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1. Introduction

In many branches of applied mathematics there exists a class of problems
which depend for their solution upon the integration of a set of simultaneous
linear partial differential equations subject to certain boundary conditions.
In all but the simplest cases it is not practicable to deal with these equations
by standard methods. For problems involving infinite regions, solutions can
often be found by the use of integral transforms. However, in many problems
we are concerned with media of finite extent, so that if we are to make a direct
application of this method, we shall have to use finite transforms, and under
certain conditions these are much more difficult to apply than transforms over
an infinite range.

In this paper we shall show how, by considering a modified problem in
the entire (infinite) space, we can use transforms over the infinite range to
obtain the solutions of the problem for the finite medium.

2. Illustrative Example

Before attempting to state the principles of the method in general terms
we shall use the method to solve a relatively simple problem. It should then
be easier for the reader to understand the general formulation, by comparing
it with this solution.

Temperature distribution in an infinite cylinder due to a surface temperature
0z, t).

As our example we shall find the temperature distribution in an infinitely
long circular cylinder due to the application of a boundary temperature 8,(z, £)
on the surface r=a. Thus the problem is mathematically equivalent to
finding a solution, in the region r<(a, of the heat conduction equation
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subject to the boundary condition that §=0,(z, t) on r=a.

Instead of solving this problem directly, we shall consider a modified
problem in an infinite medium. We shall find the effect of a (for the moment
unknown) heat source @(z, ) which is concentrated on the radius r=a. We
shall then choose @(z, t) in such a way that 8=0,(z, {) on r=a. Our solution
will therefore satisfy
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subject to the condition that §=0,(z, ¢} on r=a.

Now, within the region 7<a, equations (1) and (2) are identical, so that,
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within this region, our solutions for the modified problem are also the solutions

required for the cylinder problem.
If we define the transforms

8¢, ¢, w)= 217_er Jm gillz +wd) dzdtf”J r8(r, z, t)Jo(ér)dr ......... (3)
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equation (2) transforms to
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so that u
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where k2= {2—iwr and we choose for k the branch with the positive real part.
We can now apply the transformed boundary condition §%a, {, w)=603({, w)
to get
a®°=03/1(ka)K o(ka)

and substitution of this expression into (7) gives
00(r, L, w)=081(kr)/1o(ka),
Finally we use (8) and the transforms inverse to (6) to give us the temperature
distribution
0(r, 2, t) = - f f L{H B} i rangiae .9
—o
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where we take the square root with the positive real part. It is easily verified

that this expression satisfies equation (1) and the boundary condition 8=0,(z. ¢)
on r=a.

3. General Physical Description of Method

Suppose that the medium in our problem occupies the region D and is
acted upon by various ‘‘ causes >’ which we shall denote by €. These causes
may be body forces, heat sources, electric or magnetic fields, sources, sinks,
etc. On the boundaries 8;, S,, ... of D there are a set of boundary conditions
which we shall denote by 7. The set of equations 7' may express the fact
that stress components, temperature, temperature gradient, potential, ete.,
are known on these boundaries. Suppose that our physical knowledge of
the problem allows us to formulate it as a simultaneous set of linear partial
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differential equations ¥, which we have to solve within the region .D in accord-
ance with the boundary conditions 7".

We consider now a different problem. Let the medium occupy the entire
space X, which may be of one, two or three dimensions according to the
problem in question. In addition to the causes € acting within the region D,
we now consider a further system of causes C* acting on the surfaces §;, S, ....
For each boundary C* contains a complete set of causes concentrated on this
boundary. By a ““ complete ’ set we mean that it should contain all the
types of cause relevant to the particular branch of the subject. Thus, in
an elastic problem, it should contain body forces in all possible directions,
whilst in a thermoelastic problem it should also contain a concentrated heat
source. This ensures that there are as many members in the C* as there are
boundary conditions in the original problem.

Suppose that the physics of the modified problem leads to a set of governing
equations E*. Within the interior of the region D the sets of equations E*
and F are identical sincethe C* are zero within this region. We now use the
transform method to obtain solutions of the equations E* within the entire
space X. These solutions will depend on the C*, which up to now are unknown
functions. We now choose expressions for them so that the conditions 7' are
satisfied.

Our solutions therefore satisfy the boundary conditions, and within D they
are solutions of . Thus we have found solutions to our original problem.
As far as the finite medium problem is concerned the solutions have no
meaning whatsoever outside the region .D.

4. Restrictions on Type of Problem Considered

The method is only applicable to a certain class of problems. The restrictions
which must be placed on the type of problem considered are mainly concerned
with the type of boundary and the type of boundary condition which are
permitted. In fact, we only require that the governing equations should be
a set of linear partial differential equations which can be reduced to a set of
algebraic equations by the application of a suitable multiple integral transform
over the entire space. We place no restriction either on the number of
independent variables or on the number of unknowns (as long as this is equal
to the number of equations !)

The boundary conditions may be given by specifying the boundary values
of functions of the unknowns and/or their derivatives, but each such specifica-
tion must be made over the whole of that boundary. Thus it is not permissible
to have mixed boundary conditions on any boundary, although the conditions
on one boundary may be entirely different from those on another boundary.

The other restriction is the form which the boundary itself can take. Each
boundary must be of the form; some coordinate z;=constant, and in any
one problem all the boundaries must be given by putting the same coordinate
equal to different constant values. Thus it is not permissible to consider the
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quarter plane bounded by z=0(y>0) and y=0(x>0), though it is possible
to consider this domain if we use polar coordinates, since the boundaries are
then =0 and @=m/2. This last condition does of course, restrict the number
of problems which can be tackled by the method. However, we can see that
by using suitable coordinates we can tackle problems involving the semi-
infinite plane, infinite strip, semi-infinite space, infinite plate, interior and
exterior of circle, circular ring, infinite sector, infinite circular cylinder and
tube, infinite space with cylindrical cavity, infinite wedge, sphere, shell,
infinite cone, etc. Thus an interesting class of problems still remains.

5. General Mathematical Formulation

In Section 3 we described the method in physical terms. It is, of course,
possible to give a purely mathematical formulation, and this is the purpose
of the present section.

Suppose that we have a set of linear partial differential equations

where L is an nxn matrix of linear partial differential operators in the
independent variables x;, x,, ...z,, ¥ is the column matrix {y,¥,...7,} of the
unknown functions y,=y,(z;, %,...x,) and £ is the column matrix {ffs...fs}
of the known functions f;=f;(x,, #,, ...z,). We wish to find solutions of these
equations within the domain a,<z;<a,, all z,...2, (time may be included in
the independent variables) subject to certain boundary conditions on z,=a,
and x, =a,. These conditions may include functions differentiated with respect
to any of the variables.
Consider now the set of equations

Ly—f=6¢ .ooiieiiiiiiiiiieniieiiieininn, (11)
where ¢ is a column matrix whose elements are of the form
bi=g1:(Ta> ...2,)8(2; — ) +Gos(®gy ... BBy —As) revrirnirnaan.n, (12)

so that ¢,=0 for a, <z, <a,.
Equation (12) can be written in matrix form as

b=8,8(x;— ) F80(Ty— ). eevniiiiiiieiii, (18)

The solution of the problem can now be completed in four steps.
(i) Transform equations (11) over the entire range of x,, x,...x, so that

LY—f=6. oo, (14)
Suppose that
fy:m(fl, L E)Y
_¢=g‘{’(§2, o El(Eys @) +8UEs, - E)Re(Ey, an)

where the superscript “0” denotes the transform with respect to all
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co-ordinates except x, and %, and h, are the transforms of the delta functions
with respect to 2;. Equation (14) then gives

Y= g% 8o} e (15)

(i) Denote by 7! the inverse transform with respect to £&_. Then (15)
gives

Ty=y'=F Ym U} + T mh)gl+T Hmhlgld ......... (16)

since g} and g9 are not functions of £,. When these transforms are evaluated
(16) can be written in the form

Y21, &) . Er)=u(y, Eo . E)
+v(ml’ 52- . -gr)gg(éz: . £r) +W(x1’ 52- . .fr)gg(fg. . fr) --------- (17)

(ili) Apply the transformed boundary conditions to (17) and solve the
resulting equations for g9 and gJ. Substitute these values into (17) to obtain
an expression for yo.

(iv) Apply the inverse transform to y%(z,, £,, ...£,) and obtain an expression
for y(z,, ...x,).

Within the region a, <z, <a, these solutions satisfy (10) since ¢=0 there,
and they also satisfy the boundary conditions on z, =@, and x,=a,. They are
therefore the required solutions.

6. Discussion

The simple example given in § 2 is easily solved by the standard method.
In faet, it is only necessary to transform (1) with respect to z and ¢ to obtain
a differential equation whose solution is easily seen to be of the form (8).
Thus we should give some justification for producing a method which at first
sight seems to be more complicated than the standard ones.

Theoretically all problems of the type envisaged here can be solved by
standard methods, and it is best that simple problems should be solved by
this method. However, for more complicated problems involving several
unknown functions the standard procedure becomes very difficult to apply.
As an example, let us consider the amount of work necessitated by the atandard
method and by the present method for the following problem.

We require the solutions to a system of » simultaneous m’th order linear
partial differential equations in n unknowns and r independent variables.

(i) Standard method : Transform each equation by an (r—1) dimensional
transform, giving » simultaneous m’th order differential equations. Eliminate
the unknowns to give n (mn)*t* order differential equations. Solve these equations
and apply the (r—1) dimensional inverse transforms.

(ii) Present method : Transform each equation by an r dimensional trans-
form, giving n simultaneous algebraic equations. Solve this set of equations
and apply the r dimensional inverse transforms.

Thus, at the expense of a one-dimensional transform on each equation
and a one-dimensional inverse transform in each solution, we gain the advantage

EM.8.—K
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of having to solve a set of algebraic equations rather than a set of differential
equations which are not easy to obtain. Even for fairly small values of m,
n and r this advantage, and the fact that the present method is more systematic,
greatly outweigh the disadvantages. As an example the reader is referred to
an application of this method by Lockett, 1959, which appears as a companion
paper in this issue. In particular the reader is referred to equations (28), which,
apart from the delta functions, are the equations whose solutions are required.

Nothing has been said so far about the values which should be taken for
the unknown functions at the limits of integration, when transforming the
differential equations. In many problems the values at one limit will be
given by the corresponding finite medium problem, whilst the values at the
other limit will be arbitrary. For example, in the example of § 2 the values
at r=0 are given, but it can easily be verified that the result (9) is independent
of the conditions introduced at r=c0. This is to be expected from physical
reasoning.

The method described in § 3 and § 5 also suggests the possibility of extension
to the case of concentrating the causes C* outside the boundary on the surface
z,=d. However, we must then be more careful in order to retain mathematical
rigour of the analysis. For instance, in the example of § 2 we could have chosen
a heat source on the radius r=d, where d>a. The analysis then continues
as before and leads to the result (9). However, it can be seen that the expression
for ©° is now p

0_ 8 AYw, {)
de —Io(ka)KO(kd)—,r Rglled) ~wooereree e (18)
where 49 is the transform of a function of the conditions introduced at r=co.
If 4=0, this will lead to an integral expression for @ which, for many choices
of 8, will be divergent. When d=a this mathematical difficulty disappears.
Otherwise it may be possible to choose conditions at 7= co in such a way that
the expression (18) converges.

In the example given in the paper referred to above, the causes C* have
been placed on the radius r=d. Mathematical rigour can be attained either
by taking d =a, or by introducing suitable conditions at the limits of integration,
though it will be seen that this does not make any difference to the final results.
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