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BAND-LIMITED WAVELETS
WITH SUBEXPONENTIAL DECAY

JACEK DZIUBANSKI AND EUGENIO HERNANDEZ

ABSTRACT. Itiswell known that the compactly supported wavelets cannot belong
to the class C*°(R) N L%(R). Thisis also true for wavelets with exponential decay. We
show that one can construct wavelets in the class C*°(R) N L2(R) that are “almost” of
exponential decay and, moreover, they are band-limited. We do this by showing that
we can adapt the construction of the Lemarie-Meyer wavelets [LM] that is found in
[BSW] so that we obtain band-limited, C*°-wavelets on R that have subexponential
decay, that is, for every 0 < ¢ < 1, there exits C, > 0 such that |¢(x)] < C.e X',
X € R. Moreover, all of its derivatives have also subexponential decay. The proof is
constructive and uses the Gevrey classes of functions.

1. Introduction. An orthonormal wavelet ¢ is said to have exponential decay if
there exist ¢ > 0 and a > 0 such that |1(x)| < ce ™ for al x € R. The spline wavelets
have exponential decay ([L€]) as well as the compactly supported wavelets ([Da]). But,
there is no orthonormal wavelet with exponential decay belonging to C*(R) such that
all its derivatives are bounded. To see this, suppose that such a wavelet ¢ exists. The
exponential decay of v would imply that

0@ = [ &0 dx

is a holomorphic function on | Imz < «. Moreover, the smoothness and decay of v
would imply that all the moments of 1 are zero. (See Theorem 3.4, Chapter 2, in [HW]).
Hence, %(O) =0foraln=0,12,.... The expansion of f/J(z) in powers of z around
the origin shows that ¢ = 0 in a neighborhood of z= 0. Since {z€ C : |ImZ < a}
containsthe real linein itsinterior, 1y must be the zero function on R.

Orthonormal waveletsy that belongto C*°(R) have been exhibited in [LM]. They are
band-limited (i.e. the supports of their Fourier transforms are bounded) and belong to the
Schwartz class S. They can be constructed using smooth “bell” functions as explained
in [AWW] or [HW]. It is impossible, however, for any one of these wavelets to have
exponential decay (si ncefp = 01in aneighborhood of the origin).

DerINITION 1.1. A real-valued function f defined on R is said to have subexponential
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decay if whenever 0 < £ < 1, there exists C. > 0 such that
lp(| < C.e ™

foral x € R.

We shall show how to construct band-limited, orthonormal wavel etswith subexponen-
tial decay belonging to C*°(R). The construction is obtained by finding an appropriate
“bell” function b whose Fourier transform has subexponential decay. This is accom-
plished by means of the Gevrey classes of functions, whose definition and properties are
presented in the next section.

2. TheGevrey classes.

DEFINITION 2.1. For § > 0, the Gevrey class I is the set of all C* real-valued
functions defined on R such that for every compact set K C R there is a constant Cx
satisfying

ID"(¥)| < CkCin™,

foral xe Kandforaln=1,23.....

DEFINITION 2.2. Foré > 0, the (small) Gevrey class?’ isthe set of all C* real-valued
functions defined on R such that for every compact set K C R and every £ > 0, thereis
aconstant Cx . satisfying

ID"(X)| < Ck..e"(n!)’,

foral xe Kandforaln=1,23.....

We have taken the above definitions from [Hol] (pp. 280-281) and [Ho2] (p. 137).
Sincen! < n"itisclear that for every 6 > 0

(2.3) v .
LEMMA 2.4. If0 < ¢’ <5thenT C .
PROOF. Let K C R becompactande > 0. For f € ' we can find Cx > 0 such that
ID"f(x)| < CkCan’™,
foralxe Kandadl n=1,23,.... By Stirling's formula (n! ~ +/27rnn"e™") we can
write / )
(nh)> —0e®

ID"f(x)] < C@(n!)é(c;()nm. x € K.

ThesequenceA, = Ck(n!)yfhé’/(\/ 2mn)”' /" tendsto zero asn — oo sinced’ < 6. Thus,
there existsN(e) € N such that for all n > N(¢e), A, < e. Hence, for adl x € K,

ID"(X)| < Cre"(n!)’.
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for al n > N(¢g). Thisinequality isalsotruefor n=1,2,...,N(¢) — 1 by enlarging the
constant if necessary. ]

The Gevrey classes satisfy 7t € %2 and It C 2 when 0 < 61 < §,. When§ > 1
the classes ¥? and I contain “cutoff” functions. This follows from Theorem 1.3.5 in
[Hol]. Wefeel that it is worthwhile for the reader to present the essential ingredients of
this result. With x = xo.1 write xa = 5x(3). For any sequencea; > a; > --- > 0 such
that a = 3% g < oo, the function

Pk = Xag * 7 * Xa

belongs to C¥"1(R), has support in [0, a] and converges as k — oo to afunction ¢ €
C*(R), with support in [0, a], such that Jg »(X) dx = 1 and

n

n
(2.5) DMl < o=
By taking a, = n~? inthe aboveconstructionit followsthat ¢ € ' when$ > 1. (Observe
that in this case >-°2, n™% is a convergent series.)
This result shows that there are “cutoff” functions in every class '’ and v when
6 > 1. A modification of the above regularization procedure shows that there exists a
“cutoff” function which belongsto every '’ and ¥’ for all § > 1.

PROPOSITION 2.6. For every a > 0 there exists ¢, € I for every § > 1. Moreover,
Pa > 0,5Uppa C[—a.a] and fr pa(X) dx = 7/2.

PROOF. Since ' is invariant under dilations and multiplication by constants, it is
enough to show the result for a = 1 and show that g ¢a(X) dX < oo. Let h be an even
function such that h € C*([—1,1]), h > 0, and J*; h(X) dx = 1. Chooseém = 1 + & and
let N, be an increasing sequence of positive integers such that

1 1
2 e <o

N>Np,

Choose a,, = n~%m when N < n < Nip1. Observe that
21
R R
Define
Py = haN1 * haN1+1 -k g,

where hy(X) = G%1h(§1), so that Jr ha(x) dx = 1. Obviously sup ¢y C [—1,1]. We shall
show that for every § > 1, there exists C = C; such that for all x € R and al N =
1,23,...,

2.7 IDNom (] < Cs(Cp)NNN,
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for al n > n(Cs, N). Takemand n so largethat 6, < 6, and Ny, + N < n. Then,
DNap(n) = haNl * haN1+1 *ooex gy #Dhgy koo x Dhyan - % gL

We have

c

IDh ||+ = i/R%‘Dh(%)‘dxg - <
W

if N> Nn. Thus, using fuxv = (S u)(SV), and Jg hy = 1, we deduce,

|DNL,0(n)(X)| < CN(Nm + ]_)!5m - (Nm+ N)’Sm
CN(Np + Ny N < CNNZoN NN

<
S CNNanNN§N S Cﬁ(c(s)NNéN.

where C; = CNZ, (observethat Ny, dependson ). One can show that {DNo@m :n=Ng_ }

is a Cauchy sequence for every N = 0,1,2,.... Thus, ¢ converges to a function
¢ which satisfies 2.7 with ¢, replaced by ¢. Hence, ¢ € I'* for al § > 1 and
supy C [—1,1]. n

The behaviour of the Fourier transforms of functions with compact support that are
contained in 7 is given in the following result.

PROPOSITION 2.8. Let > 0. Supposef is a function such that supf  [—A, A] and
f €79, Then, for every B > 0 there exists a constant Cg such that

[f(2) < Cgell'M@lgBIRed™ 7 C.

Proposition 2.8 is a generalization of one of the implications in the Paley-Wiener
theorem and its proof can be found in Lemma12.7.4. of [Ho2].

3. Theconstruction. For fixeda > 0 choosea " cutoff” function ¢, asin Proposi-
tion 2.6. In particular, ¢, € I for every § > 1. Set

0l = /j bt

Observethat 6, € " for every 5 > 1. Asin [AWW] we consider Sy(x) = sin(6a(X)) and
Ca(X) = cos(6a(X)), so that

(31) ba() = Su(x — m)Caa(x — 27). A< 7.

isabell function associated with the interval [, 2x] as consideredin [AWW] or [BSW].
Let us assume for the moment (see Theorem 3.3 below) that S, and C, belong to I for

every § > 1. Since [ is an algebra (Proposition 8.4.1in [Ho1]) and it is invariant under
translations, it follows that b, € I for every § > 1. Extending b, evenly to [—oo. 0] it
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is proved in [AWW] (see also Corollary 4.7 of Chapter 1 in [HW]) that the function v
defined by

(3.2 Dal€) = €4/2hy(€)

is an orthonormal wavelet in L2(R).

The following result shows, as a particular case, that the functions S, and C,, con-
structed as the composition of the sine and cosine functions with 6,, belong to I° for
every 6 > 1.

THEOREM 3.3. Let § > 1. Suppose that F is an entire function and f € . Then,
9() = F(f(x)) eI’
PrROOF. We have to show that for every compact set K C R there is a constant Cy
such that
ID"g(x0)| < CoCyN™

foral xo e Kandal N=1,2,.... Using the Taylor expansion we can write
N1
f() = 2. 7D (x0)(x — X0)" + Ru(x; X0) = fu(X) + Ru(x).
n=0 "%

Obviously, DNg(xg) = DN[F(fn)](Xo). By the assumption, F(fN(z)), z € C, isanalytic,
and by the Cauchy formula we can write

N F(f@)
D"000) = 577 [, =T

where wy = {z € C @ |[z— Xo| = 55=N*} and C is the constant such that [D"f (x)| <
CC'm"foralx e Kandaln=1,2,.... If z € wn, we use Stirling's formulato obtain
1

N 1 n
< - n.on 1-6
NG| < nZ=0 ~cCn (2 N )

N 1 1
< _ on
= 2" e

Nn—né

N 1
< C/ nzSn—nen Nn—n§
= C R Gy
N 1 /,n\én—n
=y =(=) .
25 (%)
Since § > 1, we have |[fn(9)] < C 2;’;202—1“ = 2C'. Since F is analytic we obtain
\F(fN(z))‘ < C” onwy. Thus,

IDNg(x0)|

IN

N! , 2 1 —(N+1)
o C// en Nl—(S - Nl—(S
2r 2eC (2eC )
C1 N!(2eC)NNE-DN,

IN
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Using N! < NN we obtain
IDVg(xo)| < C1(2eC)NN™N < CoCYN™

where Cy = max{C;, 2eC}. n

ReEMARK. One can find in the literature that if F is an entire function and f € ¢,
then h(x) = f (F(x)) € I (see Proposition 8.4.1in [Hol]).

COROLLARY 3.4. There exist band-limited, C*, orthonormal waveletsin L2(R) with
subexponential decay. Moreover all of their derivatives have also exponential decay.

PrROOF. Let0 < e < 1andchoosed = l35(5 > 1). Thefunction b, defined by 3.1, as
well asits even extension to (—oo. 0] belong to '’ for every § > 1 by Theorem 3.3. By
Lemma 2.4, b, € 7 for every 6 > 1. By Proposition 2.8 (with B = 1) the orthonormal

wavelet 1, given by 3.2 satisfies

111/5

~ 1 .
[Ya(¥)] = C ba(” E)‘ <cehi <ce M, xeR.

That 1, is band-limited is obvious from the definition of b,. The fact that all of its
derivatives have also exponential decay follows from

ID"pa(¥)] = C|(¢"€*/?ba(€)) ()|

and
nde/2h,(¢) € 70

for every 6 > 1. ]
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