myz1), ¥,) is an L-group for M7, which we denote simply by ZM . We
will call LMy a standard Levi subgroup in LG.

(1.3) Embeddings of the L-group of a Cartan subgroup. Suppose that T
and 7" are as in the last paragraph. Then ¢, induces an isomorphism
LT — L(T"). By an embedding of T in “Mr we will mean an embedding
of L(T") in L(My+). To study such embeddings we change notation and
work under the hypothesis:

T is a maximal torus over R in G*, anisotropic modulo the center of
G*.
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First, we describe those embeddings = of T in ZG which we will call
allowed. There are two conditions:

LT —T—IG

(1.3.1) pro& ﬁroj. is commutative.
w

For the second, we use:

Definition 1.3.2. A pseudo-diagonalization (p-d.) of I is a map from
T to T* of the form ad g|T, ¢ € G*. Our terminology comes from the fact
that in examples we usually arrange that 7* be a diagonal group. Some-
times we call the element g itself a pseudo-diagonalization.

A p-d. of T induces isomorphisms between L(7") and L and between
LV(T) and LY, and hence an isomorphism between (¥7)°, the connected
component of the identity in #7, and *7°, the distinguished maximal
torus in XG% We require, as our second condition on 7, that

(1.3.3) 7|%(T)°is induced by a p-d. of T.

Suppose that we are given a p-d. g of 7. We transfer the Galois action
of T to L, LV and £T" via g (since I is anisotropic modulo the center of
G* the choice for g has no effect); we write the result as o7. To obtain an
allowed embedding “T'— G which extends the isomorphism (*7")° —
LT0 induced by g, we need exactly a homomorphism 7y : W — %G such
that 7w (w) = ro(w) X w, w € W, where 7o(CX X 1) C 7% and
70(1 X o) is an element of the normalizer of *7° in ZG° such that
70(1 X ) X (1 X o) = 7w(1 X o) acts on 70 as or. Note that any
element # of the normalizer of *7° in *G° which maps the positive roots of
LT in :GY, that is, the roots of X7T? in ZB? to negative ones, has the
property that # X (1 X ¢) acts on £77° as o5.

It is an easy consequence of [8, Lemma 4] that such a homomorphism
7w exists; note that for this existence there is no need to assume that 7" is
anisotropic modulo the center of G*. Alternatively, we may construct 7y
quite explicitly, via Lemma 3.2 of [7], the lemma critical to the proof of
the Langlands correspondence for discrete series representations.

Thus suppose that we have an element # of *G° normalizing *7° and
such that# X (1 X ¢) acts on ¥7° as g, together with a homomorphism
n: CX — LT such that

7(2) = or(n(z)), =z € Cx

Then nog(n) € £7° and we may write

N (n(2)) = Mg, NV € LV,
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for some (unique) u € L ® G with u — ogu € L. Thus
rw(z X 1) =1() X3z z€c CX
rw(l X o) =nX (1X o)
defines a homomorphism 7y : W — £G if and only if
(1.3.4) N (nog(n)) = (—1)k—omA") AV ¢ LV,

In place of # we could have chosen tn, ¢t € “T° To pick the correct » for
(1.3.4) we need just the following information: let A € L ® C be such
that

NV (n) = 2ridaY)

for any \Y € LY which extends to a rational character on £G°. Although A
is not uniquely determined, an argument as in Lemma 3.3.2 to follow,
shows that A may be replaced only by elements of

AL+ Y Ca

ot SR
As a consequence of Lemma 3.2 of [7] (cf. § 10) we have:
ProrositioN 1.3.5. (1.3.4) is satisfied if and only if
(1.3.6) Z(u —orp) + 1= (N + or\) mod L,
where o 1s one half the sum of the roots of T* in B*.
Proof. The lemma cited computes \Y (no¢(n)) as
(=1)EAINY 4 opAY) (n) = (—1)Hedropd Ay \V ¢ LV,

The rest is immediate.

Note that (1.3.6) is easily solved. For example, we obtain an embedding
ifu = cand X = 0, that s, if we “twist”” CX X 1 by «and choose for n any
element of the normalizer of “7° in the derived group of *G°, which maps
positive roots to negative ones. It is a simple exercise to describe the
remaining allowed embeddings of £7" in *G; we omit the details.

If r:*T — LG is an allowed embedding and (g, \) are parameters
attached to 7y as above then we write 7 = 7(u, \), some underlying
p-d. being understood.

2. (T, k)-groups. The groups H of the introduction were called
(T, k)-groups in [10]. We review their definition ([8]) in (2.1). First 2H
is defined. There are some choices but, in any case, “H? is a subgroup of
LG%and a simple argument shows that the actionof 1 X (1 X ¢) € YHon

LH?® can be achieved by conjugation with respect to a suitable element of
LG.
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In (2.2) we introduce standard position for £H in order to realize the
actionof 1 X (1 X ¢) € H on H? by (conjugation with respect to) an
element of a standard Levi subgroup in G and, further, to make this
subgroup as small as possible. Then, after refining the procedure of § 6 in
[10] for selecting embeddings of Cartan subgroups of H in G ((2.3)), we
will be able to carry out many arguments ‘‘inside’’ standard Levi sub-
groups.

In (2.4) we review the definitions formalizing the notion that various
objects attached to G “‘come from H.”

(2.1) Definitions. ([8], cf. [10], [11]). If 7" is a maximal torus in G,
defined over R, we denote by Zr C L(7') the set of rootsof 7'in G, and by

ol

ErY © LY(T') the set of coroots. By definition, « is a quasicharacter on
(E;Y), the span of Z; in LY (T), and is trivial on

L(T) = {u¥ € (Br') i ¥ =N — o\, N € LY(])},
or denoting the Galois action of 7.
Recall the twist ¢ : G — G*. We fix some map
Vo =adxoy: I'— I*

with x € G*, and use it to transfer ¥ and ¢, to LY, without change in
notation. Thus ¢ is now an automorphism of LY and « a quasicharacter
on (EY), the span of the roots Y of 27 in £GY, trivial on

L= € (EY):u =\ — o\, 2\ € LY.

Such a « extends to a op-invariant quasicharacter on LY. In fact, denoting
by Z the center of £G® and by (—)°7 the ¢r-invariant elements of —, we
have a commutative diagram (2.1.1):

(Hom (L, G 20N, (upoyer

restriction,

followed by projection from

projection LG to adjoint group
l A 4

Hom ((8Y)/%, C)—=——Z(*T°)""/Z = (*T°)"7/Z N (*T°)"

Thus we may regard « as an element of £1, some choice being required.
The centralizer of «x in £G° is independent of that choice and ZH?° is the
connected component of the identity in this centralizer.

Fix a Borel subgroup “By° of LH® containing *7°, and for each simple
roota of £7%in YBy° a root vector Y,.. We define oy, and so complete the
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definition of LH, as follows. On 2T, ¢y induces that automorphism of the
simple roots of L7 in YBy® which differs from ¢y by an element of the
Weyl group of £7° in *H?°, and on root vectors we have

U;{Yav = o av.

The group H = H(T, «) is any quasi-split group with L-group “H.
Given H = H(T, ) we choose a Borel subgroup By over R and a
maximal torus 7'y in By, also over R, in the usual way.
We denote by Ty (for later purposes) the torus with same underlying
complex torus as 7*, but with Galois action oy. To conserve notation we
will always assume that H, By, 1Ty are chosen so that

(21.2) Ty =Ty.
Remark. As an immediate consequence of (2.1.1) we have:

ProrosiTiON 2.1.3. If G is @ simply-connected, semisimple group and 1’
1s anisotropic over R then for each map ¢, : T — T* we have a one to one
correspondence between the mon-trivial (quasi-) characters k attached to T
and the elements of order two in LT°.

These correspondences allow us to generate examples for “H without
describing «, ¥, and all the attendant notation (see (3.2)).

(2.2) Standard position. By changing the choice of x in the map y,, we
may change “H within its isomorphism class and, because of (2.1.2), our
choice of H. Suppose that we follow ¢, by w, an element of Q(G*, 7*). On
LV, wacts as an element of Q(XG?, T?) and is thus realized by an element
w of G A possible replacement for (*H?, LBg°, LT° { YV}, og) is

((FH®)™, (*By®)», 'T° {w Yo}, wogw™);

in particular, we may replace oz on *7° by a conjugate under Q(G*, 7*).
According to [8] (cf. [10, § 6]) we can find g € G* such that
Ty id T* adg G+
is defined over R. Let 7'y be the image of 7»'. We may and do assume
that Sy, C Srx. We fix a p-d. my of I'y in My = My, and use my to
transfer the Galois action of 7'y to L and LY; we denote the result, which
is independent of the choice for my, by oy. On L or LY we have that

og = O)O’NOJ_I,

where w, as element of Q(G*, T*), is realized by (myg)~1.

Note that if T is any torus in G* with Sp C Sy« and we define o7 as we
did o5 = o7, then oy is conjugate to o7 under Q(G*, T*) if and only if T’
is stably conjugate to Ty (cf. [8]), that is, if and only if T could have been
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chosen in place of T'y. Also, if Sy, = Sy« then oy = o7+ and we may as
well take T’y = T* in that case. In general, however, the choice of Ty
affects oy.

We can change ¢, so that:

(2.2.1) oy coincides with oy on L and LY.

We then say that £H is in standard position withrespectto T . The (chosen)
group I’y plays a major role in later sections.

ProrosITION 2.2.2. Suppose that *H is in standard position with respect
to T'y. Then

id m
() Tu=Ty—1*% - T’y is defined over R, for any p-d. my of T'x
n My, and
(i1) there exists m € LMy® such that m X (1 X o) normalizes YH® and
acts on *H® as og.

Proof. (i) is immediate. For (ii), consider first oy acting on L. There is
w € Q(My, T*) such that oy = woe. This equation remains true on LV if
we replace w by its contragredient, that is, if we regard w as an element of
Q(EMy0, 2T9). Hence we may choose m € *My% such thatm X (1 X o)
acts on £70 as oy = oy. Then m X (1 X ¢) normalizes “H? and clearly
ad(m X (1 X ¢)) acts on XH® as ad { 0 oy, for some ¢t € £T° The pro-
position thus follows.

(2.3) Framework of Cartan subgroups. We assume that “H is in standard
position with respect to 7'y and that H satisfies (2.1.2).

In H, choose a complete set of representatives 7, ..., Ty’ (Ty" asin
(2.1.2)) for the conjugacy classes of Cartan subgroups of H, such that

(2313,) 57'”' C STN" n = O, ceey N — ]_,

and for each 7' a p-d. m,” in M,/ = M. (with respect to Ty = T'%')
such that

(2.3.1b) my’ is the identity map.

Note that the indices 0, ..., N — 1 bear no relation to the ordering on
the conjugacy classes of Cartan subgroups, and that N plays a different

role in [10].

In G*, choose Cartan subgroups T, . . . , I'y (I'y as above) and for each
na p-d. m, of T, in M, = My , such that
(2.3.2a) Sy, € Sry, S Spx forn=0,..., N—1,

’ -1
(23.2b) T Dn, T* s 2N T, is defined over R, and

(2.3.2c) T, = T, if T, is conjugate to T,
Tnx = T*if Ty is conjugate to T* (cf. (2.2)).
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For each T,/ originating in G in the sense that somey~'oad g, g ¢ G*,
maps T, into G over R, choose a Cartan subgroup 7, of G and element g,
of G* such that

(2.3.3a) ¢, =adg,oy: 1,9— T, is defined over R,

(2.3.3b) if 7°,¢ is conjugate to 71,¢ then 7, = 7, and ¢, = ¢,
(cf. (2.3.2¢)),

(2.3.3c) our fixed Cartan subgroup 7" of G defining “*H and H is
included among the 7,¢ and

(2.3.3d) for some 7 such that 7,9 = T, ¢, is such that the element
»1 —1
b e,

w: T* T,
of Q(G*, T*) acts on LY as an element of Q(*H?, “7). Recall
that ¢, is the map from 7 to 1™ fixed in the definition of *H
and H.

We write M, ¢ for M ;¢ and use ¥, to define the L-group for 3, °.
We can summarize our framework of Cartan subgroups enclosing 7'y
in a diagram (cf. [10]):

H G* G

—1 ’
M, M,
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We have to check that (2.3.1a)-(2.3.3d) are possible. First we pick
Ty, ..., Ty ,m¢,...,my satisfying (2.3.1a) and (2.3.1b). For
To, ..., Ty, mg,...,my, we know that there is y, € G* such that

7y e 240

is defined over R. We can adjust the image, 1, so that (2.3.2a) and
(2.3.2c) are satisfied. Then the quasi-split group M, = M, contains I*
and, because *H is in standard position with respect to Ty, we can argue
in }, to find m, in ad M, so that
, _ 1
T Do, ey,
is defined over R. The image under this map is, like 7, fundamental in
M,. Thus we can follow 7, by an element of ad M, to obtain
m, My
defined over R. Next, (2.3.3a) (2.3.3b) and (2.3.3c) present no difficul-
ties; we choose the 7, and ¢, as desired. However to satisfy (2.3.3d) as
well, we may have to modify some ¢,. Suppose that {7}/, m,/, T, M,,
T.% ¥n;m = 0,..., N} satisfies all but (2.3.3d). By (2.3.3c), our fixed
Cartan subgroup 71 is T,,OG for some no. Then ¢, : I"— T, is defined
over R. We may write ., the given p-d. of T, as g 0 ¢, , where g is a p-d.
of T,, Note that the transfer of o7 to “7° via ¢, coincides with the trans-
fer of or, to ETO via g. Thus [8] implies that there exists 2 € ad H such
that
—1
L5 T H
is defined over R. We may assume that the image is some 1°/. By (2.3.2¢)
we then have that 75, = I" = T, and thus ¢, = ¥, ((2.3.3b)), for both
, -1
T, AN I*m"—> T, and
—1
A LR
are defined over R, causing 7, and T to be conjugate in G (cf. [10]). We
may write m,~'m,’ as wg~'h, where w € ad G*and w : T, — T, is defined
over R. Thus

Yo = (h(m )~ )m, (w™¥n)

and so if we replace ¥, by wy, then all conditions (2.3.1a)-(2.3.3d) are
satisfied. In (2.4) we explain why (2.3.3d) is demanded.

(2.4) Daia “from H". Our starting point is the fact that the roots of
LT0 in “H° form a subsystem of the roots of *7° in £G° We make the
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natural identification of (LV)V = LY (*T%) with L = L(T*), and thus of
the coroots for the roots of 7 in XG® with the roots of 7* in G*, writing
(@V)V = a. At the same time, we identify the coroots for the roots of £77°
in ZH° with the roots of Iy (or I™*, since at this point we are working
over C) in H. A root of T’y in H is therefore identified, as element of L,
with a root of T* in G*; the roots of 5 in H do not, in general, form a
subsystem of the roots of 7* in G*. Nevertheless, Q(H, Ty) is naturally
embedded in Q(G*, T*).

Analogous results hold if we replace (G*, “G°, H, *H") by (M,, “M,°,
M, , 2(M,')°), as provided by our framework of Cartan subgroups.

We write L, for L(T,), L,Y for LV (T,), o, for the Galois action of T, and
its transfer to L and LY by m,; L,’, (L,’)V and ¢, are similarly defined for
T.'. On L and LY we have ¢, = 0,; a root ¥ of *7° in ZG° belongs to
LM,° if and only if ¢,0¥ = —aV.

Using m,, m,’ and the identifications of the first paragraph we embed
the roots of 7%, in H in the roots of 7', in G*; a root of T, ‘‘comes from H"’
if it lies in the image of this map. Similarly we map Q(H, 7’) into
Q(G*, T,) and an element of Q(G*, T',) may ‘‘come from H" (see [10, § 6]
for further details).

Recall that H = H(T,«). If T'= 71,¢ then we transfer « to «, for 1,
via ¢,. By (2.3.3b), «, is well-defined. If # is as in (2.3.3d) then «, coin-
cides with the transfer of x to 7* via ¢, as in the definition of *H, and
thence to T, via m,. We may therefore regard H as defined by 7, «, and
m,, instead of by 7, x and ¢,. Next, we transfer « to «, for 7, p =
0,...,N,viamym,~'; T,, k, and m, again define the same H;arootaof T},
comes from H if and only if x,(a¥) = 1 (cf. [10, § 7]). Note that if x,~ is
the restriction of «, to the span of the coroots for M, then M, is a
(T, k,~)-group for M,.

3. Admissible embeddings of “H in ’G.

(8.1) Introduction. Given (7', k), consider first any “H attached as in
(2.1). We wish to extend the inclusion of £H® in ZG® to an admissible
(cf. [3]) embedding of *H in *G; that is, we seek a homomorphism
¢:LH—IG such that &(h X w) = hé(w), h € *H°, w € W, and
£E(1 X w) € 'G* X w, w € W. Equivalently we seek a homomorphism
E¥ . W — £G such that

8.1.1) t%(w) = &(w) X w, some &(w) € LG, and £¥ (w) stabilizes
LH® actingon TH%as 1 X w € *H, w € W.

Thus ¢¥(CX X 1) is to act trivially on “H and ¢¥ (1 X o) as oy.
We omit the superscript W from £% and use ¢ in both contexts.

ProposiTION 3.1.2. Suppose that & : W — LG is a homomorphism satis-
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fying (3.1.1). Then £&(Z X 1) = on(k(z X 1)),z € CX, and £(CX X 1)
is contained in Z (YH®), the center of “H°.

Proof. This is immediate.

Conversely, suppose that & : CX — Z(*H") is some homomorphism
such that £E) = ox(£0(2)), z € CX. Pick n € G® such that » X
(1 X o) acts as oz on H, An argument as in the proof of Proposition
2.2.2 shows that this is possible. A chosen element # may be replaced only
by zn,z € Z(*H°). Set

E(z X 1) = £(2) X 2, 2z € CX and

£(1 X o) =nX (1 Xo).
Then ¢ : W — LG is a homomorphism (satisfying (3.1.1)) if and only if
(8.1.3) nog(n) = &(—1).
Replacing # by zn, 2 € Z(*H?); multiplies no ¢(n) on the left by zoy (2).

(3.2) Examples. The following simple examples are of particular interest
in later sections.

(3.2.1) Let XG® = PGL3(C). We write A for the image of 4 € GL3(C)
in PGL3;(C). Let ZB° be the image of the upper triangular matrices and

LT0 = {diag(x1, Xa, X3)x}.
Take as attached root vectors,

Xorery = and

Xz'z—xa =

S OO OO~

Let o4 act by

diag (x1, 2, x3)% — diag(x571, x271, x,71), on L79,
and by

0eXoieny = Xaossge

-1 0 0
LH = Cent® 010 ,
0 0 1]

the connected component of the identity in the centralizer of
-1 0 0
010
0 0 1]«
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in ’G®, !By® = LB\ LHand V,,_,;, = X,,_4,; let o4 act on “7° by
diag (%1, x2, x3)% — diag (%178, 2378 X971

(following the remark in (2.1), we take o5 on 77 to be that automorphism
which induces an automorphism of the Dynkin diagram of (¥H°, *7°)
and differs from ¢t — ¢! by an element of Q(*H", £17°)), and set

TH Y’[Z—IS = Y.T‘.Z—IZ'
Then we embed *H in *G by & (N € Z):
HhX (1X1)=hX(1X1), he=H,

1 0 0
KA X (X 1)) =[0 (/7))@ 0 X (z X 1),
0 0 (z/5) @072 |

z € CX,
0 0 1
H(1 X (1 X a0)) = [1 0 O} X (1 X o).
0 1 0|4

It would have been easier to consider the following isomorphic *H
(cf. (2.2)). Let

-1 0 0
LHO = Cent” 0 1 0 ,
0 0 —1|s

LBy = PB"MIH and Y, = [Xeo—w Xev—rs)-
Set oy = ogon Y1 and ¢4 YV,,_; = V., _.;. Note that

06 Vii—uy = — Vs
We embed “H in “G by & (A € Z):

Hh X (1 X 1) ==X (1X1), hectH,

—(2/2)(2“‘“"2 0 0
HE1 X X 1)) = 0 1 0 , z€ CX
0 0 (z/g)<2x+1)/2 *

1 0 0
HE01 X A1 Xa))=(0 1 0] X (1 X a).
_0 0 _]. *

(3.2.2) Let *G" = PSp,(C); this time A, denotes the image of
4 € Sps(C) in LG°. In place of *B°, we specify

70 = {diag (x1, X2, X171, %2714}

and the positive system 2x;, 2x,, x1 &= x» for the roots of £77°. Fix root
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vectors for ZG° and require that o¢ act trivially. Set
LH® = Cent(diag (s, —1, —1,1)4)°

and choose £Bg® D T by requiring that x; + x, be a root in ZBg°. Set

On 2719, ¢4 is the automorphism
diag ((x1, %2, 2171, 2271) ) s — diag (s, %1, %27, 217 )5
set g Yoi4zs = Yiras. Then we embed “H in LG by:

HGh X (1 X1)=hrX (1X1), hc H,

2\
(:) 0 0 0
z

K1 X (X 1)) = 2\ X (2 X 1),
0 0 (—) 0 z € CX,
2 A

0 0 0 (:)
L Z_*

0100

1 000

0 0 1 0«

(3.3) Data attached to an embedding. In the term admissible embedding
£: LH & LG we will understand that £/ZH° is the inclusion mapping.
Until (9.2), we will assume that “H is in standard position with respect to
a Cartan subgroup Iy, as described in (2.2). We will attach to £ a pair
(u*, N*) of elements in the vector space L ® C, and write £ = £(u*, \¥).

As before, £ also denotes the restriction of £ to W. Set £ (w) = §(w) X w,
w € W. First consider £|C* X 1. There exist u*, v* € L ® C with
w¥ — v* € L and such that

A (Eo(z X 1)) = g™ Az0"A) - \V € LV, z € CX

ProrositioN 3.3.1. (i) v* = oxu*.
(i1) (w*, V) = 0 for each root oV of “HYO.

Proof. This is immediate.

Next, we exploit the fact that ZH is in standard position with respect to
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Ty. By Proposition 2.2.2 we have that &(1 X o) lies in “My°% We pick
M € L ® Csuch that

>\v(£0<1 X U)) ::(327”()\"‘,)\‘/)
for each AV € LY which extends to a rational character on *M°.

PROPOSITION 3.3.2. For given &,

(i) w* is uniquely determined,

(i1) N* may be replaced only by elements of
M+ L+ Y Ca

a root of
I* My
Proof. (i) is immediate. For (ii), suppose that

e27ri()\1*,)\v) = e?ri()\*y)\v)

for all \Y extending to ZMy°. Set A\* = N* — \* and pick ¢ € 279 such
that
}\V(t) — 62”i<)\2*’)\v)v N4 € LY.

Then t € 1M (EMy°)qe: since every rational character on M y° anni-
hilates ¢. Thus we can pick

A€ 2 Ca
a root of
i My
such that
)\V(t) — eZni()\s*,xV)y }N% < LV.
Clearly N\o* — N* =2 — (M* + \o*) € L, and the proposition is
proved.

(3.4) Congruences. From now on, we enclose 1’y in a framework of
Cartan subgroups. Consider the attached standard Levi subgroups
IM,),n =0,...,N,in *H, and *M, in “G. An admissible embedding
£: LH S LG (as always, in standard position) induces, by restriction, an
admissible embedding

¢ Iy S EM,, n=20,...,N.

Recall that M, is a (1, k,~)-group for M,. Clearly £M,’ is in standard
position with respect to 7'y and £ = £™ (u* N\*). Let «, denote one-half
the sum of the roots of 7* in M, M B* and ,/ one-half the sum of the
roots of T’y in M,/ M By. Then:

THEOREM 3.4.1.
Fu* — o) + v — v/ = W+ o M)mod L, 7 =0,...,N.
Proof. Fix an allowed embedding 7 : X7,/ & LM’ with underlying
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p-d. m,; suppose that 7 = 7(u, \) (cf. (1.3)). Then we have:

LT, UCRINNGYY
Z E(n) (#*’ )\*)
o, TWEENEN)

where the left vertical arrow is induced by the R-isomorphism m,~'m,’,

and the p-d. m, underlies the bottom horizontal arrow which is defined by
commutativity of the diagram. From Proposition 1.3.5 we know that

tu—om) + v = N+ o,\)mod L and

e+ u*) — w4+ u*) + = (N N) + o,(N+2¥))
mod L.
Subtracting, we obtain the theorem.

Note that Proposition 3.3.2 shows that the congruences do not depend
on the choice for \*.

4. Quasicharacters attached to an admissible embedding.

(4.1) Congruences and quasicharacters. Obtaining a quasicharacter on 7,
from a congruence as in Theorem 3.4.1 is a step in the Langlands corre-
spondence for real tori (cf. [7, § 2]). We recall some of the details. Let 7"
be a torus over R, with Galois action ¢; in the usual manner, we identify
the Lie algebra t of 7°(= 7(C)) with LV(T') ® C and write an element
of T as exp X, where Nexp X) = e™® N € L(1); exp X1 = exp X, if
and only if X; — Xy € 2LV (7). An element exp X of 7" belongs to T'
(= T(R)) if and only if ¢X — X € 27iLY (1), where X denotes that
element of LV (7) ® C satisfying (\, X) = (\, X), N € L(I") (recall that
for t = LY(T) ® C to respect Galois action, ¢ must act on both LV(7)
and C). Suppose that exp X € 7. We write X = Xgr + Xy, where

Xr=3X+¢X) and X;= (X — oX).

Then Xr € t, the Lie algebra of 7', and Xy is a ¢-invariant element of
iw LV (T). We thus decompose exp X as hihs, where hy € 79, the (eucli-
dean) connected component of the identity in 7', and

he € F = {expimAY : \V € LV(T), o\V = AV},
We then obtain 7" = T°F, with
TN F = {expim\Y = expir (/' — ou¥); NV
= u + ou¥, w € LY(D)}.
Given a pair (u, ) of elements in L(I) @ C we set
x(u, N) (exp X) = e XR+20XD  exp X € T.

Then x (g, N\) is a well-defined quasicharacter on 7" if and only if
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lw—ou) + N+ ox € L(I) or both p — op € L(T") and
3(p — ou) = (N + oM)mod L(T);

x(', N) = x(u, \) if and only if ' = p and
N=Axmod(L(T) +{v —av:vE L(I) ® G})

and, moreover, every quasicharacter on 7 is of this form.

(4.2) Quasicharacters x(¢ ,. We return to our groups G, G* and H.
First we transfer the congruences of Theorem 3.4.1 from L ® C to
L, ® C.

A p-d. m, : T, — 1 has been fixed; using this we transfer p* and A\* to
elements of L, ® Cand o, back to the Galois action of 17, without change
in notation. Note that u* depends on the choice for m,; \* may depend on
that choice but 3 (\* 4+ ¢,\*), which is all that matters for the congru-
ences, does not.

If we transfer «, and ¢,” to L, ® C via m, then we obtain, respectively,
one-half the sum of the positive roots of 7', in M, one-half the sum of the
positive roots of 7', in M, coming from M,’, under certain fixed orderings.
It is convenient to change notation here. Thus we now use , to denote
one-half the sum of the roots in any prescribed positive system I,,* for the
roots of T, in M, and «,” to denote one-half the sum of those roots in I,;*
which come from M,’. With these conventions, we have easily that

s(u* — ow*) + 1, — v = (N + o, M\*)mod L,.
Definttion 4.2.1. If ¢ = E(u*, \*) is an admissible embedding of H in
LG then XEZ),[,‘+) is the quasicharacter x (u* + , — ./, \¥).

Clearly, xﬁ'g),,,,+) does not depend on which choice we make for A\*. We
! f (n) N ] G s . .
transfer x(t.;,+) to 7,% in G, whenever 7,¢ exists, via ¢, and without
change in notation. For the present, however, we work on G*, and ignore

G.

Example 4.3.1. Let

00 1
G=¢*=SU(|l0 1 of),
100

areal form of SL3(C); let B* be the group of upper triangular matrices in
G*, and T* be the diagonal subgroup; we write diag(ty, ¢s, t5) for the
generic element of 7% We take G as in (3.2.1), using the identification
of LV (T™*) with L(*T°) induced by the pairing {¢;, x;) = 8,5, 1,7 = 1,2, 3,
between the vector spaces Ct; + Cty + Ctzand Cx; + Cx. + Cux;. Let«
be that character attached to 7* which satisfies x(x; — x;3) = 1,
k(xg — x3) = —1. Then on L, oy = o7+, and the second group *H of

https://doi.org/10.4153/CJM-1981-044-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-044-4

EMBEDDINGS OF L-GROUPS 531

(3.2.1) is attached to (7*, ) and sits in standard position with respect to
T*. We take as H the subgroup of G* consisting of matrices of the form

* 0 *

[0 * 0|;thus H = U(1, 1). We use the inclusion of H in G to define
* 0 *

a framework of Cartan subgroups. Thus we pick

e o) 0 (e - >}

Ty =To= {r,¢) = 0 e~ i0te) 0
1(ete — ¢if) 0 1(e® + efe)
and
TV =1, =T*={a(6,t) = diag(e?t? e2" ¢¥—);t ¢ R}
and

1/v2 0 —1/4/2
m0’=m0=ad< 0 1 0 >, m, = m; = 1.
/2 0 1/vV2
Let 4% be the system of positive roots for 1 induced by (m,, B*). Then,
if£t=4§:%"H S LGasin (3.2.1) we have that p* = L2\ + 1) (¢ + ¢3).
Thus:
X100y (7 (8, ) = ¥ OTVIR

X(ho (a(8, 1)) = e,
Example 4.3.2. Let G = G* = Sp,; for T* we take the diagonal sub-
group
{diag (¢1, t2, ti71, 127 1)},
and for B* the Borel subgroup generated by 7* and the 1-parameter

subgroups for 2¢y, 22, t; &= f,. We may take G as in (3.2.2), where
LY(T*) is identified with L(*7T°) via the pairing

(try ®1) = (t1, X2) = (lo, %1) = 3, (ta,%2) = — 3

(so that x; 4 xs = (2t)Y, %1 — x2 = (262)V, 21 = (i1 + £2)Y, 220 =
(t1 — £2)V). We will choose a « not attached to T*. Let T be the Cartan
subgroup

B cos 0 0 sin 6 0 1
_ 0 cos ¢ 0 sin ¢
17(0’ o) = | _ sin 0 0 cosf 0
0 — sin ¢ 0 CoSs ¢

and 7', the Cartan subgroup

o
0

la(a,¢)=0 0 10 ,aéRj;
0
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we diagonalize 1’y by
1 0 —2 0
d 0 1 0 —z
go=aCel—-i 0 1 0 |
0 —2 0 1
and I by

1 0 0 0
0 1A2 0 —iA2
0 0 1 0
0 —iA2 0 1A/2

Let « be that character attached to 7', for which the transfer by g, to the
coroots of I* and thence to the roots of 1", satisfies k(x; + x2) = 1,
k(x; — x9) = —1. Then as “H we take the group of (3.2.2); this group is
in standard position with respect to 7';. We realize H not as a subgroup
of G*, but as a group satisfying (2.1.2). Thus H will be the subgroup

Sa 0 b 0
882 8 rad — bc =1
lo 0 0 §

of GL4(Q), with o acting by « — a,b —b,c—¢,d — d, t — . For our
framework enclosing 7'; we take

’ cos @ 0 sinf O l
ip
Ty = 0 ¢ 0 0 , Ty as above
1 —sinf 0 cosf O §
o 0 0 %

g1 = ad

T1IAZ 0 —iA/Z 0

gl 0 1 0 0

E | N VAVA R B VAVO R I G
1

0 0

« 0 0 l
ie
Ty = l 8 60 a(L g a € R® S, "1 as above,
0 0 0 %

my" = 1, my = g1. Let Iy* be the system of positive roots for 77 induced
by (go, B*), and I;* the system of imaginary roots of 7' induced by
(g7, B*). Thenif £ = & : YH S G as in (3.2.2) we obtain u* = 2\, and
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1t as a choice for A*. Hence:
(0) — pi(0+(NF1e)
Xtron) (7(0, ) = ¢ ¢
X(En+ (a(a, @) = sgna ei®+de,

(4.4) Assumptions in [10]. In [10] we have used , — ¢, for the nor-
malization of k,-orbital integralsin the sense of the introduction, assuming
that

(4:.4:.1) by — an/ € In
and, on transferring to L,
(44.2) (1, — ') — (p — ') is an integral combination of roots.

In general, (4.4.1) may fail, as in the groups of (4.3.1), or if (4.4.1) is true
then (4.4.2) may fail, as in (4.3.2). These examples show more, namely
that , — v,/ need not define, by restriction, a character on T, or if it does
then that character need not have the desired properties for orbital
integrals (cf. [10], Proposition 9.4, or direct calculation). However it is
easily seen that in each example we can use xﬁ'é),,"n in placeof ¢, — ¢,/. We
proceed now to prove this in general.

(4.5) (v, — v')-type. By definition (cf. [10]), Q¢(G*, 1) is the subgroup
of Q(G*, T7,) consisting of those elements which commute with o, that is,
which are realized in A(7,). If w € Q(G* T,) and w comes from H
(cf. (2.4)) then w is the image of an element of Q(H, T3'). Thus
w(t, — w') — (1, — ') is an integral combination of roots of T, and
hence an element of L,.

Definition 4.5.1. A quasicharacter x on T, is of (v, — ¢,/)-type if
X)) = (@ —u) = (W= uNx(), vE€T,
for each w € Q4(G*, T,,) coming from .
Section 5 will be devoted to the proof of:

THEOREM 4.5.2. (% 14y 15 0f (1, — u')-lype.

5. Proof of theorem 4.5.2. In this section we abbreviate xﬁ'é) In+)s
writing just x™, n = 0, ..., N. By definition, x™ is of (i, — 1,/)-type if
and only if

X(w(l"* + o= Ln,)yw)\*) = X((w(tn - Ln/) - ("n - Ln/))
+ ll-* + b — Ln/y )\*)

for each w € Q(G*, 7,,) coming from H. Consider first the restriction of
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x™ to the connected component of the identity in 7°,. If v = exp X,
X € t,, then
X" (y) = eWrtmmn’X),
Since {u*, &¥) = 0 for each & from H we have immediately:
ProrositioN 5.0.1. If T\, is connected then x™ is of (v, — u/)-type.
Thus we have:

Example 5.0.2 (cf. (4.3.1)). If G = SU(p, q) then each x™ is of
(Ln - Ln/)'type'

In general, it remains to show that
(5.0.3) N =N mod(L, +{v —aw:vE L, @ C}).
(5.1) Some reductions.
REDUCTION 5.1.1. It 1s sufficient to prove (5.0.3) for the case n = N.

Proof: From [10, § 7] we recall that there is a diagram:

1—'» Q<Mm ’I‘n)—> QO(G*v Tn) > IB,, > 1
|
|—> oM, T,))— QMH, T,)) >R,/ >1

where 8,7 denotes the restricted Weyl group relative to S, (the
maximal R-split torus in 1,7). If w comes from Q(},’, 1)) then clearly
(5.0.3) is satisfied. It follows then that, in general, the coset of w\* — A\* in

L, @ C/L,+{v—0ow:veE L, ® C

depends only on the image & of w in ,.

Suppose that w comes from ' € Qo(H, 1°,’) whose image in B, is &'.
There exists @y’ € Wy’ whose restriction to .S, is &', by the definition of
W, Set @y equal to the image of ay’ in Wy and choose wy in Qo (G*, Ty)
coming from H and with image ay in Wy. Let \,* = F(A* 4 o, 2¥). We
transfer everything to L ® C (via m,, m,’, my, my’) without change in
notation. From definitions, it follows that

o\ — N = o\ — N modiy — o v € L @ G}
and

AN — N = oyt — N mod{y — o i v € I ® G
Since

ONANE — A* = oy — N mod{y — oy v € L ® C}
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and {r — oyv} C {v — o,v}, we have
N — N = o\ — M modfy —op:v € L @ C}

and the reduction follows.

LeEmMa 5.1.2. (5.0.3) holds provided that
(5.1.3) (MW aV)a€ L+ {v—ogr: vELQ® C}
for all simple roots aV of LH® fixed by oy.

COROLLARY 5.1.4. If
(5.1.5)  (\*, &Yy € Z for all simple roots &V of “HO fixed by oy
then (5.0.3) holds.

We will prove Theorem 4.5.2 by verifying (5.1.5) where possible, and
by going directly to (5.1.3) for the few exceptions.

Proof of Lemma 5.1.2. Dual to the simple system of roots for (£H, £77?)
as prescribed by “Bg°% we have a simple system for (H, Ty = T'),
prescribing By; we use this latter system to define a simple system for the
restricted roots of T'y'. The group Wy’ is generated by simple reflections,
which we classify as being of type 4, B, or C as in [10, § 7]. Suppose that
w € Qo(G*, T) comes from ' € Qo(H, T»') which has image o’ in B,/

If & is of type A then there is a real root @ of T'y(oye = a) coming
from a simple root of H, such that w, has the same image in By as w.
Thus (5.0.3) is satisfied by w if (5.1.3) is true.

If & isof type B then there is a root a of 7'y coming from a simple root
of H, satisfying (@, oya") = 0, and such that WaWgya has the same image
in Wy as w. Clearly,

WaWopah® — N = — (\* 4 oxN*, a¥ )a mod (Ly + {v — onv}).
Also, by (3.3.1) and (3.4.1), we have

N\* + oM, aY) = (iy, @V )mod Z.
Thus (5.0.3) for w follows from:

ProrposiTiON 5.1.6. If a is a root of Ty such that (@, oya”') = 0 then
(e aY) € Z.

Proof. We may assume G* absolutely simple (cf. proof of (5.1.7)).
Further, we may exclude type G; since direct computation shows that, in
that case, iy = 0; thatis, Ty = T%*, for all H.

We assume that {1y, @¥) = % mod Z and obtain a contradiction. First
note that My is of type 41 X ... X A41. Indeed, *(My")° = =79 that is,
there are no roots of M ,° annihilated by «. Hence if &V, 8V are roots
of “My® then oY 4 Y are not roots, for «(aV) = «x(8¥) = —1 and
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k(¥ £ 8Y) = 1. Therefore “My° is of type 41 X 4; X ... X A1;0¢
must act trivially and My be of type 4; X ... X 4; over R.

Let w = waw,sya, an element of Q(G*, T'y). Clearly w commutes with oy,
and so permutes the roots of My. Thus

Iy — Wiy = <LN, av>(0‘ - GNOZ)

is an integral linear combination of roots of My. We claim that 1/2(a —
oye) is also an integral linear combination of such roots. To verify thisitis
enough to show that o — oya itself is such a combination. But since
(tyy @) = 1/2mod Z we have (8, oY) = 1 for some root 8 of My. Then,
with w as above, we obtain

a — oya = ff— wB;

wf is also a root of My, and so the claim is proved.

Let 8y = 1/2(a — oya) and B2 = 1/2(a + oya). Then B, # 0 and the
length of o is greater than that of 8;. On the other hand, My is of type
Ay X ... X 4. Hence 8; must be a root of My. Then B is a root of G*
and 8;, B2 generate a root system of type Cy. Thus 8;Y = oV — oyaV. This
implies that «y(8:) = 1, a contradiction since 8; is a root of M. Hence
Proposition 5.1.6 is proved.

We return to the proof of Lemma 5.1.2. If &' is of type C then thereisa
root a of Ty, coming from a simple root of 7y, such that o + oya is a
root and w has the same image in Wy as waioya. Either (a, oya¥) = 0 or
(@, oya”) < 0, since a is simple. If {a, oya”) = 0 then waisya has the same
image in Wy as wewsya. Thus

wNF — \* = (waw.,Na)\* — M)Ymod (Ly + {v — oyv})
N 4+ oM, @V damod(Ly + {v — axv})
(twvy @ )amod(Ly + {v — ayv})
= 0mod(Ly + {v — onv})
by (3.3.1), (3.4.1) and (5.1.6); (5.0.3) now follows. On the other hand, if

(@, oya¥) < 0 then (o + oya)Y = «¥ + oya" since @ and oya have the
same length. Then

i

i

W\ — N\ = (wa+,,Na)\* — M)Ymod (Ly + {v — opyv})

N+ anl*, @Y ) (@ + oya)mod (Ly + {v — onv})
2{ty, @V )a mod (Ly + {v — onv})

0 mod(Ly + {v — anv}),

I

i

by (3.3.1) and (3.4.1). Again (5.0.3) follows. This completes the proof of
Lemma 5.1.2.

By a simple factor of G* we will mean an R-simple factor of the simply-
connected covering group of the derived group of G*.
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REDUCTION 5.1.7. (i) To prove (5.1.5) for G* it is sufficient to prove it for
each simple factor of G*.

(ii) To prove (5.1.3) for G* it is sufficient to prove it for each simple factor
of G*, but with L replaced by the span of the roots in that factor.

We denote this stronger version of (5.1.3) by (5.1.8).

Proof. We may regard H as H(T', ) for any (7', k) among { (T3, «,) : n =
0,..., N}. Let G' be a simple factor of G* (in the sense above), T' be the
preimage of 7*in G, and 7,' the preimage of 7,,. Then LY (T") is naturally
identified as a submodule of LY and LY (T,!) as a submodule of L,".
We may thus identify , as a quasicharacter attached to I, If
H = .EIT(T,LT, k,) then the Lie algebra of Z(H")? is a summand of the Lie
algebra of YHY, assuming all choices are in correct position.

We extend the natural map L — L(T") to a G-linear map L ® C —
L(T" ® C. Recall that ¢ : ZH S ZG is £(u*, \*). Let (u*)' be the image
of w*in L(TT) ® Cand (\*)" be the image of \*. Then ((x*)f, (\*)T) are
parameters for the embedding ¢ of Z(H') in Z(G') obtained by mapping
L(H")0 to itself by the identity and 1 X w to the image of £(1 X w) under
the natural map G — £(G") (cf. [3,§ 2.5]), w € W. If a¥ is a root of both
LHO and Z(G")° then ((\*)',a¥) = (\*, a¥). Thus (i) follows; (ii) also
follows easily.

Note. For a simple factor of G which is not absolutely simple, (5.1.5)
and (5.1.8) are vacuously true. Thus to prove (5.0.3), and hence
Theorem 4.5.2, we need consider only absolutely simple factors. In (5.2)
by “‘simple group’’ we will mean an absolutely simple group.

(5.2) Computations in “G. We start with the case that the ‘‘most split”
Cartan subgroup 7* of G* is also a Cartan subgroup of H; that is, the case
that Ty = T*.

LeMMA 5.2.1. If G* is split modulo ts center and H contains T* then
(\*, aV) € Z for all roots oV of LHC.

Proof. By assumption, oy = o on L7 also o¢ acts trivially on the
root vectors for ZG°, and oy trivially on the root vectors for £H°. Recall
that £(1 X o) =t X (1 X ), where, since ZMy% = £T° we have

€ LT and A\V(F) = e \V € LV,
Thus if Y, is a simple root vector for ZH® then the fact that £(1 X ¢) acts
on LH® as o implies that

EX (1 X )V = eV, o = Vo,
and the lemma follows.

Example 5.2.2. Theorem 4.5.2 is now proved for G* of type G, as
Ty = T*, for all H, in that case.
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LEMMA 5.2.3. If G* is « simple nonsplit group of type other than A,, and H
contains T* then (\*, V') € Z for all simple roots a¥ of “HO fixed by ay.

Proof. In order to imitate the proof of Lemma 5.2.1 we show that
0 ¢Yav= Y, for each simple root " of LH® satisfying oya’ = oV (=o0¢a").
From Lemma 3 of [8] we obtain that

cgYar = (_l)llfavy

where / is the number of £G’-simple roots ¥ for which 8 # ¢48" and

B, o68Y) # 0, counted according to multiplicity in the *G°-simple

expansion of «¥. We claim that because we have excluded type 4., we

have [ = 0. This is checked by inspection of the possibilities (cf. [5]).
The lemma thus follows.

Example 5.2.4. If G* is a simple nonsplit group of type 4., and H
contains 7* then (5.1.5) may fail (cf. Example 3.2.1): however (5.1.8) is
true. This is a simple computation: if & is any root of “G° for which
oo’ = o and o¢ Ve = — Vo thenaisof theform B+ o¢B8 =B + o, B
a root, so that

ta=Bmod({yv —ogv:v € L Q@ C}),
and (5.1.8) holds.

LemMa 5.2.5. Suppose that G* is simple, not of type B,, C,, Fior Az,
nonsplit, and that H does not contain T*. Then (\*, ") € Z for all simple
roots " of *HO fixed by oy.

In case of type Fi, we can show that, in fact, 7y = 1™ for all H, by
observing how 7y is obtained from 7* (cf. (5.1.6) and (6.1.3)) and
examining the possibilities.

Proof. We write £(1 X o) as m X (1 X o) with m € LMy°, and m as
tymy, with ¢; in the connected center of *M % and m; in 2A° = (*My®)ger.
Let o be a simple root of “H" fixed by 5. Then ¢ga¥ = o also. In the

-

proof of Lemma 5.2.3 we showed that o¢Vsw = V.. Hence

m X (1 X o) Yev = tym Voo
We have only to show that m;Y,. = Y, for then

1Yo = 27NV, o = Vo,
since &V extends to a rational character on “My°, and (\*, a") € Z.

First, because aY extends to M ,°, we have that m, Vo,v = m, YV, for

any my € L#° such that m» X (1 X o) normalizes 27° and maps each
root of 24" to its negative. We have seen that 24 is of type 4, X ... X

A1 and that ¢ acts trivially on 240 (cf. (5.1.6)). Thusif a1¥, ..., a;" are
the positive roots of 2#° we may replace m, by any element of ZA4°
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realizing wa vWeyv . . . Wagv. By excluding types B,, C,, Fiswe have ensured
thata" =+ «;Y arenotroots,7 = 1, ..., d. Therefore, by using the element

d
eXp (Z %iW(XaiV +X—ai\’)) ,

i=1

we see that m1Y,e = Y,v, and the lemma is proved.

LEMMA 5.2.6. If G* is simple, of type B, C,, Fior As-nonsplit and H
does not contain T* then (5.1.8) is salisfied.

Proof. Consider type 4,,-nonsplit first. Suppose that oga” = av. Then

cea’ = aV. Suppose that ¢¢V,e = — Viv. Then we have

ta=pFmod({yr —ogv:v € L @ C}),

for some root B (cf. (5.2.4)). Since {vr — oaev} C {v — gyv} we obtain
(5.1.8). If 6¢Yev = Yoo then we can argue as in the proof of Lemma 5.2.5
to obtain (\*, aV) € Z.

If G* is of type B,, C, or Fythen (\*, aV) € Z unless we have the follow-
ing: there isa root a,” such that oya,Y = oga;” = —a;’, {a;, aY) = 0and
a;” + " isaroot. Then ¥(a; + «) is a root of Ty, with coroot ;Y + &V,
and 3o = 3(a + a;) — 3a;so0 that (5.1.8) is true.

This completes the proof of Theorem 4.5.2.

6. Quasicharacters continued, correction characters.

(6.1) Compatibility. We come to formulating and proving the com-
patibility of the quasicharacters x™ = XE?,,"+). This is the key to our
main result, Theorem 8.0.1. First we recall some definitions and simple
results about Cayley transforms (cf. (9], [10]).

Suppose that 7 is a Cartan subgroup of G* and « an imaginary root of
1. Then by a Cayley transform with respect to « we meanamap s : I —
G*, obtained by restriction to " of an inner automorphism of G* and with
the property that o(s71)s = w,, the Weyl reflection with respect to a.
Because G* is quasi-split there exists a Cayley transform with respect to
each imaginary roota of 1" (cf. [10]). The image 7'; of 7 under s is defined
over R and sa is a real root of 7'; if s is another Cayley transform with
respect to « then s is of the form ad wo s, w € A(T,) ([9]). Note also
thatif v € T, a(y) = 1 then s(y) = «* belongs to T,.

Suppose that o’ is an imaginary root of one of our fixed Cartan sub-
groups 1,/ of H. If s is a Cayley transform with respect to o’ and with
image 1, then

4
S
sshh= =1 =T

is easily shown to be a Cayley transform with respect to the image « of o’
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in the roots of G* (cf. (2.4)). We call s a Cayley transform from H; with
respect to any imaginary root from H there is a Cayley transform from H.

Continuing with the same o, s, «, s, if I, is a positive system for the
imaginary roots of 1, then (I,7), = {8 : s™'8 € I,*} is a positive system
for the imaginary roots of T,. We say that I,,* is adapted to o if {a, 8¥) > 0
implies that 8 € I,*; (1, — v/, &) (cf. (4.2)) is independent of the choice
of I+ adapted to a.

The quasicharacters X% 1.+ are “‘compatible” in the following sense:

THEOREM 6.1.1. Suppose that s : T, — T, is a Cayley transform from H,
with respect to the root o from H. Then if I,T is adapted to o and v € T
satisfies a(y) = 1 we have

xGrt (1) = X&) (7).

Proof. Write B for the real root sa of 7',. To compute x® (y*) we
decompose v* as in (4.1). Let

v® = exp X = exp Xr exp Xy,

where ¢,Xr = Xr and Xy = 7w\, \V € L,V and ¢,\Y = \Y. Then
B(v*) = 1implies that (8, Xr) = 0 and (8, Xy) € 27i Z. It is therefore
enough to consider those vy for which:

(i) v* € T, thatis, v* = exp X, 0,X = X,
(i) v* = expimAY, NV € LY, o,\Y = \Y, (B, \) = 0,
or
(iii) v = exp iwBY.

Suppose (i). Then ¢,(s7'X) = s7'X (recall that (3, X) = 0) so that
s71X = (s7'X)r). Then

X (y) = e’ sTIX)  and y0) (y) = ey’ X),

We claim that s—'u* = p*. Recall that we use u* to denote the transfer of
ke L@ CtolL, ® Cbym, as well as its transfer to L, @ C by m,.
Thus our claim follows from the fact that s ‘‘comes from H''. Also,
(tn — ) — s (, — ) is a half-integer multiple of @ and so we obtain
the assertion of the theorem.
Suppose (ii). Then

v = exp(irs™I\Y) and o,(s7\Y) = s~I\V.
Thus

X(n) (’Y) = g2mi(\*s=\V)  and X(p)(,ys) = ri(A*,s7IaV)

Once again, M\* in the first equation denotes the transfer of \* € L ® C to
L, ® C by m, and A\* in the second equation denotes the transfer to
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L, ® C by m,. Let s =m,osom, . Then to prove the theorem for
case (ii) it will be enough to show that
N, Yy = (\ V) mod Z
for all uw¥ € LV satisfying a,u’ = u".
PROPOSITION 6.1.2. There exists h in the normalizer of Ty' in H such that
the action of ad h on S,’ (the maximal R-split torus in Ty'), when trans-
ferred to S,, coincides with s; that is, § acts on S, as an element in the image

of W, mn W,.

Proof. We can choose a Cayley transform s’ in M, with respect to the
root &’ from which « originates, such that s’ = ad &’ o s’ for some #’ € H,
where s’ is the Cayley transform in H from which s originates. Then, on
S/, s"actsasad #'. If 7" is the image of 7',/ under s,’ then ad #’ maps M,
to M,’. We can modify &’ by an element of M, to obtain % as desired.

Suppose now (iii). Since o, (ima") = ira" we have to prove:

LeEmmaA 6.1.3. If a comes from H, o, 0 = —a, s is a Cayley transform
from H and with respect to a, and I,* is adapted to a, then

6.1.4) 3(e, — u/,aY) = (N, 5a¥) mod Z.

Proof. First we remark that we may assume that S," D S,’. Then
M, O M,. Since M, is a (T, x,7)-group for M, we may now replace G*
by M,. Thus it is enough to work under the hypothesis that 7', is compact
modulo the center of G*. We may also assume G* absolutely simple and
simply-connected (cf. (5.1.7)).

Unless £G°is of type B,(I = 1) and «" a short root, there is s root " of
LG such that (o, a¢¥) = 1 (cf. [4]). Thus, except in that case, on L,” we
have

Olv = Olov - Wav (a()v)

and on LV,
BY = sa¥ = (sap’) + o, (sao’).

Thus exp 7w lies in 7,° and (6.1.4) follows from what we have already
proved.

Suppose now that “GY is of type B,(/l = 1); (6.1.4) certainly holds for
SLs, so that we may assume that / = 2. We list the roots of (G*, T*) as
{£e; £ e;, £2¢;;1 = 4,7 = I} and the roots of (G, £T°) as {+e,; =+ e,
+eyl 1,7 £}, with(, )given by (e, ;) = 845, 1 = 1,7 =1 (cf. [4]).
We transfer roots of (G*, 7*) to roots of (G*, T',) and roots of (*G°, £T)
to coroots of (G*, T’,) via m,, without change in notation.

To verify (6.1.4) we essentially describe the possibilities for ZH®,
Suppose first that 7 = 7% Then Lemma 5.2.1 implies that (\*, sa") is
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an integer. Thus we have to show that (i, — 1,/, @) is an even integer.
Suppose that «" is long, say ¥ = ¢, — ¢;. Then «,(e; — ¢;) = 1, so that
kn(€;) = k,(e;). Consider the set R, of roots of (G*, T),) not from H, not
perpendicular to «, and positive with respect to a system adapted to «a.
The short roots in R, are of the form e; & ¢;, —e¢; & ¢;, where & # 1, 7;
note that for given k either all roots e¢; &= ¢;, —e; &= ¢, belong to R, or
none does. The subset of long roots in R, is either {2¢,, —2e¢;} or the
empty set. Clearly then

("n - "n”av> = % Z <i87 aV)
4ex,

is even. Suppose now that «” is short, say " = ¢,. Then R,, as defined
above, contains only short roots; these roots are of the form e; & ¢,
k#1,and e; + ¢, € R, if and only if e; — ¢, € R,. Also ¢; £ ¢, € R, if
and only if «,(e;) = —1, since «,(¢;) = 1. Thus we have to show that,
under our assumption that 7y = 7%, there are an even number of roots
not from H among 2e, . .., 2¢,. Relabel these roots so that 2ey, . .., 2e,
are not from H and 2e¢,,1, ..., 2¢, are from H; that is, x,(e;) = ... =
ko(e;) = —1 and k,(e,11) = ... = k,(e;) = 1. Suppose that r is odd.
Clearly e; = e, €5 &= €4, €, &= ¢,_; are from H. Since T, is compact and
Tn = T%* is split we have that the automorphism ¢; - —e;, 1 < j < [,
belongs to @(G*, T,) and is from H. On the other hand,

W= Wep—eaWeier + - Wer—a—er —1Wer —2ter —1W2er41 « + - W2ep

maps ¢; to —e; for 7 # r and fixes ¢,. We conclude that ws,, is from H.
Then

Kn(wezr) = Kn<e‘lr) =1

since e3,, being long, is noncompact (cf. [10, Propositions 2.1, 7.4]). This is
a contradiction. Hence 7 is even and (6.1.4) is proved in the case that
Ty = T*

Suppose that T # 7% We claim that 7 has exactly one positive
imaginary root and this root is long; that is, that (?My°, £7°°) has exactly
one positive root and that this root is short. Indeed, the roots of
(EMp®, ET%) form a subsystem of the roots of (£¥G° £717°), of type
A1 X Ay X ... X A1 (cf. proof of Proposition 5.1.6). Clearly such a
subsystem contains at most one of the rootsey, . . . , ¢, We have then only
to show that no long root is a root of (*My?, £77°). Suppose thate; + ¢;is
aroot of (*My° *1°). Then, after transfer to coroot of (G*, Ty), we have

on(e; + ej) = —(e; + ej) and «ky(e; + 31) = —1

On the other hand, it is easily seen that oy(e; — ;) = e; — e;. Hence
one; = —ey, so that

ei+e; =e; — aye
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This implies that ky(e; 4+ ¢;) = 1, a contradiction. Similarly we obtaina
contradiction if we assume that e; — ¢, is a root of (¥My°, £7°). Hence
(*My°, “T°) has exactly one positive root and this root is short, as
claimed.

To verify (6.1.4), we proceed as for the case Ty = T*. If oV is long then
the proof of Lemma 5.2.6 shows that (\* sa¥) is an integer. That
{tn — ', @”) is an even integer follows from arguments already given.
If &V is short then on transfer to 27° we have that o (se¥) = sa" and that
(sav) &= BY are roots, where 8V is the positive root of (My°, £T°). The
proof of Lemma 5.2.6 then shows that (\*, sa) = 1/2 mod Z. Thus we
have to show that (i, — v/, @") is an odd integer. Arguing as for the case
Tx = T*, we find it sufficient to show that there are an odd number of the
roots 2ey, . . ., 2¢,0f (G*, T',) not from H. Suppose that there are an even
number not from H. Then our earlier argument shows that the auto-
morphism e¢; — —e;, 1 < 7 = [, belongs to Q(*H?, £T7°), and hence that
Ty = T*. This completes the proof of Lemma 6.1.3.

(6.2) Correction Characters.

Definition 6.2.1. A set of correction characters for H is the set of quasi-
characters x (u* 4+ «, — v/, \¥) attached, in the manner of (4.2), to a pair
(p.*,é*), wrEeL® C,é* €ELQ®C/L+1{v—ogv:v e L Q@ C} satisfy-
ing

(i) u* — ogp* € L, (u*, ") = 0if «" is a root of ZH?,

(i) 3(* — ou*) + t — & = (\* + o, 3*) mod L,
n=0,...,N, N €

(iii) oA = N mod(L + {v —ogv: v € L ® C}),
M €A, w € Q(G* Ty) and from H,

(iv) (\*, saV) = 3(,, — v,/ aV) mod Z
for each imaginary root « of 7, from H, I,* adapted to a, and A\* € A*.

Here «,, ¢,’ are asin (4.2); ,, t,’, \* move between L ® Cand L, ® C
(via m,) without change in notation. Clearly correction characters are of
(tn — t’)-type and compatible in the sense of Theorem 6.1.1.

A set of correction characters allows us to transfer orbital integrals
from G* to H, in the sense of the introduction to this paper; that is, if in
§§8-10 of [10] we replace G by G*, ‘‘Schwartz function’’ by a slightly more
general notion, and ¢, — v, by x(u* + , — &/, \*), omitting the assump-
tions on t, — t,’, then Theorem 10.2 of [10] remains true. Note that
“(tn — ' )-type’ is used in Theorem 8.3 and ‘‘compatibility’’ in Proposi-
tion 9.4 of that paper. This will be discussed further elsewhere.

We indicate briefly why correction characters are the only replacements

!

for v, — «,’. Thus, suppose that {x(u, + v, — u’, \,)} may replace
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{t. — 1)/} in Theorem 10.2 of [10]. Then it is easily checked that these
quasicharacters must be of (1, — ,')-type and compatible. Transfer p,, \,
toLviam, n =0,..., N. We claim that for some #n, {(u,, ") = 0 for all
roots & of ZH°. Indeed, by *““(i, — v./)-type”’, we know that for each #,
wy, = pyp forall w € Q(H, T*) commuting with ¢,. To prove the claim we
may assume H simple. Then unless H is of type Dy, or is obtained by
restriction of scalars from G, there is some # such that every element of
Q(H, T*) commutes with o, (by inspection), and the claim is proved. For
the remaining groups a simple computation on the fundamental Cartan
subgroup gives the result; we omit the details. We argue now that

up = W, forallp =0,1,..., N and
M=Amod(L +{v—aow:vc L® C}),

by compatibility (cf. (6.1)). Thus writing u' for uy, A for Ay we have that
{x(n + tn — v/, M)} is just the set of correction characters {x(u" +
by — Uy )\*)}.

We have considered correction characters for G*, rather than for G, the
group with which we started and whose orbital integrals we wish to
transfer to H. To move to G we use the embeddings ¢, : 7, — T,
prescribed for those T, originating in H, to define the relevant notions
(“‘element of Qo(G, 1,9) from H', “Cayley transform from H”, etc.
(cf. [10])). We then conclude that Theorem 10.2 of [10] remains true for G
when we omit the assumptions on , — ¢,/ and replace 1, — v,/ by a
correction character x (u* + 1, — ./, \¥), especially XE?IH) transferred to
T,6.

7. ®-equivalence. We recall the set ®(G) of [7]. A homomorphism
¢ : W — LG is admissible if ¢ (w) is of the form ¢o(w) X w, w € W, where
vo(w) is a semisimple element of G, and the image of ¢ is contained only
in parabolic subgroups of *G which are relevant to G ([3]). We will
consider G* in place of G; all parabolic subgroups of ZG are relevant to G*.
Two homomorphisms ¢, ¢’ are equivalent if there is ¢ € *G® such that
¢ = ad go¢. The set ®(G) consists of the equivalence classes of ad-
missible homomorphisms of ¢ : W — £G.

Clearly an admissible embedding ¢ : “H & %G induces a mapping
2 ®(H) — d(G*).

Definition 7.0.1. Two admissible embeddings £, ¢ : *H — G are &-
equivalent if and only if £ = (§)%.

We denote this equivalence by £.

THEOREM 7.0.2. £ 2 ¢ if and only if

(m ) +
XE1ns) = X¥1an for allm, L7,
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Proof. Let £ = £(u*, N*), & = £ ((0*)", (\*)’). Then

Xﬁvgln‘*) = X@Jw) fOr all n, In+
if and only if
(7.0.3) (u*) = u* and
(\*) =N mod(L + {vr —ogv:v € LQ C}).

As in the proof of Theorem 3.4.1, we will find the L-groups of Cartan
subgroups useful, although we could easily argue with congruences alone.
Foreach n = 0, ..., N fix an allowed embedding

o = Tuln, M) 0 2(T3) & 2(M)

as in (1.3). Recall that we have identified *(M,’) as a subgroup of ZH.
Thus 7, induces a map

@

&(T,)) 5 &(H).
A class in the image has a representative ¢ : W — LH satisfying
(7.0.4) @o(Cx) C LT
and
(7.0.5) (1 X o) normalizes “7T° and acts on £79 as g,.

Conversely, any class with such a representative factors through 7.2.
This is easily seen as follows. Given such a ¢, write ¢ as ¢ (M,/, {, n) where

(7.0.6) N (po(z)) = 2EMIZEENY € CX AV € LY,

(7.0.7) N (go(1l X ¢)) = e2in2") for all rational characters \Y on Z7T°°
which extend to Z(M,')°.

Then, because ¢ defines an allowed embedding of £(73’) in %(MM,')
(see (1.3)) we have { — o,¢ € L and

(7.0.8) 3( — o) + o/ = (n+ o) mod L,

where ,” denotes half the sum of the roots of T4 in M,’ M By. Thus the
class of ¢ in ®(H) is the image of the class of ¢(7T,/, { — w7 — A,) In
®(T,'). Weremark that ®(77,) consists exactly of the classesof o (T3, ¢, 1)
(defined by (7.0.6) and (7.0.7) with T}, replacing M,’), where { — o,{ € L
and

(¢ — o) = (0 + om)mod L.

ProrositioN 7.0.9.

‘I’(H) = nk=JO Tn(q)(Tn,))
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Proof. In [7] it is shown that every class in ®(H) has a representative ¢
such that ¢¢(C*) C *7° and ¢(1 X ¢) normalizes *7°. Because H is
quasi-split, a little further argument using [13, Theorem 1.7], shows that
¢(1 X o) acts as g4, where 1" is some maximal torus over R in H and o,
denotes the Galois action of 7" transferred to L via some p-d. Replacing ¢
by an equivalent homomorphism if necessary, we can assume that
¢(1 X o) acts as a,, as well as that ¢,(CX) is contained in £77°, This
proves the proposition.

We move now to ®(G*). The image of ®(H) under £*, or (¢)%, consists
of all those classes in ®(G*) with a representative ¢ satisfying (7.0.4) and
(7.0.5), for some n. To check this, we write such a homomorphism ¢ as
o(M,, ¢, n) where ¢,  are defined as in (7.0.6) and (7.0.7) (with £(M,)°
replaced by “M,°). In place of (7.0.8) we now have
(7010) %(g‘ - Unf) + by = (77 + 6!177) mod Lr

where 1, is half the sum of the roots of 7* in M, M B*, and the class of
e(M,, ¢, n) is the image under £® of the class of ¢ (M,/, ¢ — u*, 7 — \*).
It follows that if (7.0.3) holds then &2 ¢ for, clearly, ¢ (M,, ¢, 1) is
equivalent to ¢ (M,, ¢, 1) if
(=¢ and n=9"mod L +{r —ow:vc L ® C}).
Conversely, suppose that £(u*, \*) 2 & ((u*)’, (\*)"). Then from

T]l

a1y — 7w €
we obtain that
¢ =@My, ¢+ p + p* 0+ N+ NF)
1s equivalent to i .
¢ = oMy, &+ w + W0+ N+ (NF))
forall{,n ¢ L ® C ;atisfying )
=l € L, %(:; - a,,i‘) = (1:7 + a,l:;)mod L.

For convenience, we may take u, = ,/, N\, = 0. Because { — 0.,

p* — ou*, (u*)" — 0,(u*)" all belong to L we may choose { so that

¢+t ua)>0 and 4 p + W), a")>0
for all roots a of ZM,° M £BY (cf. |7]). Then, if necessary, adding a
gp-invariant element of L ® C to the chosen {, we may assume that

G Fwtwu*a’)>0 and  (+p+ @WF),a")>0

for all roots of ¥B°. This implies, in particular, that ¢o(CX) contains a
(EG®—) regular element. Hence ¢’ must be of the form ad g o ¢, where
ad g normalizes “7°. By definition, the action of ad g on *7° commutes
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with ¢,. Hence

g‘ + (”*), + b = w(g‘ + ,U'* + I“Ln)
and
14+ ) =wlh+ N)mod(L +{v —ow:v e LQ C}),

for some w € Q(*G° LT°) commuting with ¢, Note that for the con-
gruence an argument as in Proposition 3.3.2 is needed (cf. [7]). Our choice
of ¢ forces w to be trivial and hence (7.0.3) is proved.

8. Main theorem. Suppose that {x(u* + ¢, — v/, \*¥)} is a set of
correction characters for H. In this section we will show that there is an
admissible embedding ¢ : “H S ZG such that § = £(u*, (\*)’) where

N\ =N mod(L +{r —apv:v € L®C}).
Thus, by Theorem 7.0.2, we have:

TueoreEM 8.0.1. There is « one to one correspondence between P-equiv-
alence classes of admissible embeddings of *H in “G and sets of correction
characters for H.

To begin the construction, choose m € LMy° such that m X (1 X o)
acts on YH° as oy; this is possible because “H is in standard position.
Suppose that

>\V(m) — 627”'()\0*,)\\/)
for all \V € LV extending to a rational character on ¥ ,°. We claim that
it is enough to show that there is (\*)" € N* 4+ L + {v — ogv} such that
(8.0.2) (\*,aY) = (W), aY) mod Z
for all roots «¥ of “H®. For, suppose that this has been shown. Choose
t € LT%such that \V (¢) = 24O =2*2Y) \V ¢ LV Then ¢ lies in the center
of LH®. Thus we may replace m by n = tm without changing the action
on LHY; \V(n) = 24O\ forall \Y € LY extending to “My°. To show
that £(z X 1) = ¢, X (z X 1),

N (t,) = WM glogw* Ny \V ¢ LV z ¢ CX and

E(1X o) =nX(1Xo)

defines an admissible embedding of “H in LG we just have to check that
no¢(n) = t_1. This is immediate because, at least, £ defines an embedding
LTn S XMy via the congruence

(W = onu*) + v = (V)" + oy (X)) mod L

provided by our correction characters.
We now show (8.0.2). First we will find (\*)’ so that (8.0.2) holds for
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all LHsimple roots oV satisfying oga’ # aV. Afterwards we will show

that (8.0.2) is then true for all simple, and hence all, roots & of ZH".
From {(u*, &v) = 0 and

F(u* — onp*) + oy = (W 4 ox)*) (mod L)
we have

N* + oxN¥, Y)Y = (1y, @¥) mod Z
for all roots ¥ of ZH®. On the other hand;

PrOPOSITION 8.0.3. (Ao* + ouxho*, V) = {uy, @")mod Z for all roots a”
of LHP.
Proof. We have that m X (1 X ¢) acts on “H° as oy and
)\V(m) — e?wi()\o*,)\v)

for all AV € LY extending to ZM,°. Let m = tm;, where ¢ lies in the con-
nected center of ZMy°® and my in A = (*M ) ger. Since (m X (1 X o))?2
centralizes “H° we have that

tog (t)ymio g(my)
lies in the center of ZH?, and so
Y (tog (1)) (myo g(my)) = eI +togho*a) oV (myg o (my)) = 1

for each root a” of ZHY, since ¥ + oy extends to “M 0. We have thus to
show that

(8.04) (mi X (1 X 0))2Vp = e2"ine") V.

for each simple root a" of “H". If we replace m; X (1 X ¢) by any element
of LA (=%#" X W with the inherited action of W) which normalizes
LTO M LA and acts on the torus as oy then (m; X (1 X ¢))? does not
change. Recall that 24 is of type A; X ... X A;;ifadY, ..., ;" are the
positive roots of 240 in LT° M Z#° then we may take for m; any element
of Z#° which realizes wa,- . . . waqv; recall that o¢ acts trivially on 240
Thus
miog(my) = expim(a; + ... + ag) = exp 27 ty.

Here we have identified the Lie algebra of *7° with L @ C. Hence
(8.0.4) is true, and the proposition proved.

From the proposition we conclude that
W\ — No*, oqaV) = — (N — \*, aV) mod Z

for all roots @V of H°. An elementary argument then shows that we may
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add to A* an element of {u — oz : v € L ® C} to obtain (\*)” such that
(), aY) = (\*, ") mod Z

for all simple roots & satisfying cga" # aV.

Suppose now that oV is simple in ZH? and that cza” = V. Let o’ be the
coroot of &¥ in H; o’ is a root of Ty'. Let « denote the image of o’ in the
roots of Ty. We can find 7, such that S, is of codimension 1 in Sy and
there exists a Cayley transform s: I, — Iy mapping some root S
coming from M, to a. Note that M, is a quasi-split group of R-split rank
one. The simply-connected covering of the derived group of 3£, is there-
fore SL, or SU(2,1). The group SU(2, 1) is excluded because aV is
simple. Thus {(i,/, 8¥) = 1 for any I, adapted to 8. Property (iv) of
correction characters then implies that

(), a") = 3({u, 8Y) — 1) mod Z

for any I,* adapted to 8.
On the other hand, we may use a lemma of Langlands reported in [1] as
Lemma 2.3 to compute (\¢*, ). Indeed, (i, 8V) is easily seen to be the

term “{p,, ao” )" if we substitute oV for “‘a,"’’ and so the lemma says that
<>\U*!av = %((‘m IBV> - 1) mOd Z

Therefore (8.0.2) is proved, and our construction completed.

9. The number of embeddings of “H in *G.

(9.1) Uniqueness. Suppose that &, ¢ : LH & LG are admissible em-
beddings. Then, clearly ¢ (1 X w) = x(w)£(1 X w), w € W, where x()
is a continuous 1-cocycle of W in Z(*H?), the center of ZH°. We write
g = x¢. Define ug, Ao € L ® C by

NV (x(z)) = s®oMIglemod) | \V € LV, 5 € CX,
A (x(1 X g)) = e2ri®or)  \V ¢ LV,

and write x = x(uo, No). Then uy — oxue € L and
1 (o — oupe) = (\o + omho) mod L,

so that we obtain a quasicharacter x (ug, o) on Ty = T'x" (cf. (4.1)). The
following is just a restatement of some material in § 2 of [7], for real groups.

ProrositioN 9.1.1. (i) The correspondence (x(wo, M), X (o, No)) induces
a one to one correspondence between HY (W, Z(*H®)) and the set of quasi-
characters x (u, \) on Ty such that:

(ia) (u, @") = 0 for all roots &¥ of *H°, and

(ib) (N, V) € Z for all simple roots & of “HP fixed by oy.

(i1) Each quasicharacter on Ty as in (i) extends uniquely to a quasi-
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character on H and conversely the restriction to 1Ty of a quasicharacter on H
is as in (i).

We denote the one to one correspondence between H (W, Z(*H)) and
quasicharacters on H, thus established, by x — x,.

Proof. (i) The only part that requires an argument is recovering
x (o, No') from x (mo, No) for some

N =Xmod(L +{yr —agr:ve L@ CHH.

For this we just have to choose Ay’ so that (\¢, &") € Z for all roots o of
LHY; since, clearly, (Ao + oxho, @”) € Z for all roots av of YH", this is
possible (see § 8).

(ii) We can use the fact that 7'y meets every component of H (cf. [6])
to obtain H = Ty (H, H), so that

H/(Hr H) = ]‘H/-'[ﬂHm (1:11 H)r

where (H, H) denotes the derived group of H. The only problem is to
check that every quasicharacter x(uo, Np) as in (i) is trivial on T M
(H, H). We can avoid this by quoting the argument of [7]. Take a
x (o, No) and attach a 1-cocycle as in (i). Then in [7] there is constructed
a quasicharacter on H whose restriction to 7'y is x (uo, No), and it is noted
why this restriction determines the quasicharacter. Thus the proposition
is proved.

Let £ = £(u*, A\*) and x = x(uo, No). Then
xE = xE(W* 4 po, N* 4+ No).
We conclude:

ProrosiTiON 9.1.2. HY (W, Z(*H?)) acts stmply lransitively on the set of
®-equivalence classes of embeddings of “H in “G; the action of x €
HY (W, Z(*H")) corresponds to multiplying a set of correction characters by
the quasicharacter x, on H (that is, for each n, we multiply the correction
character by the transfer to T, of the restriction to T, of x.).

(9.2) Existence. (examples and counterexamples). From now on, we do
not require “H to be in standard position. Thus *H is any one of the iso-
morphic L-groups attached to given pair (7', x) as in (2.1). For w € W,
pick g(w) € LG® such that g(w) X w acts on “H® as 1 X w € ¥YH, and
define x(, ) by

g(wi)g(ws) = x(wy, wo)g(wiws), w; € W.

Then x(, ) is a continuous 2-cocycle of W in Z(*H"). [8] shows that if
Z (YG®) is connected then this cocycle splits so that there is an embedding
of “H in IG; if Z(*G") is not connected then an example in E; X 4,
shows that the cocycle need not split.

https://doi.org/10.4153/CJM-1981-044-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1981-044-4

EMBEDDINGS OF L-GROUPS 551

For the rest of this section we assume that G* contains a Cartan sub-
group T compact modulo the center of G¥, and that H = H(T, k), for
some ko attached to T'.

First we attach a pair (', AT) to an admissible embedding ¢ : ZH < LG
(as always, extending the inclusion of “H? in £G®). Recall the properties
of ¢ listed in (3.1). We set

N (E(z X 1)) = zbtagemstavy \V ¢ LV 5 € Cx,
N(E(1 X)) = 22ri T AY)

for all rational characters AY on £7° which extend to *G°, where & (w) is
defined by £(w) = & (w) X w, w € W. From what we have already done,
it follows easily that ut — ogu’ € L, (4%, a¥) = 0 for all roots a" of ZH?,
and

%(#T - UO#T) + = = ()\T + 00)\T) mod L.

Conversely, given such a pair (uf, \') we construct an admissible em-
bedding of “H in G, as follows. It is clear how to define £,(CX). Then
pickny € *H® ng € YGOsuch thatny X (1 X o) € LHactson 7% as gy,
ng X (1 X o) € G actson “T? as oy, and ny~'ng X (1 X o) € G acts
on “HY as og. Then if # = ny~ns we have

nog(n) = (ngoyg(ny)) neog(ng).

By adjusting our choice of ny, ns we can arrange that no¢(n) = £(—1)
(cf. Proposition 1.3.5, or Lemma 3.2 of [7]), and then £&(1 X ¢) = n
completes the definition of &.

Note that while the datum (u', AT) determines the existence of an em-
bedding of “H in %G, it is not adequate for attaching correction charac-
ters, that is, for determining the ®-equivalence class of an embedding.
This is illustrated very simply by the following:

Example 9.2.1. Let G* = PGLy = H. There are two (®-inequivalent)
admissible embeddings of G = SL,(C) X W in itself, which extend the
identity map on £G°. One is the identity and the other is &, defined by

E(g X w) = gl:f(éo) 6((‘32))] Xw, g€ SLQ(C),'ZU €W,

where ¢ is the nontrivial character on Gal(C/R) lifted to W. For either
embedding, u' = 0 and \' is an arbitrary element of L ® C.

Since any *G is in standard position with respect to itself and 7*, our
earlier datum (u*, \*) is well-defined. We obtain:

(i) w* = 0 and N\* an element of L, pointing to the trivial character on
H, in the case of the identity embedding, and

(i1) u* = 0 and N\* an element of 1L not in L, pointing to the non-
trivial character (sgn det, appropriately defined) on H, in the case of £.
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We denote by (G*)ge: the derived group of G* and by L., the group of
rational characters on 7* M (G*)aer. Any element of Lg., extends to a
rational character on T* (cf. [2]); that is, the natural map L — Lg, is
surjective. There is a natural inclusion of (Lg.)Y in LY and so we may
regard o as attached to 7o M (G*)aer. We write Hqery for the attached
group. The following is immediate.

ProprositioN 9.2.2. (1) Suppose that N € Ly satisfies (N, a¥) =
(vo — w', @) for each root o of *H®. Then for any N' € L extending \ we
have that ut = N — (1w — '), N = — 3N defines an embedding of “H in
LG,

(i) If G* is semisimple then “H embeds (admissibly) in *G if and only if
there exists N € L such that

(9.2.3) (A aYy = (v — u,aY) for all roots &V of THO.
(iii) If YH (qery embeds in L (Gaer*) then “H embeds in *G.
Because of (iii), we will assume that G* is semisimple.

Note that the choice of positive system (for all roots of £G°, respec-
tively, all roots of ZH?) in the definition of g, ¢¢’ is of no consequence to
(9.2.2). Thus we will use the ‘‘diagram of (7T, k)"’ from [8] to make
convenient choices. We may assume £G° simple (cf. (5.1.7)). Fix some
simple system «,, . .., a," for the roots of ZH". Consider also the roots
B:Y,...,B,Y, minimal for the ordering < on the roots outside “HY,
given by 4V = BV if and only if 8 = Y + D s n.a,Y, for some non-
negative integers #,. Note that, by our assumptions, «, is of order two and
so BY lies outside LH° if and only if x(8Y) = —1. According to [8],
{aY, ..., a,Y, 8, ...,B,} is either a simple system for the rootsof *G°
or an extended simple system (that is, a simple system together with the
negative of the top root for that system).

PrOPOSITION 9.2.4. Suppose that {as”, . . ., .Y, B1Y, ..., Bs'} is a simple
system for LG and that —a is the top root of that system. Then, either

i) s =1, a;¥ = —26,Y mod{a:Y, ..., a,"), and *G°1s not of type A,,
or

(i) s = 2, a;¥
A,, D, or E.

I

— (81 4+ B:Y) mod {(a;Y, ..., a,"), and EG° is of type

The proof is an easy calculation and examination of types (cf. [4]); we
omit the details.

We return to our semisimple group G*. In each factor (= factor of the
simply-connected covering of) of 2G® we use simple systems as above to
define 1, 1o’. Suppose that the «;Y of some factor are all simple in *G°.
Then (i, a;Y) = (w0, a;) = 1 so that (1 — o, @;¥) = 0. On the other
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hand, if the ;" are as in (9.2.4) then
<L() - Lol,aiv> = O, 1= 2, PP and
(o — V) = —(m 4+ 1),

where, in the terminology of [5], m denotes the altitude of the top root
v
—ay .

We first seek the element X of (9.2.3) in the span of therootsof G*. For
this, we may work one factor at a time. Thus in this paragraph we
assume G* or “G° simple. If @Y, ..., a," are simple in *G° then we take
N = 0. Suppose that a;¥,...,a," are as in (9.2.4). Consider the case

s = 2. Our computation of {1y — o, ;") shows that
(v — w', BV 4+ B2Y) = m + 1.

Define a weight A of G* by (\, 2¥) = 0,7 = 2,...,7, (N, BY) =0,
(N, B2Y) = m + 1; clearly \ satisfies (9.2.3). To prove that X lies in the
span of the roots, that is, that (\, \V) € Z for all weights \Y of £G°, it is
enough to show that the order of any element of the center of *G° divides
m + 1. Since £G° is of type 4,, D, or E; this is easily verified from the
tables in [5]. Consider now the case s = 1. Here we obtain

(o — 'y, 1Y) = —3(m + 1).

The element X of (9.2.3) can only be ; — «; we have
Na¥)y=0, 1=2,...,r, and
\ BrY) = —5(m + 1).

Note that because type A, is excluded ((9.2.4)) we have that
—%(m + 1) € Z (cf. [5]). To place X in the span of the roots it would be
enough to show that the order of any element of the center of 2G° divides
1 (m + 1). Inspection shows that this is true unless G is of type Bay1,
Cont1y Doy Diagrzor Eq. If 2GY s of type Co,y1 or Dy then further inspection
shows that there is no simple root of £G° appearing with coefficient 2 in the
top root and half-integer coefficient in some weight. Also if G is of type
D13 there is no simple root of G appearing with coefficient 2 in the top
root and quarter-integer coefficient in some weight. Thus for £G° of type
Copt1, Dy or D,y we still obtain N in the span of the roots of G*.
In summary, we have:

PRrOPOSITION 9.2.5. If G* has no simple factors of type Copyry Dan(n 2 3),
or Eq then each YH embeds in LG.

We examine the excluded cases more carefully. First suppose that £G°
is simple. If £G° is adjoint then G* is simply-connected and so X of the last
paragraph, while not necessarily in the span of the roots, lies in L. If £G°
is not adjoint, and not of type D,,, then £G° is simply-connected. Thus
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any weight \Y of £G° lies in LV. Also 2\" lies in the span of the roots of
LG, Suppose that 2\Y = 78, + > i—s n,a;. Note that

KO(Z)\V) = Ko()\v - 00)\V> = 1,

by definition. Since «¢(a;¥) = 1 and «,(8Y) = —1 we conclude that 7 is
even. Hence (\, \V) € Z for all weights of *G° and so X lies in the span of
the roots of G*. For the case D,, and *G’ not adjoint, we assume instead
that AV € LV in the argument above, and so obtain that X lies in L, if not
the span of the roots. Hence:

PRrROPOSITION 9.2.6. If G* is simple then each “H embeds in G.

However, in general, the amalgamation of the centers of simple factors
may cause problems:

Example 9.2.7. Let
G* = Sps X SLy/{1, (=1, = 1)}

and
I* = Dl X D?/{ly (—17 —1)}v
where
D, = {diag (x1, xs, 23, 0171, 257, x571)} C Sps
and
D, = {diag(y, y™1)} C SLo.
Then

3 3
L = {ny + Zm,-xi:mi,n €cZ,n+ Zmieven}.
i=1 i=1

The roots are & (x; &= x2), &= (%2 &£ x3), &= (%1 &+ x3), +2x;, +2x,, +2x3,
+2y; the coroots may be identified, respectively, as = (x; & x3),
4+ (x2 £ x3), (%1 £ x3), £x1, £xs, £x3, +2y. We fix a compact
Cartan subgroup 7' and some diagonalization of T. We then choose ¢ so
that, on transferring to 7*, we get

ko(X1 — %x2) = ko(x2 — x3) = 1, «ko(x3) = —1, ko(2y) = 1.

Thus =4=2x;, +=2x,, 4=2x; are the only roots not from H. For the usual
choice of positive system we obtain ¢y — ' = x; + x2 + x3. Clearly the
element X of (9.2.3) can only be (y — 1. Since v — vy ¢ L we conclude
that there is no admissible embedding of *H in ZG.

There are similar examples for groups of type Dy, X ... (n = 3) or
Er X ...,

10. Appendix. We continue with the notation of § 1. Thus G is a

connected reductive group over R, G* a quasi-split inner form of G,
¥ : G — G* an inner twist, etc.
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Suppose that 7" is a maximal torus in G, anisotropic modulo the center
of G. Choose y € G* such that ¢, = ad y oy maps T to T*, the dis-
tinguished maximal torus in G*. We transfer the Galois action on T to
T* viay,, and thence to L = L(T*)and LY = L(*7°) in the natural way,
denoting the result by o7. Then ¢, maps each root of 70 in ZG° to its
negative, and is realized by (conjugation with respect to) an element
m X (1 X o) of £G, where m lies in 2G°, normalizes T and maps positive
roots of 7 to negative ones. In particular, the choice for y has no effect
on ar.

Conversely, suppose that %G contains an element m X (1 X o)
mapping 7 to itself, and each root of *7° to its negative. Then, ac-
cording to [7], G has a maximal torus 7" which is anisotropic modulo the
center of G, and m X (1 X o) acts on *7T° as or. The proof is as follows.
First, we use Theorem 1.7 of {12] to conclude that there is a torus Iy in G*
such thatm X (1 X ¢) acts on L, and hence on #77°, as the Galois action
of T’y transferred by some p-d. (cf. proof of Lemma 7.0.9). This torus 7'
is anisotropic modulo the center of G*, and hence fundamental in G*.
Lemma 2.8 of [9] then shows that there is a maximal torus 7" in G defined
over Rand x € G*such thatad x o ¢y maps T to T over R. Clearly Tis as
desired.

We assume still that m X (1 X ¢) maps each positive root of 7Y to its
negative. Lemma 3.2 of [7] computes explicitly the square moq(m) X
(=1 X 1) of such an element. Note that mog(m) lies in L7° Also, if
AV € LY then

pY =N 4 (m X (1 X a))N\Y
extends to a rational character on “G°.
Lemma (Langlands).
N(mog(m)) = (=1)*2u¥(m), N € LY,
where o 1s one half the sum of the roots of T* in B*.

Proof. If m = tn, where ¢ lies in the connected center of *G® and # in the
derived group then calculation shows that

N (mag(m)) = p” ()N (nog(n))
= Y (m)\ (nog(n)).
Thus we have to show
*) N(nog(n)) = (=12, A € LY,

for each n € (YG)qer such that z X (1 X ¢) maps each root of £7° to its
negative. Clearly no ¢ (1) does not depend on the choice for #. Thus for the
proof of (*) we may replace *G° by the simply-connected covering of its
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derived group and argue separately in each simple factor of the covering.
We therefore assume “G° simple and simply-connected.

We will prove (*) by induction. Thus, suppose that (*) has been proved
for all groups G for which the dimension of (¥G?)ge, is less than that for our
given group. Note that (*) is trivially true for the case of dimension
zero.

Let 8Y be the largest (top) root for the ordering on the roots of *77°
induced by the choice of *B° Then ¢8Y = 8Y. Each root of *7T° per-
pendicular to ¥ (under the canonical bilinear form (,) on LVY) is an
integral linear combination of simple roots perpendicular to 8¥. Hence if
LHY is the group generated by 7" and the 1-parameter subgroups for the
roots perpendicular to Y, then “H° is invariant under the action of W
and ’H = “H° X W is an L-group (that is, an object in ®Y(R) ([7])).
Let “J° be the subgroup of *G° generated by *7°° and the 1-parameter
subgroup for Y. Then £J° is also W-invariant, but £J° X TV is not, in
general, an L-group since o¢Xs. = (—1) X4, where X3 is some root
vector for 8V and [ is one half the sum of the coefficients in the simple
expansion of Y of those simple roots @V satisfying o sa¥ # oY and (o gV, V)
# 0 (cf. [8, Lemma 3]). Nevertheless, we will be able to deal with ZJ° X
W, by explicit computation. Note that “H° and £J° commute.

Choose #; in the derived group of *H°, normalizing #7° and taking the
positive roots of 7% in H° to negative ones. Choose n, in the derived
group of £J° normalizing “7° and mapping 8" to —g".

PROPOSITION. (i) mims X (1 X o) maps each root of *T° in LG to its
negative and
(it) n1 X (1 X o) maps each root of L1 in “H" to its negative.

Proof. For (i) we just have to show that #17: maps each positive root
of £G° to a negative one, since we have assumed the existence of some
m X (1 X o) mapping each root to its negative. Since 7. fixes each root
in ZH% and n, fixes 8¥ it is clear that 77, maps 8" and each positive root
in £H® to negative roots. Suppose that «” is a root, not in *H°® and not
equal to +=8Y. Then oV is positive if and only if (¥, 8¥) > 0. But

(mimsa¥, BY) = (@V, nan,718Y) = — (Y, BY).

Thus (i) is proved.
(ii) follows from (i) and the fact that n, fixes each root of LH".
To prove the lemma, we can take n = nn2. Then

neg(n) = nog(ni)nsoq(ne).
We may apply the inductive hypothesis to “H to obtain

W (mog(m)) = (=1)EM, N € LY,
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where ¢ is one half the sum of the positive roots of 7* in G* which are
perpendicular to 8.

We now compute #ni04(n2). The simply-connected covering of the
derived group of “Jis SL,(C). We map SL:(C) to £J? in the usual way.

Take for n, the image of [_(1) (1);‘ . Recall that ¢¢Xg = (—1)Xp..

Hence o¢(n,) is the image of

L%gnl(7pq’

and ns0¢(ns) the image of

V_3H1<—%HJ'

We conclude that

N (naog(ng)) = (—1)HDEN) - \V ¢ LV,
Thus to prove the lemma we have to show that
(**) B, \Y) = 2(igs, \Y)mod 2Z, NV € LV,

where ws = ¢ — 4 — 38. If & is positive, (o, 8) 3 0 and a # 8 then
—wg(a) has these same properties as «; that is, is positive, etc. Hence

2(uen, NV) = I/(B, \Y)

where ! = (144, 8Y) = (,,8V) — 1. Thus /' + 1 is the sum of the co-
efficients in the simple expansion of 8¥. For (**) it would be sufficient to
prove that I/ = [ mod 2Z. Recall that / is one half the sum of the coeffi-
cients, in the expansion of 8Y, of those simple roots ¥ such that ¥ # ¢ caV
and (aY, gga¥) # 0.

Since we have done so in similar situations (cf. § 9), we now appeal
directly to classification. If *G°is of type 4., then ! = 1; otherwisel = 0.
On the other hand, if G is of type A,, then I’ = 2n — 1; otherwise I’ is
even (cf. [5]). Hence the lemma is proved.
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