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EMBEDDINGS OF Z-GROUPS 

D. SHELSTAD 

To a real reductive group G there is attached a family of (real) groups, 
each of lower dimension but sharing Cartan subgroups with G (cf. [8]). 
The purpose of these groups is to provide "building blocks" (in a specific 
sense (cf. [11])) for analysis on G. Their définition is via an L-group 
construction; the connected component of the identity, LH°, in the 
L-group of such a group H is naturally a subgroup of LG°} but the require­
ment that H "share" Cartan subgroups with G precludes defining LH> 
the full L-group of H, as a subgroup of LG. Nevertheless, the principle of 
functoriality in the L-group suggests that the embeddings of LH in LG 
will play a role in analysis. In this paper, we study the embeddings of LH'm 
LG in order to resolve a problem about the normalization of orbital integrals. 

Our method is based on the proof of the Langlands correspondence for 
discrete series representations of real groups ([7]). Thus we attach to an 
embedding of LH in LG two elements in a certain vector space, and then 
show that these elements satisfy some congruence relations. We thereby 
attach to the embedding quasicharacters on various Cartan subgroups of 
G. The arguments for the congruences are very simply summarized in 
terms of the embeddings of the L-group LT of a Cartan subgroup T of G 
in LG. Such embeddings are severely constrained ; if T is common to H 
and G then given LT <=-• LH and LH <=•» LG we obtain LT <=-> LG and so 
have information about LH ^ LG. 

We defer the recovery of an embedding of LH in ^Gfrom its congruences 
until after the normalization of orbital integrals, as the results there offer 
some guidance. 

In order to transfer certain ("K-" (cf. [10])) orbital integrals from G to 
stable orbital integrals on H, it is essential first to normalize the integrals 
on G (cf. [10, esp. Theorem 8.3]) ; thus we must specify some functions on 
the Cartan subgroups common to H and G. The roots in H of such a 
Cartan subgroup T may be identified as roots in G. We write a potential 
normalizing function on T as 

± c(y) f i (1 - «(T)-1) 
a positive root, 

not in H, 
imaginary 

X f i K7) 1 / 2 - «(7)-1 / ! | , 7 € T. 
a positive root, 

not In H, 
not imaginary 
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The role of the term c(y) is to match the transformation of the function 
under a certain Weyl group with that of unnormalized K-orbital integrals, 
and to make the various functions "compatible" as we move among the 
Cartan subgroups common to H and G. 

In [10] we assumed 

c(y)= n « (T) I / 2 

a positive root 
not in H, 

not imaginary 

to be well-defined (and more, to ensure compatibility) and showed that, 
for consistent choice of ± , the resultant normalizing functions do provide 
a transfer of orbital integrals from G to H. While no embedding of LH in 
LG is present explicitly in that example, one consequence of the main 
result in the present paper (Theorem 8.0.1) will be that one does exist. 

The assumptions above are undesirable because they fail in some simple 
cases, and no "natural" remedy appears available. There is also a func-
torial reason for not always using those c(y)'s: given an embedding of LH 
in LG we may ask that the terms ^(7) be compatible with the embedding 
in the sense that dual to the transfer of orbital integrals from G to H 
provided by the c(y)'s we get a lifting of tempered characters from H to 
G, which is consistent with the map on L-packet parameters (that is, the 
map $(H) -> $(G) ([3])) induced by LH <=± LG (cf. [11]). We do not 
pursue this explicitly in the present paper. 

Consider an embedding of LH in LG and its attached quasicharacters. 
We prove two properties of the quasicharacters and then abstract these 
properties in the definition of a "set of correction characters". An exami­
nation of [10] shows that any set of correction characters can be used as 
c(yYs] that is, for consistent choice of db, the resulting set of normalizing 
functions provides a transfer of orbital integrals from G to H. As our 
terminology suggests, correction characters are the only quasicharacters 
which will do for the C(T)'S. 

We come then to recovering an embedding of LH in LG from its con­
gruences. We know that these congruences must be "correction con­
gruences"; that is, that the attached quasicharacters must form a set of 
correction characters. From now on, assume that G is quasi-split. We will 
construct an embedding whose attached quasicharacters are a given set of 
correction characters. We will also prove that two embeddings have the 
same attached quasicharacters if and only if they are ^-equivalent in the 
sense that they induce the same map $(H) —> $>(G) on L-packet param­
eters. Our main result thus follows: a one to one correspondence between 
^-equivalence classes of embeddings of LH in LG and sets of correction 
characters (equivalently, correction congruences). 

We have not attempted to solve correction congruences and so deter­
mine the existence of an embedding of LH in LG. Recall that, according to 
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[8], there is always an embedding of LH in LG if the center of LG° is 
connected, and a counter-example (in type £ 7 X An) if the center of LG° 
is not connected. As an exercise, we will use one simple congruence to 
generate examples and counterexamples for the case that H shares a 
fundamental Cartan subgroup of G, and this subgroup is compact 
modulo the center of G. 

On the other hand, a standard construction and our main result give a 
simple answer to the question of uniqueness for ^-equivalence classes of 
embeddings of LH in LG, or sets of correction characters. 

The section headings indicate the organization of the paper. Notation 
follows [9] and [10] whenever possible. 

Our arguments owe much to [8] and the unpublished manuscript [7]. 
It is Lemma 3.2 of [7] which explains why "one half the sum of the 
positive imaginary roots" plays a central role in the embeddings of 
L-groups of real groups, and which we use frequently in this paper. With 
the author's permission, we have included his proof of the lemma in an 
appendix. 

1. L-groups. In this and the next section we emphasize some technical 
points, in order to make matters easier for the later sections. As an 
introduction to embeddings of Z.-groups, we will examine the embeddings 
of LT in LG, for T a Cartan subgroup of G, compact modulo the center of 
G. The results hinge on Lemma 3.2 of [7]. 

We follow our earlier conventions for algebraic groups ([9]) : G will be a 
connected reductive linear algebraic group defined over R and G the 
group of its R-rational points. When convenient, we identify G with its 
C-rational points. If T is a maximal torus in G defined over R, we call T a 
Cartan subgroup, in accordance with Lie group terminology. For any 
torus over R or C we write L{ ) for the lattice of rational characters and 
Lv ( ) for the cocharacters ; ( , ) denotes the pairing between L ( ) and 
Z,v(). 

(1.1) Notation. For once and for all we fix data for an L-group of G: 

(1.1.1) a quasi-split inner form G* of G and an inner twist \p : G —•> G*, 
(1.1.2) a Borel subgroup B* of G* over R containing a maximal torus 

T* over R, 
(1.1.3) a connected reductive group LG° over C and Borel subgroup 

LB° containing a maximal torus LT°, such that L(LT°) = Lv(T*) and 
the simple roots of LT° in LB° are the coroots of the simple roots of T* 
in B*, 

(1.1.4) for each simple root av of LT° in LB°, a root vector Xa^. 

We write L for L(T*) and Z,v for Lv(T*) = L(LT°). We denote by aT* 
the Galois action on T* (and its usual transfer to L, Lv and LT°) and by 
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a G t ha t extension of aT* to LG° which satisfies 

& G ^ a v ~ ^<TG « v > 

Finally, LG = LG° X W, where W is the Weil group of C / R , which we 

realize as 

{z X r : s e G* r G ( l ,c r )} , 

with multiplication 

(zi X T I ) ( 2 2 X r2) = aT1>T2ZiTi(z2) X TIT2, 

where ai,i = tt<r,i = ai><r = 1, a,,* = — 1; on LG°, C x X 1 is to act 
trivially and 1 X a by aG. 

I t is the pair (LG, \p) t h a t defines an L-group for G, al though we usually 
omit \[/ in notat ion. When we restrict our a t tent ion to a quasi-spli t group 
(for example, the group "H" to be introduced) we may take G* = G and 
omit \j/ altogether. 

(1.2) Standard Levi subgroups in LG. If T is a maximal torus in G 
defined over R we write ST (or jus t S) for the maximal R-split torus in T 
and MT (or jus t M) for the centralizer of ST in G. 

W e consider first a torus T in G*. By [9] there exists ^ Ç 21 (T) such t ha t 
SÇTO-1 S 5 r * . For our purposes it will be enough to consider instead 
gTg"1. T h u s we assume also t ha t ST Q ST*. Working with (Af, B* H 
M, T*) we see tha t LM is natural ly a subgroup of LG; LM° is the subgroup 
of LG° generated by LT° and the coroots of the simple roots of T* in 
B* C\ M, and aM is the restriction of aG to LAf0 (see [7, § 2] for more 
general considerations). 

Passing to G, suppose now tha t T is a maximal torus in G. W e may fix 
x 6 G* so tha t 

^ = ad x o i// : 7" —> G* 

is defined over R ([7]). Let T' be the image of T. We may and do require 
of x t h a t ST' £ -Sr*. T h e map \px is an inner twist from MT to M T ' and 
(L(MT>), ypx) is an L-group for MT} which we denote simply by LMT. We 
will call LMT a standard Levi subgroup in LG. 

(1.3) Embeddings of the L-group of a Car tan subgroup. Suppose t ha t T 
and T' are as in the last paragraph. Then \f/x induces an isomorphism 
LT —> L{T'). By an embedding of LT in LMT we will mean an embedding 
of L(T') in L{MT')- T o s tudy such embeddings we change notat ion and 
work under the hypothesis: 

T is a maximal torus over R in G*, anisotropic modulo the center of 
G*. 
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First, we describe those embeddings r of LT in LG which we will call 
allowed. There are two conditions: 

LT T-—>LG 

(1.3.1) p ro j \ /pro j . is commutative. 

W 

For the second, we use: 

Definition 1.3.2. A pseudo-diagonalization (p-d.) of T is a map from 
T to T* of the form ad g\T} g £ G*. Our terminology comes from the fact 
that in examples we usually arrange that T* be a diagonal group. Some­
times we call the element g itself a pseudo-diagonalization. 

A p-d. of T induces isomorphisms between L(T) and L and between 
Lv(T) and Lv, and hence an isomorphism between (LT)°, the connected 
component of the identity in LT, and LT°, the distinguished maximal 
torus in LG°. We require, as our second condition on r, that 

(1.3.3) T\L(T)° is induced by a p-d. of T. 

Suppose that we are given a p-d. g of T. We transfer the Galois action 
of T to L, Lv and LT° via g (since T is anisotropic modulo the center of 
G* the choice for g has no effect) ; we write the result as aT. To obtain an 
allowed embedding LT —> LG which extends the isomorphism (LT)° —> 
LT° induced by g, we need exactly a homomorphism rw : W -* LG such 
that rjrCw) = r0(w) X w, w £ W, where r 0 (C x X 1) Ç L r ° and 
ro(l X a) is an element of the normalizer of LT° in LG°, such that 
r0(l X a) X (1 X <r) = TW(1 X cr) acts on LT° as crr. Note that any 
element n of the normalizer of LT° in LG° which maps the positive roots of 
LT° in LG°, that is, the roots of LT° in LB°, to negative ones, has the 
property that n X (1 X a) acts on LT° as crr. 

It is an easy consequence of [8, Lemma 4] that such a homomorphism 
TW exists; note that for this existence there is no need to assume that T is 
anisotropic modulo the center of G*. Alternatively, we may construct TW 

quite explicitly, via Lemma 3.2 of [7], the lemma critical to the proof of 
the Langlands correspondence for discrete series representations. 

Thus suppose that we have an element n of LG° normalizing LT° and 
such that n X (1 X a) acts on LT° as <rT, together with a homomorphism 
7] : C x -> LT° such that 

7](z) = (TT(V(Z)), Z G C X . 

Then naG(n) G LT° and we may write 

\V(v(z)) = 2<M.xv> 2̂,M,xv>f xv e Lv9 
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for some (unique) /* Ç L ® C with /x — O>M £ £• Thus 

TTT(Z X 1) = ri (z) Xz, z e Cx , 

r ^ ( l X a) = n X (1 X a) 

defines a homomorphism rw : IL7" —> LG if and only if 

(1.3.4) Xv(naG(n)) = (-1)(M-TM.XV), \V G Lv . 

In place of n we could have chosen tn, t G L r ° . To pick the correct n for 
(1.3.4) we need just the following information: let X Ç L ® C be such 
that 

for any Xv Ç L v which extends to a rational character on LG°. Although X 
is not uniquely determined, an argument as in Lemma 3.3.2 to follow, 
shows that X may be replaced only by elements of 

X + L + £ Ca. 
a root 

of T* in G* 

As a consequence of Lemma 3.2 of [7] (cf. § 10) we have: 

PROPOSITION 1.3.5. (1.3.4) is satisfied if and only if 

(1.3.6) J(JU — (JTV) + i = (X + o>X) mod L, 

where i is one half the sum of the roots of T* in B*. 

Proof. The lemma cited computes Xv (naG(n)) as 

( - l ) < 2 t . X V > ( X V + aT\V)(n) = (_l)2(l+X+crrX1XV)> XV ç JW 

The rest is immediate. 

Note that (1.3.6) is easily solved. For example, we obtain an embedding 
if n = i and X = 0, that is, if we "twist' ' C x X 1 by i and choose for n any 
element of the normalizer of LT° in the derived group of LG°, which maps 
positive roots to negative ones. It is a simple exercise to describe the 
remaining allowed embeddings of LT in LG\ we omit the details. 

If r : LT —> LG is an allowed embedding and (JU, X) are parameters 
attached to rw as above then we write r = r(/x, X), some underlying 
p-d. being understood. 

2. (T, K)-groups. The groups H of the introduction were called 
(T, /c)-groups in [10]. We review their definition ([8]) in (2.1). First LH 
is defined. There are some choices but, in any case, LH° is a subgroup of 
LG° and a simple argument shows that the action of 1 X (1 X a) G LHon 
LH° can be achieved by conjugation with respect to a suitable element of 
LG. 
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In (2.2) we introduce standard position for LH in order to realize the 
action of 1 X (1 X a) Ç LH on LH° by (conjugation with respect to) an 
element of a standard Levi subgroup in LG and, further, to make this 
subgroup as small as possible. Then, after refining the procedure of § 6 in 
[10] for selecting embeddings of Cartan subgroups of H in G ((2.3)), we 
will be able to carry out many arguments ''inside" standard Levi sub­
groups. 

In (2.4) we review the définitions formalizing the notion that various 
objects attached to G "come from H." 

(2.1) Definitions. ([8], cf. [10], [11]). If T is a maximal torus in G, 
defined over R, we denote by Er C L(T) the set of roots of T in G, and by 
STW £ Ly (T) the set of coroots. By definition, /c is a quasicharacter on 
CSTV), the span of SrV in Lv (T), and is trivial on 

&(T) = {M
v e (ZTV) : MV = Xv - aT\\ \ v 6 IS (T)}, 

aT denoting the Galois action of T. 

Recall the twist \p : G —> G*. We fix some map 

^ = ad x o ^ : T —> T*, 

with x Ç G*, and use it to transfer K and o> to Lv , without change in 
notation. Thus <rT is now an automorphism of Lv and K a quasicharacter 
on (Ev), the span of the roots Ev of LT° in LG°, trivial on 

i f = {M
v G ( E V ) : Mv = Xv - crrX

v, Xv G I v } . 

Such a K extends to a o>-invariant quasicharacter on Lv . In fact, denoting 
by Z the center of LG° and by (— )ff7, the o>-invariant elements of —, we 
have a commutative diagram (2.1.1): 

(Horn (L\ C*))'r c a n ^ i c a l > ( ^ r ° ) ^ 

restriction, 
followed by 
projection 

Horn «Hv)/if, Cx)-

projection from 
LG° to adjoint group 

-—>Z(LT°) T/z = (LT°YT/Z r\ (LT°YT 

Thus we may regard K as an element of LT°, some choice being required. 
The centralizer of K in LG° is independent of that choice and LH° is the 
connected component of the identity in this centralizer. 

Fix a Borel subgroup LBH° of LH° containing LT°, and for each simple 
root aw of LT° in LBH° a root vector Fav. We define aH, and so complete the 
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definition of LH, as follows. On LT°, aH induces that automorphism of the 
simple roots of LT° in LBH° which differs from aT by an element of the 
Weyl group of LT° in LH°, and on root vectors we have 

The group H •=• H(T, K) is any quasi-split group with L-group LH. 
Given H = H{T, K) we choose a Borel subgroup BH over R and a 

maximal torus TH in BH, also over R, in the usual way. 
We denote by TV (for later purposes) the torus with same underlying 

complex torus as T*, but with Galois action aH. To conserve notation we 
will always assume that H, BH, TH are chosen so that 

(2.1.2) TH = TV. 

Remark. As an immediate consequence of (2.1.1) we have: 

PROPOSITION 2.1.3. If G is a simply-connected, semisimple group and T 
is anisotropic over R then for each map \px : T —* T* we have a one to one 
correspondence between the non-trivial (quasi-) characters K attached to T 
and the elements of order two in LTQ. 

These correspondences allow us to generate examples for LH without 
describing K, \px and all the attendant notation (see (3.2)). 

(2.2) Standard position. By changing the choice of x in the map if/x, we 
may change LH within its isomorphism class and, because of (2.1.2), our 
choice of H. Suppose that we follow ypx by co, an element of 12(G*, T*). On 
Z.v, co acts as an element of 12(LG°, LT°) and is thus realized by an element 
w of LG°. A possible replacement for (LH°, LBH\ LT°, { Ya^}, aH) is 

((LHT, (LBHT, LT\ {wYa,},œaHœ-i); 

in particular, we may replace aH on LT° by a conjugate under Œ(G*, T*). 
According to [8] (cf. [10, § 6]) wre can find g G G* such that 

TV Jl> T* ^H G* 

is defined over R. Let TN be the image of TV- We may and do assume 
that STN C ST*- We fix a p-d. mN of TN in Af̂  = M ^ and use mN to 
transfer the Galois action of TN to L and L v ; we denote the result, which 
is independent of the choice for mN, by aN. On L or L v we have that 

(J H = C O C T A T C O - X , 

where co, as element of 12(G*, T*), is realized by {mNg)~l. 
Note that if T is any torus in G* with ST C 5 r * and we define <rT as we 

did <rN = o-riV, then cr# is conjugate to crT under 12(G*, T*) if and only if T 
is stably conjugate to TN (cf. [8]), that is, if and only if T could have been 
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chosen in place of TN. Also, if STN = ST* then <JN = aT* and we may as 
well take TN = T* in that case. In general, however, the choice of TN 

affects <JN. 
We can change \f/x so that: 

(2.2.1) aH coincides with aN on L and Lv. 

We then say that LH is in standard position with respect to TN. The (chosen) 
group TN plays a major role in later sections. 

PROPOSITION 2.2.2. Suppose that LH is in standard position with respect 
to TN. Then 

id mN 

(i) TH = TV > r* > TN is defined over R, for any p-d. mN of TN 

in MN, and 
(ii) there exists m 6 LMN° such that m X (1 X <J) normalizes LH° and 

acts on LH° as aH. 

Proof, (i) is immediate. For (ii), consider first aN acting on L. There is 
co 6 &(MN, T*) such that aN — œaG. This equation remains true on L v if 
we replace co by its contragredient, that is, if we regard co as an element of 
ÏÏ(LMN°, LT°). Hence we may choose m G LMN° such that m X (1 X a) 
acts on LT° as aN = aH. Then m X (1 X a) normalizes LH° and clearly 
ad(m X (1 X cr)) acts on LH° as ad t o aH, for some t G LT°. The pro­
position thus follows. 

(2.3) Framework of Cartan subgroups. We assume that LHis in standard 
position with respect to TN and that H satisfies (2.1.2). 

In Hf choose a complete set of representatives To', ... , TN
f (TN

f as in 
(2.1.2)) for the conjugacy classes of Cartan subgroups of H, such that 

(2.3.1a) STn> C 5 V , n = 0, . . . , iV - 1, 

and for each Tn' a p-d. mn' in Mn
r = MTn> (with respect to TH = T^) 

such that 

(2.3.1b) mN' is the identity map. 

Note that the indices 0, . . . , N — 1 bear no relation to the ordering on 
the conjugacy classes of Cartan subgroups, and that N plays a different 
role in [10]. 

In G*, choose Cartan subgroups T0, . . . , TN (TN as above) and for each 
n a p-d. mn of Tn in Mn = MTn, such that 

(2.3.2a) STn QSTNQST* îor n = 0, . . . , N - 1, 
t - i 

(2.3.2b) TV - ^ > T* ^ > Tw is defined over R, and 

(2.3.2c) Tn = Tv if Tw is conjugate to Tv, 

TN = T* if 7^ is conjugate to T* (cf. (2.2)). 
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For each Tn' originating in G in the sense that some \p~l o ad g, g Ç G*, 
maps Tw into G over R, choose a Cartan subgroup Tn

G of G and element gn 

of G* such that 

(2.3.3a) \pn = ad gn o ^ : r n
G —• Tw is defined over R, 

(2.3.3b) if Tn
G is conjugate to TV

G then 7; G = TP
G and ^w = ^ 

(cf. (2.3.2c)), 

(2.3.3c) our fixed Cartan subgroup T of G defining Li7 and 77 is 
included among the Tn

G and 

(2.3.3d) for some n such that Tn
G = T, \f/n is such that the element 

w: i * > i n > 1 > i 

of S2(G*, r*) acts on Lv as an element of tt(LH°, LT°). Recall 
that \px is the map from T to T* fixed in the definition of LH 
and # . 

We write Mn
G for Af^ and use \j/n to define the L-group for Mn

G. 
We can summarize our framework of Cartan subgroups enclosing 1 N 

in a diagram (cf. [10]): 

H G* G 

iï rjf- ^ ^ -*T°=J n0 

I 
i l ! 
I i 

v<">7V 

rV' 1N — 1 H \IN 

1 T " * 
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We have to check that (2.3.1a)-(2.3.3d) are possible. First we pick 
TV, . . . , TV, m0', . . . , mN' satisfying (2.3.1a) and (2.3.1b). For 
T0, . . . , TN, m0, . . . , mNl we know that there is yn 6 G* such that 

is defined over R. We can adjust the image, Tn, so that (2.3.2a) and 
(2.3.2c) are satisfied. Then the quasi-split group Mn = MTn contains T* 
and, because LH is in standard position with respect to TV we can argue 
in Mn to find mn in ad Mn so that 

f - - i 
ry, i Win T , * Win -ir 

1 n > 1 > Mn 

is defined over R. The image under this map is, like Tn, fundamental in 
M.n. Thus we can follow mn by an element of ad Mn to obtain 

i - i 

^n > T * > ln 

defined over R. Next, (2.3.3a) (2.3.3b) and (2.3.3c) present no difficul­
ties; we choose the Tn

G and fa as desired. However to satisfy (2.3.3d) as 
well, we may have to modify some fa. Suppose that {TV, mn', Tn, Mn, 
Tn

G, fa; n = 0, . . . , N] satisfies all but (2.3.3d). By (2.3.3c), our fixed 
Cartan subgroup T is TnQ

G for some n0. Then faQ : T —> TnQ is defined 
over R. We may write \j/x, the given p-d. of T, as g o faQl where g is a p-d. 
of TnQ Note that the transfer of aT to L r ° via \j/x coincides with the trans­
fer of ov to L r ° via g. Thus [8] implies that there exists h G ad H such 
that 

is defined over R. We may assume that the image is some TV- By (2.3.2c) 
we then have that Tn = T = rw.0 and thus ^ = i/̂ o ((2.3.3b)), for both 

/ - i 

^ ^ r * ^ - > r n a n d 

rn' -*_> j * -5—> r 

are defined over R, causing Tn and T to be conjugate in G (cf. [10]). We 
may write mn~

lmn' as wg~1h, where w Ç ad G* and ze; : T"ra —> Tn is defined 
over R. Thus 

fa = {h{mn')-
l)mn{w-lfa) 

and so if we replace ^ by w^w then all conditions (2.3.la)-(2.3.3d) are 
satisfied. In (2.4) we explain why (2.3.3d) is demanded. 

(2.4) Data "from, H". Our starting point is the fact that the roots of 
LT° in LH° form a subsystem of the roots of LT° in LG°. We make the 
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natural identification of ( I v ) v = L^(LT°) with L = L(T*), and thus of 
the coroots for the roots of LT° in LG° with the roots of T* in G*, writing 
(a v ) v = a. At the same time, we identify the coroots for the roots of LT° 
in LH° with the roots of TH (or T*, since at this point we are working 
over C) in H. A root of TH in H is therefore identified, as element of L, 
with a root of T* in G*; the roots of TH in 77 do not, in general, form a 
subsystem of the roots of T* in G*. Nevertheless, 12(77", r f f) is naturally 
embedded in 12(G*, T*). 

Analogous results~hold if we replace (G*, LG°, if, L77°) by (Mn,
 LMn\ 

Mn',
 L(Mn

f)°)} as provided by our framework of Cartan subgroups. 
We writeLn forL(Tn)} Ln

v for Lw(Tn), anîor the Galois action of Tnand 
its transfer to L and Lv by mn\ Ln

f, (Ln')
y and <rn' are similarly defined for 

Tn'. On Z, and L v we have an' = an; a root av of L r ° in LG° belongs to 
ZMn

Q if and only if ana
y = -av. 

Using mn, mn' and the identifications of the first paragraph we embed 
the roots of Tn' in H in the roots of Tn in G* ; a root of Tn "comes from H" 
if it lies in the image of this map. Similarly we map 12(77, Tn') into 
12(G*, Tn) and an element of 12 (G*, Tn) may "come from H" (see [10, § 6] 
for further details). 

Recall that 77" = H(T, K). If T = 7"n
G then we transfer K to Kn for JTW 

via \f/n. By (2.3.3b), KW is well-defined. If n is as in (2.3.3d) then Kn coin­
cides with the transfer of K to T* via i/̂ - as in the definition of LH, and 
thence to Tn via mn. We may therefore regard 77 as defined by Tn, Kn and 
ra„, instead of by T, K and $x. Next, we transfer K to KP for rp , p = 
0, . . . , N, via mvmn~

l ; Tp, KP and wp again define the same 77; a root a of Tp 

comes from 77 if and only if Kp(a
v) = 1 (cf. [10, § 7]). Note that if KP~ is 

the restriction of KP to the span of the coroots for Mp then Mp is a 
(rp , Kp-)-group for Mp. 

3. Admissible embeddings of LH in LG. 

(3.1) Introduction. Given (7", K), consider first any LH attached as in 
(2.1). We wish to extend the inclusion of LH° in LG° to an admissible 
(cf. [3]) embedding of LH in LG\ that is, we seek a homomorphism 
£ : LH-+LG such that £(h X w) = fc£(w), A G Li7°, w ^ , and 
£(1 X w) G LG° X ze>, w G W. Equivalently we seek a homomorphism 
^ . w-*LG such that 

(3.1.1) ^ ( w ) = £o(w) X w, some £o(w) £ LG°, and ^ ( w ) stabilizes 
LH°, acting on L77° as 1 X w G ^77, w <E IF. 

Thus ^(C>< X 1) is to act trivially on LH°, and ^ ( 1 X a) as aH. 
We omit the superscript W from %w and use £ in both contexts. 

PROPOSITION 3.1.2. Suppose that £ : W —> LG is a homomorphism satis-
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fying (3.1.1). Then £o(z X 1) = <r* tto(* X 1)), z £ Cx , and £0(CX X 1) 
w contained in Z(LH°), the center of LH°. 

Proof. This is immediate. 

Conversely, suppose that £0 : C x —> Z(LHQ) is some homomorphism 
such that £0(z) = *#(£<> (*))> z G Cx . Pick n £ ^G0 such that n X 
(1 X cr) acts as <JH on LH°. An argument as in the proof of Proposition 
2.2.2 shows that this is possible. A chosen element n may be replaced only 
by zn, z £ Z(LH°). Set 

{(* X 1) = £<>(*) X s, s G Cx , and 

{ ( l X « r ) = « X ( l X a). 

Then f : W —> LG is a homomorphism (satisfying (3.1.1)) if and only if 

(3.1.3) naG(n) = ê o ( - l ) . 

Replacing w by zw, 2 G Z(LH°) ; multiplies wo-G(w) on the left by Z<JH(z). 

(3.2) Examples. The following simple examples are of particular interest 
in later sections. 

(3.2.1) Let LG° = PGL3(C). We wr i te r* for the image of A 6 GL3(C) 
in PGLz{C). Let LB° be the image of the upper triangular matrices and 

LT° = {diag(*i, x2, x3)*}. 

Take as attached root vectors, 

Xxi-X2 — 

-&X2—XZ 

0 1 0" 
0 0 0 I 

0 0 oj 
0 0 01 
0 0 1 
0 0 oj 

and 

Let a G act by 

diag(xi, x2, x3)* 

and by 

• diag(x3
_1, %2~l, Xi-1)* on LT° 

Set 
" C - ^ I l - 1 2 — Xx 

LH° = Cent0 
- 1 0 0 
0 1 0 
0 0 1 

the connected component of the identity in the centralizer of 

- 1 0 0^ 
0 1 0 
0 0 1 
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in LG\ LBH° = LB° H LH° and F,2_,3 = X,2_,3; let aH act on LT° by 

diag(xi, x2, x3)* —» diag(xi_1, xr1, x2
- 1)* 

(following the remark in (2.1), we take aH on LT° to be that automorphism 
which induces an automorphism of the Dynkin diagram of (LH°, LT°) 
and differs from t —> r 1 by an element of 12(Li7°, L P ) ) , and set 

&H * X2— XZ •*• X2—X3' 

Then we embed LH in LG by a (X G Z): 

fx(A X (1 X 1)) - A X (1 X 1), A G L #° , 

SxU X (̂  X 1)) = 

£x(l X (1 X a)) = 

" 1 0 0 

o o^) ( 2 X + 1 ) / 2 o 
0 0 (z/z)^+^/2 

X (z X 1), 

2 6 Cx , 
0 0 1 
1 0 0 
0 1 0 

X (1 X a). 

It would have been easier to consider the following isomorphic LH 
(cf. (2.2)). Let 

(V-i o o* 
LH° = Cent0 0 1 0 

\L 0 0 - 1_ 
LBH° = LB° H LFP and F.ri_,3 = [Z , , . , , , Xa.2_,.3]. 

Set <rH = aG on LT° and o-HFxl_,3 = F a _ J 3 . Note that 

&G * x\—xz ^XI—XZ-

We embed LH in LG by & (X G Z): 

£x(* X (1 X 1)) = A X (1 X 1), AG L #° , 

€x(l X (z X 1)) 

£x(l X (1 X <r)) = 

(z/2)(2X+l)/2 0 0 

0 1 0 
0 0 (Z/z)(2X+l)/2 

, ^ C x , 

1 0 0 
0 1 0 
0 0 - 1 

X (1 X a). 

(3.2.2) Let LG° = PS£ 4 (C) ; this time 4 * denotes the image of 
A e Spi(C) in LG°. In place of LB\ we specify 

L r ° = {diag(xi, x2, xr\ x2
_1)*i 

and the positive system 2x1} 2x2, Xi =L x2 for the roots of LT°. Fix root 
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vectors for LG° and require that aG act trivially. Set 

LH° = Cent(diag(i, -i, -i,i)*)° 

and choose LBH° D LT° by requiring that Xi + x2 be a root in LBH°- Set 

0 0 0 1 
0 0 1 0 
0 0 0 0 
0 0 0 0_ 

On LT°, <JH is the automorphism 

diag((xi,x2,xi-1,x2~1))* 

set <rHYxl+X2 = Yxl+X2. Then we embed LH in LG by: 

Uh X (1 X 1)) = h X (1 X 1), he LH\ 

diag(x2 ,Xi,x2-1 ,xr1)*; 

fx(l X (z X 1)) 
0 

0 

0 

0 

W 
er 

0 

0 

0 

(=y 

x 0 x i), 
*GC X , 

êx(l X a) = 

0 1 0 0 
1 0 0 0 
0 0 0 1 
0 0 1 0 

X (1 X (7). 

(3.3) Data attached to an embedding. In the term admissible embedding 
£ : LH £-> LG we will understand that ^ i i P is the inclusion mapping. 
Until (9.2), we will assume that LH is in standard position with respect to 
a Cartan subgroup TN, as described in (2.2). We will attach to £ a pair 
Ou*, X*) of elements in the vector space L ® C, and write £ = £(/**, X*). 

As before, £also denotes the restriction of £ to W. Set £(ze/) = £o(w) X w, 
w £ W. First consider £0|CX X 1. There exist n*, v* (E L ® C with 
H* — v* £ L and such that 

XV(£0(*X 1)) = s ( M * . X V ) 2 ( . * . X V ) xv e LV , s e c> 
PROPOSITION 3.3.1. (i) *>* = o-̂ /x*-
(ii) </x*, a v ) = 0/or each root av of LH°. 

Proof. This is immediate. 

Next, we exploit the fact that LH is in standard position with respect to 
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TV By Proposition 2.2.2 we have that £0(1 X a) lies in LMN
Q. We pick 

X* £ L ® C such that 

Xv«o(l X a)) = ̂ <<x*.*v> 

for each Xv £ Z v which extends to a rational character on LMN°. 

PROPOSITION 3.3.2. For given £, 
(i) /x* is uniquely determined, 

(ii) X* may be replaced only by elements of 

\*+L+ £ Ca. 
« root of 
T* in M ^ 

Proof, (i) is immediate. For (ii), suppose that 

£27rï(Xi*,Xv> _ ^27rz(X*,Xv) 

for all Xv extending to LMN°. Set X2* = X* - Xx* and pick t 6 L r ° such 
that 

Then / £ LT° C\ (LMN°)dev since every rational character on LAf^° anni­
hilates /. Thus we can pick 

X3* G E Ca 
a root of 

T * in MN 

such that 

Clearly X2* — X3* = X* — (Xi* + X0*) G I., and the proposition is 
proved. 

(3.4) Congruences. From now on, we enclose TN in a framework of 
Cartan subgroups. Consider the attached standard Levi subgroups 
LMn', n = 0, . . . , TV, in LH, and LMn in LG. An admissible embedding 
£ : LH ^ LG (as always, in standard position) induces, by restriction, an 
admissible embedding 

£<»> : LMn' <=+ LMn, n = 0, . . . , N. 

Recall that Mn' is a (7"w, /cn~)-group for Mn. Clearly LMn' is in standard 
position with respect to TN and £{n) — £(W)(M*, X*). Let in denote one-half 
the sum of the roots of T* in Mn C\ B* and t / one-half the sum of the 
roots of TV in Mn' C\ BH. Then: 

THEOREM 3.4.1. 

KM* - o-nM*) + in ~ h' = (X* + o-wX*)mod L, n = 0, . . . , N. 

Proof. Fix an allowed embedding r : LTn
r ^ LMn ' with underlying 
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p-d. mn'; suppose that r = r(/x, X) (cf. (1.3)). Then we have: 

LTnr L ^ J O y LMn, 

F°0A X*) 

where the left vertical arrow is induced by the R-isomorphism rnn~
l/rnn

f, 
and the p-d. mn underlies the bottom horizontal arrow which is defined by 
commutativity of the diagram. From Proposition 1.3.5 we know that 

\{ii — an}x) + Ln
f = (X + an\)modL and 

è((M + M*) ~ an(n + n*)) + t» = ((X + X*) + <rn(X + X*)) 
modi,. 

Subtracting, we obtain the theorem. 

Note that Proposition 3.3.2 shows that the congruences do not depend 
on the choice for X*. 

4. Quasicharacters attached to an admissible embedding. 

(4.1) Congruences and quasicharacters. Obtaining a quasicharacter on Tn 

from a congruence as in Theorem 3.4.1 is a step in the Langlands corre­
spondence for real tori (cf. [7, § 2]). We recall some of the details. Let T 
be a torus over R, with Galois action a\ in the usual manner, we identify 
the Lie algebra t of T(= T(^)) with Ly (T) ® C and write an element 
of T as exp X, where X(expX) = e<x,x>, X G L(T)\ exp Xi = exp X2 if 
and only if X1 — X2 G 2iriLv (T). An element exp X of T belongs to T 
(= T(R)) if and only if aX - X G 2iriLy(J)^ where 1 denotes that 
element of LVCT) 0 C satisfying (X, X) = (K~X), X G L(T) (recall that 
for t —>LV(T) 0 C to respect Galois action, a must act on both Ly (T) 
and C). Suppose that exp X £ T. We write X = XR + Xt, where 

XR = \{X + <rX) and X! = i(X - aX). 

Then XR G t, the Lie algebra of T, and XY is a o--invariant element of 
iTvLy(T). We thus decompose exp X as /&i&2, where h\ G 7"°, the (eucli-
dean) connected component of the identity in T, and 

A2 G F = {expi7rXv : Xv G £ v ( r ) , aXv = Xv}. 

We then obtain T = T°F, with 

T*n F = {exp i7r\v = exp i7r(Mv - o-/xv) ; Xv 

= MV + ^V ,MV G l V ( D i . 
Given a pair (/*, X) of elements in L{T) ® C we set 

x(M,X)(expX) = ^.^R)+2(X,X I ) J e x p X G r 

Then X(M» M is a well-defined quasicharacter on T if and only if 

_ / . . i . . * \ i \ * \ 
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^(M — o-jLi) + X + o-X Ç L(T) or both M — c/x £ £ ( T ) a n d 

MM - <rM) = (x + crX)modL(r); 

X<y> Xr) = X(M, X) if and only if \x = M and 

X' = X m o d ( L ( r ) + {̂  - ^ : v Ç L(T) ® C}) 

and, moreover, every quasicharacter on T is of this form. 

(4.2) Quasicharacter s xlf, )• We return to our groups G, G* and H. 
First we transfer the congruences of Theorem 3.4.1 from I 0 C to 
Ln ® C. 

A p-d. mn : Tn —> T has been fixed; using this we transfer M* and X* to 
elements of Ln ® C and an back to the Galois action of Tn, wi thout change 
in notat ion. Note t ha t M* depends on the choice for mn\ X* may depend on 
tha t choice bu t |(X* + <xnX*), which is all t h a t mat te rs for the congru­
ences, does not. 

If we transfer in and in' to Ln ® C via mn then we obtain, respectively, 
one-half the sum of the positive roots of Tn in Mn, one-half the sum of the 
positive roots of Tn in Mn coming from M//> under certain fixed orderings. 
I t is convenient to change notat ion here. T h u s we now use in to denote 
one-half the sum of the roots in any prescribed positive system In

+ for the 
roots of Tn in Mn, and in' to denote one-half the sum of those roots in In

+ 

which come from Mn'. Wi th these conventions, we have easily t ha t 

£(/x* - <rnfJ<*) + in - in = (X* + o-wX*)mod Ln. 

Definition 4.2.1. If J = £(M*, X*) is an admissible embedding of LH in 
LG then xtlin+) *s the quasicharacter X(M* + ^ — t / , X*). 

Clearly, X(l,in
+) does not depend on which choice we make for X*. We 

transfer X(l,in
+) to Tn

G in G, whenever Tn
G exists, via \pn and wi thout 

change in notat ion. For the present, however, we work on G*, and ignore 
G. 

Example 4.3.1. Let 

G = G* =SU[\o 1 0 
\[_1 0 0. 

a real form of SLz(C) ; let B* be the group of upper tr iangular matrices in 
G*, and T* be the diagonal subgroup; we write d iag( / i , t2, h) for the 
generic element of T*. We take LG as in (3.2.1), using the identification 
o f L v ( r * ) with L ( L r ° ) induced by the pairing (t^Xj) = ôijti,j = 1 ,2 ,3 , 
between the vector spaces Gti + Ct2 + C ^ and Cxi + Cx2 + Cx3 . Let K 
be t ha t character a t tached to T* which satisfies K(X\ — x3) = 1, 
K(# 2 — Xz) = — 1 . Then on L, aH = aT*, and the second group LH of 
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(3.2.1) is a t tached to (T*, K) and sits in s tandard position with respect to 
T*. We take as H the subgroup of G* consisting of matrices of the form 
* 0 *1 
0 * 0 ; thus H = U(l, 1). We use the inclusion of H in G to define 
* 0 * I 

a framework of Car tan subgroups. Thus we pick 

T0' = To = \r{e,<p) = 
±(eie + e**) 0 \(e%* - ei9) 

\{e^ - eie) 0 ^(ei9 + e^)_ 
and 

and 
TV = Tx = T* = {a(6,t) = diag(e*'+', e~u\ eie-l);t £ R} 

m0 ' = m0 = adl 
' 1 /V2" 0 - 1 / V 2 " 

0 1 0 

. 1 / V 2 0 1/V2"_ 

mi = 1. 

Let 7 0
+ be the system of positive roots for T0 induced by (m0, B*). Then, 

if f = £x ; L H ^ LQ a s i n (3> 2 . i ) we have tha t M* = |(2X + 1)(/, + / 3 ) . 
Thus : 

(0) 
X(€X./o + ) ( ' ( * ,* ) ) =e<«*+1>'+^ 

(i) 
9*(2X+1)0 xtfx,->("(M)) = *' 

Example 4.3.2. Let G = Ç* = S£ 4 ; for T* we take the diagonal sub­
group 

{diag(/i, t2j t r \ tr1)}, 

and for B* the Borel subgroup generated by T* and the 1-parameter 
subgroups for 2tif 2t2, h ± h. We may take LG as in (3.2.2), where 
iy (T*) is identified with L(LT°) via the pairing 

(h,Xi) = (h,x2) = {h,Xi) = J, (t2,x2) = —\ 

(so tha t X! + x2 = (2h)v, xi - x2 = (2/ 2) v , 2xx = (h + / 2 ) v , 2x2 = 
(h — t2)

y). We will choose a K not a t tached to T*. Let T0 be the Car tan 
subgroup 

xr(0,<p) = 

cos (9 0 sinfl 0 
0 cos <p 0 sin <p 

- sin (9 0 cos (9 0 
0 — sin <p 0 cos (f 

and 7 \ the Car tan subgroup 

vo(a, p) = 

a 0 0 0 
0 cos <p 0 sin cp 
0 0 a - 1 0 
0 — sin <p 0 cos <p 

, a € R > :r 
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we diagonalize TQ by 

go = ad ^ 

1 0 -i 0 
0 1 0 -i 

-i 0 1 0 
0 - i 0 1 

and 1\ by 

gi = ad 

1 0 0 0 
0 1/VT 0 - i / \ / 2 
0 0 1 0 
0 - i / y f 0 l/v/2" 

Let K be that character attached to TQ, for which the transfer by go to the 
coroots of T* and thence to the roots of L P , satisfies K(XI + #2) = 1, 
K{%\ — x2) = — 1. Then as LH we take the group of (3.2.2) ; this group is 
in standard position with respect to 1\. We realize H not as a subgroup 
of G*y but as a group satisfying (2.1.2). Thus H will be the subgroup 

a 0 b 0 
0 / 0 0 
c 0 d 0 
0 0 0 r 1 

: a<i — he = 1 1 
of C7L4(C), with a-// acting by a -^ 
framework enclosing T\ we take 

a, b —+ b, c —> c, d —> d, t —+ t~l. For our 

To' = 

cos 0 0 sin 0 
0 e* 0 

— sin 0 0 cos 6 

0 
0 
0 

0 0 0 

T0 as above 

Wo' = ad 

7Y = 

1/V2" 0 -i/<y/2 0 
0 1 

2 0 
0 

a 0 
0 e* 
0 0 
0 0 

0 
0 

0 0 
l / \ /2~ 0 

0 1 

, w0 = go, 

! . . Ç R / , 2\ as above, 

m / = 1, mi = gi. Let 70
+ be the system of positive roots for 1\ induced 

by (go,B*), and 7i+ the system of imaginary roots of 7\ induced by 
(gu B*)~Then if £ = £x : L # ^ ^ as in (3.2.2) we obtain^* = 2A/2 and 
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| / i as a choice for X*. Hence: 

X<îio + )(r(0,<p)) = *«'+<2X+D*) 

(4.4) Assumptions in [10]. In [10] we have used in — in
f for the nor­

malization of /c„-orbital integrals in the sense of the introduction, assuming 
that 

(4.4.1) in - tn
f G In 

and, on transferring to L, 

(4.4.2) (in — Ln
f) — (LP — Lp

f) is an integral combination of roots. 

In general, (4.4.1) may fail, as in the groups of (4.3.1), or if (4.4.1) is true 
then (4.4.2) may fail, as in (4.3.2). These examples show more, namely 
that Ln — tn n^ed not define, by restriction, a character on Tn, or if it does 
then that character need not have the desired properties for orbital 
integrals (cf. [10], Proposition 9.4, or direct calculation). However it is 
easily seen that in each example we can use x$,in

+) m place of in — in
f. We 

proceed nowr to prove this in general. 

(4.5) dn — t>n)-type. By definition (cf. [10]),O0(Ç*, Tn) is the subgroup 
of 9,(G*, Tn) consisting of those elements which commute with <rn, that is, 
which are realized in 2t(jTn). If w <E ^o(Ç*, Tn) and œ comes from H 
(cf. (2.4)) then œ is the image of an element of &o(H, Tn'). Thus 
udn ~ <>n) ~ dn ~~ *w') is an integral combination of roots of Tn and 
hence an element of Ln. 

Definition 4.5.1. A quasicharacter x on Tn is of dn ~~ Ln)-^yPe if 

X(7W"1) = (o(i» - in') - dn - 0 ) ( 7 ) X ( 7 ) , 7 € Tn, 

for each co £ 120(Ç*, Tn) coming from H. 

Section 5 will be devoted to the proof of: 

THEOREM 4.5.2. xtlin-n is of dn - tn')-type-

5. Proof of theorem 4.5.2. In this section we abbreviate X(l!/n+)> 
writing just x(w\ n = 0, . . . , N. By définition, x{n) is of dn ~~ t/)-type if 
and only if 

x(co(jLi* + in- In), WX*) = X ( ( « ( l * - hi') - dn ~ I»')) 

+ /X* + in - In', X*) 

for each w £ &Q(G*, Tn) coming from H. Consider first the restriction of 
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X(n) to the connected component of the identi ty in Tn. If 7 = exp X, 

I t t„, then 

Since (/x*, aw) — 0 for each a v from H we have immediately: 

PROPOSITION 5.0.1. If Tn is connected then x{n) is of (i„ — in
f)-type. 

T h u s we have: 

Example 5.0.2 (cf. (4.3.1)). If G = SU(p,g_) then each x
(w) is of 

(i„ - iw ')-type. 

In general, it remains to show tha t 

(5.0.3) o>X* = X* mod(L n + [v - anv : v G Ln ® C}) . 

(5.1) 5omg reductions. 

R E D U C T I O N 5.1.1. / / is sufficient to prove (5.0.3) for the case n = TV. 

Proof: From [10, § 7] we recall t ha t there is a d iagram: 

1 y n(MM, T J • Q 0 ( G * , T J y mn • 1 

1-
ll 

- * G ( M W ' , 7 Y ) -

V V 
->1 

where 2Bn
(/) denotes the restricted Weyl group relative to Sn

{,) (the 
maximal 2^-split torus in Tn

{,))- If w comes from i](MM ', I V ) then clearly 
(5.0.3) is satisfied. I t follows then that , in general, the coset of coX* — X* in 

Ln ® C/Ln + {v — anv : v G Lw ® C} 

depends only on the image w of 00 in 2BW. 
Suppose tha t co comes from a/ G ^o(22, J Y ) whose image in 2Bn

/ is w'. 
There exists cô^' G SB A/ whose restriction to Sn

f is d/, by the definition of 
32V. Set 03^ equal to the image of œN

f in %$N and choose colV in Œ0(G*, J V ) 
coming from II and with image œN in SB AT. Let Xw* = ^(X* + <rn\*). We 
transfer everything to L 0 C (via ran, ran', m^, mN') wi thout change in 
notat ion. From definitions, it follows tha t 

co\„. \„* mod{y G L 

and 

Since 

^AAV* ~ XJV* mod {̂  — <jnv : v (z I 

&N^N ~ X.v C O A T X * X* mod{y — aNv : v (z I 
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and [v — <JNV\ C [v — (Tnv}, we have 

coX* - X* = coN\* - X* mod{^ - <rnv : v £ L ® C] 

and the reduction follows. 

LEMMA 5.1.2. (5.0.3) holds provided that 

(5.1.3) (X*, ay)a £ L + {v - aHv : ̂ L 0 C ) 

for a// simple roots ay of LH° fixed by aH. 

COROLLARY 5.1.4. If 

(5.1.5) (X*, a v ) Ç Z for all simple roots av of LH° fixed by <JH 

then (5.0.3) holds. 

We will prove Theorem 4.5.2 by verifying (5.1.5) where possible, and 
by going directly to (5.1.3) for the few exceptions. 

Proof of Lemma 5.1.2. Dual to the simple system of roots for (LH°, LT°) 
as prescribed by LBH°, we have a simple system for (H, TH = JV)> 
prescribing BH; we use this lat ter system to define a simple system for the 
restricted roots of TV. The group $&N' is generated by simple reflections, 
which we classify as being of type A, B, or C as in [10, § 7]. Suppose tha t 
co Ç Œo(Ç*, TN) comes from co' G &o(H, TV) which has image œ in SB A/. 

If Co' is of type A then there is a real root a of TN(aNa — a) coming 
from a simple root of H, such tha t œa has the same image in $$N as co. 
Thus (5.0.3) is satisfied by co if (5.1.3) is true. 

If w' is of type ^ then there is a root o: of TN coming from a simple root 
of H, satisfying (a, aNav) = 0, and such tha t coaov « has the same image 
in SBAT as co. Clearly, 

cOaCô aX* — X* = — (X* + aN\*, av)a mod(LN + {v — crNv}). 

Also, by (3.3.1) and (3.4.1), we have 

(X* + aN\*, a v ) = <t^f a v ) m o d Z. 

Thus (5.0.3) for co follows from: 

PROPOSITION 5.1.6. If a is a root of TN such that (a, aNaw) = 0 then 
(cN, av) £ Z. 

Proof. We may assume G* absolutely simple (cf. proof of (5.1.7)). 
Fur ther , we may exclude type G2 since direct computat ion shows that , in 
tha t case, LN = 0; t ha t is, TN = T*, for all H. 

We assume tha t (tN, aw) = | mod Z and obtain a contradiction. First 
note t ha t MN is of type Ax X . . . X Ax. Indeed, L(MN')° = LT°; t ha t is, 
there are no roots of LMN° annihilated by K. Hence if « v , (3V are roots 
of LMN° then aw ± /3V are not roots, for K ( « V ) = /c(/3v) = - 1 and 
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K(av ± 0V) = 1. Therefore LMN° is of type Ax X Ax X . . . X A^ <TG 

must act trivially and MN be of type Ax X . . . X Ax over R. 

Let co = o)ao)<rNa, an element of Œ(G*, JV) . Clearly co commutes with o^, 
and so permutes the roots of MN. T h u s 

iN — ULN = (iN} av)(o: — cr^a) 

is an integral linear combination of roots of MN. We claim tha t 1/2(a — 
o-tfûO is also an integral linear combination of such roots. T o verify this it is 
enough to show tha t a — aNa itself is such a combination. Bu t since 
(iN, a v ) = 1/2 mod Z we have (0, aw) = 1 for some root 0 of MN. Then , 
writh co as above, we obtain 

a — aNa = 0 — co0; 

co0 is also a root of MN} and so the claim is proved. 

Let ft = 1/2 (a - aNa) and 02 = 1/2 (a + cr.va). Then 02 ^ 0 and the 
length of a is greater than t h a t of 0i. On the other hand, MN is of type 
A\ X . . . X Ai. Hence 0i mus t be a root of Af^. Then 02 is a root of G* 
and 0i, 02 generate a root system of type C2. T h u s 0 i v = a v — aNav. This 
implies t ha t KN(/3IW) = 1, a contradiction since 0i is a root of MN. Hence 
Proposition 5.1.6 is proved. 

W e re turn to the proof of Lemma 5.1.2. If co' is of type C then there is a 
root a of TN, coming from a simple root of TN', such t ha t a + cr^a is a 
root and co has the same image in 28^ as coa+crAra. Ei ther (a, aNay) = 0 or 
(a, (TNav ) < 0, since a is simple. If (a, 0-^0:v ) = 0 then o>a+(TNa has the same 
image in 28^ as Q)au<rNa- T h u s 

coX* — X* = (coaCo^aX* — X*)mod(L iV + {̂  — o ^ } ) 

= (X* + O-ATX*, aw)a mod(ZAT + {v — aNv}) 

= (IAT, av)a: m o d ( Z ^ + {̂  ~ O"A^}) 

= 0 mod(LN + {*> — (TNv}) 

by (3.3.1), (3.4.1) and (5.1.6) ; (5.0.3) now follows. On the other hand, if 
(aj (TNaw) < 0 then (a + aNa)v = av + aNav since a and 0-^^ have the 
same length. Then 

coX* - X* = (coa+<rAr«X* - X*)mod(LAr + {̂  - o^p}) 

= (X* + aN\*, a v ) (a + o-iVa)mod(LAr + {̂  ~ o";W>}) 

= 2(LN, av)a m o d ( L ^ + {v — <TNV)) 

= 0 m o d ( L i V + [v - <rNv}), 

by (3.3.1) and (3.4.1). Again (5.0.3) follows. This completes the proof of 
Lemma 5.1.2. 

By a simple factor of G* we will mean an R-simple factor of the simply-
connected covering group of the derived group of G*. 
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REDUCTION 5.1.7. (i) To prove (5.1.5) for G* it is sufficient to prove it for 
each simple factor of G*. 

(ii) To prove (5.1.3) for G* it is sufficient to prove it for each simple factor 
of G*, but with L replaced by the span of the roots in that factor. 

We denote this stronger version of (5.1.3) by (5.1.8). 

Proof. We may regard # a s H(T, K) for any (T, K) among {(Tn, Kn) : n = 
0, . . . , N}. Let G1" be a simple factor of G* (in the sense above), T1" be the 
preimage of T* in G\ and Tj the preimage of Tn. Then Lw (T1*) is naturally 
identified as a submodule of Lv and Lw (Tj) as a submodule of Ln

v. 
We may thus identify Kn as a quasicharacter attached to Tn . If 
H* = H^(Tn , Kn) then the Lie algebra of L(H1')0 is a summand of the Lie 
algebra of LH°, assuming all choices are in correct position. 

We extend the natural map L —•> £(7^) to a C-linear map L ® C —* 
LCT1") 0 C. Recall that £ : LH^LG is~f (M*, X*). Let Ox*)1" be the image 
of M* in L(p) ® C and (X*)1* be the image of X*. Then ((M*)f, (X*)1") are 
parameters for the embedding £ of L(H^) in L(G t) obtained by mapping 
L(H1[)0 to itself by the identity and 1 X w to the image of £(1 X w) under 
the natural map LG -> L(Gf) (cf. [3, § 2.5]), w e W. If av is a root of both 
LH° and L(G t)° then <(X*)f,av) - <X*,av). Thus (i) follows; (ii) also 
follows easily. 

Note. For a simple factor of G which is not absolutely simple, (5.1.5) 
and (5.1.8) are vacuously true. Thus to prove (5.0.3), and hence 
Theorem 4.5.2, we need consider only absolutely simple factors. In (5.2) 
by ' 'simple group" we will mean an absolutely simple group. 

(5.2) Computations in LG. We start with the case that the "most split" 
Cartan subgroup T* of G* is also a Cartan subgroup of H; that is, the case 
that TN = T*. 

LEMMA 5.2.1. If G* is split modulo its center and H contains T* then 
(X*, exv> G Zfor all roots av of LH°. 

Proof. By assumption, aH = aG on LT°; also aG acts trivially on the 
root vectors for LG°, and aH trivially on the root vectors for LH°. Recall 
that £(1 X cr) = t X (1 X o"), where, since LMN° = LT°, we have 

te LT° and Xv(/) = ^<x*.xv>? Xv £ Lv . 

Thus if Fa- is a simple root vector for LH° then the fact that £(1 X <r) acts 
on LH° as cr̂  implies that 

tX (IX <x)Fav = e27r*<x*-v>FaV = Fav, 

and the lemma follows. 

Example 5.2.2. Theorem 4.5.2 is now proved for G* of type G2, as 
TV = r*, for all i7, in that case. 
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L E M M A 5.2.3. If G* is a simple nonsplit group of type other than A 2n and H 
contains T* then (X*, a v ) G Z for all simple roots aw of LH° fixed by aH. 

Proof. In order to imitate the proof of Lemma 5.2.1 we show t h a t 
aGYav= F«v for each simple r o o t a y of LH° satisfying aHav = aw ( = aGaw). 

From Lemma 3 of [8] we obtain t ha t 

<jGYa, = ( - D ' F a v , 

where / is the number of LG°-simple roots fiy for which (3y 7e aG/3V and 
(/3, aG/3v) 9^ 0, counted according to multiplicity in the LG°-simple 
expansion of av. We claim tha t because we have excluded type A2n we 
have / = 0. This is checked by inspection of the possibilities (cf. [5]). 

The lemma thus follows. 

Example 5.2.4. If G* is a simple nonsplit group of type A2n and H 
contains T* then (5.1.5) may fail (cf. Example 3.2.1); however (5.1.8) is 
true. This is a simple computa t ion: if ay is any root of LG° for which 
aGav = av and c G F a - = — Fav then a is of the form ft + aGf3 = f3 + aH/3, (3 
a root, so tha t 

\a = /3 mod({^ — aHv : v G L (g) C}) , 

and (5.1.8) holds. 

LEMMA 5.2.5. Suppose that G* is simple, not of type Bn, Cn, I\ or A2n-
nonsplit, and that H does not contain T*. Then (X*, ay) G Z for all simple 
roots ay of LH° fixed by aH. 

In case of type I\, we can show tha t , in fact, TN = T* for all H, by 
observing how TN is obtained from T* (cf. (5.1.6) and (6.1.3)) and 
examining the possibilities. 

Proof. We write £(1 X a) as m X (1 X a) with m G LMN
{\ and m as 

titni, with ti in the connected center of LMN° and Wi in hJ?0 = (LifAr0)der-
Let a v be a simple root of LH° fixed by a-//. Then aGav = a v also. In the 
proof of Lemma 5.2.3 we showed tha t aGYa^ = F a - . Hence 

m X (1 X a)F a v = txmxY^. 

We have only to show tha t m\Ya^ = Fav for then 

/F a V = e2^'<x*'«v>Fav = Fav, 

since a v extends to a rational character on LMN°, and (X*, av) G Z. 
First, because a v extends to ^-M^0, we have tha t m\Ya^ = m2Ya^ for 

any m2 G ^ ^ ° such tha t m2 X (1 X c) normalizes L T° and maps each 
root of hJé® to its negative. We have seen t ha t ^ # ° is of type i i X . . . X 
^ i a n d t ha t aG acts trivially on hJf° (cf. (5.1.6)). T h u s if a i v , . . . , ad

v are 
the positive roots of ^ # ° we may replace mi by any element of L^° 
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realizing coaivo;a2- . . . wad
v- By excluding types Bn, Cn, F±we have ensured 

tha t aw ± a?:
v are not roots, i = 1, . . . , d. Therefore, by using the element 

e x p ( Z è ^ ( X a î v + X _ a î v ) j , 

we see tha t m\Ya^ = Ya^, and the lemma is proved. 

LEMMA 5.2.6. If G* is simple, of type Bn, Cn, F± or Ain-nonsplit and H 
does not contain T* then (5.1.8) is satisfied. 

Proof. Consider type y42«-nonsplit first. Suppose tha t GHay = ay. Then 
aGay = aw. Suppose tha t aGYa^ = — Fav. Then we have 

%a = f3 mod({v — aGv : v d L ® C\), 

for some root (3 (cf. (5.2.4)). Since {v — aGv\ C [v — aHv} we obtain 
(5.1.8). If aGYa^ = Ya^ then we can argue as in the proof of Lemma 5.2.5 
to obtain <\*,av> G Z. 

If G* is of type Bn, Cn or FA then (X*, ay ) Ç Z unless we have the follow­
ing: there is a root a^ such tha t aNay = aHa^ = — at

y, (ai} av) = 0 and 
a? + ay is a root. Then ^(a2- + a) is a root of JV, with coroot a? + ay, 
and èa = |(a: + « 0 "" e«* s o tha t (5.1.8) is true. 

This completes the proof of Theorem 4.5.2. 

6. Quasicharacters continued, correction characters. 

(6.1) Compatibility. We come to formulating and proving the com­
patibil i ty of the quasicharacters x{n) = X(1,/n+)- This is the key to our 
main result, Theorem 8.0.1. First we recall some definitions and simple 
results about Cayley transforms (cf. [9], [10]). 

Suppose tha t T is a Car tan subgroup of G* and a an imaginary root of 
T. Then by a Cayley transform with respect to a we mean a map 5 : T —> 
G*, obtained by restriction to T of an inner automorphism of G* and with 
the proper ty tha t a(s~1)s = co«, the Weyl reflection with respect to a. 
Because G* is quasi-split there exists a Cayley transform with respect to 
each imaginary root a of T (cf. [10]). T h e image Ts of T under s is defined 
over R and sa is a real root of Ts; iî s is another Cayley transform with 
respect to a then 5 is of the form ad w o s, w 6 21(7^) ([9]). Note also 
tha t if 7 Ç T, a(y) = 1 then s(y) = ys belongs to Ts. 

Suppose tha t a is an imaginary root of one of our fixed Car tan sub­
groups Tn

f of H. If s' is a Cayley transform with respect to a and with 
image Tv' then 

s' 
i n i n é V t P 

is easily shown to be a Cayley transform with respect to the image a of a 
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in the roots of G* (cf. (2.4)). We call 5 a Cay ley transform from H\ with 
respect to any imaginary root from H there is a Cayley transform from H. 

Continuing with the same a , s', a, s, if In
+ is a positive system for the 

imaginary roots of Tn then (In
+)s = {fi '- s~lfi G In

+) is a positive system 
for the imaginary roots of Tp. W e say tha t In

+ is adapted to a if (a, /3V ) > 0 
implies t ha t /3 £ In

+; (in — &n'>av) (cf. (4.2)) is independent of the choice 
of In

+ adapted to a. 
T h e quasicharacters X(l,in

+) a r e ' ' compat ib le" in the following sense: 

T H E O R E M 6.1.1. Suppose that s : Tn —> r p is a Cayley transform from H, 
with respect to the root a from H. Then if In

+ is adapted to a and y d T 
satisfies a(y) = 1 we have 

Proof. Wri te /3 for the real root sa of Tp. T o compute X ( P ) ( T S ) we 

decompose 7 s as in (4.1). Let 

ys = exp X = exp X R exp XY, 

where <7PIR = XR and ^ = *TTXV, XV Ç L / and <rpX
v = Xv. Then 

/3(7S) = 1 implies t ha t (/3, J R ) = 0 and ((3, XY) Ç 2iri Z. I t is therefore 
enough to consider those 7 for which: 

(i) 7 s e Tp°; t h a t is, 7 s = exp X, apX = X, 

(ii) 7 s = exp i7rXv, XV e Lp
w, ap\

w = Xv, </3, Xv) - 0, 

or 

(iii) 7 s = exp iirfiy. 

Suppose (i). Then <jn(s~lX) = s^X (recall t ha t ((3, X) = 0) so t ha t 
s~lX = ( 5 ~ 1 Z ) R ) . Then 

X(n)(y) = g<M*+m-tn'.s-1^) a n d % ( p ) ( 7 ) = e^*+lp~'p' ,XK 

We claim tha t s~V* = M*- Recall t ha t we use /x* to denote the transfer of 
ix* Ç L ® C to Ln ® C by wn , as well as its transfer to Lp ® C by mp. 
T h u s our claim follows from the fact t ha t 5 "comes from H". Also, 
(i-n — t>n) ~ S~1(LP — LP) is a half-integer multiple of a and so we obtain 
the assertion of the theorem. 

Suppose (ii). Then 

7 = expiiirs-1^) and <Tn(s~l\y) = s " ^ . 

T h u s 

X{n)(y) = g27ri(X*>s-1XV) a n c J % ( P ) ( 7
S ) = g27ri<\*)S-lXV^ 

Once again, X* in the first equat ion denotes the transfer of X* £ L ® G to 
£ n 0 C by wB and X* in the second equation denotes the transfer to 
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Lp ® C by mp. Let s = mv o s o mn~
l. Then to prove the theorem for 

case (ii) it will be enough to show tha t 

(s\*, M
v ) = (X*, M

v ) m o d Z 

for all /xv G £ v satisfying o-w/xv = JUV. 

PROPOSITION 6.1.2. 77&£re 6%w^ h in the normalizer of TN' in H such that 
the action of ad h on Sn' {the maximal K-split torus in TN

f), when trans­
ferred to Sn, coincides with s\ that is, s acts on Sn as an element in the image 
of 2B„' in 2B„. 

Proof. We can choose a Cay ley transform V in Mn' with respect to the 
root a' from which a originates, such tha t s' — ad h' o s0

f for some h' £ H, 
where sf is the Cayley transform in H from which 5 originates. Then, on 
Sn\ sf acts as ad h''. If T' is the image of Tn' under s0' then ad hf maps MT> 
to Mp'. We can modify h! by an element of Mv' to obtain h as desired. 

Suppose now (iii). Since an(i7rav) = iwav we have to prove: 

LEMMA 6.1.3. If a comes from H, <jna = —a, s is a Cayley transform 
from H and with respect to a, and In

+ is adapted to a, then 

(6.1.4) i(cn - tn', a v ) = (X*, ^ v ) mod Z. 

Proof. First we remark tha t we may assume tha t Sv' D Sn
r. Then 

Mn Z) Mv. Since Mn' is a (Tn, /cn~)-group for Mn we may now replace G* 
by Afre. T h u s it is enough to work under the hypothesis t ha t Tn is compact 
modulo the center of G*. We may also assume G* absolutely simple and 
simply-connected (cf. (5.1.7)). 

Unless LG° is of type B t(l ^ 1) and av a short root, there is s root a0
v of 

LG° such tha t (a, a 0
v ) = 1 (cf. [4]). Thus , except in tha t case, on Ln

v we 
have 

aw = a0
v — coa-(aoV) 

and on Lp
v, 

pv = sav = ( 5 a o v) +ap(5aoV)m 

T h u s exp iwl3v lies in Tp° and (6.1.4) follows from what we have already 
proved. 

Suppose now tha t LG° is of type B t(l ^ 1); (6.1.4) certainly holds for 
SL2, so t ha t we may assume tha t / ^ 2. We list the roots of (G*, T*) as 
{±e< db ^-, =b2e<; 1 g i , j ^ /} and the roots of (LG°, LT°) as {±et ± ^-, 
±e<; 1 ^ ^,7 ^ /} , with ( , ) given by (eu ej) = ôî;-, 1 ^ i,j^ l (cf. [4]). 
We transfer roots of (G*, T*) to roots of (G*, J» ) and roots of (LG°, ^ r 0 ) 
to coroots of (G*, Tw) via mn, wi thout change in notation. 

T o verify (6.1.4) we essentially describe the possibilities for LH°. 
Suppose first tha t TN = T*. Then Lemma 5.2.1 implies t ha t (X*, sav) is 
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an integer. Thus we have to show that (in — i,/, a v ) is an even integer. 
Suppose that av is long, say aw = et — e$. Then Kn{ei — ej) = 1, so that 
Kn(et) = Kn(ej). Consider the set Ra of roots of (G*, Tn) not from H, not 
perpendicular to a, and positive with respect to a system adapted to a. 
The short roots in Ra are of the form et ± efc, — e^ d= e*, where ft ^ i,j; 
note that for given k either all roots et dz ek, —erj ± <?£ belong to i?a or 
none does. The subset of long roots in Ra is either {2eu —2ej} or the 
empty set. Clearly then 

PeRa 

is even. Suppose now that ay is short, say aw = et. Then Ra, as defined 
above, contains only short roots; these roots are of the form e{ ± ek, 
k -^ i, and et + ek Ç Ra if and only if ef — ̂  £ i?«. Also ê  ± efc € î « if 
and only if fcw(̂ -) = — 1, since Kn(ei) = 1. Thus we have to show that, 
under our assumption that TN = T*, there are an even number of roots 
not from H among 2e1} . . . , 2et. Relabel these roots so that 2e1, . . . , 2er 

are not from H and 2er+i, . . . , 2eL are from H; that is, Kn(e\) = . . . = 
Kn(er) = — 1 and Kn(er+i) = . . . = Kn(ei) = 1. Suppose that r is odd. 
Clearly e\ =b e2, ez ± e4, <?r-2 dz £7—1 are from # . Since Tn is compact and 
TJV = T* is split we have that the automorphism e^ —> —ejt 1 ^ 7 ^ /, 
belongs to 12(G*} Tn) and is from H. On the other hand, 

W = C0 e i _g 2 O;g 1 + e 2 . . . C O e r _ 2 _ e r _ 1 C O g r _ 2 + g r _ 1 O J 2 e r + i • • • ^ 2 e n 

maps gj- to —ej for 7 5̂  r and fixes er. We conclude that œ2er is from i7. 
Then 

K»(u«2r) = ^n(^2r) = 1 

since e2r, being long, is noncompact (cf. [10, Propositions 2.1, 7.4]). This is 
a contradiction. Hence r is even and (6.1.4) is proved in the case that 
TN = T*. 

Suppose that TN ^ T*. We claim that TN has exactly one positive 
imaginary root and this root is long; that is, that (LMN°, LT°) has exactly 
one positive root and that this root is short. Indeed, the roots of 
(LMN°, LT°) form a subsystem of the roots of (LG°, LT°), of type 
^ 4 i X - 4 i X . . . X ^ 4 i (cf. proof of Proposition 5.1.6). Clearly such a 
subsystem contains at most one of the roots ei, . . . , ex. We have then only 
to show that no long root is a root of (LMN°, LT°). Suppose that et + e5 is 
a root of (LMN°}

 LT°). Then, after transfer to coroot of (G*, 7^), we have 

<TN(ei + ej) = — (et + e3) and KN(et + ej) = — 1. 

On the other hand, it is easily seen that aN(e{ — ej) = e{ — ej. Hence 
^N^i = ~^j, so that 

et + ej = et — aNet. 
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This implies t ha t KN(et + e^) = 1, a contradiction. Similarly we obtain a 
contradiction if we assume tha t et — e ; is a root of (LMN°, LT°). Hence 
(LMN°, LT°) has exactly one positive root and this root is short, as 
claimed. 

T o verify (6.1.4), we proceed as for the case TN = T*. If av is long then 
the proof of Lemma 5.2.6 shows tha t (X*, sav) is an integer. T h a t 
(tn — in', a v ) is an even integer follows from arguments already given. 
If a v is short then on transfer to LT° we have tha t aH(saw) = say and tha t 
(sav) db /3V are roots, where 0V is the positive root of (LMN°, LT°). The 
proof of Lemma 5.2.6 then shows tha t (X*, sa) = 1/2 mod Z. Thus we 
have to show tha t {in — in

f, aw) is an odd integer. Arguing as for the case 
TN = T*, we find it sufficient to show tha t there are an odd number of the 
roots 2ei, . . . , 2ex of (G*, Tn) not from H. Suppose tha t there are an even 
number not from H. Then our earlier argument shows tha t the au to­
morphism ei—*—ei,l^i^l, belongs to ti(LH°, LT°), and hence tha t 
TN — T*. This completes the proof of Lemma 6.1.3. 

(6.2) Correction Characters. 

Definition 6.2.1. A set of correction characters for H is the set of quasi-
characters X(M* + in ~~ Ln'» ^*) a t tached, in the manner of (4.2), to a pair 
(/**, X*), ^ a ® C , \ * a ® C/L + {v - <JHV : v G L ® C} satisfy­
ing 

(i) M* - < w * G L, (M*, a v ) = 0 if a v is a root of LH\ 

( i i ) K / Z * - (TnJLl*) + In - tn' = (X* + <TnX*) m o d L , 

» = 0, . . . , N, X* G A*, 

(iii) wX* = X* mod(L + {v — <JHV : i; G L ® C}), 

X* G A*, w G ft0(G*, JV) and from H, 

(iv) <X*,**V> = i ( t w - t ; , a v ) m o d Z 

for each imaginary root a of Tn from i7, 7W
+ adapted to a, and X* G À*. 

Here i„, t / are as in (4.2) ; Ln, Ln
f, X* move between L ® C and Lw <g> C 

(via mw) without change in notation. Clearly correction characters are of 
(^ — O - t y p e and compatible in the sense of Theorem 6.1.1. 

A set of correction characters allows us to transfer orbital integrals 
from G* to H, in the sense of the introduction to this paper; t ha t is, if in 
§§8-10 of [10] we replace G by G*, "Schwartz function" by a slightly more 
general notion, and in — in

f by X(M* + in ~ t / , X*), omit t ing the assump­
tions on Ln — Ln', then Theorem 10.2 of [10] remains true. Note t ha t 
" ( t n — tn')-type" is used in Theorem 8.3 and "compat ibi l i ty" in Proposi­
tion 9.4 of t ha t paper. This will be discussed further elsewhere. 

We indicate briefly why correction characters are the only replacements 

for in — in . Thus , suppose tha t {x(Mn + ^ — i>n', ^n)} may replace 
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{ i n — t>n] m Theorem 10.2 of [10]. Then it is easily checked that these 
quasicharacters must be of (in — iw')-type and compatible. Transfer /xn, \n 

to L via mn, n — 0, . . . , N. We claim that for some n, {nn, a
v ) = 0 for all 

roots aw of LH°. Indeed, by " {in — i ;/)-type", we know that for each n, 
œnn — \xn for all œ G &(H, T*) commuting with an. To prove the claim we 
may assume H simple. Then unless H is of type D2i or is obtained by 
restriction of scalars from C, there is some n such that every element of 
iï(H, T*) commutes with on (by inspection), and the claim is proved. For 
the remaining groups a simple computation on the fundamental Cartan 
subgroup gives the result; we omit the details. We argue now that 

\iv = \xn for all p = 0, 1, . . . , N and 

\p = \N mod(L + {v — (jvv : v G L ® Cj), 

by compatibility (cf. (6.1)). Thus writing ^ for fxN, X1" for XN we have that 
{xivn + iw -• i-n , ^n)} is just the set of correction characters {xif^ + 
In — *>n, ^ ) } -

We have considered correction characters for G*, rather than for G, the 
group with which we started and whose orbital integrals we wish to 
transfer to H. To move to G we use the embeddings \j/n : Tn

G —> Tn, 
prescribed for those Tn

G originating in H, to define the relevant notions 
("element of Œ0(Ç, TnG) from H", "Cayley transform from £T", etc. 
(cf. [10])). We then conclude that Theorem 10.2 of [10] remains true for G 
when we omit the assumptions on in — in' and replace in — in' by a 
correction character X(M* + ^ ~ Ln , X*), especially xa,in

+) transferred to 
T G 
1 n ' 

7. «^-equivalence. We recall the set 3>(G) of [7]. A homomorphism 
(p : W —» LG is admissible if <p(w) is of the form (po(w) X w, w (~ W, where 
<Po(w) is a semisimple element of LG°, and the image of <p is contained only 
in parabolic subgroups of LG which are relevant to G ([3]). We will 
consider G* in place of G; all parabolic subgroups of LG are relevant to G*. 
Two homomorphisms (p, cp' are equivalent if there is g G ^G0 such that 
ip' = Sid g o (p. The set <£>(G) consists of the equivalence classes of ad­
missible homomorphisms of (p : W —> LG. 

Clearly an admissible embedding £ : LH ^ LG induces a mapping 
£* : $(H) -> $(G*). 

Definition 7.0.1. Two admissible embeddings £, £' : LH—> LG are 3>-
equivalent if and only if £* = (£')*• 

We denote this equivalence by J. 

THEOREM 7.0.2. £* £' if and only if 

*(*./»+) = xâ'.in+)foralln, In . 
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Proof. Let { = f (M*. X*), $' = | '((M*)' , (X*)')- Then 

X$,„+> = x$,,„+>forall«,/„+ 

if and only if 

(7.0.3) (M*)' = M* and 
(X*)' = X* mod(L + [v - <JHV : v £ L ® C}). 

As in the proof of Theorem 3.4.1, we will find the L-groups of Cartan 
subgroups useful, although we could easily argue with congruences alone. 

For each n = 0, . . . , N fix an allowed embedding 

Tn = Tn(lXn,\n): L (TV) ^> L (M/) 

as in (1.3). Recall that we have identified L(Mn') as a subgroup of L i î . 
Thus rre induces a map 

*(7V) - ^ *(#). 

A class in the image has a representative <p : W —> LH satisfying 

(7.0.4) ^o(Cx) C LT« 

and 

(7.0.5) <p(l X <r) normalizes LT° and acts on LT° as <rn. 

Conversely, any class with such a representative factors through rn*. 

This is easily seen as follows. Given such a <p, write <p as <p(MJ', f, 77) where 

(7.0.6) Xv(<po(s)) = z<f̂ v>2<'nf.xv> z e CXy xv G LV> 

(7.0.7) Xv(^o(l X a)) = e27r^v> for all rational characters Xv on LT° 
which extend to L(Mn

/)°. 

Then, because <p defines an allowed embedding of L(Tn') in L(Mn
f) 

(see (1.3)) we have f — o-nf 6 L and 

(7.0.8) J(f - crnr) + V = (1? + <rnrj) mod L, 

where V denotes half the sum of the roots of TH in Mn
r P\ I2#. Thus the 

class of <p in $(-ff) is the image of the class of <p(Tn'', f — JUW, 17 — Xn) in 
$ (TV). We remark that $ (TV) consists exactly of the classes of <p (TV, f, 77) 
(defined by (7.0.6) and (7.0.7) with Tn' replacing Mn'), where f - anÇ g L 
and 

è(f - o-nf) = (*7 + o-w77)mod i . 

PROPOSITION 7.0.9. 

* ( # ) = U rn(*(Tn')). 
71=0 
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Proof. In [7] it is shown tha t every class in $(H) has a representat ive <p 
such t ha t <£o(Cx) C LT° and <p(l X a) normalizes LT°. Because H is 
quasi-split, a little further a rgument using [13, Theorem 1.7], shows t ha t 
<p(l X o") acts as o>, where T is some maximal torus over R in H and o> 
denotes the Galois action of T transferred to L via some p-d. Replacing (p 
by an equivalent homomorphism if necessary, we can assume tha t 
<p(l X (T) acts as an, as well as t ha t <^0(CX) is contained in LT°. This 
proves the proposition. 

We move now to $(G*) . T h e image of $(H) under £*, or (£')*> consists 
of all those classes in <ï>(G*) with a representat ive <p satisfying (7.0.4) and 
(7.0.5), for some n. T o check this, we write such a homomorphism ç as 
<p(Mn, f, i?) where f, 77 are defined as in (7.0.6) and (7.0.7) (with L(Mn')° 
replaced by LMn°). In place of (7.0.8) we now have 

(7.0.10) è(f - trnf) + in = (77 + ^ ) mod Z, 

where in is half the sum of the roots of T* in Mn C\ B*, and the class of 
<p(Mn, f, 77) is the image under J* of the class of ip(Mn', f — /x*> ïï ~" X*). 

I t follows tha t if (7.0.3) holds then £ ~ £' for, clearly, (p(Mn, f, 77) is 
equivalent to <p(Mn, f

r, 77') if 

f = f and 77 = 77' mod(Z + {v — anv : ^ £ Z ® C} ). 

Conversely, suppose tha t £(jii*, X*) ~ £ ' ( ( M * ) ' , ( X * ) ' ) - Then from 

$ ( 7 7 ) — - > QÇH) * ' ^ ; > $(G*) 

we obtain t h a t 

*> .= *>(Mni | + /*» + M*, 2 + x* + x*) 

is equivalent to 

<p' = <p(Mn,£ + nn + (M*) r ,2 + X„ + (X*)') 

for all j " , 77 G £ ® C satisfying 

f - (7nf G Z, H f - o-wf) = (5 + 0-n7?)mod Z. 

For convenience, we may take \xn = in
;, \n — 0. Because j " — o-nf, 

M* — ann*, (/x*)' — o"n(M*)' all belong to Z we may choose j " so t ha t 

<f + fin + M*, <*v> > 0 and <| + M, + (/**)', <*v> > 0 

for all roots a v of LiZw° Pi L £ ° (cf. [7]). Then , if necessary, adding a 
^ - i n v a r i a n t element of Z ® C to the chosen j " , we may assume tha t 

<f + M» + M * , a v > > 0 and <f + Mn+ ( M * ) > V > > 0 

for all roots of L 5 ° . This implies, in part icular , t ha t <^o(Cx) contains a 
(LG°— ) regular element. Hence <pf mus t be of the form ad g o <p, where 
ad g normalizes LT°. By definition, the action of ad g on LT° commutes 
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with an. Hence 

f + (M*) '+ tn = « a + M* + M») 

and 
r, + (X*)' = w(r7 + X*)mod(L + {v - anv : v G L ® C}), 

for some co Ç 12(LG°, LT°) commuting with <rn. Note tha t for the con­
gruence an argument as in Proposition 3.3.2 is needed (cf. [7]). Our choice 
of f forces œ to be trivial and hence (7.0.3) is proved. 

8. M a i n t h e o r e m . Suppose tha t {X(M* + in — ^ ' , X*)} is a set of 
correction characters for H. In this section we will show tha t there is an 
admissible embedding £ : LH ci> LG such tha t £ = £(/i*, (X*)') where 

(X*)' = X* mod(L + {Ï; - (7^ : v G L ® C}). 

Thus , by Theorem 7.0.2, we have: 

T H E O R E M 8.0.1. There is a one to one correspondence between ^-equiv­

alence classes of admissible embeddings of LH in LG and sets of correction 

characters for H. 

T o begin the construction, choose m G LMN° such tha t m X (1 X a) 
acts on LH° as aH; this is possible because LH is in s tandard position. 
Suppose tha t 

Xv(m) = e27r*<x„*.xv> 

for all Xv G Lv extending to a rational character on LMN°. We claim tha t 
it is enough to show tha t there is (X*)' £ X* + L + {v — aHp} such tha t 

(8.0.2) (Xo*, c*v> = ((X*)7, av> mod Z 

for all roots ay of LH°. For, suppose tha t this has been shown. Choose 
t e LT° such tha t Xv(/) = e^H^)'-^^} xv ç L v . Then Hies in the center 
of LH°. T h u s we may replace m by n = tm without changing the action 
on LH°; \w(n) = e

2**W*v\ for all Xv £ L v extending to LMN°. To show 
tha t ï(z X I) = tz X (z X 1), 

\v(tz) = z<"*'xv>z<w*'xv>, Xv £ L v , s £ Cx and 

J ( l X f f ) = » X ( l X (7) 

defines an admissible embedding of LH in LG we just have to check tha t 
n<iG(n) = /_i. This is immediate because, a t least, £ defines an embedding 
^TV ^ LMN via the congruence 

K M * - e w * ) + ^ = ((X*)' + <^(X*)') m o d L 

provided by our correction characters. 
We now show (8.0.2). First we will find (X*)' so tha t (8.0.2) holds for 
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all Li7°-simple roots a v satisfying aHay ^ a v . Afterwards we will show 
tha t (8.0.2) is then true for all simple, and hence all, roots av of LH°. 

From (M*, av) = 0 and 

J ( M * - < w * ) + LN = (X* + ^ X * ) ( m o d L) 

we have 

(X* + <7*A*, aw) = (LN} a
v) mod Z 

for all roots a v of LH°. On the other hand ; 

PROPOSITION 8.0.3. (X0* + <7HX0*, av) = (LN, a v ) m o d Z for all roots ay 

of LH°. 

Proof. We have t ha t m X (1 X a) acts on LH° as crH and 

Xv(m) = e2»*<xo*.xv> 

for all Xv Ç L v extending to LMN°. Let m = frwi, where t lies in the con­
nected center of LMN° and m\ i n ^ * 0 = (z,Miyr

0)der. Since (m X (1 X a ) ) 2 

centralizes Li7° we have t ha t 

taH(t)mxaG(mi) 

lies in the center of LH°, and so 

av (taH(t))av (m^oint^) = e^H^+<rHu* -« v ) av(W i ( J G ( W l ) ) = 1 

for each root a v of ^Jï0, since a v + o^a^ extends to LMN°. We have thus to 
show t h a t 

(8.0.4) (mi X (1 X cr)) 2 F a . = e2**<w«v> Fav 

for each simple root ay of LH°. If we replace mi X (1 X a) by any element 
of Li^{ = hJ^Q X JF with the inherited action of W) which normalizes 
LT° C\ Iiy^0 and acts on the torus as aN then (mx X (1 X a-))2 does not 
change. Recall t ha t *iJf° is of type Ax X . . . X Ax\ if a i v , . . . , ad

v are the 
positive roots of L^° in LT° C\ hJSf° then we may take for mi any element 
of it/#° which realizes o>aiv . . . œad^; recall t h a t a G acts trivially on ̂ ^ ° . 
T h u s 

miarG(mi) = exp i7r(ai + . . . + ad) = exp 27ri t^. 

Here we have identified the Lie algebra of LT° with L ® C. Hence 
(8.0.4) is t rue, and the proposition proved. 

From the proposition we conclude t h a t 

(X* - Xo*, aHaw) = - (X* - X0*, av> mod Z 

for all roots av of LH°. An elementary a rgument then shows t ha t we may 
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add to X* an element of {/z — <rHv : v £ L % C} to obtain (X*)' such that 

<(X*y,av> s <X0*,<*v>mod Z 

for all simple roots av satisfying aHav 9e av. 
Suppose now that av is simple in LH° and that aHay = av . Let a' be the 

coroot of av in H\ a' is a root of TN'. Let a denote the image of a in the 
roots of TN. We can find Tn such that Sn is of codimension 1 in SN and 
there exists a Cayley transform 5 : Tn —> TN mapping some root /3 
coming from Mn' to a. Note that Mn' is a quasi-split group of R-split rank 
one. The simply-connected covering of the derived group of Mn' is there­
fore SL2 or SU'(2, 1). The group SU(2, 1) is excluded because a v is 
simple. Thus (t^,/5v) = 1 for any In

+ adapted to ft. Property (iv) of 
correction characters then implies that 

((X*)',«v) = | ( ( 1 „ , ^ v ) - l ) m o d Z 

for any In
+ adapted to (3. 

On the other hand, we may use a lemma of Langlands reported in [1] as 
Lemma 2.3 to compute (X0*, av). Indeed, (tn, /3

V) is easily seen to be the 
term "(pp, a 0

v ) " if we substitute aw for "a0
v" and so the lemma says that 

( X 0 * , a v ) ^ i«tnf/3
V> — l ) m o d Z . 

Therefore (8.0.2) is proved, and our construction completed. 

9. The number of embeddings of LH in LG. 

(9.1) Uniqueness. Suppose that £, £' : LHC^LG are admissible em-
beddings. Then, clearly £'(1 X w) = x(w)£(l X w),w G W} where x{ ) 
is a continuous 1-cocycle of W in Z(LH°), the center of L #° . We write 
£' = *£. Define MO, X0 G L 0 C by 

X V ( X ( * ) ) = 2<MO.XV> ë < Wo.XV>> X V f L V ) 2 f C X | 

Xv(x(l X a)) = g2W<x0.xv>f xv ç L
v , 

and write # = X(JU0, X0). Then /x0 — cm^o G £ and 

KJHO — o"#Mo) = (Xo + a#Xo) mod L, 

so that we obtain a quasicharacter X(MO» XO) on TH = TV (cf. (4.1)). The 
following is just a restatement of some material in § 2 of [7], for real groups. 

PROPOSITION 9.1.1. (i) The correspondence (X(MO, XO), X(MO, XO)) induces 
a one to one correspondence between Hl(W, Z(LH0)) and the set of quasi-
character s X(M, X) on TH such that: 

(ia) (M, a v ) = Ofor all roots av of LH\ and 
(ib) (X, aw) 6 Zfor all simple roots av of LH° fixed by aH. 
(ii) Each quasicharacter on TH as in (i) extends uniquely to a quasi-
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character on H and conversely the restriction to TH of a quasicharacter on H 
is as in (i). 

We denote the one to one correspondence between Hl{W, Z(LH0)) and 
quasicharacters on H, thus established, by x —» Xx-

Proof, (i) The only part that requires an argument is recovering 
x(/x0, \o') from X(MO, X0) for some 

X0' = X0 mod(L + {v — aHv : v G L ® C}). 

For this we just have to choose X0' so that (X0', a
w) G Z for all rootsav of 

LH°; since, clearly, (X0 + aH\0, « v) G Z for all roots a v of LH\ this is 
possible (see § 8). 

(ii) We can use the fact that TH meets every component of H (cf. [6]) 
to obtain H = TH(H, H), so that 

H/(H,H) = TH/THC\ (H,H), 

where (H, H) denotes the derived group of H. The only problem is to 
check that every quasicharacter X(MO, X0) as in (i) is trivial on TH C\ 
(H, H). We can avoid this by quoting the argument of [7]. Take a 
x(/xo, X0) and attach a 1-cocycle as in (i). Then in [7] there is constructed 
a quasicharacter on H whose restriction to TH is X(MO, X0), and it is noted 
why this restriction determines the quasicharacter. Thus the proposition 
is proved. 

Let J = KM*, X*) and x = X(JU0, X0). Then 

x£ = X£(JU* + MO, X* + Xo). 

We conclude: 

PROPOSITION 9.1.2. Hl(W, Z(LH0)) acts simply transitively on the set of 
^-equivalence classes of embeddings of LH in LG\ the action of x G 
Hl(W, Z(LH0)) corresponds to multiplying a set of correction characters by 
the quasicharacter Xx on H (that is, for each n, we multiply the correction 
character by the transfer to Tn of the restriction to Tn' of Xx)-

(9.2) Existence, (examples and counterexamples). From now on, we do 
not require LH to be in standard position. Thus LH is any one of the iso­
morphic L-groups attached to given pair (T, K) as in (2.1). For w G W, 
pick g{w) G LG° such that g(w) X w acts on LH° as 1 X w G LH, and 
define x( , ) by 

g(wi)g(w2) = x(wuW2)g(wiW2), wt G W. 

Then x( , ) is a continuous 2-cocycle of W in Z(LH°). [8] shows that if 
Z(LG°) is connected then this cocycle splits so that there is an embedding 
of LH in LG\ if Z(LG°) is not connected then an example in E7 X An 

shows that the cocycle need not split. 
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For the rest of this section we assume that G* contains a Cartan sub­
group To compact modulo the center of G*, and that H — H (To, KO), for 
some KO attached to T0. 

First we attach a pair (//, X1") to an admissible embedding £ : LH ^ LG 
(as always, extending the inclusion of LH° in LG°). Recall the properties 
of £ listed in (3.1). We set 

Xv(£o(* X 1)) = 2</*t^v>2<wt.xv>f xv £ Lw,z e Cx , 

X V & ( 1 X a)) = *2r<<Xt.XV> 

for all rational characters Xv on LT° which extend to LG°, where £o(w) is 
defined by £(w) = i;o(w) X w, w £ W7. From what we have already done, 
it follows easily that / / - o/r/z1" G i , (M1", «v) = 0 for all roots av of ^iJ0, 
and 

(̂/x1* — o-o/x1) + t0 — to' = (Xf + o-0X
t) mod L. 

Conversely, given such a pair (^, X*) we construct an admissible em­
bedding of ^iï" in LG, as follows. It is clear how to define £0(CX). Then 
picking Ç ^tf0, nG G LG° such that nH X (1 X ^ LHacts on LT° as <70, 
wG X (1 X <r) Ç LG acts on LT° as cr0, and nH~lnG X (1 X <r) 6 ^G acts 
on ^i?"0 as <7#. Then ii n = nH~lnG wre have 

naG(n) = (nHaH(nH))-1nGaG(nG). 

By adjusting our choice of w#, wG wre can arrange that naG(n) = £o( —1) 
(cf. Proposition 1.3.5, or Lemma 3.2 of [7]), and then £0(1 X <r) = n 
completes the definition of £. 

Note that while the datum (\x , X') determines the existence of an em­
bedding of LH in LG, it is not adequate for attaching correction charac­
ters, that is, for determining the ^-equivalence class of an embedding. 
This is illustrated very simply by the following: 

Example 9.2.1. Let G* = PGL2 = H. There are two ($-inequivalent) 
admissible embeddings of LG = SL2(G) X W in itself, which extend the 
identity map on LG°. One is the identity and the other is £, defined by 

Kg X w) = g 
e(w) 0 

0 e(w) Xw,ge SL2(C),w£ W, 

where e is the non trivial character on Gal(C/R) lifted to W. For either 
embedding, ^ = 0 and X1^ is an arbitrary element of L ® C. 

Since any LG is in standard position with respect to itself and T*} our 
earlier datum (jti*, X*) is well-defined. We obtain: 

(i) /x* = 0 and X* an element of L, pointing to the trivial character on 
H, in the case of the identity embedding, and 

(ii) /x* = 0 and X* an element of \L not in Z, pointing to the non-
trivial character (sgn det, appropriately defined) on H, in the case of £. 
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We denote by (G*)der the derived group of G* and by Lder the group of 
rational characters on T* P\ (G*)der. Any element of Lder extends to a 
rational character on T* (cf. [2]); that is, the natural map L —> Lder is 
surjective. There is a natural inclusion of (I/der)

v in L v and so we may 
regard K0 as attached to TQ C\ (G*)der. We write i7(der) for the attached 
group. The following is immediate. 

PROPOSITION 9.2.2. (i) Suppose that X £ Lder satisfies (X,av) = 
(to ~ to', ay) for each root ay of LH°. Then for any X' £ L extending X we 
have that ^ = X' — (t0 — to')» ^ = ~ 2^' defines an embedding of LH in 
LG, 

(ii) 7/ G* is semisimple then LH embeds {admissibly) in LG if and only if 
there exists X 6 L such that 

(9.2.3) (X, a v ) = (to - to', aw)for all roots av of LH\ 

(iii) If LH(ûeT) embeds in L(GAev*) then LH embeds in LG. 

Because of (iii), we will assume that G* is semisimple. 

Note that the choice of positive system (for all roots of LG°, respec­
tively, all roots of LHQ) in the definition of t0, to' is of no consequence to 
(9.2.2). Thus we will use the "diagram of (T0, K0)" from [8] to make 
convenient choices. We may assume LG° simple (cf. (5.1.7)). Fix some 
simple system ai v , . . . , a r

v for the roots of LH°. Consider also the roots 
jSiv, . . . , 0S

V, minimal for the ordering ^ on the roots outside LH°, 
given by 7V ^ /3V if and only if /3V = YV + S * = I nta^', for some non-
negative integers nt. Note that, by our assumptions, K0 is of order two and 
so /3V lies outside LH° if and only if K0(/3V) = - 1 . According to [8], 
}aiv, . . . , a r

v , |3iv, . . . , ps
y] is either a simple system for the roots of LG° 

or an extended simple system (that is, a simple system together with the 
negative of the top root for that system). 

PROPOSITION 9.2.4. Suppose that {a2
v, . . . , ar

w, 0iv , . . . , (3S
V} is a simple 

system for LG° and that —a\y is the top root of that system. Then, either 
(i) 5 = 1, c*iv = - 2 0 ! v mod(<x2

v, . . . , a r
v ) , and LG° is not of type An, 

or 
(ii) s = 2, a^ =- (0iv + /32

v) mod (a2
v, . . . , a r

v ) , and LG° is of type 
Ani Dn or Ee. 

The proof is an easy calculation and examination of types (cf. [4]) ; we 
omit the details. 

We return to our semisimple group G*. In each factor (= factor of the 
simply-connected covering of) of LG° we use simple systems as above to 
define t0, to'. Suppose that the a? of some factor are all simple in LG°. 
Then ( t o , » / ) = (t0', at) = 1 so that (t0 — to', a / ) = 0. On the other 
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hand, if the at
v are as in (9.2.4) then 

(to — to', cnw) = 0, i = 2, . . . , r, and 

(to - t0' ,aiv> = -(m + 1), 

where, in the terminology of [5], m denotes the altitude of the top root 

We first seek the element X of (9.2.3) in the span of the roots of G*. For 
this, we may work one factor at a time. Thus in this paragraph we 
assume G* or LG° simple. If aiv , . . . , ar

y are simple in LG° then we take 
X = 0. Suppose that aiv , . . . , ar

y are as in (9.2.4). Consider the case 
5 = 2. Our computation of (t0 — to7, a^) shows that 

(to - io',0iv + 02v> = m + 1. 

Define a weight X of G* by (X, a?) = 0, i = 2, . . . , r, (X, 0iv) = 0, 
(X, 02

v) = w + 1; clearly X satisfies (9.2.3). To prove that X lies in the 
span of the roots, that is, that (X, Xv) Ç Z for all weights Xv of LG°, it is 
enough to show that the order of any element of the center of LG° divides 
m + 1. Since LG° is of type An, Dn or £ 6 this is easily verified from the 
tables in [5]. Consider now the case 5 = 1. Here we obtain 

(to ~ to',0iv> = - i ( w + 1). 

The element X of (9.2.3) can only be t0 — to'; we have 

<\,a,v> = 0, i = 2, . . . ,r, and 

(A,£iv>= - i ( m + l ) . 

Note that because type An is excluded ((9.2.4)) we have that 
— \(m + 1) G Z (cf. [5]). To place X in the span of the roots it would be 
enough to show that the order of any element of the center of LG° divides 
\{m + 1). Inspection shows that this is true unless LG° is of type B2n+u 
C2n+h B>2Uj ^4n+3 or E-j. If LG° is of type C2n+i or D\ then further inspection 
shows that there is no simple root of LG° appearing with coefficient 2 in the 
top root and half-integer coefficient in some weight. Also if LG° is of type 
D4n+3 there is no simple root of LG° appearing with coefficient 2 in the top 
root and quarter-integer coefficient in some weight. Thus for LG° of type 
C2W+i, D\ or £>4n+3 we still obtain X in the span of the roots of G*. 

In summary, we have: 

PROPOSITION 9.2.5. If G* has no simple factors of type C2n+i, D2n(n = 3), 
or E^ then each LH embeds in LG. 

We examine the excluded cases more carefully. First suppose that LG° 
is simple. If LG° is adjoint then G* is simply-connected and so X of the last 
paragraph, while not necessarily in the span of the roots, lies in L. If LG° 
is not adjoint, and not of type D2n, then LG° is simply-connected. Thus 
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any weight Xv of LG° lies in Lv . Also 2XV lies in the span of the roots of 
LG°. Suppose that 2XV = nfl^ + ]C-=2 nia>J. Note that 

/c0(2Xv) = KO(XV - cr0X
v) = 1, 

by définition. Since /<o(̂ zV) = 1 and /<o(/3v) = — 1 we conclude that n is 
even. Hence (X, Xv) £ Z for all weights of LG° and so X lies in the span of 
the roots of G*. For the case D2n and LG° not adjoint, we assume instead 
that Xv £ L v in the argument above, and so obtain that X lies in L, if not 
the span of the roots. Hence: 

PROPOSITION 9.2.6. If G* is simple then each LH embeds in LG. 

However, in general, the amalgamation of the centers of simple factors 
may cause problems: 

Example 9.2.7. Let 

G* = SpQ XSL2/{1, ( - 1 , - 1 ) } 
and 

T* = Dx XD2/{1, ( - 1 , - I ) } , 

where 

Di = {diag(xi, x2, x3, xf1 , x2~\ xr 1 )} C Sp& 

and 
D2 = {diagfr,?-1)} CSL2. 

Then 

j 3 3 I 
L = S ny + ^ mtx f. mi} n G Z, n + ^ ra^even ( . 

The roots are dt (xi ± x2), ± (x2 ± x3), ± (xi ± x3), ±2xi , ±2x2 , ±2x3 , 
±2;y; the coroots may be identified, respectively, as z h ( x i ± x 2 ) , 
z t(x2d=x3) , =b(xid=x3), ±x i , ±x 2 , dzx3, ±2y. We fix a compact 
Cartan subgroup TQ and some diagonalization of T0. We then choose K0 SO 
that, on transferring to T*, we get 

KQ(XI — X2) = K0(X2 — X3) = 1, K0(X3) = ~ 1, K0(2y) = 1. 

Thus ±2xi , ±2x2 , ±2x 3 are the only roots not from H. For the usual 
choice of positive system we obtain t0 — to' = ^i + x2 + x3. Clearly the 
element X of (9.2.3) can only be t0 — to'. Since t0 — to' € L we conclude 
that there is no admissible embedding of LH in LG. 

There are similar examples for groups of type D2n X . . . (n ^ 3) or 
Ei X . . . . 

10. Appendix. We continue with the notation of § 1. Thus G is a 
connected reductive group over R, G* a quasi-split inner form of G, 
\p : G —• G* an inner twist, etc. 
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Suppose tha t T is a maximal torus in G, anisotropic modulo the center 
of G. Choose y Ç G* such tha t ypy = ad y o \j/ maps T to T*, the dis­
tinguished maximal torus in G*. We transfer the Galois action on T to 
T* via ^ , and thence to L = L(T*) and L v = L(LT°) in the natural way, 
denoting the result by o>. Then o> maps each root of LT° in LG° to its 
negative, and is realized by (conjugation with respect to) an element 
m X (1 X <T) of LG, where m lies in LG°, normalizes L r ° and maps positive 
roots of LT° to negative ones. In particular, the choice for y has no effect 
on aT. 

Conversely, suppose tha t LG contains an element m X (1 X o-) 
mapping LT° to itself, and each root of LT° to its negative. Then, ac­
cording to [7], G has a maximal torus T which is anisotropic modulo the 
center of G, and m X (1 X <r) acts on LT° as aT. The proof is as follows. 
First , we use Theorem 1.7 of [12] to conclude tha t there is a torus T\ in G* 
such tha t m X (1 X a) acts on L, and hence on LT°, as the Galois action 
of T\ transferred by some p-d. (cf. proof of Lemma 7.0.9). This torus T\ 
is anisotropic modulo the center of G*, and hence fundamental in G*. 
Lemma 2.8 of [9] then shows tha t there is a maximal torus T in G defined 
over R and x Ç G* such tha t ad x o \p maps T to 7 \ over R. Clearly T is as 
desired. 

We assume still tha t m X (1 X a) maps each positive root of LT° to its 
negative. Lemma 3.2 of [7] computes explicitly the square maG(m) X 
( — 1 X 1 ) of such an element. Note tha t maG(m) lies in LT°. Also, if 
Xv Ç L v then 

Mv = x v + ( w x ( 1 x ^ v 

extends to a rational character on LG°. 

LEMMA (Langlands). 

\y(maG(m)) = ( - l ) ^ 2 - x V > M
v ( w ) , Xv Ç L v , 

wA^rg t w on^ half the sum of the roots of T* in B*. 

Proof. If m = tn, where t lies in the connected center of LG° and n in the 
derived group then calculation shows tha t 

\y(maG{m)) = /zv (t)\v (na G{n)) 

- fxw(m)\v(naG(n)). 

Thus we have to show 

(*) \V(naG{n)) = ( - 1 ) < ^ V > , Xv G L v , 

for each n G (Z/G0)der such tha t w X (1 X <r) maps each root of LT° to its 
negative. Clearly naG{n) does not depend on the choice for n. T h u s for the 
proof of (*) we may replace LG° by the simply-connected covering of its 
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derived group and argue separately in each simple factor of the covering. 
We therefore assume LG° simple and simply-connected. 

We will prove (*) by induction. Thus , suppose t ha t (*) has been proved 
for all groups G for which the dimension of (LG°)dev is less than tha t for our 
given group. Note t ha t (*) is trivially t rue for the case of dimension 
zero. 

Let fiv be the largest (top) root for the ordering on the roots of LT° 
induced by the choice of LB°. Then aGf3w = /3V. Each root of LT° per­
pendicular to /3V (under the canonical bilinear form ( , ) on L v ) is an 
integral linear combination of simple roots perpendicular to /3V. Hence if 
LH° is the group generated by LT° and the 1-parameter subgroups for the 
roots perpendicular to /3V, then LH° is invar iant under the action of W 
and LH = LH° X W is an L-group ( that is, an object in © v (R) ([7])) . 
Let LJ° be the subgroup of LG° generated by LT° and the 1-parameter 
subgroup for /3V. Then LJ° is also W-invariant , bu t LJ° X W is not, in 
general, an L-group since aGX^ = ( — l)lX^} where X^ is some root 
vector for /3V and / is one half the sum of the coefficients in the simple 
expansion of/3V of those simple roots aw satisfying aGav 9e a v ancl (aGav,aw) 
?£ 0 (cf. [8, Lemma 3]). Nevertheless, we will be able to deal with LJ° X] 
W, by explicit computat ion. Note t ha t LH° and LJ° commute . 

Choose n\ in the derived group of LH°, normalizing LT° and taking the 
positive roots of LT° in LH° to negative ones. Choose n2 in the derived 
group of LJ° normalizing LT° and mapping /3V to — /3V. 

PROPOSITION, (i) ?iin2 X (1 X <J) maps each root of LT° in LG° to its 
negative and 

(ii) ni X (1 X a) maps each root of LT° in LH° to its negative. 

Proof. For (i) we jus t have to show tha t nitio maps each positive root 
of LG° to a negative one, since we have assumed the existence of some 
m X (1 X c) mapping each root to its negative. Since n2 fixes each root 
in LH° and n\ fixes /3V it is clear tha t n\n2 maps /3V and each positive root 
in LH° to negative roots. Suppose tha t av is a root, not in LH° and not 
equal to ± / 3 v . Then a v is positive if and only if (av , £ v ) > 0. Bu t 

(wiw2av, 0V) - (oP,n<rlnrlfF) - ~ ( a v , / 3 v ) . 

T h u s (i) is proved. 
(ii) follows from (i) and the fact tha t n2 fixes each root of LH{). 
T o prove the lemma, we can take n = n\?i2. Then 

naG(n) = ni<jG(ni)n2aG{n2). 

We may apply the inductive hypothesis to LH to obtain 

X^wit^Cwi)) = (-l)<2 l*-x v>, Xv £ L v , 

https://doi.org/10.4153/CJM-1981-044-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1981-044-4


EMBEDDINGS OF L-GROUPS 557 

where t* is one half the sum of the positive roots of T* in G* which are 
perpendicular to p. 

We now compute n<ioG{ni). The simply-connected covering of the 
derived group of LJ° is SL2(C). We map SL2(C) to LJ° in the usual way. 

Take for «2 the image of 

Hence aG(ft2) is the image of 

. Recall that aGX^ = ( - l ) ' A V . 

0 
0 L - ( - D z 

and ?i2(rG(n2) the image of 

( - 1 ) , + 1 0 
0 ( -1V+ 1 

We conclude that 

\v(n2<7G(n2)) = ( - l ) ( ' + i x ^ v > f Xv G L v . 

Thus to prove the lemma we have to show that 

(**) 10, Xv) EE 2<t„, Xv) mod 2Z, Xv G Lv , 

where i** = t — t* — \$. If a is positive, (a, 13) 9^ 0 and a 9e /3 then 
— co/3(a) has these same properties as a; that is, is positive, etc. Hence 

2<t**,Xv> = /'</?, Xv> 

where /' = <t**, 0V> = <i, 0V) - 1. Thus /' + 1 is the sum of the co­
efficients in the simple expansion of /3V. For (**) it would be sufficient to 
prove that V = I mod 2Z. Recall that I is one half the sum of the coeffi­
cients, in the expansion of/3V, of those simple roots av such tha t a v 9^ aGaw 

and (av, aGaw) ^ 0. 
Since we have done so in similar situations (cf. § 9), we now appeal 

directly to classification. If LG° is of type A2n then I = 1 ; otherwise I = 0. 
On the other hand, if LG° is of type A2n then V = 2n — 1 ; otherwise V is 
even (cf. [5]). Hence the lemma is proved. 
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