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ANALYSIS ON SUPERSPACE:
AN OVERVIEW

ViaDIMIR G. PEsTOV

The concept of superspace is fundamental for some recent physical theories, notably
supersymmetry, and a mathematical feedback for it is provided by superanalysis
and supergeometry. We survey the state of affairs in superanalysis, shifting our
attention from supermanifold theory to “plain” superspaces. The two principal
existing approaches to superspaces are sketched and links between them discussed.
We examine a problem by Manin of representing even geometry (analysis) as a
collective effect in infinite-dimensional purely odd geometry (analysis), by applying
the technique of nonstandard (infinitesimal) analysis.

FOREWORD

“Superspace is the greatest invention since the wheel” (see [59]). I don’t know
how many of us would agree with this radical statement, and it was only intended
to be a jocular epigraph, of course. However, the concept of superspace is thriving
indeed in theoretical physics of our days. Under superspace physicists understand our
space-time labeled not only with usual coordinates (z#), but also with anticommuting
coordinates (%), and endowed with a representation of a certain group or, better
still, supergroup, whatever it means. The anticommuting coordinates represent certain
internal degrees of freedom of the physical system. This concept was actually known
in physics since the early 60s or late 50s [138, 138, 91, 28|, but what made it so
important was the discovery of supersymmetry [144, 131, 145], which is an essentially
new form of symmetry unifying fermions (particles of matter) with bosons (particles
carrying interaction between bosons). One should also acknowledge the stimulating réle
of supergravity [97].

The prefix “super-”, which originally merely reflected the fact that superspaceis an
extension of spacetime incorporating anticommuting (odd, fermionic) coordinates, has

spread all over mathematical theories dealing with superspace, and has acquired a tint
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of pretention. It gave birth to such unhappy terms as superanalysis, supergeometry,
superalgebra, and even supermathematics — terms, of which any pure mathematician
can be hardly expected to approve. Felix Berezin, one of the creators of mathematics
of superspace, has chosen for his book {24] the title “Introduction to Algebra and
Analysis with Anticommuting Variables.” (All the same, after his premature death
the book was edited in the West under the title “Introduction to Superanalysis” [25].)
The term Analysis on Superspace, accepted for the purposes of the present survey, is
hopefully both adequate and neutral.

However, mathematics of superspace is not only of definite interest by itself, but
also provides the simplest possible nontrivial example of a noncommutative extension
of classical analysis and geometry, and this is an example where practically everything
works well. In particular, one approach to quantum group theory simply generalises the
theory of supergroupsin a certain way, and from this viewpoint “supermathematics” is
an invaluable testing ground for new concepts and results (see, for example, {90, Section
1.4]). Supermathematics looks almost “classical” against the newly emerging branches
of noncommutative geometry — consider an example from [49], where Alain Connes
reformulates a certain result on noncommutative spaces, in order to reveal its signifi-
cance better, as a statement about the (1,1)-dimensional supergroup R+). However,
even apart from that, there are mathematical questions of depth and significance about
superspace that still remain open.

Analysis on superspace is, of course, too close to mathematical and theoretical
physics in order not to benefit — and suffer at the same time — from the large number of
articles on the subject belonging, entirely or in part, to speculative mathematics. (see
the recent outstanding analysis of this phenomenon performed by Jaffe and Quinn [70}.)
We feel strongly that because of this there is a need to keep alive a constant stream of
purely mathematical research in the area, if we wish to make the topic accepted after
all as an integral part of mathematics. On the contrary, what actually happened a few
years ago, was that after an outbreak of interest, supermathematics as such was almost
deserted by researchers (some of whom moved to newly fashionable area of quantum

groups).

MOTIVATION: SUPERSYMMETRIC QUANTUM MECHANICS

We shall sketch briefly and very loosely what physicists would call “a toy model”
of SUSY. (For a presentation of SUSY in depth, the reader mathematician is referred
to [2, 36, 46, 51, 69, 127] and especially [59, 50, 146].)

In quantum mechanics, one has a Hilbert space H, the state space, its elements
being called states of system in question, and a number of self-adjoint densely defined
operators on H, called observables of the system. One of the most important observables
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is the Hamiltonian operator, H, the quantum analog of the energy of a system.

If a system contains both bosons and fermions, the state space H is split into
the orthogonal sum Ho @ H;, where Hp is the state space for bosons and H; is the
state space for fermions. In such case H is called a Z;-graded, or simply graded, Hilbert
space. The underlying idea of supersymmetry is to introduce a new operator, @, on H,
which interchanges bosons and fermions: Q(Ho) C H:, @(H1) C Ho (such an operator
would be called an odd operator), commutes with the Hamiltonian (QH = HQ) and
in addition is such that @2 = H. In other words, one wishes to extract the odd (that
is, mixing up bosonic and fermionic states) square root of the Hamiltonian operator,
which would interchange bosons with fermions. The operator @ is called a generator
of supersymmetry, or a supercharge.

Let us consider a system with one bosonic and one fermionic degree of freedom.
In the Schrodinger representation of such a system, 7 must be the space of functions
f depending on two coordinates, say z and 8. The position operator of the bosonic
particle is of the form f +— zf, and in the fermionic case it is f +— 8f. While the
position operators of bosonic particles commute with each other and fermions, the
position operators of fermionic particles pairwise anticommute; in our simplest case, it
leads to the condition 6% = 0.

Let us now assume, by restricting the domain of definition, that our functions are
differentiable. Then in the Taylor expansion for f in @ all terms of the order > 2
vanish, and one has

f(2,6) = fo(z) + 6fi(2) + 0

(an example of what is called component analysis, or superfield ezpansion.) Here fo(z)
and fy(z) are functions of a single variable z. The bosonic states are of the form f(z),
and the fermionic ones of the form 8f(z).

Introduce differentiation by @ by the rule —g% =1 plus C-linearity. In particular, the
second derivative in 6 always vanishes. Extend differentiation by z over all functions
by making it linear with respect to 6.

For simplicity, let us extract the odd square root from the momentum operator
8/0z instead of the Hamiltonian. Put

o d

Then clearly

Q) =020 e 7,

Q(6f(2)) = f(=) € Ho
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so @ is odd, and finally

(1) = @(s212)) - 242,

, _ _ o 0f(z) _ 08f(=)
Q(6f(=)) = Qf(=)) = 0—5— = —5_

as required.

One can introduce integration in 8 by letting

/d0=0, /0d0=1.

The integral above (called the Berezin integral) is extended over all functions f =
f(z,8) by linearity. If f(z) is an ordinary function in z, then it can be expanded in a
terminating Taylor series

f(=) = £(0) + 6f'(0) +0,
and therefore

/ f(2)d8 = / [£(0) + 65" (0)]d8 = £'(0),

which fact is sometimes expressed by not quite precise statement that in superspace
“differentiation is equivalent to integration.”

Supersymmetry with a single generator @ is called simple supersymmetry; if there
is more than one “supercharge,” or “generator of supersymmetry,” @1,...,@n, then it
is called extended supersymmetry. It is easy to verify that the supersymmetry generators
commute with (the generators of) the usual space-time translations and rotations, but

anticommute among themselves:

QR:iQ; +Q;Q; = 0.
One more puzzle: traditionally, it is known that the infinitesimal symmetries of a system
form a Lie algebra; clearly, it is not the case with supersymmetry algebra, algebraically
generated by translations, rotations, and supercharges.

This example reflects all essential features of superspace. It would be called a su-
perspace of dimension (1,1), that is, it is one-dimensional both in the even (bosonic)
and the odd (fermionic) sectors. (Of course, complicated supersymmetric systems of
field theory or string theory have infinitely many degrees of freedom.) The goal for
a mathematician is: to provide a background for functions depending on odd (anti-
commuting) coordinates #; for their derivatives by such coordinates; for symmetry
generators satisfying the above relations, et cetera.

The following heuristic sign, or Quillen, rule has proved extremely important
throughout supermathematics: if an entity of parity i moves past another entity of
parity j, the factor of (=1)" appears. (See, however, a warning in (88] against turning
the sign rule into a metatheorem.) .
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GRADED-COMMUTATIVE ALGEBRAS

A graded algebra A is an algebra over the basic field K with a fixed vector space
decomposition A = A® @ A!, where A° is called the even and A' the odd part (sector)
of A, in such a way that the parity Z of any element z € A U A!, defined by letting

z € A;, Z € Z,, meets the following restriction:

et

zxy=z+79, =zyeA®UAlL
A graded algebra A is called graded commutative if it is associative, unital, and
zy = (-1)yz, z,y€ A°UAL.

The central example of graded commutative algebra is the Grassmann algebra A(E)
over a set Z of odd (“fermionic”) generators. It is freely generated by ZU {1} modulo
associativity, unitality, and the anticommutation relations:

&6 + &6 = 6i5, &6 €E.

A Z,-grading is introduced on A(Z) in a unique fashion by requiring that £ C Al.
Any element of A(E) is a (terminating) polynomial in odd variables

ag + arés + -+ anén + a12b1éa + - + @123 nb1é2 .. €n.

We shall use superscripts to designate monomials as follows

6“ = 5#15‘2 "'ﬁ#u 60 =1.

The structure of a finite-dimensional Grassmann algebra is exposed in great detail
in [24, 25] and [47].

CALCULUS IN A GRASSMANN ALGEBRA

A Grassmann algebra can be viewed in two ways: either as the algebra of super-
functions, or the algebra of supernumbers. Both existing approaches to superanalysis
originate here.

(2) If one considers A(Z) as the algebra of superfunctions depending on purely odd
coordinates £ € E only (functions which are polynomial in those formal variables), one
can introduce formal differentiation as a K-linear operator such that

g
B¢;

(&) =¢*

https://doi.org/10.1017/50004972700009643 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009643

140 V. Pestov (6]

if 2 ¢ p. For example,
S (et + b+ ) = (il + b+ 2) =~ 1
a5t ta) =g (—ht ta+ &)=L +1
The operator 8/08 satisfies the graded version of the Leibniz rule:

D(fg) = Df -9 +(~1)P7f . Dg.

In our case the parity of the differential operator D = 3/38 is 1.

Invariance considerations make it necessary to define the integral (called the Berezin

/ d¢; =0,
Ber

&idé; = 1.

Ber

integral) as

Though the integral was known for quite a while [53], it became a full-scale device after
the concept of the superdeterminant (explaining how change of variables is performed)
was introduced, independently in [4] and [24]). (See the classical reference [53] for
explanations.) We do not touch upon the superdeterminant in this paper.

If |Z| = n, then one can think of A(E) as the algebra of (super) functions on a
superspace of dimension (0,n). The calculus on this space is apparently completely
understood, because of being purely formal.

Now one can supplement the algebra of functions with all ordinary (“even”) func-
tions, by tensoring A(E) with the algebra of (say, smooth) functions on a domain
U C K™ of dimension m. The resulting (algebraic) tensor product algebra

C2U™™)=C=(U)Q A(E)

is called the algebra of (smooth) superfunctions on a coordinate superdomain U of
dimension (m,n). For every f = f(z,£{) from this algebra, one has

f(z,€) = fo(z) + fi(z)ér + - + fa(2)en + fr2(2)1b2 + - - + fr2s..a(2)é1é2 .. . én.

This expression is called superfield ezpansion of the superfunction f. One can easily
extend the derivatives both by z; and §; over the algebra C°(U™™). The same is
true for integration over U.

(b) If one treats elements of A(E) as supernumbers, then there are clearly both
even and odd supernumbers (as well as those of a mixed nature). Every element of
the radical of A(Z) is nilpotent. Therefore, each supernumber z spilts in a unique
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fashion as the sum of a number and a nilpotent. The number part of z is denoted by
zp and sometimes called the body part of z, and the nilpotent part, denoted by zg,
is sometimes called the soul part of z. The mapping =z — zp — the body map - is, of
course, well-known in mathematics under the name of the eugmentation homomorphism
(the only nontrivial character on the Grassmann algebra).

Any C* function f:K — K can be extended to a function f~: A(E)’ — A(E)° by
applying the Taylor expansion:

©  £(n)(5
o) = 3 LB g

n=0

Due to the fact that every element of A(E)® is of the form “number + nilpotent,” the
above expansion terminates. This procedure is called soul ezpansion, or Grassmann
analytic continuation. The same applies to the more general situation where a function
maps smoothly K to A(Z). A smooth superfunction depending on even coordinates is
just any mapping f: A(E)° — A(E) extension of an ordinary smooth function f:K —
A(Z). A generic smooth superfunction of one even and one odd argument is a mapping
F:A(E) — A(E) which admits a superfield expansion

f~(za£) = fo+ fi¢

where the component functions fa: A(Z)’ — A(E) are smooth superfunctions depend-
ing on one even coordinate . One can extend this definition in an obvious way to
superfunctions depending on finitely many even and odd coordinates.

Clearly, to every superfunction in the sense of definition (a), there is a superfunction
in the second sense (obtained by applying the Grassmann analytic continuation to all
component functions), but not vice versa. Example: the constant superfunction

f(zaa) = gla

where & is a fixed odd generator of A(E) \ K, is smooth in the sense of the second
approach, but it is not obtained from any function in the sense of the first approach.
In other words, in (a) we have superfunctions without superconstants.

Everything above said makes sense for analytic functions as well.

AN APPROACH TO SUPERSPACES INCORPORATING SUPERNUMBERS

This approach may be, at a certain stretch, termed a “naive” one. It was developed
by Felix Berezin (22, 24] and Bryce DeWitt (as a chapter in his book [53]). (It is worth
mentioning that Berezin worked with and greatly contributed to both approaches to
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supermanifolds, and arguably was completely satisfied with none, see the remarks of
Leites in [83].) Further developments are due to Alice Rogers [120, 121, 122, 123,
124, 125], Boyer and Gitler [35), Yvonne Choquet-Bruhat [44, 45], Vladimirov and
Volovich [142, 143], Bruzzo [36, 37, 38], and others. This approach is somewhat
easier to accept psychologically. Now we shall discuss it briefly, just by elaborating and
extending the approach (b) from the previous Section.

A point of departure is a fixed graded-commutative algebra of supernumbers, or
superconstants, A, called also the ground algebra of the theory. It is inconvenient to
use finite-dimensional Grassmann algebras in this capacity, because any such algebra
has the “top element”, £,£3...€,, and therefore the annihilator of the nilpotent part
is not reduced to zero. (For a long history of complications related to this feature
of finite-dimensional Grassmann algebras, see [35, 128, 129]; it took some time to
realise that the problem does indeed exist.) Because of that, one is in fact bound to
start from a graded-commutative algebra with zero annihilator; any such algebra is
infinite-dimensional, and in order to do analysis, one must endow it with a complete
locally convex topology. Examples of such algebras are infinite-dimensional Grassmann
algebras A(Z), endowed with a suitable topology (and completed thereafter). The

l;-type norm is a natural choice:

Z au |l = E laylx -

BEM(Z) BEM(E)

The completion of this algebra is denoted by By ; it is a Banach graded commutative
algebra, and every element is a sum number + quasinilpotent. It was introduced by
Rogers [120, 122], and became popular because of many attractive properties [35, 36,
68, 69, 65, 56]. Other possibilities are: the DeWitt algebra

Ao = lim A(n)

which is a Fréchet algebra [54, 92, 46); the algebra A(E) with the strongest locally
convex topology [78, 125], et cetera. (Rich collections of examples and, moreover,
categorical constructions of such algebras can be found in |77, 102, 103, 106, 110].)

It turns out that the choice of a ground algebra affects the analysis in a very essen-
tial way, and one cannot expect to obtain a wide range of results valid for any thinkable
ground algebra A. Here is an instructive example. One can define the Grassmann an-
alytic continuation of C*° functions from an open subset U C K to the corresponding
open subset U~ = 71U of BY by the same rule as before

® o(n)(g
@) = Y B gy

n=0
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It is not surprising that the above series fails to converge for some functions f. Of
course, it converges for f analytic (because every element of the radical of a Banach
algebra is quasinilpotent, and since By, is the direct sum of the number field and
the radical, the complexification of this algebra possesses a well-defined holomorphic
calculus). But if the Taylor coefficients of f at some point z € U grow too fast (and
it is a well-known fact that we can always make them grow as fast as desired), the
series diverges in the Banach algebra B, in spite of quasi-nilpotency of zg. This
fact was observed in [64]. For some time the question asked in the above paper of
describing those C*° functions f admitting analytic continuation to B, remained
open, and the author’s recent result [109] states that this is the case if and only if
the Taylor series of f actually converges in a neighbourhood of the point zp (such
functions are called Pringsheim regular). A consequence of this result is the fact that
every supersmooth function on B, must be Pringsheim regular, which excludes from
consideration functions of the type exp (—1 /::2),1: #0; 0, z = 0. This is, from our
viewpoint, a disadvantageous complication of the theory, something extraneous, not in
the true nature of superspace.

Next step is to form the linear superspace of dimension m,n:
A = AQK™™ = A% x - x AO x Al x .- x AL,

m times n times

A linear superspace, in other words, is the even part of a free A-module. A map-
ping A™™ — AP9Y is called superlinear if it can be represented by means of an
(m 4+ n) x (p+ ¢)-matrix with entries from A. (For an elaborate treatment of ma-
trix calculus and general aspects of linear superalgebra, see treatises [88, 14, 25, 132,
133].) A superdifferentiable mapping f at a point z is defined as a Fréchet (or Gateaux)
differentiable mapping between locally convex spaces, such that the differential is a su-
perlinear map. Now it is clear how to define the derivatives, supersmoothness of all
orders, superanalyticity, et cetera. Of course, it is necessary to verify that such maps
exist indeed and are abundant enough for a theory to be meaningful! (It seems, un-
fortunately, that such a need escaped the minds of many superanalysts, working in an
infinite-dimensional context. See, for example, [76], where a version of superanalysis
is developed in an enormously general context. It is beyond any doubt that for some
ground algebras there are practically no smooth superfunctions other than polynomi-
als. Consider an example of a “bad” locally convex graded-commutative algebra in our
paper [101]; it turns out that superanalytic superfunctions in the sense of {76] may be
even not C! smooth.) This is done with the help of Grassmann analytic continuation
from K™ to A™°, much in the same way as for the Grassmann algebra.

The next step would be to construct supermanifolds cut of superdomains. A su-
perdomain — within the present approach — is an open simply connected (or even con-
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tractible) subset of a linear superspace. The transition functions in an atlas are assumed
to be supersmooth or superanalytic. This done, one defines the tangent module at a
point as the A-module of graded derivations of germs of superfunctions. (A graded
derivation of a graded A-algebra A is a A-linear operator d satisfying the graded

Leibniz rule: D(fg) = D(f)g + (—l)foD(g).) For reasonably good A, the tangent
module is free, and its even part (the tangent linear superspace) is isomorphic to the
model linear superspace. (In particular, one of the difficulties with finite-dimensional
Grassmann algebras is that the tangent module is not free.) Super analogs of all the
usual kinds of structures on manifolds, such as differential forms, connections, et cetera,
are introduced and studied with greater or lesser success.

There is one subtle point of a topological nature. If one uses the usual tensor
product topology on A{™™) for patching the model superdomains together, one comes
to the concept of Rogers supermanifold [120]. But there is another possibility. If
the ground algebra A is local and therefore every element admits a body and soul
decomposition in a number part and a quasinilpotent part, then the body map 8: A —» K
(the usual augmentation homomorphism) is extended to the linear superspace A™™ by
tensoring § with the projection K™" — K™. The DeWitt topology on A™™ is the
pull-back of the standard topology on K™ via the body map #. If all coordinate
domains of a supermanifold are DeWitt open and the transition functions commute
with the body map, the supermanifold is called a DeWitt supermanifold [54, 45, 42).
(From the viewpoint of physical applications, it is not clear yet whether or not DeWitt
supermanifolds suffice [43]. A mathematical relationship between the two concepts is
discussed in [115, 116]. It seems that in infinite dimensions Rogers supermanifolds
become of importance; see [110] and a discussion below.) Topologically, a DeWitt
supermanifold M is (in the supersmooth case) a fibre bundle over a usual manifold,
called the body of M. In the superanalytic case such a global section may not exist
[60].

GEOMETRIC SUPERSPACES AND BEREZIN-LEITES-KOSTANT SUPERMANIFOLDS

This is a more sophisticated treatment, based upon sheaf theory and algebraic
geometry. It is free of certain deficiencies of the “naive” construction.

Recall that a sheaf of graded-commutative algebras on a topological space X is a
collection of graded-commutative algebras A(U) and their homomorphisms »Y: A(U) —
A(V) for all open subsets U,V C X with U D V, satisfying a number of natural
axioms. A topological space X together with a sheaf of graded-commutative algebras
on it, Ox, is called a geometric superspace (or a locally ringed superspace [88]) if the
stalkss Ox . of the structure sheaf are local a.lgeb:ras. This is a clear translation of
the concept of a geometric space [52], basic for algebraic geometry, in the “super”
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language. A morphism ¢ between superspaces X and Y is a pair consisting of a
continuous mapping @o: X — Y and a sheaf morphism ¢*: Oy — ¢o,.(Ox) such that
for every z € X the image of the maximal ideal m. of the stalk Oy 4(,) under &l is
In Mgy(z)-

For example, the (smooth) superdomain /™™ is a geometric superspace: the germs
of superfunctions f = fo + fié1 + -+ + fi2..n€1...&n such that fo(z) = 0 form the
maximal ideal in the corresponding stalk. (A detailed presentation of the structure
theory of superdomains and calculus over them is to be found in [33].)

A supermanifold of dimension (m,n) is a geometric superspace X locally isomor-
phic to C°(U™™) (supersmooth case), or C“(U™™) (superanalytic case).

The theory is now developing very logically and quite on its own: tangent spaces,
vector bundles, differential forms, connections et cetera., all sort of familiar geometric
structures being “superized” and explored. For a good account, see any of the treatises
{7, 14, 25, 79, 82, 83, 88, 134]. One of the most complex tasks of the theory is to
establish a consistent scheme of integration over supermanifolds (including the problem
of integrating vector fields) and, naturally, supermanifold cohomology, see [25, 29, 30,
38, 41, 46, 54, 63, 76, 80, 83, 85, 88, 96, 114, 124, 135, 143], and one can notice
considerable difference of opinions and even a certain controversy about whether this
task has been accomplished. We do not dwell on this topic any more. (Apparently
even in the simplest case of a superspace of finite purely odd dimension there are still
questions related to integral calculus deserving attention, especially in the context of
cyclic cohomology [47].)

LINKS BETWEEN THE TWO CONCEPTS

Let T be a one-point superspace, that is, a pair T = (*r,Ar) formed by a one-
point topological space and a graded-commutative local algebra (or, to be more precise,
a constant sheaf of such algebras). Superspace morphisms from T to a geometric
superspace M are referred to as T-points of M; we shall denote their totality by
ptyM . For example, if K is the base field, K-points of a superspace M are the usual
points, that is, elements of the underlying topological space Myp. The correspondence
M — ptyM is functorial, and it is called the functor of points from the category of
supermanifolds and supermanifold morphisms to the category of sets and set-theoretic
mappings. A superspace M can be restored from the corresponding functor of points
T — ptr M where the argument T runs over the totality of all one-point superspaces.
(At least, this is so under certain additional conditions [105]; for instance, if M is a
supermanifold of finite dimension.)

To any section f of the structure sheaf Sps over an open set U C M, (that is, a
superfunction on U ), there is associated a set-theoretic map v f: ptv+U — Ax, defined
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by letting v f(z) := z'f for all z € ptyU. This way, superfunctions can be treated
as usual functions defined on open subsets of wider sets than M. In the case M is a
“good” superspace (say, a smooth supermanifold), these extended sets of superpoints
carry the structure of a manifold; moreover, they may be turned into supermanifolds
over the algebra of superconstants Ay. The resulting functor from the category of
Berezin-Leites-Kostant supermanifolds to the category of supermanifolds over a ground
algebra A is called the functor of change of base. More generally, a similar functor
connects the category of supermanifolds over a ground algebra A to the category of
supermanifolds over a ground algebra A provided that A — K. Of course, it is most
important to bear in mind that the supermanifolds images of this functor do not exhaust
all K-supermanifolds.

Denote by K%, or, for the sake of simplicity, just q, the superspace of the form
(*,A(g)). It is a supermanifold (graded manifold) of dimension (0,¢). The q-points
of a superspace M are called g-points of M. It is implicitly assumed that any “good”
superspace M can be completely restored from its g-points.

The above concepts play a tremendous role in superspace theory, and they surfaced,
either explicitly or implicitly, or in a different guise, in almost every solid investigation
on the issue. Among the most important developments, let us mention those due to
Batchelor [18, 19], Leites and Bernstein [83, 31], DeWitt [54], and Schwarz [137]. An
interesting discussion is to be found in the Appendix to [6]. It is, however, our overall
impression that a unifying treatment of the topic is still missing.

AXIOMS FOR SUPERMANIFOLDS

In one attempt to merge the two approaches to supermanifold theory, Rothstein
[128, 129] proposed a set of four axioms which any sensible category of supermanifolds
should satisfy; later Bartocci, Bruzzo, Herndndez Ruipérez and the author have shown
(15, 16] that an additional axiom, calling for the completeness of the rings of sections
of the structure sheaves, is necessary to characterise those Rothstein supermanifolds
which are free from certain drawbacks.

Let B denote a graded-commutative Banach algebra with unit. An R-superspace
(M, A, ev) over B is a triple formed by a paracompact topological space M, a sheaf
A of graded-commutative B-algebras on M, and a morphism of sheaves of graded
B-algebras ev: A — Cp, f — f=ev (f), called the ‘evaluation morphism’; here
Cum is the sheaf of continuous B-valued functions on M. An R-superspace is said
to be local if the stalks A, are local graded rings for any 2 € M. A morphism of
R-superspaces is a pair (f,fu): (M,A, evM) - (N,B, evN), where f: M — N is a
continuous map and f¥: B — f..A is a morphism of sheaves of graded B-algebras, such

that evM o fl = f*o ev?.
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One says that an R-superspace (M, A, ev) is an (m,n) dimensional R-super-
manifold if the following four axioms are satisfied.

Ax1oM 1. Der*A (the dual sheaf of the sheaf of graded derivations of A) is a lo-
cally free A-module of rank (m,n). Any z € M has an open neighbourhood U with sec-
tions z1,...,2™ € A(U),y, ¥',-..,¥™ € A(U), such that {dz*,...,dz™,dy’,...,dy"}
is a graded basis of Der* A(U).

The collection (U, (z!,..., 2™, y", ...y™)) is called a coordinate chart.

AXx10M 2. The mapping ¥:U — B™™, z > (2'(2),...,2™(2),7"(2),...,57(2))
is 2 homeomorphism onto an open subset of B™".

AxioM 3'. Forevery z € M theideal £, is finitely generated.
Ax10M 4. Let D(.A) denote the sheaf of differential operators over A, and let
fe A, withze M. If L(f) =0 for all L € D(.A),, then f =0.

By imposing an additional axiom, calling for completeness of the algebras of sec-
tions in an appropriate locally convex topology, one can single out smooth superman-
ifolds, analytic supermanifolds, et cetera. All known examples (and even approaches)
to supermanifolds fit into the above scheme if one enlarges the class of ground alge-
bras B to include complete locally convex graded-commutative algebras. Probably, the
most reasonable additional condition to impose on them is to require any such B to be
topologically generated by the odd sector (the algebras of Grassmann origin, or GO-
algebras, investigated under this or different names in [102, 103, 106, 109, 16]; they
are exactly the completed Hausdorff quotients of locally convex Grassmann algebras).

For earlier attempts to merge the two approaches to a supermanifold, which now
fit in the above axiomatic scheme, see [8, 9, 10, 11, 12, 13].

INFINITE DIMENSIONAL SUPERSPACES

Very little is known about these, although infinite-dimensional supermanifolds arise
in mathematical physics (string theory, for one example [6]; gauge theories on super-
manifolds [1, 40, 62]; conformal field theory [126], et cetera.); they are treated at an
intuitive level. (A metaphysical discussion of this topic can be found in [6].) To realise
how underdelevoped the infinite-dimensional theory still is, let us remark that (to the
best of our knowledge) such a fundamental object as the supergroup of superdiffeo-
morphisms of a finite-dimensional smooth supermanifold has not been described yet
as a genuine object of supergeometry, apart from the functor of points representation.
(Though fragments of a relevant technique seem to exist already, see [23, 130].)

In the realm of the Berezin-Leites-Kostant approach, one can view a supermanifold
of infinite dimension as a functor of points from the category G of (finite-dimensional or
other) Grassmann algebras to the category of infinite-dimensional manifolds (modelled
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on Banach or more general locally convex spaces). A theory of this kind was deveioped
by Molotkov [95] (in the Banach case). A disadvantage of such an approach is that these
functors have no known representing objects. An attempt to construct such representing
objects was made by Th. Schmitt [136] in the form of geometric superspaces with
an additional structure, namely, the underlying topological spaces were locally convex
manifolds (Schmitt worked in the holomorphic case), and in the algebras of sections
special linear subspaces were distinguished. This approach — to our surprise — did not
enjoy much popularity, perhaps because of its notable complexity.

The “naive” approach offers a possibility of carrying the finite-dimensional concepts
straight to infinite-dimensions. Unfortunately, there are many subtleties, many traps to
be avoided, and some of these were unnoticed by the authors. Since it is impossible to
work over finite-dimensional Grassmann algebras of “supernumbers” without invoking
either a functor of points or sheaves, one must fix an infinite-dimensional, thence topol-
ogised, Grassmann algebra, say A. Next comes the notion of a graded locally convex
space, which in this approach must be a free graded locally convex module, that is,
one starts from a genuine graded localy convex space E = E° @ E* and constructs a
free module A @ F, the tensor. product being topologised and completed. (Freeness is
very essential as you develop analysis and geometry; for example, without freeness you
would never be able to prove that the tangent space to a supermanifold is isomorphic
to the model space). Now one encounters the choice of the right tensor product. For
instance, one would expect that for two free graded LC modules, Ex = A® E and
Fp, = AQ® F, the graded algebra of all endomorphisms £ A(En, Fa) is topologically free
as a A-module (namely, an expected result would be that Lo(Ea,Fr)=AQL(E, F)).
The author has shown [102] that if A is an infinite-dimensional normed algebra then
it is never so, if ® means either projective or injective tensor product and E = F = [;.
As a matter of fact, only those ground algebras A which are nuclear in the sense of
Grothendieck can be used in the naive approach. This was overlooked, say, in [76].

However, there is one exception: if A = Ay, the DeWitt algebra inverse limit of
finite-dimensional Grassmann algebras, then the resulting version of infinite-dimensional
supermanifold looks satisfactory — at least, in some respects {110]. (From the classical
viewpoint, it is a Fréchet manifold with an additional structure.)

We shall need infinite-dimensional BLK supermanifolds of a particular kind later:
those of dimension (0,00). Heuristically speaking, it is consistent with any of the
existing approaches, to accept that the pair (*,A), where A is an infinite-dimensional
Grassmann algebra (possibly topologised and completed after that) is such.

A discussion of a related open problem is to be found in our paper [107].
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RELATIVE SUPERSPACES, OR, WHERE DO THE GROUND ALGEBRAS COME FROM?

The most disturbing thing about using “supernumbers” is the fact that their origin
is completely unclear, and the choice for the “algebra of supernumbers” is totally arbi-
trary. The BLK approach is more elegant, and in addition it allows one to use methods
from other areas of mathematics. At the same time, there is some evidence that by
restricting ourselves to the BKL approach, we can lose some attractive properties. How
to unify these two approaches?

The existing idea is to consider supermanifolds over supernumbers as objects in
the relative category, that is, superfibre bundles of BLK supermanifolds with the base
of the form Spec A. In other terms, they would become families of supermanifolds,
indezed with elements of another supermanifold. What is now viewed as supernumbers,
becomes just functions on the indexing supermanifold.

Let A be a “supernumber algebra” (a graded-commutative algebra of Grassmann
origin). The (formal) prime spectrum, SpecA, is just a one-point superspace with the
algebra of sections of the structure sheaf isomorphic to A. Let X be a A-superspace.
The fact that the algebras of sections of the structure sheaf on X are all algebras
over A means the existence of a canonical fixed morphism of locally ringed superspaces
X — Spec A. On the other hand, any morphism of the form X — Spec A, where X is
a geometric superspace, gives rise to a structure of a A-superspace on X . Therefore, it
may happen that the entire theory of A-supermanifolds is not a “generalisation” of the
theory of BLK-supermanifolds, but rather a special case of the theory of BLK superfibre
bundles (with base infinite-dimensional in the odd sector, in general).

This idea was advertised by Leites, mostly in private commmunications. Some
initial work has been done by Penkov [99].

SUPERGROUPS AND LIE SUPERALGEBRAS

A supergroup is a group object in a category of supermanifolds. In other words, a
supergroup is a quadruple (G, u,¢,¢), where G is a (smooth or analytical) supermani-
fold, p:G x G — G, 1:G — G, and e:* — G are supermanifold morphisms satisfying
the natural properties, the symbol x stands for the direct product in a category of
supermanifolds (known to exist), and * is a terminal object in the same category (a
supermanifold of dimension (0,0)) [31, 34].

A group object in the category of DeWitt supermanifolds is called a De Witt su-
pergroup, otherwise it is called a Rogers supergroup. Of course, this distinction makes
no sense in the category of BLK supermanifolds. Supergroups in the BLK category are
also referred to as graded Lie groups.

Of course, one should be cautious enough to remember that since morphisms be-
tween supermanifolds are not completely specified by the underlying set-theoretic map-
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pings (apart from the “naive” approach), the structure of a supergroup is not determined
solely by the underlying group structure on the manifold of points. However, it is deter-
mined by a family of (Lie) group structures on the manifolds of g-points. (An extensive
discussion of Lie groups of points is contained in the DeWitt’s book [54]. He called
those Lie groups q-skeletons of the supergroup. Another presentation of the subject is
to be found in [31].)

Lie superalgebras are just graded versions of Lie algebras. A free A-module is a
Lie superalgebra if it is endowed with a bi- A-linear super Lie bracket, which is graded
anticommutative and satisfies the graded Jacobi identity.

To every supergroup G there is associated a Lie superalgebra, consisting of all
left-invariant graded vector fields on G endowed with the graded version of the familiar
Lie bracket (supercommutator of vector fields). A vector field X on G (that is, a
graded derivation of the structure sheaf) is left-invariant if (Id®@X)u!f = p(X f) for
each superfunction f, where p stands for the multiplication morphism and the tensor
product of algebras of sections must be understood as the completed topological tensor
product (in a different sense for different sorts of supermanifolds — smooth, analytic et
cetera).

The body, gg, of a Lie superalgebra over an augmented graded-commutative al-
gebra A, is a Lie superalgebra over the basic field K. Therefore, a Lie superalgebra g
over an augmented graded-commutative algebra A (in particular, any algebra of Grass-
mann origin, say, a Grassmann algebra) is, from the viewpoint of deformation theory,
a deformation of its body over Spec A, see [57].

A super version of the Lie-Cartan theorem for BLK supermanifolds was obtained by
Berezin and Leites [27] and Kostant [79]: every finite-dimensional Lie K-superalgebra
is isomorphic to the Lie superalgebra of an essentially unique supergroup G such that
the underlying Lie group of G is simply connected. (The first ever approximation to
this result, at the level of formal supergroups, was obtained in [26).) Later this result
was extended by a number of authors to supergroups over “algebras of supernumbers”
A belonging to various classes [122, 39, 17, 141, 100, 102, 111]. The most general
result of this kind was obtained by the author [102, 111]: every finite-dimensional Lie
A-superalgebra, where A is a complete locally multiplicatively convex graded commu-
tative local algebra, is isomorphic to the Lie superalgebra of an essentially unique A-
supergroup G such that the underlying Lie group of G is simply connected. Moreover,
G is a DeWitt supergroup. (A topological algebra A is called locally multiplicatively
convez, or locally m-convez, or just Lm.c., if it is isomorphic to a subalgebra of the
direct product (with the Tychonoff topology) of a family of normed algebras. Equiv-
alently: the topology of A is determined by the family of all continuous seminorms
p with the property p(zy) < p(z)p(y). (Such seminorins are called submultiplicative
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ones.) Still another equivalent definition: convex circled multiplicative subsemigroups
of A form a neighbourhood basis at zero. The theory of such algebras was developed in
(3] and [93]; see also [61].) In other words, every deformation of a finite-dimensional Lie
superalgebra over the prime spectrum of a complete L. m.c. graded commutative local
algebra (GLAM algebra — from Graded Local Arens-Michael) is enlargable to a De-
Witt supergroup. Heuristically, deformations of finite-dimensional graded Lie algebras
come from deformations of corresponding graded Lie groups. We hope that DeWitt
supergroups can be thought of as deformations of graded Lie groups over spectra of
graded-commutative algebras. Thus, DeWitt theory might fit in the bed of deforma-
tion theory of graded Lie groups. To our knowledge, there is no mathematically rigorous
approach yet.

Here is an example due to DeWitt [54, 55] of a Lie supergroup in dimension (0,1)
which does not come from any graded Lie group. Define a multiplication morphism,
inversion morphism, and the unity morphism on the supermanifold A(®?) as

0xn=06+n+ cln; 67'=-6, e=0

(¢ being an odd constant.) The Lie superalgebra of the above supergroup it is isomor-
phic as a graded A-module to A @ K®! ~ A1X + A'X, where X is the odd generator,
with the only (anti)commutation relation [X,X] = 2¢X. This is a deformation, over
Spec A, of the Abelian Lie superalgebra of dimension (0,1). (Just set ¢=0.)

Surprisingly, the above results are no longer true in infinite dimensions. A recent
result of the author [110] indicates that Rogers supergroups may be indispensable
in some situations. An example has been constructed of an infinite-dimensional Lie
superalgebra g over the DeWitt supernumber algebra A such that g comes from a
Rogers supergroup and comes from no DeWitt supergroup. Another example shows
that an infinite-dimensional Lie A..-superalgebra can be (even Rogers) non-enlargable,
while the body is an enlargable Banach-Lie algebra.

For some other aspects of super Lie theory, consult 58, 98, 113, 117, 118|.

LINKS BETWEEN SUPERMATHEMATICS AND “CLASSICAL” MATHEMATICS

From the very beginning, superanalysis and supergeometry were shaped after clas-
sical analysis and geometry. In some cases the process of “superization” constitutes no
difficulties and is a mere formal rewording of a definition or a proof. In other cases
(such as superdeterminant) a good portion of inventiveness was needed, and “superiza-
tion” proved to be highly nontrivial. Anyway, the ease with which one can “superize”
numerous classical concepts and results, suggests that the process of “superization” can
be given a metamathematical form; however, very little has been done in this direction.
(We shall discuss the possibility of such a kind in our concluding remarks.)
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Of course, many objects of superanalysis can be themselves interpreted as “clas-
sical”, “non-super” objects. One striking example of this kind is Batchelor’s theorem
(20, 32], which puts BLK supermanifolds and exterior algebras on vector bundles in
a one-to-one correspondence. Even before Batchelor’s result, it was known among the
physicists that the structure sheaf of a superspace (that is, the totality of superfunc-
tions, or superfields) can be thought of as the sheaf of differential forms on a smooth
manifold, and, say, the famous paper by Witten [146] was written in this context. An-
other surprising result by Batchelor [21] enables one to view BLK supermanifolds as
pairs of ordinary manifolds.

Atiyah suggested [5] that “super” analysis and geometry may be the limit of ordi-
nary analysis and geometry on a smooth manifold; to my knowledge, the idea has not
been developed by anyone.

Now I wish to proceed to the discussion of another idea, belonging to Manin [87].
He points to many occasions in theoretical physics where bosonic effects arose in the
presence of infinitely many fermionic sources. Mathematically, it could mean that
fermionic coordinates are primary with respect to the bosonic ones; in particular, Manin
suggested that

the even geometry = a collective effect in co-dimensional odd geometry

and remarked that this idea “is still awaiting the precise mathematical theory”. He
writes: “Our usual four space-time coordinates possibly reflect only the collective effect,
a coherent state of the world of quantum fields at low temperature, which makes possible
the existence of life in its usual form.”

I wish to put forward now the rudiments of a possible mathematical explanation of
such a phenomenon. We need a technique well suited for handling limiting processes,
and it comes as no surprise that at this stage another brand of non-classical analysis
comes into being - Nonstandard Analysis.

All constructions and results can be reshaped by means of ultraproducts. However,
it is our belief that a nonstandard approach is more beneficial.

NONSTANDARD HULLS

Nonstandard Analysis is an invention of Abraham Robinson [119], and it is of
about the same age as the subject of my talk. The main idea of Nonstandard Analysis
is to proceed from classical objects - such as groups G, algebras A, topological spaces
X, the real line R and so on — to their nonstandard enlargments, denoted by putting
a star at the upper left corner: *G, *4, *X, *R. Those enlargments are models
of the above structures with respect to an appropriate language, a so-called Higher
Order Language, with variables running over relations of any order on the original
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set. The main tool of nonstandard analysis is the so-called Transfer Principle, which
implies that a statement P about a structure A, expressed in terms of the Higher
Order Language, is true if and only if a statement *P about the enlargement *90,
obtained by putting stars on all the constants of P, is true. Every object of the form
*A contains A (in an appropriate sense), and on nontrivial occasions (namely, if 4 is
infinite) one has A C *A. For example, the nonstandard real line *R forms, from a
classical viewpoint, a non- Archimedean ordered field; in particular, it contains infinitely
small and infinitely large elements. At the same time, in a model-theoretic sense, *R
shares all the properties of the ordinary real line, R. Objects of the form *A are called
standard, and objects which are themselves elements of standard objects are called
internal. All other objects are called erternal. For example, the object *R is standard;
an infintesimal non-zero element a € *R is internal but nonstandard; and the totality
of all infinitesimal elements, pr(0) = {z € *R:Vn € N |z| < 1/n} is an external set.
(The Transfer Principle applies to internal objects only, so all knowledge about external
sets is obtained in a roundabout way.) The most important — and even in a certain
sense unigue — way of constructing nonstandard enlargments is via ultrapowers, so the
whole theory can be rewritten in the language of ultrapowers; however, it is usually
much more difficult to prove things about ultrapowers.

Let us discuss the concept of the nonstandard hull [139]. Let E € *9 be in
internal normed space. By fin E one denotes the (external) set of all the norm finite

elements of E, that is,
finE = {z € E : ||z|| is finite}.

Similarly, one puts
1e(0) ={z € E: [|z|| = 0}.

Both fin E and pg(0) are linear subspaces of E over R. The quotient linear space
E:.=fn E/pe(0) is endowed with a norm as follows. Let mg:fin E — E stand for the
quotient homomorphism. Then the following rule is easily verified to define E on Ea
norm in a correct way:

Inzzllz = stliallz, = € fin E

where st : inR — R is the standard part map. The standard normed space Eis
Banach. It is called the nonstandard hullof E.

Now let A € *M be a normed algebra endowed with a submultiplicative norm.
In this case, fin A is an R-algebra and pp(0) is a two-sided ideal in it; thus, the hull
A4 is a standard R-algebra. The norm on A is submultiplicative and complete. The
algebra A is “of the same type” as A; to be more precise, if A belongs to some variety
of algebras, then so does A In particular, all the (standard) identities which hold in A
are valid in A as well, and if A is an associative (unital, Lie, ...) algebra then so is A.

https://doi.org/10.1017/50004972700009643 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009643

154 V. Pestov [20]

The construction of the nonstandard hull will be applied by us only in the case
where the space E (or algebra A) is standard. In this situation, it makes sense also for
locally convex spaces and algebras [139].

COLLECTIVE EVEN EFFECTS IN INFINITE-DIMENSIONAL ODD SUPERSPACES:
SPATIAL RESULTS

Consider an infinite-dimensional Grassmann algebra A (co0) — or, equivalently, a
purely odd supermanifold of dimension (0,c0). Put an l;-type norm on the algebra.
It is a local algebra, its prime spectrum is one-pointed; indeed, if @ is a quasi-nilpotent
element, then for every character x one has x(8) = 0. Recall that within the paradigm
of functional analysis, characters of algebras of functions correspond to points, so the
even geometry associated to a supermanifold of dimension (0, 00) is trivial.

Now suppose that everything happens within a nonstandard model of analysis, *0t.
Fix an infinitely large positive integer x. For any ¢ € [1,k] C *N, let 8; := £3;-1&2;.
Each 6; is an even 2-nilpotent element with unit norm. Put

6= (CardI)™" ) 6.

i€l

The key statement is that for any n € N standard, ||0"*| = 1.
Indeed, ||6*]] < ||8]™ = 1. On the other hand, of the totality of #™, where

"1 monomials are

7 := Card I, monomials in the representation of 6™, at most C2yg
vanishing. Since it is easy to see that the contribution to the norm of the sum from the

rest of monomials is the same for any two of them,
120" 297" - Con" 1 =1-Ch/n~1

Therefore, there are sufficiently many even elements of spectral radius 1 in the
nonstandard hull algebra m; but it means that there are sufficiently many characters
on the same algebra. Denote the space of all characters of m by Xo. One can show
that Xp is an infinite-dimensional unseparable compact space. This space contains a
topological copy of the cube I™ for each n.

One can construct a superspace X starting with the graded-commutative Banach
algebra m The construction is a version of the construction of the prime spectrum
of a graded ring, while the Zariski topology is replaced by the stronger Gel'fand (weak)
topology, and necessary completions of all “superfunction algebras” are made. In other
terms, it is a solution to a certain universal problem. The resulting superspace, X, is
“very big,” and it is infinite-dimensional in the odd sector as well.
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In an eye-catching form, this result looks as follows:
qli_'ngo (0,9) = (o0, 00).

One can construct the even sector of the superspace X as the geometric space
X,ed, the quotient of X by the sheaf of all quasinilpotents. The space Xneqd is called
the reduced subsuperspace of X (see [88]).

The above construction was suggested by the author [104, 105]. With quite
obvious modifications, it extends to the case of an arbitrary locally convex graded-
commutative algebra A, and it is functorial (provided that all nonstandard enlargements
are ultrapowers with respect to a fixed ultrafilter). One of the functors arising is a con-
travariant functor from the category G of locally convex graded-commutative algebras
and continuous even homomorphisms to the category Tych of Tychonoff topological
spaces and continuous mappings. The category G°F opposite to G can be thought of
as a category of superspaces of dimension (0,00), and the resulting functor from G°?
to Tych is covariant.

Two other functors arising send G°P to the category of geometric (super)spaces.

In [109] it was shown that the geometric space X image of the algebra A = A4
(the exterior algebra on countably many odd generators, endowed with the strongest
locally convex topology making the set of generators bounded) under the nonstandard
hull functor carries a certain analytic structure. Namely, there exists a homeomorphic
embedding ¢ of the closed unit disk D C C into X in such a way that for every
ac KTl the composition of ¢ and the Gelfand transform @ of a is a holomorphic map
from D to C.

GRADED LIE-CARTAN PAIRS

Here we shall briefly consider the concept of a (graded) Lie-Cartan pair [74, 75, 66,
67] which is one “non-spatial” way to deal with noncommutative differential geometry
[48]. A Lie-Cartan pair (L, A) consists of a graded-commutative algebra 4, a Lie
(super)algebra L (not in general a Lie superalgebra over A in our sense) which is
a graded left unital A-module (not necessarily free over A), and a fixed (even) Lie
homomorphism L — Der A, subject to the following axioms.

(1) a(éb) = (af)b for all a,b€ A and ¢ € L;

() [, a7) = (—1)®af¢,n] + (€a)y forall £, ne L and a € A.
(Here [,] stands for the supercommutator in L, and the usual conventions about
homogenuous elements are assumed.) (The basic case to bear in mind is that where

A = C*(X) is the algebra of smooth functions on a finite-dimensional manifold X,
and L = vect (X) is the Lie algebra of smooth vector fields on X .)
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Given a graded unital A-module E, one can introduce in a formal way the concept
of an E-connection as a certain linear map L — End E, then to define the curvature,
and a number of classical operators (such as the exterior derivative), thus enabling one
to develop a version of differential geometry in an algebraic (non-spatial) framework. An
advantage of such an approach is that it embraces both classical differential geometry on
smooth manifolds and supergeometry. In particular, the case where A is a Grassmann
algebra and L is the algebra of all graded derivations of A corresponds to the purely
odd (fermionic) differential geometry.

Of course, given a (graded) commutative aglebra A, the pair (Der A, A) forms a
Lie-Cartan pair. One of the difficulties in such a general case is that it is not clear
whether A admits nontrivial derivations at all.

The technique of nonstandard hulls (or, equivalently, ultraproducts) permits one,
firstly, to construct new examples of nontrivial Lie-Cartan pairs, and secondly, to push
on further the program of “bosonisation” of purely odd geometry.

Consider a Lie-Cartan pair (L, A) and assume that the algebra A of “functions”
carries a locally convex topology. (This is invariably the case in all “classical” examples.
Whether or not the topology on algebras of superfunctions in the purely odd case comes
from some natural causes, and what the real significance of such a topology is, we know
not. We suggest that the presence of a topology on a function algebra is a way to
encode its “spatiality.”) We shall assume that the fixed homomorphism L — Der A is
a monomorphism. (The cases where the kernel of the above homomorphism is non-zero,
play a certain réle in theory [47], and even the degenerate case where this kernel is L
does so — the so-called depletions of Lie-Cartan pairs. However, we wish to exclude such
cases from consideration.)

Denote by fin L the set of all £ € L such that £(fin A) C fin A, and by pz(0) the
set of all £ € L with {z € p4(0) for all z € finA. One can check that finL is a Lie
subalgebra of L, and pz(0) is a Lie ideal in fin L. Denote by L the quotient Lie algebra
fin L/p1.(0). The monomorphasm fin L — Der fin A factors through 1 (0), giving rise
to a monomorphism L - DerA. ltis easy to check the axioms of a Lie-Cartan pair
for the pair (L,A) . We call it the nonstandard hull of the pair (L, A).

One can show now, using the known description of the Lie superalgebra of deriva-
tions of a Grassmann algebra [73] that the nonstandard hull of the Lie-Cartan pair
(Der Ali, Al1) of infinite-dimensional fermionic differential geometry is highly non-
trivial. In particular, the nonstandard hull algebra of derivations Dﬂll is rich in
the following sense: if an element a € /’\-l\l is such that for every £ € Dﬂll one has
éa = 0, then a € K is a constant. This result gives hope that the even differential
geometry of the nonstandard hull //\Tl is substantial (both in present “nonspatial” ver-
sion, and in “spatial” one, reshaped for the geometric space Xy .q). See [112] for more

https://doi.org/10.1017/50004972700009643 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009643

(23] Analysis on superspace 157

details.

SOME REMARKS

It is our belief that further development of analysis on superspaces will be guided by
two fundamental ideas: “superization” (giving the process of “superization” of even con-
cepts a metamathematical form), and “bosonization” (Manin’s idea discussed above).
It is plausible that the basic notions of superanalysis in the long run will be put on a
topos-theoretic ground [71]. (An impressive program is sketched by Molotkov in [95].)
One of the basic notions in this connection may be that of a “pointless space” (locale,
frame) - or, rather, an appropriate super analogue of it. Curiously enough, Berezin
himself insisted that the “true” notion of a supermanifold should be “pointless”, and
he objected to publishing his joint results with Leites on supermanifolds, considering
these as a preliminary version. (See {83].)

If superanalysis and supergeometry are to become a kind of nonstandard model
theory, then “superization” of some ordinary notion will look very much like the pro-
cedure of “putting a star” in nonstandard analysis [119] or the “up” procedure in
Boolean-valued analysis [140, 81].

A closely related powerful development is braided category theory, offering a new
look at quantum groups [72, 86, 89]. Supermathematics finds a place inside this theory
as a “testing ground” for new concepts; it is a case both not quite trivial and yet tame,
where “everything works well.”

Synthetic geometry [94] may turn out to be another very important tool in es-
tablishing a precise relationship between purely odd superspaces and spaces of usual
analysis. The mathematical reason for this is very simple: the Weil algebra W(n),
playing a major réle in synthetic analysis and geometry (an associative unital algebra
freely generated by n 2-nilpotent elements), plainly embeds into the even part of the
Grassmann algebra A (2n). See the interesting paper [147], establishing the first no-
tions of emerging synthetic supergeometry. It may turn out that the nonstandard hull
technique is also applicable to Weil algebras, thereby leading to an interplay between
the two kinds of infinitesimals.

An account of unsolved problems in supermanifold theory is contained in the paper
by Leites [84).
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