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1.0. Introduction. The origin of the theory of averaging operators is explained in

[1]. The theory has been developed on spaces of continuous functions that vanish at
infinity by Kelley in [3] and on the Lp spaces of measure theory by Rota [5]. The
motivation for this paper arose out of the latter paper. The aim of this paper is to prove a
generalisation of Rota's main representation theorem (every average is a conditional
expectation) in the context of a 'non commutative integration'. This context is as follows.
Let si be a finite von Neumann algebra and <$> a faithful normal finite trace on si such that
0(1) = 1, where I is the identity of si. We can construct the Banach spaces Lp{s4,4>),
where l=£p<o°, with norm ||x||p = </>(|x|p)1/p, of possibly unbounded operators affiliated
with si as in [9]. We note that si is dense in Lp(si, <f>). These spaces share many of the
features of the Lp spaces of measure theory; indeed if si is abelian then Lp(si, <j>) is
isometrically isomorphic to Lp of some measure space.

We shall need to know a little about conditional expectations. Let si and 28 be finite
von Neumann algebras with 58 a subalgebra of si. The Radon Nikodym theorem of Segal
[6] indicates that to each x e i w e can associate a unique M(x) in 28 satisfying

The map so defined is a positive linear idempotent that contracts || ||p for l=sp =£<*>. The
(unique) extension of this map to a map of Lp(sl, <f>) onto Lp(<%, <f>) is called the
conditional expectation of Lp(si, <f>) onto Lp(38, <p). Umegaki has given sufficient condi-
tions for a map of si into itself to coincide with the conditional expectation in Theorem 1
of [8].

1.1. DEFINITION. We shall define an averaging operator as a linear mapping A of
Lp(si, 4>), where lssp=£°°, and p is fixed, into itself, that satisfies

(i) \\A(x)\\p^\\x\\p(xeLp(s4,4>)),
(ii) A(x*) = A(x)*, where * denotes the Hilbert Space adjoint,

(iii) A(yA(x)) = A(y)A(x) (y esi, xeLp(st, 0)).
We shall often refer to an averaging operator as an average.

1.2. REMARK. Condition (ii) is redundant in the context of Rota's paper. I have not,
as he does, assumed the condition that A should preserve the identity, although the
substantial portion of this paper will do so. I hope to deal with averages that do not
preserve the identity in a subsequent paper.

1.3. EXAMPLES. The examples in Rota's paper are most instructive. For the present
context we have the following results.
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(a) Any conditional expectation of Lp(s4, $) onto LP(S8, <j>), where 38 is a von
Neumann subalgebra of si, is an average.

(b) Let P be a projection in si. Then the map X—* PXP, where XeLp(si, </>), is an
average.

(c) Let Z = Z* be a central operator with I I Z ^ l in si. Then the map X-*ZX,
where XeLp(st, <f>), is an average.

1.4. Elementary Properties. We note that (c) above shows that an average need not
be a projection (i.e. A2 = A). If A(I) = I then A2-A, as Proposition 1 of [5] shows;
however (b) above shows that A can be a projection without mapping I to I. Since si is
|| ||p dense in Lp(si, <£) it follows that the range of the restriction of A to si \\ ||p dense in the
range of A; a knowledge of how A behaves on si will be useful in characterising A. We
note further that the range of the restriction of A to s4 is a ring, and that the bounded
elements of the range of A form a ring in case A2 = A.

2.0. Identity preserving averages. Throughout this section we assume that A(/) = /.
Our first result shows that A contracts || \\m as well as || ||p, but first, we require the
following lemma. See. Theorem 14 F of [4, p. 39].

2.1. LEMMA. Let xeLp{s4, <f>) for some fixed p. with l ^ p < ° ° . Then

Proof. If M ^ O , then x = 0 and the result is true. If ||x||M>0, then choosing
0<8<||x||oo> and noting that if |x| = Jo Ad£x then 8(1 - Es) ^ (I - Es) \x\, we have by the
change of measure principle 8"(I-ES)^(I-ES) \x\", so that

Now 5<||x||0O implies <f>(I-Es)>0; thus <f>(I-Es)
Un -> 1 as n - * » and we have S=s

limjnf ||x||n for each 5<||x||00.

If Hxlloo = oo, then using the relation just proved we deduce that the lemma is true. If
||x||00<oo, then using the functional calculus we have |x|"s2||x||£I. It follows that

2.2. PROPOSITION. Let A be an average on Lp(si, <j>); then ^(x^^Hxll , , for xesd.

Proof. Let x e i with ||x|U«l. Then ||x||ps=l, by 2.5 (iii) of [9]. Suppose that
for some natural number k,

(i) |A(x)|2(K-1)-A(H) for HeLp(s4,<l)) and for such H,
(ii) ||A(H)||p^||x||p;

then
|A(x)|2K = |A(x)|2 . |A(x)|2(K-x) = A(x)*A(x)A(H)

= A(x*)A(xA(H)) = A(x*A(xA(H)))
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and x*A(xA(H))eLp(s4, <f>). Also,

\\A(x* A(xA(H)))\\p «||x*A(xA(H))||p =£||x*|U \\xA(H)\\p

using 2.5 (iii) of [9] and 1.1 (i) repeatedly. These relations clearly hold for K = 0, 1, and
hence for all natural numbers. Now we use Lemma 2.1,

2.3. COROLLARY. Let A t denote the adjoint of A. Then both A and At map positive
operators to positive operators and A(x*x)3= A(x)*A(x) for all x in si.

Proof. Consider A restricted to si and let this be denoted by A too. It is a projection
of norm one onto its range which is a C* algebra. It follows from Theorem 3.4 of [7, p.
131] that A and At enjoy the properties stated.

2.4. PROPOSITION. A"\{I) = I and hence <j>(A(x)) = (f>(x).

Proof. The duality between Lp{si, </>) and Lq(si, <f>), where l/p + l/q = l and p > l ,
means that <£(A(x)y) = <£(xAt(y)) (*eLp,yeL") . If we have At(I) = I, then putting y = /
gives the second conclusion. For the first we argue as follows. Since

we have

By considering the spectral representation of At(I), it follows that there is a probability
measure on U+, fi say, such that

Thus

°)= f
Jo

1 = f Ad/x(A)= I Aqd(x(A)
Jo Jo

and, by Holder's inequality, 1 = A(jx-a.e.): i.e. /u. is the point mass at 1. Thus
4>(At(I)2) = ||At(I)||2 = l- BY considering | |At(I)-/ |g it follows that A t U W -

For p = 1 we note that since A contracts || ||j and || \\m it satisfies the conditions of
Proposition 1 of [10], and hence maps each Lp into itself for Kp<<*>. We can now use
the appropriate analogue of the Riesz convexity theorem, (VI.10.11 of [2]), to show that
A contracts || ||p for l < p < ° ° , and hence we can use the results above.
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2.5. COROLLARY. Let 5ft = A(s$); then 38 is a von Neumann algebra and A is the
conditional expectation of Lp(s4, </>) onto LP(S8, 0).

Proof. Consider A restricted to si; then A is a linear map of si into itself which
satisfies A2 = A, A(x)*A(x)s= A(x*x), A(x)^0 whenever xs=0, and A(I)^I, by Corol-
lary 2.3. Also, by Proposition 2.4,

<HxA(y)) = <f>(A(xA(y))) = ^(A(x)A(y)) = 4>(A(A(x)y)) = 4>(A(x)y).

These are the conditions required by Theorem 1 of [8], which shows that 58 is a von
Neumann algebra and A agrees with the conditional expectation from si onto 38. It
follows that A is the conditional expectation from Lp(si, <f>) onto Lp(38, #).

The author would like to thank Dr. P. E. Kopp of the Department of Pure
Mathematics at the University of Hull, for drawing his attention to the problem discussed
above, and Dr. I. Wilde of the Department of Mathematics, Bedford College, University
of London, for some useful conversations.
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