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1. In the theory of Hilbert space operators an important question is whether an
operator is subnormal [3], [4], [7], [8]. A densely defined linear operator S in a complex
Hilbert space H is subnormal if there exists a normal operator N in a complex Hilbert
space K o H such that S N.

In [7] it has been proved that §, with its domain D(S) invariant under S, is
subnormal provided S has a total set of quasianalytic vectors and satisfies the
Halmos—Bram condition

> (S'f,, $'f;) =0 for all natural numbers n and all finite
i,j=0

sequences {f;} from the domain D(S) of S. (1.1)

In this paper it is shown that all operators § satisfying the generalized commutation
relation (i.e. (S*S — SS*)f = E*f, EAf = AES, for each f € D(S), with suitable symmetric
operator E) satisfy the Halmos—Bram condition. A similar result with £ =17 has been
proved by Jorgensen [5], but in a more involved way.

2. In this section it will be shown that each operator satisfying the generalized
commutation relation automatically satisfies the Halmos—Bram condition.

First we prove the following lemma.

LemMA. Let S be a densely defined linear operator in H. Let M be a dense linear
subspace of H such that M c D(S)ND(S*), SMc M and S*M c M. If there exists an
operator C such that

(i) M = D(C)N D(C*),

(ii) ($*S—8S*)f =Cf, SCf =CSf, foreachfeM, 22)
then
S*Cf =CS*f, foreachfeM
and . o
(5787 =3 k! ( i)(;)sf"‘(s*)""‘c"f, for each f € M, 2.3)

where, by definition
. i o
ST'=(8§"""=0 if 1>0, <,)=O if j>i
J
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Proof. Since S$*S — 8S*|y =Cly, C|um is symmetric and C(M)< M. This and (i)
imply that C|y=C*|y, so C*(M)cM. Thus (S*Cf,g)={(f C*Sg)={(f, CSg) =
(f, SCg) for all f, g € M. Since M is dense in H, S*Cf = CS*f for all f ¢ M. Now we prove
the condition (2.3) by induction on j. It is clear that the equation (2.3) holds for j=0.
Now we prove this equation for j =1 using induction on i. It is clear that (2.3) holds for
i=0, 1. Let i =2. The inductive assumption and the condition (2.1) imply that, for all
feM,

) . it /i1 .
(S*)'Sf =S*(s*)l—lsf =9* 2 k! ( >(l >Sl—k(S*):—l—kckf
k=0 \k/\ k
= S*IS(S*Y7'f + (i = (S
=S$*S(SH)Yf + (i - D(SHTICS
= [$S* + CI(S*Y'f + (i = 1)(S*)~'Cf
=S(SMf +i(S*)'Cf

ZH()(Jsrres

Now we show that the inductive step with respect to j holds. The inductive
assumption and the condition (2.2) for j =1 imply that

(S*)'S'f = (S*)Si1sf = go k() )ssty ey

i k! (] ; 1)<£)Sj—l—k[(s*)i—kslckf

k=0

- ;:)0 k("7 ()8 + - Rsntacy
Ll W

k
), e

= [S/(S*)f + é‘,l k!(j ; 1)( i)sf'k(s*)f-kckf]
+§1 (=5 +1)(s - 1)!(£
= SI(S*)f + él [k!(j ; 1)(}’()

+(i—k+1)k - 1)!(,{:11)(1( i 1)]si-k(s*)"-"ckf
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= Si(S*YF + é k(1)(})sstyrey

4 j i - .
— k'( )( )S] k¢ Cx\i—kpk .
2 ki )5Sy
Now we can state and prove the main result of the paper.

THEOREM 1. Let S be a densely defined linear operator in H. Let M be a dense linear

subspace of H such that M < D(S) N\ D(S*), SM = M and S*(M) c M. If there exists an
operator E such that

(I) McD(E)ND(E*), EMcM,
(1) (S*S — SS*)f = E?, SEf =ESf, foreach feM mn
(II1) (f, Eg)=(Ef,g), foreach f, geM,
then the Halmos—Bram condition holds on M.
Proof. The conditions (I) and (III) imply that E*(M) = M. Now, using the Lemma
with C = E? and the above assumptions we obtain:

n

> (S, S'Y = 2 ((S*)'S'%, £

i,j=0 i,j=0

k'
ij=
kS

l

=

*
I
=]

I
uMs uMs ||M8

@( )<S’ “(S*)THEY )
A
k

< ) (S*)i—kEkﬁ’ (S*)j_kEkﬁ>

<
~.

i
<§ <k>(s*)‘ KEXE, 2 ( ) S*)j—kEkﬁ>

3 (e

As a simple consequence Theorem 1 we obtain the following result.

[=]

BO.

Tueorem 2. Let S, E be as in Theorem 1 and let S have a total set of quasianalytic
vectors. Then the operator S is subnormal.

3. Now we make some comments on the assumptions of Theorem 1. Throughout the
whole of Section 3, §, E and M are assumed to satisfy the assumptions of Theorem 1.

If E =0, then $*S =5S* on M, s0 S|, is formally-normal [2].

If E=1, then (2.4)(II) takes the form S*S$ —SS*=17 on M. This equality, when
rewritten via cartesian decomposition of S, is equivalent to a commutation relation [6].
This case has been considered by Jorgensen [5].

Now let S € L(H) and M = H. The condition (2.4)(1I) in the form E*S = SE? implies
that E? is quasinilpotent [4], [6]. But E? is selfadjoint. So E>=0 and S is normal in
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consequence. Thus if one looks for subnormal operators which are not normal, then one
must consider unbounded operators in Theorem 1.

Let H be a separable Hilbert space with the orthogonal basis {¢;} = M. Below we
show that there is no diagonal operator E with distinct diagonal elements of multiplicity
one such that E2+#0 and which satisfies (2.4). If there is such an E, then the condition
ES = SE on M implies that E°Se; = SE®¢; = d;Se; and thus there exists a complex sequence
{b;} such that Se; = b,e;. So we can calculate E%,; = (5*S — S5*)e; =0, i e N, contrary to
E*#0.

At the end of this paper we give an example of an operator which satisfies the
condition (2.4) with E ¢ CI. Let H,, H, be separable Hilbert spaces with orthonormal
bases {ef:ieN}, k=1,2 and A,, A, be the weighted shift operators on H,, H,
respectively such that Acef=ief,,, k=1,2, ieN; see also Bargmann’s model 1]. We
define the operator S =a,A, +a,A, on H,® H,, where a, > a,>0. Since the operators
A,, A, are subnormal, S is subnormal too. A simple calculation shows that the operator §
satisfies the condition (2.4) with M =lin{e¥:ieN, k=1,2)} and E ¢ CI.
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