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BAND-LIMITED WAVELETS
WITH SUBEXPONENTIAL DECAY

JACEK DZIUBAŃSKI AND EUGENIO HERNÁNDEZ

ABSTRACT. It is well known that the compactly supported wavelets cannot belong
to the class C1(R) \ L2(R). This is also true for wavelets with exponential decay. We
show that one can construct wavelets in the class C1(R) \ L2(R) that are “almost” of
exponential decay and, moreover, they are band-limited. We do this by showing that
we can adapt the construction of the Lemarié-Meyer wavelets [LM] that is found in
[BSW] so that we obtain band-limited, C1-wavelets on R that have subexponential
decay, that is, for every 0 Ú ¢ Ú 1, there exits C¢ Ù 0 such that j†(x)j � C¢e�jxj

1�¢
,

x 2 R. Moreover, all of its derivatives have also subexponential decay. The proof is
constructive and uses the Gevrey classes of functions.

1. Introduction. An orthonormal wavelet † is said to have exponential decay if
there exist c Ù 0 and ã Ù 0 such that j†(x)j � ce�ãjxj for all x 2 R. The spline wavelets
have exponential decay ([Le]) as well as the compactly supported wavelets ([Da]). But,
there is no orthonormal wavelet with exponential decay belonging to C1(R) such that
all its derivatives are bounded. To see this, suppose that such a wavelet † exists. The
exponential decay of † would imply that

†̂(z) =
Z

R
e�izx†(x) dx

is a holomorphic function on j Im zj Ú ã. Moreover, the smoothness and decay of †
would imply that all the moments of † are zero. (See Theorem 3.4, Chapter 2, in [HW]).

Hence, dn†̂
dòn (0) = 0 for all n = 0Ò 1Ò 2Ò    . The expansion of †̂(z) in powers of z around

the origin shows that †̂ � 0 in a neighborhood of z = 0. Since fz 2 C : j Im zj Ú ãg
contains the real line in its interior, † must be the zero function on R.

Orthonormal wavelets† that belong to C1(R) have been exhibited in [LM]. They are
band-limited (i.e. the supports of their Fourier transforms are bounded) and belong to the
Schwartz class S. They can be constructed using smooth “bell” functions as explained
in [AWW] or [HW]. It is impossible, however, for any one of these wavelets to have
exponential decay (since †̂ � 0 in a neighborhood of the origin).

DEFINITION 1.1. A real-valued function f defined on R is said to have subexponential
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BAND-LIMITED WAVELETS 399

decay if whenever 0 Ú ¢ Ú 1, there exists C¢ Ù 0 such that

j†(x)j � C¢e
�jxj1�¢

for all x 2 R.

We shall show how to construct band-limited, orthonormal wavelets with subexponen-
tial decay belonging to C1(R). The construction is obtained by finding an appropriate
“bell” function b whose Fourier transform has subexponential decay. This is accom-
plished by means of the Gevrey classes of functions, whose definition and properties are
presented in the next section.

2. The Gevrey classes.

DEFINITION 2.1. For é Ù 0, the Gevrey class Γé is the set of all C1 real-valued
functions defined on R such that for every compact set K ² R there is a constant CK

satisfying
jDnf (x)j � CKCn

KnnéÒ
for all x 2 K and for all n = 1Ò 2Ò 3Ò    .

DEFINITION 2.2. For é Ù 0, the (small) Gevrey class çé is the set of all C1 real-valued
functions defined on R such that for every compact set K ² R and every ¢ Ù 0, there is
a constant CKÒ¢ satisfying

jDnf (x)j � CKÒ¢¢n(n!)éÒ
for all x 2 K and for all n = 1Ò 2Ò 3Ò    .

We have taken the above definitions from [Ho1] (pp. 280–281) and [Ho2] (p. 137).
Since n! � nn it is clear that for every é Ù 0

çé ² Γé(2.3)

LEMMA 2.4. If 0 Ú é0 Ú é then Γé0 ² çé.
PROOF. Let K ² R be compact and ¢ Ù 0. For f 2 Γé0 we can find CK Ù 0 such that

jDnf (x)j � CKCn
Kné

0nÒ
for all x 2 K and all n = 1Ò 2Ò 3Ò    . By Stirling’s formula (n! ¾ p

2ônnne�n) we can
write

jDnf (x)j � C0
K(n!)é(C0

K)n (n!)é
0�éené0

(
p

2ôn)é0
Ò x 2 K

The sequence An = C0
K(n!)

é0�é
n eé

0Û(
p

2ôn)é
0Ûn tends to zero as n !1 since é0 Ú é. Thus,

there exists N(¢) 2 N such that for all n ½ N(¢), An � ¢. Hence, for all x 2 K,

jDnf (x)j � C0
K¢n(n!)éÒ
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400 J. DZIUBAŃSKI AND E. HERNÁNDEZ

for all n ½ N(¢). This inequality is also true for n = 1Ò 2Ò    ÒN(¢) � 1 by enlarging the
constant if necessary.

The Gevrey classes satisfy çé1 ² çé2 and Γé1 ² Γé2 when 0 Ú é1 Ú é2. When é Ù 1
the classes çé and Γé contain “cutoff” functions. This follows from Theorem 1.3.5 in
[Ho1]. We feel that it is worthwhile for the reader to present the essential ingredients of
this result. With ü = ü[0Ò1] write üa = 1

aü( x
a ). For any sequence a1 ½ a2 ½ Ð Ð Ð Ù 0 such

that a =
P1

j=1 aj Ú 1, the function

ßk = üa1 Ł Ð Ð Ð Ł üak

belongs to Ck�1(R), has support in [0Ò a] and converges as k ! 1 to a function ß 2
C1(R), with support in [0Ò a], such that

R
R ß(x) dx = 1 and

jDnß(x)j � 2n

a1 Ð Ð Ð an
(2.5)

By taking an = n�é in the above construction it follows thatß 2 Γé when é Ù 1. (Observe
that in this case

P1
n=1 n�é is a convergent series.)

This result shows that there are “cutoff” functions in every class Γé and çé when
é Ù 1. A modification of the above regularization procedure shows that there exists a
“cutoff” function which belongs to every Γé and çé for all é Ù 1.

PROPOSITION 2.6. For every a Ù 0 there exists ßa 2 Γé for every é Ù 1. Moreover,
ßa ½ 0, supßa ² [�aÒ a] and

R
R ßa(x) dx = ôÛ2.

PROOF. Since Γé is invariant under dilations and multiplication by constants, it is
enough to show the result for a = 1 and show that

R
R ßa(x) dx Ú 1. Let h be an even

function such that h 2 C1([�1Ò 1]), h ½ 0, and
R 1
�1 h(x) dx = 1. Choose ém = 1 + 1

m and
let Nm be an increasing sequence of positive integers such that

X
n½Nm

1
ném

Ú 1
2m


Choose an = n�ém when Nm � n Ú Nm+1. Observe that

X
n½N1

an �
1X

m=1

1
2m

= 1

Define
ß(n) = haN1

Ł haN1+1 Ł Ð Ð Ð Ł han

where ha(x) = 1
a h( x

a ), so that
R
R ha(x) dx = 1. Obviously supß(n) ² [�1Ò 1]. We shall

show that for every é Ù 1, there exists C = Cé such that for all x 2 R and all N =
1Ò 2Ò 3Ò    ,

jDNß(n)(x)j � Cé(Cé)
NNéNÒ(2.7)
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for all n ½ n(CéÒN). Take m and n so large that ém Ú é, and Nm + N Ú n. Then,

DNß(n) = haN1
Ł haN1+1 Ł Ð Ð Ð Ł haNm

ŁDhaNm +1 Ł Ð Ð Ð Ł DhNm+N Ł Ð Ð Ð Ł han 
We have

kDhank1 =
1
an

Z
R

1
an

þþþþDh
� x

an

�þþþþ dx � C
an

� Cném

if n ½ Nm. Thus, using
R

u Ł v = (
R

u)(
R

v), and
R

R ha = 1, we deduce,

jDNß(n)(x)j � CN(Nm + 1)ém Ð Ð Ð (Nm + N)ém

� CN(Nm + N)émN � CNNémN
m NéN

� CNN2N
m NéN � Cé(Cé)

NNéNÒ
where Cé = CN2

m (observe that Nm depends on é). One can show that fDNß(n) : n = N1Òg
is a Cauchy sequence for every N = 0Ò 1Ò 2Ò    . Thus, ß(n) converges to a function
ß which satisfies 2.7 with ß(n) replaced by ß. Hence, ß 2 Γé for all é Ù 1 and
supß ² [�1Ò 1].

The behaviour of the Fourier transforms of functions with compact support that are
contained in çé is given in the following result.

PROPOSITION 2.8. Let é Ù 0. Suppose f is a function such that sup f ² [�AÒA] and
f 2 çé. Then, for every B Ù 0 there exists a constant CB such that

jf̂ (z)j � CBeAj Im(z)je�BjRe zj1Ûé Ò z 2 C

Proposition 2.8 is a generalization of one of the implications in the Paley-Wiener
theorem and its proof can be found in Lemma 12.7.4. of [Ho2].

3. The construction. For fixed a Ù 0 choose a “cutoff” function ßa as in Proposi-
tion 2.6. In particular, ßa 2 Γé for every é Ù 1. Set

ía(x) =
Z x

�1
ßa(t) dt

Observe that ía 2 Γé for every é Ù 1. As in [AWW] we consider Sa(x) = sin
�ía(x)

�
and

Ca(x) = cos
�ía(x)

�
, so that

ba(x) = Sa(x � ô)C2a(x � 2ô)Ò a � ô
3
Ò(3.1)

is a bell function associated with the interval [ôÒ 2ô] as considered in [AWW] or [BSW].
Let us assume for the moment (see Theorem 3.3 below) that Sa and Ca belong to Γé for
every é Ù 1. Since Γé is an algebra (Proposition 8.4.1 in [Ho1]) and it is invariant under
translations, it follows that ba 2 Γé for every é Ù 1. Extending ba evenly to [�1Ò 0] it
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is proved in [AWW] (see also Corollary 4.7 of Chapter 1 in [HW]) that the function †
defined by

†̂a(ò) = eiòÛ2ba(ò)(3.2)

is an orthonormal wavelet in L2(R).
The following result shows, as a particular case, that the functions Sa and Ca, con-

structed as the composition of the sine and cosine functions with ía, belong to Γé for
every é Ù 1.

THEOREM 3.3. Let é ½ 1. Suppose that F is an entire function and f 2 Γé. Then,
g(x) = F

�
f (x)

� 2 Γé.

PROOF. We have to show that for every compact set K ² R there is a constant C0

such that
jDNg(x0)j � C0CN

0 NéN

for all x0 2 K and all N = 1Ò 2Ò    . Using the Taylor expansion we can write

f (x) =
NX

n=0

1
n!

Dnf (x0)(x � x0)n + RN(x; x0) � fN(x) + RN(x)

Obviously, DNg(x0) = DN[F(fN)](x0). By the assumption, F
�
fN(z)

�
, z 2 C, is analytic,

and by the Cauchy formula we can write

DNg(x0) =
N!
2ôi

Z
°N

F
�
fN(z)

�
(z � x0)N+1

dzÒ

where °N = fz 2 C : jz � x0j = 1
2eC N1�ég and C is the constant such that jDnf (x)j �

CCnnén for all x 2 K and all n = 1Ò 2Ò    . If z 2 °N, we use Stirling’s formula to obtain

jfN(z)j �
NX

n=0

1
n!

CCnnén
� 1

2eC
N1�é

�n

�
NX

n=0

1
n!

Cnén
1

(2e)n
Nn�né

� C0
NX

n=0
nén�nen 1

(2e)n
Nn�né

= C0
NX

n=0

1
2n

� n
N

�én�n

Since é ½ 1, we have jfN(z)j � C0P1
n=0

1
2n = 2C0. Since F is analytic we obtainþþþF�fN(z)

�þþþ � C00 on °N. Thus,

jDNg(x0)j � N!
2ôC00 2ô

2eC
N1�é

� 1
2eC

N1�é
��(N+1)

� C1 N!(2eC)NN(é�1)N
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Using N! � NN we obtain

jDNg(x0)j � C1(2eC)NNéN � C0CN
0 NéN

where C0 = maxfC1Ò 2eCg.

REMARK. One can find in the literature that if F is an entire function and f 2 Γé,
then h(x) = f

�
F(x)

� 2 Γé (see Proposition 8.4.1 in [Ho1]).

COROLLARY 3.4. There exist band-limited, C1, orthonormal wavelets in L2(R) with
subexponential decay. Moreover all of their derivatives have also exponential decay.

PROOF. Let 0 Ú ¢ Ú 1 and choose é = 1
1�¢ (é Ù 1). The function ba defined by 3.1, as

well as its even extension to (�1Ò 0] belong to Γé for every é Ù 1 by Theorem 3.3. By
Lemma 2.4, ba 2 çé for every é Ù 1. By Proposition 2.8 (with B = 1) the orthonormal
wavelet †a given by 3.2 satisfies

j†a(x)j = C
þþþþb̂a

�
x +

1
2

�þþþþ � C¢e
�jx+ 1

2 j
1Ûé � C¢e

�jxj1�¢ Ò x 2 R

That †a is band-limited is obvious from the definition of ba. The fact that all of its
derivatives have also exponential decay follows from

jDn†a(x)j = C
þþþ�òneiòÛ2ba(ò)

�
ˆ(x)

þþþ
and

òneiòÛ2ba(ò) 2 çé
for every é Ù 1.
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