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We propose a consistent functional estimator for the occupation time of the spot
variance of an asset price observed at discrete times on a finite interval with
the mesh of the observation grid shrinking to zero. The asset price is modeled
nonparametrically as a continuous-time Itô semimartingale with nonvanishing dif-
fusion coefficient. The estimation procedure contains two steps. In the first step we
estimate the Laplace transform of the volatility occupation time and, in the second
step, we conduct a regularized Laplace inversion. Monte Carlo evidence suggests
that the proposed estimator has good small-sample performance and in particular it
is far better at estimating lower volatility quantiles and the volatility median than a
direct estimator formed from the empirical cumulative distribution function of local
spot volatility estimates. An empirical application shows the use of the developed
techniques for nonparametric analysis of variation of volatility.

1. INTRODUCTION

Continuous-time Itô semimartingales are widely used to model financial prices.
In its general form, an Itô semimartingale can be represented as

Xt = X0 +
∫ t

0
bsds +

∫ t

0

√
VsdWs + Jt , (1)

where bt is the drift, Vt is the spot variance, Wt is a Brownian motion, and Jt is a
pure-jump process. Both the continuous and the jump components are known to
be present in financial time series. From an economic point of view, volatility and
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jump risks are very different and this has spurred the recent interest in sepa-
rately identifying these risks from high-frequency data on X ; see, for example,
Barndorff-Nielsen and Shephard (2006) and Mancini (2009). In this paper we
focus attention on the diffusive volatility part of X while recognizing the pres-
ence of jumps in X .

Most of the existing literature has concentrated on estimating nonparametri-
cally volatility functionals of the form

∫ T
0 g(Vs)ds for some smooth function g,

typically three times continuously differentiable (see, e.g., Andersen et al. (2013),
Renault et al. (2014), Jacod and Protter (2012), Jacod and Rosenbaum (2013)
and many references therein). The most important example is the integrated
variance

∫ T
0 Vsds, which is widely used in empirical work. These temporally

integrated volatility functionals can be alternatively thought of as spatially inte-
grated moments with respect to the occupation measure induced by the volatility
process (Geman and Horowitz (1980)).

Motivated by this simple observation, Li et al. (2013) consider the estimation
of the volatility occupation time (VOT), defined by

FT (x) =
∫ T

0
1{Vs≤x}ds, ∀x > 0, (2)

which is the pathwise analogue of the cumulative distribution function (CDF).1

Evidently, the VOT also takes the form
∫ T

0 g(Vs)ds but with g discontinuous.
The latency of Vt and the nonsmoothness of g(·) turn out to cause substantive
complications in the estimation of the VOT.

To see the empirical relevance of the VOT, we note that the widely used in-
tegrated variance

∫ T
0 Vsds is nothing but the mean of the occupation measure∫∞

0 x FT (dx), where the equivalence is by the occupation formula2. Therefore,
the relation between the VOT, the VOT quantiles, and the integrated variance is
exactly analogous to the relation between the CDF, its quantiles and the mean
of a random variable. Needless to say, in classical econometrics and statistics,
much can be learned from the CDF and quantiles beyond the mean. By the same
logic, in the study of volatility risk, the VOT and its quantiles provide additional
useful information (such as dispersion) of the volatility risk which has been well
recognized as an important risk factor in modern finance.

Li et al. (2013) provide a two-step estimation method for estimating the VOT
from a high-frequency record of X by first nonparametrically estimating the spot
variance process over [0,T ] and then constructing a direct plug-in estimator
corresponding to (2). Their estimation method is based on a thresholding tech-
nique (Mancini (2001)) to separate volatility from jumps and forming blocks of
asymptotically decreasing length to account for the time variation of volatility
(Foster and Nelson (1996), Comte and Renault (1998)).

In this paper we develop an alternative estimator for the VOT from a new
perspective. The idea is to recognize that the informational content of the
occupation time is the same as its pathwise Laplace transform, and the latter

https://doi.org/10.1017/S0266466615000171 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000171


ESTIMATING THE VOLATILITY OCCUPATION TIME 1255

can be conveniently estimated as a sum of cosine-transformed logarithmic re-
turns (Todorov and Tauchen (2012b)). Following this idea, our proposal is to first
estimate the Laplace transform of the VOT and then conduct the Laplace inver-
sion. The inversion is nontrivial because it is an ill-posed problem (Tikhonov and
Arsenin (1977)). Indeed, Laplace inversion amounts to solving a Fredholm inte-
gral equation of the first kind, and the solution is not continuous in the Laplace
transform. In order to obtain stable solutions, we regularize the inversion step by
using the direct regularization method of Kryzhniy (2003a,b). The final estimator
is known in closed form, up to a one-dimensional numerical integration, and can
be easily computed using standard software.

The proposed inversion method and the plug-in method of Li et al. (2013) both
involve some tuning parameters, but they play very different roles and reflect the
different tradeoffs underlying these two methods. For the inversion method, the
first-step estimation of the Laplace transform does not involve any tuning. In fact,
the first-step is automatically robust to the presence of price jumps and achieves
the parametric rate of convergence when jumps are not “too active;” see Todorov
and Tauchen (2012b). In the second step, a tuning parameter is introduced for
stabilizing the Laplace inversion, at the cost of inducing a regularization bias.
For the direct plug-in method of Li et al. (2013), the key is to recover the spot
variance process, for which two types of tuning are needed. One is to select a
threshold for eliminating jumps, for which the trade-off is to balance the pass-
through of small jumps and the false elimination of large diffusive movements.
The other is to select the block size of the local window by trading-off the bias
induced by the time variation of the volatility and the sampling error induced
by Brownian shocks. For both methods, the optimal choice of the tuning pa-
rameters remains an open, and likely very challenging, question. We provide
some simulation results for assessing the finite-sample impact of these tuning
parameters.

We can further compare our analysis here with Todorov and Tauchen (2012a),
where somewhat analogous steps were followed to estimate the invariant proba-
bility density of the volatility process, but there are fundamental differences be-
tween the current paper and Todorov and Tauchen (2012a). First, unlike Todorov
and Tauchen (2012a), the time span of the data is fixed and hence we are inter-
ested in pathwise properties of the latent volatility process over the fixed time
interval. This is further illustrated by our empirical application which studies
the randomness of the (occupational) interquartile range of various transforms
of volatility. Thus, in this paper we impose neither the existence of invariant
distribution of the volatility process nor mixing-type conditions. While such con-
ditions may be reasonable for analyzing data from a long sample period, they are
unlikely to “kick in” sufficiently fast in short samples in view of the high per-
sistence of the volatility process (Comte and Renault (1998)). In our setup, we
allow the volatility process to be nonstationary and strongly serially dependent.
This asymptotic setting provides justification for estimating “distributional” or,
to be more precise, occupational properties of the volatility process using data
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within relatively short (sub)sample periods. Second, and quite importantly from
a technical point of view, the object of interest here (i.e., the VOT) is a ran-
dom quantity with limited pathwise smoothness properties. It is well known
that smoothness conditions are important in the analysis of ill-posed problems
(Carrasco et al. (2007)). Indeed, our analysis of the stochastic regularization bias
demands technical arguments that are very different from Todorov and Tauchen
(2012a), where the invariant distribution is deterministic and smoother. As a tech-
nical by-product of our analysis, we provide primitive conditions for the smooth-
ness of the volatility occupation density for a popular class of jump-diffusion
stochastic volatility models. Overall, the current paper can be viewed as an exten-
sion of the results in Todorov and Tauchen (2012a) to the theoretically different
setting of fixed time span and provides the theoretical justification for applying
the method in Todorov and Tauchen (2012a) over different time horizons.

Finally, the current paper is also connected with the broad literature on ill-posed
problems in econometrics; see Carrasco et al. (2007) for a comprehensive review.
In the current paper, we adopt a direct regularization method for inverting trans-
forms of the Mellin convolution type (Kryzhniy (2003a,b)), which is very dif-
ferent from spectral decomposition methods reviewed in Carrasco et al. (2007).
In particular, we do not consider the Laplace transform as a compact operator for
some properly designed Hilbert spaces. We prove the functional convergence for
the VOT estimator under the local uniform topology, instead of under a (weighted)
L2 norm. The uniform convergence result is then used to prove consistency of
estimators of the (random) VOT quantiles.

Our contribution is twofold. First, the proposed estimator is theoretically novel
and has finite-sample performance that is generally better than the benchmark set
by Li et al. (2013) in the presence of active jumps. To be specific, we provide
Monte Carlo evidence that the regularized Laplace inversion estimates are more
accurate than those of the direct plug-in method for estimating lower volatility
quantiles as well as the volatility median in jump-diffusion models. This pattern
appears in all Monte Carlo settings and is indeed quite intuitive: “small” jumps
are un-truncated, and they induce a relatively large finite-sample bias for volatility
estimation for lower quantiles. Moreover, this finding extends even to the estima-
tion of higher volatility quantiles when (asymptotically valid) nonadaptive trunca-
tion thresholds are used for the direct plug-in method. That noted, we do observe
a partial reversal of this pattern for estimating higher volatility quantiles when
certain adaptive truncation thresholds are used for the direct plug-in method, so
the proposed method does not always dominate that of Li et al. (2013). We further
illustrate the empirical use of the proposed estimator by studying the dependence
between the (occupational) interquartile range of various transforms of the volatil-
ity and the level of the volatility process. Such analysis sheds light on the model-
ing of volatility of volatility. Second, to the best of our knowledge, the ill-posed
problem and the associated regularization is the first ever explored in a setting
with discretely sampled semimartingales within a fixed time span. Other ill-posed
problems within the high-frequency setting will naturally arise, for example, in
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nonparametric regressions involving elements of the diffusion matrix of a mul-
tivariate Itô semimartingale; see Härdle and Linton (1994) for a review in the
classical long-span setting.

This paper is organized as follows. In Section 2 we introduce the formal setup
and state our assumptions. In Section 3 we develop our estimator of the VOT,
derive its asymptotic properties, and use it to estimate the associated volatility
quantiles. Section 4 reports results from a Monte Carlo study of our estimation
technique, followed by an empirical illustration in Section 5. Section 6 concludes.
The Appendix Section contains all proofs.

2. SETUP

2.1. The underlying process

We start with introducing the formal setup. The process X in (1) is defined on a
filtered space (�,F, (Ft )t≥0,P) with the jump component Jt given by

Jt =
∫ t

0

∫
R

(
δ (s, z)1{|δ(s,z)|≤1}

)
μ̃(ds,dz)

+
∫ t

0

∫
R

(
δ (s, z)1{|δ(s,z)|>1}

)
μ(ds,dz), (3)

where μ is a Poisson random measure on R+ ×R with compensator ν of the
form ν (dt,dz) = dt ⊗ λ(dz) for some σ -finite measure λ on R, μ̃ = μ− ν and
δ : �×R+ ×R �→ R is a predictable function. Regularity conditions on Xt are
collected below.

Assumption A. The following conditions hold for some constant r ∈ (0,2) and
a localizing sequence (Tm)m≥1 of stopping times.3

A1. X is an Itô semimartingale given by (1) and (3), where the process bt is lo-
cally bounded and the process Vt is strictly positive and càdlàg. Moreover,
|δ (ω, t, z)|r ∧1 ≤ �m(z) for all ω ∈ �, t ≤ Tm and z ∈ R, where (�m)m≥1
is a seqeuence of λ-integrable deterministic functions on R.

A2. For a sequence (Km)m≥1 of real numbers, E|Vt − Vs |2 ≤ Km |t − s| for all
t,s in [0,Tm] with |t − s| ≤ 1.

Assumption A imposes very mild regularities on the process X and is standard
in the literature on discretized processes; see Jacod and Protter (2012). The dom-
inance condition in Assumption A is only required to hold locally in time up to
the stopping time Tm , which often take forms of hitting times of adapted pro-
cesses; this requirement is much weaker than a global dominance condition that
corresponds to Tm ≡ +∞. This more general setup, however, does not add any
technical complexity into our proofs, thanks to the standard localization procedure
in stochastic calculus; see Section 4.4.1 in Jacod and Protter (2012) for a review
on the localization procedure.
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We note that Assumption A imposes no parametric structure on the underlying
process, allowing for jumps in Xt and Vt , and dependence between various
components in an arbitrary manner. In particular, we allow the stochastic volatility
process Vt to be dependent on the Brownian motion Wt , so as to accommo-
date the “leverage” effect (Black (1976)). The constant r in Assumption A1
controls the activity of small jumps, as it provides a bound for the generalized
Blumenthal–Getoor index. The assumption is stronger when r is smaller.

Assumption A2 requires the spot variance process Vt to be (locally) 1/2-Hölder
continuous under the L2 norm. This assumption holds in the well-known case
in which Vt is also an Itô semimartingale with locally bounded characteristics.
It also holds for long-memory specifications that are driven by fractional Brown-
ian motion; see Comte and Renault (1996). Assumption A2 coincides, albeit with
a different norm, to the one maintained by Renault et al. (2014).

2.2. Occupation times

We next collect some assumptions on the VOT and the associated occupation
density. In what follows we define Ft (·) as (2) with T replaced by t .

Assumption B. The following conditions hold for some localizing sequence
(Tm)m≥1 of stopping times and a constant sequence (Cm)m≥1.

B1. Almost surely, the function x �→ Ft (x) is piecewise differentiable with
derivative ft (x) for all t ∈ [0,T ]. For all x, y ∈ (0,∞), P({the inter-
val (x, y) contains some nondifferentiable point of FT (·)}∩ {T ≤ Tm}) ≤
Cm |x − y|.

B2. For any compact K ⊂ (0,∞), supx∈KE
[

fT ∧Tm (x)
]
< ∞.

Assumption B is used in our analysis on the estimation of FT (x) for fixed x .
As in Assumption A, we only need the dominance conditions to hold locally up
to the localizing sequence Tm . Assumption B1 holds if the occupation density of
Vt exists, which is the case for general semimartingale processes with nonde-
generate diffusive component and large classes of Gaussian processes; see, for
example, Geman and Horowitz (1980), Protter (2004), Marcus and Rosen (2006),
Eisenbaum and Kaspi (2007) and references therein. Assumption B1 holds more
generally under settings where Ft (·) can be nondifferentiable (and even discon-
tinuous) at random points, as long as these irregular points are located “diffu-
sively” on the line, as formulated by the second part of Assumption B1. This
generality accommodates certain pure-jump stochastic volatility processes, such
as a compound Poisson process with bounded marginal probability density.4

Assumption B2 imposes some mild integrability on the occupation density and
is satisfied as soon as the probability density of Vt is uniformly bounded in
the spatial variable and over t ∈ [0,T ], which is the case for typical stochastic
volatility models.

To derive uniform convergence results, we need to strengthen Assumption B as
follows.
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Assumption C. The following conditions hold for some localizing sequence
(Tm)m≥1 of stopping times and constants γ̃ > ε > 0.

C1. Almost surely, the function x �→ Ft (x) is differentiable with derivative
ft (x) for all t ∈ [0,T ].

C2. For any compact K ⊂ (0,∞), supx∈KE
[

fT ∧Tm (x)1+ε
]
< ∞.

C3. For any compact K ⊂ (0,∞), there exist constants (Cm)m≥1 such

that for all x, y ∈ K, we have E
[
supt≤T

∣∣ ft∧Tm (x)− ft∧Tm (y)
∣∣1+ε

]
≤

Cm |x − y|γ̃ .

Assumptions C1 and C2 are stronger than Assumption B. In addition, the
Hölder-continuity condition in Assumption C3 is nontrivial to verify. We hence
devote Section 2.3 to discussing primitive conditions for Assumption C that cover
many volatility models used in financial applications, although this set of condi-
tions is far from exhaustive. Finally, we note that C3 involves expectations and for
establishing pathwise Hölder continuity in the spatial argument of the occupation
density (via Kolmogorov’s continuity theorem or some metric entropy condition,
see, e.g., Ledoux and Talagrand (1991)), one typically needs a stronger condition
than that in C3.

2.3. Some primitive conditions for Assumption C

We consider the following general class of jump-diffusion volatility models:

dVt = at dt + s (Vt )d Bt +d JV,t , (4)

where at is a locally bounded predictable process, Bt is a standard Brownian
motion, s(·) is a deterministic function, and JV,t is a pure-jump process. This
example includes many volatility models encountered in applications.

It is helpful to consider the Lamperti transform of Vt . More precisely, we set
Ṽt = g (Vt ), where g (·) is any primitive of the function 1/s(·), that is, g(x) =∫ x du/s (u) and the constant of integration is irrelevant. By Itô’s formula, the
continuous martingale part of Ṽt is Bt . Lemma 2.1(a) shows that under some reg-
ularity conditions, the transformed process Ṽt satisfies Assumption C. To prove
Lemma 2.1(a) we compute the occupation density of Ṽt explicitly in terms of
stochastic integrals via the Meyer–Tanaka formula5 and then we bound the corre-
sponding spatial increments. Then Lemma 2.1(b) shows that Vt inherits the same
property, that is, it satisfies Assumption C, provided that the transformation g(·)
is smooth enough.

LEMMA 2.1.

(a) Let k > 1. Consider a process Ṽt with the following form

Ṽt = Ṽ0 +
∫ t

0
ãsds + Bt +

∫ t

0

∫
R

δ̃ (s, z)μ(ds,dz) , (5)
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where ãt is a locally bounded predictable process, Bt is a Brownian motion
and δ̃(·) is a predictable function. Suppose the following conditions hold
for some constant C > 0.

(i) |δ̃ (ω, t, z) | ≤ �̃m (z) for all (ω, t, z) with t ≤ Sm, where (Sm)m≥1 is
a localizing sequence of stopping times and each �̃m is a nonnega-
tive deterministic function satisfying∫
R

(
�̃m(z)β + �̃m(z)k

)
λ(dz) < ∞, for some β ∈ (0,1).

(ii) The probability density function of Ṽt is bounded on compact sub-
sets of R uniformly in t ∈ [0,T ].

(iii) The process Ṽt is locally bounded.

Then the occupation density of Ṽt , denoted by f̃t (·), exists. Moreover,
for any compact K̃ ⊂ R, there exists a localizing sequence of stop-
ping times (Tm)m≥1, such that for some K > 0 and for any x, y ∈
K̃, we have E[ f̃T ∧Tm (x)k] ≤ K and E[supt≤T ∧Tm

| f̃t (x) − f̃t (y) |k] ≤
K |x − y|(1−β)k∧(1/2).

(b) Suppose, in addition, that Ṽt = g (Vt ) for some continuously differentiable
strictly increasing function g : R+ �→ R. Also suppose that for some γ̄ ∈
(0,1] and any compact K ⊂ (0,∞), there exists some constant C > 0,
such that

∣∣g′(x)− g′ (y)
∣∣ ≤ C |x − y|γ̄ for all x, y ∈ K. Then Vt satisfies

Assumption C.

3. ESTIMATING VOLATILITY OCCUPATION TIMES

We now present our estimator for the VOT and its asymptotic properties. We
suppose that the process Xt is observed at discrete times i�n, i = 0,1, . . . , on
[0,T ] for fixed T > 0, with the time lag �n → 0 asymptotically when n → ∞.
Our strategy for estimating the VOT is to first estimate its Laplace transform and
then to invert the latter.

We define the volatility Laplace transform over the interval [0,T ] as

LT (u) ≡
∫ T

0
e−uVs ds, ∀u > 0.

By the occupation density formula (see, e.g., (6.5) in Geman and Horowitz
(1980)), the temporal integral above can be rewritten as a spatial integral under
the occupation measure, that is,

LT (u) =
∫ ∞

0
e−u x fT (x)dx =

∫ ∞

0
e−u x FT (dx), ∀u > 0.
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The Laplace transform of the VOT can then be obtained by using Fubini’s theorem
and is given by

LT (u)

u
=
∫ ∞

0
e−ux FT (x)dx . (6)

Following Todorov and Tauchen (2012b), we estimate the volatility Laplace
transform LT (u) using the realized volatility Laplace transform defined as

L̂T,n(u) = �n

[T/�n ]∑
i=1

cos
(√

2u�n
i X/�

1/2
n

)
, ∀u > 0, (7)

where [·] denotes the largest smaller integer function and �n
i X ≡ Xi�n −

X(i−1)�n . Todorov and Tauchen (2012b) show that L̂T,n(·) P−→LT (·) locally uni-
formly with an associated central limit theorem. These convergence results are
robust to the presence of price jumps without appealing to the thresholding tech-
nique as in Mancini (2001) and Li et al. (2013). Consequently, u−1L̂T,n(u)

P−→
u−1LT (u) for each u ∈ (0,∞).

Once the Laplace transform of the VOT is estimated from the data, in the next
step we invert it in order to estimate FT (x). Inverting a Laplace transform, how-
ever, is an ill-posed problem and hence requires a regularization (Tikhonov and
Arsenin (1977)). Here, we adopt an approach proposed by Kryzhniy (2003a,b)
and implement the following regularized inversion of u−1LT (u):

FT,R(x) =
∫ ∞

0
LT (u)
(R,ux)

du

u
, ∀x > 0, (8)

where R > 0 is a regularization parameter and the inversion kernel 
(R, x) is
defined as6


(R, x) = 4√
2π2

(
sinh(π R/2)

∫ ∞

0

√
s cos(R ln(s))

s2 +1
sin(xs)ds

+ cosh(π R/2)

∫ ∞

0

√
s sin(R ln(s))

s2 +1
sin(xs)ds

)
.

It can be shown that the regularized inversion FT,R(x) can be also written as
(see (A.14))

FT,R(x) = 2

π

∫ ∞

0
FT (xu)

√
u

sin(R lnu)

u2 −1
du.

That is, FT,R(x) is generated by smoothing the VOT via the kernel 2u1/2

sin(R lnu)/π(u2 −1), which approaches the Dirac mass at u = 1 as R → ∞.7

Our estimator for the VOT is constructed by simply replacing LT (u) in (8) with
L̂T,n(u), that is, it is given by

F̂T,n,R(x) =
∫ ∞

0
L̂T,n(u)
(R,ux)

du

u
=
∫ ∞

−∞
L̂T,n(ez)
(R, xez)dz. (9)
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Todorov and Tauchen (2012a) use a similar strategy to estimate the (deterministic)
invariant probability density of the spot volatility process under a setting with
T → ∞. However, the problem here is more complicated, since the estimand
FT (·) itself is a random function, which in particular renders the regularization
bias random, whereas in Todorov and Tauchen (2012a) and Kryzhniy (2003a,b),
the object of interest is deterministic.

We now turn to the asymptotic properties of the estimator F̂T,n,Rn (x), where
Rn is a sequence of (strictly positive) regularization parameters that grows to +∞
asymptotically. Here, we allow Rn to be random so that it can be data-dependent,
while the rate at which it grows is given by a deterministic sequence ρn . It is
conceptually useful to decompose the estimation error F̂T,n,Rn (x) − FT (x) into
two components: the regularization bias FT,Rn (x)− FT (x) and the sampling error
F̂T,n,Rn (x)− FT,Rn (x). Lemmas 3.1 and 3.2 characterize the order of magnitude
of each component.

LEMMA 3.1. Let x > 0 be a constant. Suppose that Rn = Op(ρn) and R−1
n =

Op
(
ρ−1

n

)
for some deterministic sequence ρn with ρn → ∞. Under Assumptions

A and B,

FT,Rn (x)− FT (x) = Op
(
ρ−1

n ln(ρn)
)
.

LEMMA 3.2. Let η ∈ (0,1/2) be a constant and K⊂ (0,∞) be compact. Sup-
pose that Rn ≤ ρn for some deterministic sequence ρn with ρn → ∞. Under As-
sumption A,

supx∈K
∣∣F̂T,n,Rn (x)− FT,Rn (x)

∣∣
= Op

(
exp

(πρn

2

)(
ρ

(r∧1)/2
n �

(r∧1)(1/r−1/2)
n +ρn ln (ρn)�

1/2
n +ρ2

n�
(1+η)/2
n

))
.

Lemma 3.1 describes the order of magnitude of the regularization bias.
Lemma 3.2 describes the order of magnitude of the sampling error uniformly
over x ∈K, where the set K is assumed bounded both above and away from zero.
Lemma 3.2 holds for any constant η ∈ (0,1/2). This constant arises as a techni-
cal device from the proof and should be taken close to 1/2 so that the bound in
Lemma 3.2 is sharper.

Combining Lemmas 3.1 and 3.2 and choosing the regularization parameter
properly, we obtain the pointwise consistency of the VOT estimator.

THEOREM 3.1. Suppose (i) Assumptions A and B; (ii) ρn = δ ln
(
�−1

n

)
for

some δ ∈ (0,2δ̄/π
)
, where δ̄ ≡ min{(r ∧ 1)(1/r − 1/2),1/2}; (iii) Rn ≤ ρn and

R−1
n = Op

(
ρ−1

n

)
. Then for each x > 0,

F̂T,n,Rn (x)− FT (x)
P−→ 0.
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In Theorem 3.1, we set the regularization parameter Rn to grow slowly to infin-
ity so that both the regularization bias and the sampling error vanish asymptoti-
cally. Condition (ii) specifies the admissible range of the tuning parameter, which
depends on r when r > 1 and shrinks as r approaches 2 (the theoretical upper
bound for jump activity of semimartingales). This phenomenon reflects the well-
known difficulty of disentangling active jumps from the diffusive component.
Estimators for jump activity (see, e.g., Aı̈t-Sahalia and Jacod (2009)) may be
used to assess the restrictiveness of this condition in a given sample.

More generally, the inversion method is not limited to the realized Laplace
transform estimator L̂T,n(·). With a generic estimator L̃T,n(·) for LT (·), we can
associate an inversion estimator for the VOT as

F̃T,n,R(x) =
∫ ∞

0
L̃T,n(u)
(R,ux)

du

u
, ∀x > 0.

Theorem 3.2 shows that F̃T,n,Rn (x) is a consistent estimator for FT (x) under
a high-level condition concerning the estimation error of L̃T,n(·) under the L1
norm.

THEOREM 3.2. Suppose (i) there exist a localizing sequence (Tm)m≥1 of stop-
ping times and a sequence (Cm)m≥1 of positive constants such that for some
c̄ ∈ (0,1/2), δ̄ > 0 and all u > 0,

E
∣∣L̃Tm ,n (u)−LTm (u)

∣∣≤ Cm

(
u−c̄ +u1+c̄

)
�δ̄

n; (10)

(ii) ρn = δ ln
(
�−1

n

)
for some δ ∈ (0,2δ̄/π

)
; (iii) Rn ≤ ρn and R−1

n = Op
(
ρ−1

n

)
.

Then for each x > 0,

F̃T,n,Rn (x)
P−→ FT (x).

Theorem 3.1 can also be proved by using Theorem 3.2. Indeed, it can be seen
from the proof of Lemma 3.2 that the estimator L̂T,n(·) verifies (10) for any c̄ ∈
(0,1/2) with δ̄ as given in Theorem 3.1. In other settings, alternative estimators
might be required to verify these conditions. The key to the proof of Theorem 3.2
is an extension of Lemma 3.2 under condition (10), but with a coarser bound.

A pessimistic theoretical bound on the rate of convergence for Theorem 3.1 is
essentially ln

(
�−1

n

)
, which is driven by the regularization bias. The plug-in esti-

mator of Li et al. (2013), in contrast, can formally be bounded by a polynomial
rate of convergence. However, the bounds might not be sharp. Efficiency issues
in the estimation of integrated volatility functionals of the form

∫ T
0 g(Vs)ds has

recently been tackled by Jacod and Reiß (2014), Jacod and Rosenbaum (2013)
and Renault et al. (2014) for smooth g(·). The VOT, on the other hand, corre-
sponds to a discontinuous transform g(·) = 1{·≤x}. Assessing the efficiency of the
VOT estimators remains to be an open question that is likely very challenging.
That being said, at least intuitively, more efficient estimators of the integrated
Laplace transform of volatility than the one in (7), like the ones considered in
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Renault et al. (2014), can help improve the efficiency of the VOT estimators based
on regularized inversion. The theoretical results in Theorem 3.2 provide the foun-
dations for doing this.

Another open question is how to optimally choose tuning parameters in order
to minimize some loss criterion, such as the mean square error. Such analysis
remains to be a technical challenge, not only for the current paper, but also for the
in-fill analysis of high-frequency semimartingale data in general.8 In Section 4,
we provide simulation results in a realistically calibrated Monte Carlo setting for
comparing the finite-sample performance of the two methods and for assessing
the robustness of the proposed estimator with respect to the tuning parameter.

The pointwise convergence in Theorems 3.1 and 3.2 can be further strengthened
to be uniform in the spatial variable, as shown below.

THEOREM 3.3. Suppose Assumption C. Then the following statements hold
for any compact K ⊂ (0,∞).

(a) Under the conditions of Theorem 3.1,

sup
x∈K

∣∣F̂T,n,Rn (x)− FT (x)
∣∣ P−→ 0. (11)

(b) Under the conditions of Theorem 3.2,

sup
x∈K

∣∣F̃T,n,Rn (x)− FT (x)
∣∣ P−→ 0. (12)

Next, we provide a refinement to the functional estimator F̂T,n,Rn (·). The dis-
cussion below only requires the uniform convergence (11) to hold, so it also ap-
plies to the generic estimator F̃T,n,Rn (·) under (12). While the occupation time
x �→ FT (x) is a pathwise increasing function by design, the proposed estimator
F̂T,n,Rn (·) is not guaranteed to be monotone. We propose a monotonization of
F̂T,n,Rn (·) via rearrangement, and, as a by-product, consistent estimators of the
quantiles of the occupation time. To be precise, for τ ∈ (0,T ), we define the τ -
quantile of the occupation time as its pathwise left-continuous inverse:

QT (τ ) = inf{x ∈ R+ : FT (x) ≥ τ } .
For any compact interval K ⊂ (0,∞), we define the K-constrained τ -quantile of
FT (·) as

QKT (τ ) = inf{x ∈K : FT (x) ≥ τ } ,
where the infimum over an empty set is given by supK. While QT (τ ) is of natural
interest, we are only able to consistently estimate QKT (τ ), although K ⊂ (0,∞)
can be arbitrarily large. This is due to the technical reason that the uniform con-
vergence in Theorem 3.3 is only available over a nonrandom index setK, which is
bounded above and away from zero, but every quantile QT (τ ) is itself a random
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variable and thus may take values outside K on some sample paths. Such a com-
plication would not exist if FT (·), and hence QT (τ ), were deterministic—the
standard case in econometrics and statistics. Of course, if the process Vt is known
a priori to take values in some set K ⊂ (0,∞), then QT (·) and QKT (·) coincide.
In practice, the “K-constraint” is typically unbinding as long as we do not attempt
to estimate extreme (pathwise) quantiles of the process Vt .

We propose an estimator for QKT (τ ) and a K-constrained monotonized version
F̂KT,n,Rn

(·) of the occupation time as follows:

Q̂KT,n,Rn
(τ ) = infK+

∫ supK

infK
1{F̂T,n,Rn (y)<τ}dy, τ ∈ (0,T ) ,

F̂KT,n,Rn
(x) = inf

{
τ ∈ (0,T ) : Q̂KT,n,Rn

(τ ) > x
}
, x ∈ R,

where on the second line, the infimum over an empty set is given by T . By con-
struction, Q̂KT,n,Rn

: (0,T ) �→ K is increasing and left continuous and F̂KT,n,Rn
:

R �→ [0,T ] is increasing and right continuous. Moreover, Q̂KT,n,Rn
is the quantile

function of F̂KT,n,Rn
, i.e., for τ ∈ (0,T ), Q̂KT,n,Rn

(τ ) = inf{x : F̂KT,n,Rn
(x) ≥ τ }.

Asymptotic properties of F̂KT,n,Rn
(·) and Q̂KT,n,Rn

(τ ) are given in Theorem 3.4.

THEOREM 3.4. Let K ⊂ (0,∞) be a compact interval. If FT (·) is continuous
and

sup
x∈K

∣∣F̂T,n,Rn (x)− FT (x)
∣∣ P−→ 0,

then we have the following.

(a)

sup
x∈K

∣∣∣F̂KT,n,Rn
(x)− FT (x)

∣∣∣ P−→ 0.

(b) For every τ ∗ ∈ {τ ∈ (0,T ) : QT (·) is continuous at τ almost surely},

Q̂KT,n,Rn

(
τ ∗) P−→ QKT

(
τ ∗) .

We note that the monotonization procedure here is similar to that in
Chernozhukov et al. (2010), which in turn has a deep root in functional analy-
sis (Hardy et al. (1952)). Chernozhukov et al. (2010) shows that rearrangement
leads to finite-sample improvement under very general settings; see Proposition
4 there.9 Our asymptotic results are distinct from those of Chernozhukov et al.
(2010) in two aspects. First, the estimand considered here, i.e. the occupation
time, is a random function. Second, as we are interested in the convergence in

probability, we only need to assume that supx∈K |F̂T,n,Rn (x)− FT (x)| P→ 0 and,
of course, our argument does not rely on the functional delta method.
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4. MONTE CARLO

We now examine the finite-sample performance of our estimator and compare
it with the direct plug-in method proposed by Li et al. (2013). We consider the
following jump-diffusion volatility model in which the log-volatility is a Lévy-
driven Ornstein–Uhlenbeck (OU) process, that is,

d Xt =
√

eVt −1dWt +dYt , dVt = −0.03Vt dt +d Lt , (13)

where Lt is a Lévy martingale uniquely defined by the marginal law of Vt

which in turn has a self-decomposable distribution (see Theorem 17.4 of Sato
(1999)) with characteristic triplet (Definition 8.2 of Sato (1999)) of (0,1,ν) for

ν(dx) = 2.33e−2.0|x |
|x |1+0.5 1{x>0}dx with respect to the identity truncation function. Our

volatility specification is quite general as it allows for both diffusive and jump
shocks in volatility, with the latter being of infinite activity. The mean and the
persistence of the volatility process are calibrated realistically to observed finan-
cial data. In particular, we set E[eVt −1] = 1 (our unit of time is a trading day
and we measure returns in percentage) and the persistence of a shock in Vt has a
half-life of approximately 23 days. Finally, Yt in (13) is a tempered stable Lévy

process, i.e., a pure-jump Lévy process with Lévy measure c e−λ|x |
|x |β+1 , which is in-

dependent from Lt and Wt . The tempered stable process is a flexible jump speci-
fication with separate parameters controlling small and big jumps: λ controls the
jump tails and β coincides with the Blumenthal–Getoor index of Yt (and hence
controls the small jumps). We consider three cases in the Monte Carlo: (a) no
price jumps, which corresponds to c = 0, (b) low-activity price jumps, with pa-
rameters c = 6.2908, λ = 7, and β = 0.1, and (c) high-activity price jumps, with
parameters c = 1.3408, λ = 7, and β = 0.9. The value of λ in each case is set
to produce jump tail behavior consistent with nonparametric evidence reported in
Bollerslev and Todorov (2011). Further, in all considered cases for Yt , we set the
parameter c so that the second moment of the increment of Y on unit interval is
equal to 0.3 which produces jump contribution in total quadratic variation of X
similar to earlier nonparametric empirical evidence from high-frequency financial
data.10

In the Monte Carlo we fix the time span to be T = 22 days, equivalent to one
calendar month, and we consider n = 80 which corresponds to 5-minute sampling
of intraday observations of X in a 6.5-hour trading day. For each realization we
compute the 25-th, 50-th, and 75-th volatility quantiles over the interval [0,T ]
and assess the accuracy in measuring these random quantities by reporting bias
and mean absolute deviation (MAD) around the true values for the considered
estimators.

We first analyze the effect of the regularization parameter Rn on the volatility
quantile estimation. For brevity, we conduct the analysis in the case when Xt does
not contain price jumps, while noting that similar results hold in the other cases. In
Table 1 we report results from the Monte Carlo for regularized Laplace inversion
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TABLE 1. Monte Carlo Results: Effect of Rn

Q̂T,n(0.25) Q̂T,n(0.50) Q̂T,n(0.75)

Start Value True Bias MAD True Bias MAD True Bias MAD

Panel A: Regularized Laplace Inversion with Rn = 2.5

V0 = QV (0.25) 0.1737 −0.0201 0.0282 0.2860 −0.0178 0.0322 0.4519 0.0008 0.0430
V0 = QV (0.50) 0.3293 −0.0392 0.0527 0.5243 −0.0324 0.0583 0.8069 0.0078 0.0746
V0 = QV (0.75) 0.6337 −0.0716 0.0975 0.9945 −0.0600 0.1104 1.5162 0.0178 0.1383

Panel B: Regularized Laplace Inversion with Rn = 3.0

V0 = QV (0.25) 0.1737 −0.0128 0.0244 0.2860 −0.0082 0.0310 0.4519 −0.0010 0.0448
V0 = QV (0.50) 0.3293 −0.0251 0.0465 0.5243 −0.0160 0.0558 0.8069 0.0038 0.0745
V0 = QV (0.75) 0.6337 −0.0453 0.0860 0.9945 −0.0304 0.1088 1.5162 0.0094 0.1394

Panel C: Regularized Laplace Inversion with Rn = 3.5

V0 = QV (0.25) 0.1737 −0.0093 0.0262 0.2860 −0.0042 0.0335 0.4519 −0.0114 0.0556
V0 = QV (0.50) 0.3293 −0.0180 0.0500 0.5243 −0.0093 0.0632 0.8069 −0.0080 0.0947
V0 = QV (0.75) 0.6337 −0.0298 0.0981 0.9945 −0.0211 0.1201 1.5162 −0.0154 0.1736

Note: In each of the cases, the volatility is started from a fixed point being the 25-th, 50-th and 75-th quantile of the invariant distribution of the volatility process, denoted correspondingly
as QV (0.25), QV (0.50) and QV (0.75). The columns “True” report the average value (across the Monte Carlo simulations) of the true variance quantile that is estimated; MAD stands for
mean absolute deviation around the true value. The Monte Carlo replica is 1000.
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with values of the regularization parameter of Rn = 2.5, Rn = 3.0, and Rn = 3.5.
Overall, the performance of our volatility quantile estimator is satisfactory with
biases being small in relative terms. In general, the difference across the different
values of the regularization parameter are relatively small. From Table 1 we can
see the typical bias-variance tradeoff that arises in nonparametric estimation: for
lower value of Rn (more smoothing) the biases are larger but the sampling vari-
ability is smaller, while for higher value of Rn (less smoothing) the opposite is
true. The value of Rn that leads to the smallest MAD is Rn = 3.0 and henceforth
we keep the regularization parameter at this value.

We next compare the performance of the regularized Laplace inversion ap-
proach for volatility quantile estimation with the direct plug-in method of Li et al.
(2013). The latter is based on local estimators of the volatility process over blocks
given by

V̂i�n = 1

un

kn∑
j=1

(
�n

i+ j X
)2

1{∣∣∣�n
i+ j X

∣∣∣≤vn,i�n

}, i = 0, . . . , [T/�n]− kn,

where un = kn�n and kn denotes the number of high-frequency elements within
a block (kn satisfies kn → ∞ and kn�n → 0); vn,t is the threshold which takes
the form vn,t = αn,t�

�
n for some strictly positive process αn,t and � ∈ (0,1/2).

These local estimators are then used to approximate the volatility trajectory via

V̂t = V̂iun , t ∈ [iun, (i +1)un), and V̂t = V̂([T/un ]−1)un , [T/un]un ≤ t ≤ T,

and from here the direct estimator of the volatility occupation time is given by

F̂d
T,n(x) =

∫ T

0
1{V̂s≤x}ds, x ∈ R.

The direct estimator F̂d
T,n(x) has two tuning parameters. The first is the block

size kn which plays a similar role as the regularization parameter Rn in the
regularized Laplace inversion method. We follow Li et al. (2013) and set
kn = 4 throughout. The second tuning parameter is the choice of the thresh-
old vn,t . There are various ways of setting this threshold which all lead to
asymptotically valid results. One simple choice is a time-invariant threshold of
the form vn,t = 3σ�0.49

n , where σ is an estimator of
√
E(Vt ). Another is a

time-varying threshold that takes into account the stochastic volatility. Here we
follow Li et al. (2013) (and earlier work on threshold estimation) and experi-
ment with vn,t = 3

√
BVj�

0.49
n and vn,t = 4

√
BVj�

0.49
n for t ∈ [ j − 1, j), where

BVj = π
2

∑[ j/�n ]
i=[( j−1)/�n ]+2 |�n

i−1 X ||�n
i X | is the Bipower Variation estimator of

Barndorff-Nielsen and Shephard (2004).11

In Tables 2 and 3 we compare the precision of estimating the monthly volatil-
ity quantiles via regularized Laplace inversion (with Rn = 3.0) and via the
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TABLE 2. Monte Carlo Results In Presence of Low Activity Jump Component

Q̂T,n(0.25) Q̂T,n(0.50) Q̂T,n(0.75)

Start Value True Bias MAD True Bias MAD True Bias MAD

Panel A: Regularized Laplace Inversion with Rn = 3.0

V0 = QV (0.25) 0.1703 0.0195 0.0318 0.2806 0.0705 0.0754 0.4564 0.1693 0.1858
V0 = QV (0.50) 0.3234 0.0241 0.0505 0.5122 0.0961 0.1098 0.8139 0.2062 0.2408
V0 = QV (0.75) 0.6235 0.0271 0.0854 0.9686 0.1308 0.1691 1.5180 0.2753 0.3216

Panel B: Direct Method with Constant Threshold 3�0.49
n

V0 = QV (0.25) 0.1703 0.1028 0.1107 0.2806 0.1456 0.1880 0.4564 0.1839 0.2912
V0 = QV (0.50) 0.3234 0.0905 0.1215 0.5122 0.0999 0.2142 0.8139 0.0608 0.3560
V0 = QV (0.75) 0.6235 0.0272 0.1523 0.9686 −0.0466 0.2958 1.5180 −0.2538 0.5589

Panel C: Direct Method with Adaptive Threshold 3
√

BVj �
0.49
n

V0 = QV (0.25) 0.1703 0.0576 0.0625 0.2806 0.0878 0.0960 0.4564 0.1294 0.1443
V0 = QV (0.50) 0.3234 0.0595 0.0716 0.5122 0.0947 0.1148 0.8139 0.1421 0.1767
V0 = QV (0.75) 0.6235 0.0486 0.0875 0.9686 0.0896 0.1414 1.5180 0.1554 0.2174

Panel D: Direct Method with Adaptive Threshold 4
√

BVj �
0.49
n

V0 = QV (0.25) 0.1703 0.0852 0.0892 0.2806 0.1345 0.1394 0.4564 0.2018 0.2108
V0 = QV (0.50) 0.3234 0.0935 0.1024 0.5122 0.1488 0.1622 0.8139 0.2226 0.2443
V0 = QV (0.75) 0.6235 0.0893 0.1179 0.9686 0.1542 0.1870 1.5180 0.2441 0.2876

Note: Description as for Table 1.
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TABLE 3. Monte Carlo Results In Presence of High Activity Jump Component

Q̂T,n(0.25) Q̂T,n(0.50) Q̂T,n(0.75)

Start Value True Bias MAD True Bias MAD True Bias MAD

Panel A: Regularized Laplace Inversion with Rn = 3.0

V0 = QV (0.25) 0.1619 0.0726 0.0833 0.2706 0.1526 0.1626 0.4579 0.2833 0.2992
V0 = QV (0.50) 0.3084 0.0879 0.0997 0.4936 0.1708 0.1849 0.8169 0.3004 0.3371
V0 = QV (0.75) 0.5985 0.0933 0.1278 0.9326 0.1888 0.2117 1.5245 0.3127 0.3944

Panel B: Direct Method with Constant Threshold 3�0.49
n

V0 = QV (0.25) 0.1619 0.1666 0.1678 0.2706 0.2107 0.2410 0.4579 0.2317 0.3411
V0 = QV (0.50) 0.3084 0.1556 0.1675 0.4936 0.1700 0.2562 0.8169 0.1062 0.4104
V0 = QV (0.75) 0.5985 0.1062 0.1694 0.9326 0.0361 0.3048 1.5245 −0.2139 0.6120

Panel C: Direct Method with Adaptive Threshold 3
√

BVj �
0.49
n

V0 = QV (0.25) 0.1619 0.1338 0.1347 0.2706 0.1706 0.1802 0.4579 0.2133 0.2302
V0 = QV (0.50) 0.3084 0.1331 0.1375 0.4936 0.1726 0.1899 0.8169 0.2130 0.2541
V0 = QV (0.75) 0.5985 0.1191 0.1361 0.9326 0.1621 0.2001 1.5245 0.2000 0.2951

Panel D: Direct Method with Adaptive Threshold 4
√

BVj �
0.49
n

V0 = QV (0.25) 0.1619 0.1586 0.1590 0.2706 0.2123 0.2201 0.4579 0.2758 0.2897
V0 = QV (0.50) 0.3084 0.1609 0.1642 0.4936 0.2173 0.2315 0.8169 0.2790 0.3106
V0 = QV (0.75) 0.5985 0.1527 0.1643 0.9326 0.2137 0.2452 1.5245 0.2745 0.3508

Note: Description as for Table 1.
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direct method for the above discussed ways of setting the threshold parameter.12

We consider only the empirically realistic scenarios in which X contains jumps
in the comparison. An immediate observation from the tables is that the thresh-
old parameter in F̂d

T,n plays a crucial role. Indeed, a constant threshold does a
very poor job: it yields huge biases and also results in very noisy estimates. The
volatility quantile estimators based on F̂d

T,n work well only when a time-varying
adaptive (to the current level of volatility) threshold is selected. Comparing these
estimators with the one based on the regularized Laplace inversion, we see an
interesting pattern. The estimation of the lower volatility quantiles is done sig-
nificantly more precisely via the inversion method. For the lower volatility quan-
tiles, the estimates based on F̂d

T,n contain nontrivial bias. This is due to small
un-truncated jumps which play a relatively bigger role when estimating the lower
volatility quantiles. The above observation continues to hold, albeit to a far less
extent, for the volatility median. For the highest volatility quantile, we see a partial
reverse. This volatility quantile is estimated more precisely via F̂d

T,n but mainly

when the lower time-varying threshold vn,t = 3
√

BVj�
0.49
n is used. Overall, we

find mixed results in this comparative analysis, but the evidence in Tables 2 and 3
clearly illustrates that the proposed volatility quantile estimator based on the reg-
ularized Laplace inversion provides an important alternative to the direct plug-in
method.

5. EMPIRICAL APPLICATION

We illustrate the nonparametric quantile reconstruction technique with an em-
pirical application to two data sets: Euro/$ exchange rate futures (for the pe-
riod 01/01/1999–12/31/2010) and S&P 500 index futures (for the period
04/22/1982–12/30/2010). Both series are sampled every 5 minutes during the
trading hours. The time spans of the two data sets differ because of data avail-
ability but both data sets include some of the most quiescent and also the most
volatile periods in modern financial history. These data sets thereby present a se-
rious challenge for our method.

In the calculations of the volatility quantiles we use a time span of T = 1 month
and as in the Monte Carlo we fix the regularization parameter at Rn = 3. Figure 1
shows the results for the Euro/$ rate and Figure 2 shows those for the S&P 500
index. The left panels show the time series of the 25-th and 75-th monthly quan-
tiles of the spot variance Vt , the spot volatility

√
Vt and the logarithm of the

spot variance ln(Vt ).The estimated quantiles appear to track quite sensibly the be-
havior of volatility during times of either economic moderation or distress. The
right panels show the associated interquartile range (IQR) versus the median of
the logarithm of the spot variance; we use the IQR to measure the variation of
the (transformed) volatility process. The aim of these plots is to discover how the
dispersion of volatility relates to the volatility level. We see that for both data
sets, the IQRs of the spot variance and the spot volatility exhibit a clearly posi-
tive, and generally convex, relationship with the median log-variance. In contrast,
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FIGURE 1. Estimated Quantiles of the Monthly Occupation Measure of the Spot Volatility
of the Euro/$ return, 1999–2010. The three left-hand panels show the 25 and 75 percent
quantiles of the monthly occupation measure of volatility expressed in terms of the local
variance (left-top), the local standard deviation (left-middle), and the local log-variance
(left-bottom). Each right-side panel is a scatter plot of the interquartile ranges of the as-
sociated monthly left-side distributions versus the medians of the distributions (in log-
variance). Volatility is quoted annualized and in percentage terms.

the IQR of the log-variance process shows no such pattern, suggesting that the
log volatility process is homoscedastic, or at least independent from the level of
volatility, innovations.

To guide intuition about our empirical findings, suppose we have f (Vt ) =
f (V0)+ Lt on [0,T ], for Lt a Lévy process and f (·) some monotone function
(this is approximately true for the typical volatility models like the ones in the
Monte Carlo when T is relatively short and the volatility is very persistent as in
the data).13 In this case, the interquartile range of the volatility occupation time of
f (Vt ) on [0,T ] will be independent of the level V0. On the other hand, for other
functions h(Vt ) the dispersion will depend in general on the level V0. The IQR of
the volatility occupation measure can be used, therefore, to study the important
question of modeling the variation of volatility. The evidence here points away
from affine volatility models towards those models in which the log volatility has
innovations that are independent from the level of volatility like the exponential
OU model in (13). This is consistent with earlier parametric evidence for superior
performance of log-volatility models over affine models.14
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FIGURE 2. Estimated Quantiles of the Monthly Occupation Measure of the Spot Volatility
of the S&P500 index futures return, 1982–2010. The organization is the same as Figure 1.

6. CONCLUSION

In this paper we use inverse Laplace transforms to generate a quick and easy
nonparametric estimator of the volatility occupation time (VOT). The estimation
is conducted based on discretely sampled Itô semimartingale increments over a
fixed time interval with asymptotically shrinking mesh of the observation grid.
We derive the asymptotic properties of the VOT estimator locally uniformly in the
spatial argument and further invert it to estimate the corresponding quantiles of
volatility over the time interval. Monte Carlo evidence shows good finite-sample
performance that is significantly better than that of the benchmark estimator of
Li et al. (2013) for estimating lower volatility quantiles. An empirical application
illustrates the use of the estimator for studying the variation of volatility.

NOTES

1. To make the analogy exact, one may normalize the expression in (2) by T −1. Here, we follow the
convention in the literature (see, e.g., Geman and Horowitz (1980)) without using this normalization.

2. See, for example, (6.4) in Geman and Horowitz (1980).
3. A localizing sequence of stopping times is a sequence of stopping times which increases to +∞.
4. When Vt is a compound Poisson process, each nondifferentiable point of FT (·) is a realized level

of Vt . Therefore, the probability in Assumption B1 is bounded by P(Vt ∈ (x, y) for some t ∈ [0,T ]).
Since the expected number of jumps is finite and Vt has a bounded density, this probability is further
bounded by |x − y| up to a multiplicative constant.

5. This is possible because the continuous martingale part of Ṽt is a Brownian motion.
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6. This seemingly complicated inversion kernel corresponds to a simple stabilizing procedure for
the Mellin transform of the integral equation (6); see Section 2 in Kryzhniy (2003a) for technical
details.

7. The fact that the regularized quantity can be considered as a type of convolution between the
object of interest and a smoothing kernel that asymptotically collapses to a Dirac mass also arises in
nonparametric kernel density estimation; see, for example, (9) in Härdle and Linton (1994).

8. The key difficulty lies in the characterization and estimation of asymptotic bias terms under a
setting with asymptotically varying tuning parameters. In a recent paper, Kristensen (2010) considers
the challenging question of the optimal choice of a bandwidth parameter in the estimation of spot
volatility. In the setting without leverage effect and jumps, Kristensen (2010) remarks (see p. 77) that
the optimal choice of tuning parameter is still difficult when the sample path of the volatility process is
not differentiable with respect to time. Nondifferentiable paths, however, are common for the typical
stochastic volatility models as the ones considered here.

9. Monotonization methods may also improve the rate of convergence; see Carrasco and Florens
(2011) for such an example in the study of deconvolution problems. It may be interesting to explore
this theoretical possibility in future research.

10. The price jumps specifications considered here are both of infinite activity, hence there are infi-
nite numbers of jumps within a finite interval. However, “big” jumps are always of finite number. For
example jumps of size bigger than 0.34%, which corresponds to an average three standard deviation
move of the continuous price price increment at the 5-minute interval, occur on average 9.17 (case b)
and 3.87 (case c) times on an interval of length 22 days. The low-activity jump specification generates
more big jumps than the high-activity one, with the role reversed for the small jump sizes (recall that
the quadratic variation of both jump specifications is constrained to be the same).

11. In principle, the direct plug-in method of Li et al. (2013) can be applied to other jump-robust spot
volatility estimators and may achieve better finite-sample performance. Improving the direct plug-in
method in this direction is beyond the scope of the current paper.

12. Comparing the results for F̂T,n in Tables 2 and 3 with those in Table 1, we notice that the
negative biases for the first two quantiles in the case of no price jumps turn into positive biases in the
two cases of price jumps. In the simulation scenarios with price jumps, the estimator F̂T,n contains
biases both due to the regularization error and due to the separation of volatility from jumps. The bias
due to the presence of price jumps is positive and dominates the bias due to the regularization error.

13. This also holds approximately true for two-factor models in which one of the factors is fast mean
reverting and the other is very persistent (which is the case for most of the estimates of such models
reported in empirical work). In such a setting, the fast mean reverting factor plays minimal role in the
dependence of the interquantile range of various transforms of the spot variance over the interval on
the level of volatility.

14. Regarding log volatility, present evidence from time series data while Cont and da Fonseca
(2002) present evidence from the options-implied volatility surface.
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APPENDIX: Proofs

The appendix is organized as follows. We collect some preliminary estimates in
Section A.1. The rest of this appendix is devoted to proving results in the main text.
Throughout the proof, we use K to denote a generic positive constant that may change
from line to line. We sometimes write Km to emphasize the dependence of the constant on
some parameter m.

A.1. Preliminary estimates

A.1.1. Estimates for the kernel 
(R, x).

LEMMA A.1. Fix c > 0, η1 ∈ [0,1/2) and η2 ∈ [0,1/2). There exists some K > 0, such
that for any R ≥ c and x > 0,

|
(R, x)| ≤ K exp

(
π R

2

)
min

{
xη1 , Rx−1, R2x−1−η2

}
.

Proof. To simplify notations, we denote

h R (s) =
√

s sin(R ln(s))

s2 +1
, gR(x) =

∫ ∞
0

h R (s)sin(xs)ds.

Since η1 ∈ [0,1/2), we have

|gR(x)| ≤
∫ ∞

0

√
s |sin(xs)|
s2 +1

ds ≤
∫ ∞

0

√
s |sin(xs)|η1

s2 +1
ds ≤ K xη1 . (A.1)

Using integration by parts, we have gR(x) = x−1 ∫∞
0 h′

R (s)cos(xs)ds. With h′
R (s)

explicitly computed, we have

|gR(x)| ≤ K Rx−1. (A.2)

Using integration by parts again, we get gR(x) = −x−2 ∫∞
0 h′′

R (s)sin(xs)ds. By explicit

computation, it is easy to see |h′′
R(s)| ≤ K R2s−3/2/

(
1+ s2). Hence, for η2 ∈ [0,1/2),

|gR(x)| ≤ K R2x−2
∫ ∞

0

|sin(xs)|
s3/2

(
1+ s2

)ds

≤ K R2x−2
∫ ∞

0

|sin(xs)|1−η2

s3/2
(
1+ s2

) ds

≤ K R2x−1−η2

∫ ∞
0

1

s1/2+η2
(
1+ s2

)ds

≤ K R2x−1−η2 .

Combining the inequality above with (A.1) and (A.2), we derive

|gR(x)| ≤ K min
{

xη1 , Rx−1, R2x−1−η2
}
.
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Similarly, we can also show that

∣∣∣∣∫ ∞
0

√
s cos(R ln(s))

s2 +1
sin(xs)

∣∣∣∣≤ K min
{

xη1 , Rx−1, R2x−1−η2
}
.

The assertion of the lemma then readily follows. n

A.1.2. Estimates for the underlying process X. As often in this kind of problems, it is
convenient to strengthen Assumption A as follows.

Assumption SA. We have Assumption A. Moreover, the processes bt , Vt and V −1
t , and

the sequence Km are bounded, and for some bounded λ-integrable deterministic function
� on R, we have |δ (ω, t, z)|r ≤ �(z).

For notational simplicity, we set

b′
t =

{
bt if r > 1,
bt −∫

R
δ (t, z)1{|δ(t,z)|≤1}λ(dz) if r ≤ 1,

where r is the constant in Assumption A1. We also set σt = √
Vt , X ′

t = X0 + ∫ t
0 b′

sds +∫ t
0 σsdWs , X ′′

t = Xt − X ′
t , and

χn
i = �n

i X ′/�1/2
n , βn

i = σ(i−1)�n �n
i W/�

1/2
n , λn

i = χn
i −βn

i .

LEMMA A.2. Under Assumption SA, there exists K > 0 such that for all u ∈ R+,

E

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

(
cos
(√

2uχn
i

)
− cos

(√
2uβn

i

))∣∣∣∣∣∣≤ K min
{

u1/2�
1/2
n ,1

}
, (A.3)

E

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

exp
(−uV(i−1)�n

)−∫ T

0
exp(−uVs)ds

∣∣∣∣∣∣≤ K min
{

u�
1/2
n ,1

}
+�n, (A.4)

E

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

(
cos
(√

2uβn
i

)
− exp

(−uV(i−1)�n

))∣∣∣∣∣∣≤ K�
1/2
n min{u,1} , (A.5)

E

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

(
cos

(√
2u

�n
i X√
�n

)
− cos

(√
2uχn

i

))∣∣∣∣∣∣≤ K
(

u1/2�
1/r−1/2
n

)r∧1
. (A.6)

Proof. By the Burkholder–Davis–Gundy inequality and Assumption SA,

E
∣∣λn

i

∣∣ ≤ K�
1/2
n . Then (A.3) follows from a mean-value expansion and the

triangle inequality. Turning to (A.4), we have, for s ∈ [(i − 1)�n, i�n],

E|exp
(−uV(i−1)�n

)− exp(−uVs) | ≤ K u�
1/2
n , by using a mean-value expansion and

Assumption SA. By the triangle inequality, (A.4) readily follows. Now, consider (A.5).
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Denote ζ n
i = cos

(√
2uβn

i

)− exp
(− uV(i−1)�n

)
. It is easy to see that

(
ζ n

i ,Fi�n

)
i≥1

forms an array of martingale differences. Moreover,

E

[(
ζ n

i
)2 |F(i−1)�n

]
= 1

2

(
1− exp

(−2uV(i−1)�n

))2 ≤ K min
{

u2V 2
(i−1)�n

,1
}
.

Hence, E[(�n
∑[T/�n ]

i=1 ζ n
i )2] ≤ K�n min{u2,1}. We then deduce (A.5) by using Jensen’s

inequality. Finally, we show (A.6). When r ∈ (0,1], by Assumption SA and Lemma 2.1.7
in Jacod and Protter (2012),

E

∣∣∣∣cos

(√
2u

�n
i X√
�n

)
− cos

(√
2uχn

i

)∣∣∣∣≤ KE

∣∣∣∣cos

(√
2u

�n
i X√
�n

)
− cos

(√
2uχn

i

)∣∣∣∣r
≤ K ur/2�

−r/2
n E

∣∣�n
i X ′′∣∣r

≤ K ur/2�
1−r/2
n .

When r ∈ [1,2), we use Assumption SA and Lemmas 2.1.5 and 2.1.7 in Jacod and Prot-

ter (2012) to derive E|cos(
√

2u�n
i X/

√
�n)− cos(

√
2uχn

i )|r ≤ K ur/2�
1−r/2
n , and then

use Jensen’s inequality to get E|cos(
√

2u�n
i X/

√
�n)−cos(

√
2uχn

i )| ≤ K u1/2�
1/r−1/2
n .

Combining the above estimates, we have for each r ∈ (0,2),

E

∣∣∣∣cos

(√
2u

�n
i X√
�n

)
− cos

(√
2uχn

i

)∣∣∣∣≤ K
(

u1/2�
1/r−1/2
n

)r∧1
.

Then (A.6) readily follows. n

A.2. Proof of Lemma 2.1

Part (a). The existence of occupation density of Ṽt follows directly from Corollary 1 of
Theorem IV.70 in Protter (2004). Since ãt and Ṽt are locally bounded, we can find a local-
izing sequence of stopping times (Tm)m≥1 such that Tm ≤ Sm and the stopped processes
ãt∧Tm and Ṽt∧Tm are bounded. We first show

E

[
sup

t≤T ∧Tm

∣∣∣ f̃t (x)− f̃t (y)
∣∣∣k]≤ K |x − y|(1−β)k∧(1/2) . (A.7)

By Theorem IV.68 of Protter (2004), we have for x, y ∈ K̃, x < y,

f̃t (y)− f̃t (x) = 2
5∑

j=1

A( j)
t , (A.8)

where

A(1)
t = (

Ṽt − y
)+ − (Ṽt − x

)+ + (Ṽ0 − x
)+ − (Ṽ0 − y

)+
,

A(2)
t =

∫ t

0
1{x<Ṽs−≤y

}dṼs ,

A(3)
t =

∑
s≤t

1{Ṽs−>y
} [(Ṽs − x

)− − (Ṽs − y
)−]

,
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A(4)
t =

∑
s≤t

1{x<Ṽs−≤y
} [(Ṽs − x

)− − (Ṽs − y
)+]

,

A(5)
t =

∑
s≤t

1{Ṽs−≤x
} [(Ṽs − x

)+ − (Ṽs − y
)+]

.

Clearly, for any t , |A(1)
t | ≤ 2 |x − y|. Hence, E[ supt≤T ∧Tm

|A(1)
t |k ] ≤ K |x − y|k .

By (5), we have

A(2)
t =

∫ t

0
1{x<Ṽs−≤y

} (ãsds +d Bs)+
∫ t

0

∫
R

1{x<Ṽs−≤y
}δ̃ (s, z)μ(ds,dz). (A.9)

By Hölder’s inequality, the boundedness of ãt∧Tm and condition (ii), we have

E

[
sup

t≤T ∧Tm

∣∣∣∣∫ t

0
1{x<Ṽs−≤y

}ãsds

∣∣∣∣k
]

≤ K |x − y| . (A.10)

By the Burkholder–Davis–Gundy inequality and Jensen’s inequality,

E

[
sup

t≤T ∧Tm

∣∣∣∣∫ t

0
1{x<Ṽs−≤y

}d Bs

∣∣∣∣k
]

≤ KE

⎡⎣(∫ T

0
1{x<Ṽs−≤y

}ds

)k/2
⎤⎦

≤ K |x − y|1/2 . (A.11)

Moreover, condition (i) implies that
∫
R
(�̃m(z)k + �̃m(z))λ(dz) < ∞. Then by Lemma

2.1.7 of Jacod and Protter (2012), we have

E

[
sup

t≤T ∧Tm

∣∣∣∣∫ t

0

∫
R

1{x<Ṽs−≤y
}δ̃ (s, z)μ(ds,dz)

∣∣∣∣k
]

≤ KE

[∫ T

0

∫
R

1{x<Ṽs−≤y
}�̃m (z)k λ(dz)ds

]

+ KE

⎡⎣(∫ T

0

∫
R

1{x<Ṽs−≤y
}�̃m (z)λ(dz)ds

)k
⎤⎦

≤ K |x − y| . (A.12)

Combining (A.9)–(A.12), we derive E
[
supt≤T ∧Tm

|A(2)
t |k

]
≤ K |x − y|1/2.

Turning to A(3)
t and A(5)

t , we first can bound them as follows

sup
t≤T ∧Tm

(
|A(3)

t |+ |A(5)
t |
)

≤
∫ T ∧Tm

0

∫
R

(
(y − x)∧|δ̃ (s, z) |

)
μ(ds,dz)

≤ (y − x)1−β
∫ T

0

∫
R

�̃m(z)βμ(ds,dz).

From here, we readily obtain

E

[
sup

t≤T ∧Tm

(
|A(3)

t |+ |A(5)
t |
)k
]

≤ K (y − x)(1−β)k
E

⎡⎣(∫ T

0

∫
R

∣∣∣�̃m(z)
∣∣∣β μ(ds,dz)

)k
⎤⎦

≤ K (y − x)(1−β)k ,
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where the second inequality is obtained by using Lemma 2.1.7 of Jacod and Protter (2012)
and condition (i).

Finally, since |A(4)
t | ≤ ∫ t

0
∫
R

1{x<Ṽs−≤y
}|δ̃ (s, z) |μ(ds,dz), the same calcula-

tion as in (A.12) yields E
[

supt≤T ∧Tm
|A(4)

t |k] ≤ K |x − y| . We have shown that

E
[

supt≤T ∧Tm
|A( j)

t |k] ≤ K |x − y|(1−β)k∧(1/2) for each j ∈ {1, . . . ,5}. In view of (A.8),
we derive (A.7).

It remains to show E[ f̃T ∧Tm (x)k ] ≤ K for all x ∈ K̃. Since Ṽt∧Tm is bounded,
f̃T ∧Tm (x∗) = 0 for x∗ large enough. The assertion then follows from (A.7) and the com-
pactness of K̃.
Part (b). Denote F̃t (y) = ∫ t

0 1{Ṽs≤y
}ds. Then Ft (x) = F̃t (g(x)). By the chain rule, Ft (x)

is differentiable with derivative ft (x) = f̃t (g(x))g′(x). Assumption C1 is thus verified.
Let K⊂ (0,∞) be compact. Since g is continuously differentiable, g′(·) is bounded on K.
Moreover, the set g (K) is compact; hence by part (a), E[| f̃T ∧Tm (g(x))|k ] is bounded for
x ∈K, yielding E[| fT ∧Tm (x)|k ] = E[| f̃T ∧Tm (g(x))|k ]|g′(x)|k ≤ K . By Jensen’s inequal-
ity, for any ε ∈ (0,k − 1), supx∈KE[| fT ∧Tm (x)|1+ε] ≤ K . This verifies Assumption C2.
Moreover, for x, y ∈K,

E

[∣∣ fT ∧Tm (x)− fT ∧Tm (y)
∣∣k]

= E
[∣∣∣ f̃T ∧Tm (g (x))g′(x)− f̃T ∧Tm (g (y))g′ (y)

∣∣∣k]
≤ KE

[∣∣∣ f̃T ∧Tm (g (x))− f̃T ∧Tm (g (y))
∣∣∣k]

+ KE

[∣∣∣ f̃T ∧Tm (g (y))
∣∣∣k ∣∣g′(x)− g′ (y)

∣∣k]
≤ K |g(x)− g (y)|(1−β)k∧(1/2) + K |x − y|γ̄ k

≤ K |x − y|(1−β)k∧(1/2) + K |x − y|γ̄ k .

Hence, for any ε ∈ (0,k −1), by Jensen’s inequality,

E

[∣∣ fT ∧Tm (x)− fT ∧Tm (y)
∣∣1+ε

]
≤ K |x − y|(1−β)∧ 1

2k + K |x − y|γ̄ .

By setting γ̃ = (1−β)∧ 1
2k ∧ γ̄ and picking any ε ∈ (0,min{γ̃ ,k −1}), we verify Assump-

tion C3 for the process Vt . �

A.3. Proof of Theorem 3.1

We first prove Lemmas 3.1 and 3.2, and then prove Theorem 3.1.

Proof of Lemma 3.1. By localization, we can suppose Assumption SA and strengthen
Assumptions B with the additional condition that T ≤ Tm . Since Rn = Op(ρn) and R−1

n =
Op(ρ−1

n ), we can also assume that

Rn ≤ Mρn, R−1
n ≤ Mρ−1

n (A.13)

for some fixed M ≥ 1 in the proof without loss of generality. Otherwise, we can restrict cal-
culations on the set for which (A.13) hold, while noting that the probability of the exception
set can be made arbitrarily small by picking M large. The proof proceeds via several steps.
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Step 1. Note that the inversion kernel 
(R, x) differs from that in Kryzhniy (2003b)
(see (3) there) by a factor of 1/coth(π R). Hence, by (4) in Kryzhniy (2003b), we can
rewrite (8) as

FT,Rn (x) = 2

π

∫ ∞
0

FT (xu)
√

u
sin(Rn lnu)

u2 −1
du. (A.14)

With a change of variable, we have the following decomposition:

FT,Rn (x)− FT (x) = FT (x)

(
2

π

∫ ∞
−∞

e3z/2 sin(Rnz)

e2z −1
dz −1

)
(A.15)

+ 2

π

∫ ∞
0

GT (z; x)sin(Rnz)dz, (A.16)

where we set

gT (z; x) = (
FT
(
xez)− FT (x)

)
h(z), h(z) = e3z/2

e2z −1
,

GT (z; x) = gT (z; x)− gT (−z; x) .

The first term in (A.16) can be bounded as follows. By direct integration, we have

2

π

∫ ∞
−∞

e3z/2 sin(Rnz)

e2z −1
dz = tanh (π Rn) .

Hence,

sup
t≤T,x≥0

∣∣∣∣∣Ft (x)

(
2

π

∫ ∞
−∞

e3z/2 sin(Rnz)

e2z −1
dz −1

)∣∣∣∣∣≤ K e−2π Rn = Op

(
ρ−1

n

)
. (A.17)

Below, we complete the proof by showing that the second term in (A.16) is
Op
(
ρ−1

n ln(ρn)
)
.

Step 2. We denote an = π/2Rn and, without loss of generality, we suppose that Rn ≥ 1.
In this step, we show that∫ an

0
GT (z; x)sin(Rnz)dz = Op

(
ρ−1

n

)
. (A.18)

Let An = {z �→ FT (xez) is differentiable on (−Mπ/2ρn, Mπ/2ρn)}. By Assumption B
and (A.13), we have P(Ac

n) ≤ Kρ−1
n and

E

∣∣∣∣1An

∫ an

0
GT (z; x)sin(Rnz)dz

∣∣∣∣= E
∣∣∣∣∣1An

∫ an

−an

(
FT
(
xez)− FT (x)

) e3z/2 sin(Rnz)

e2z −1
dz

∣∣∣∣∣
≤ E

∣∣∣∣∣1An

∫ Mπ/2ρn

−Mπ/2ρn

∣∣FT
(
xez)− FT (x)

∣∣ 1

|ez −1|dz

∣∣∣∣∣
≤ Kρ−1

n .

From here, (A.18) follows.
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Step 3. For each k ≥ 0, we denote an,k = an + 2πk/Rn . Let Nn = min{k ∈ N : an,k ≥
3ln(ρn)}, where we assume that ln(ρn) ≥ 2π without loss of generality. Note that for
0 ≤ k ≤ Nn , we have π/2Mρn ≤ an ≤ an,k ≤ 4ln(ρn). Moreover, Nn ≤ [Mρn ln(ρn)].
In this step, we show that

E

∣∣∣∣∣
∫ an+2π Nn/Rn

an

GT (z; x)sin(Rnz)dz

∣∣∣∣∣≤ Kρ−1
n ln(ρn). (A.19)

For k ≥ 1, we define a binary random variable In,k as follows: let In,k = 1 if the func-
tion z �→ FT (xez) is continuously differentiable on (an,k−1,an,k) and In,k = 0 otherwise.
We first note that for each k ≥ 1, if In,k = 1, then∫ an,k

an,k−1

GT (z; x)sin(Rnz)dz

=
∫ an,k−π/Rn

an,k−1

(GT (z; x)− GT (z +π/Rn ; x))sin(Rnz)dz

= R−1
n

∫ an,k−π/Rn

an,k−1

(
GT,z (z; x)− GT,z (z +π/Rn ; x)

)
cos(Rnz)dz,

where GT,z(z; x) ≡ ∂GT (z; x)/∂z, the first equality is obtained by a change of variable and
the second equality follows an integration by parts, using that cos (Rnz) = 0 for z = an,k−1
and z = an,k −π/Rn . Therefore,

E

∣∣∣∣∣
∫ an,k

an,k−1

In,k GT (z; x)sin(Rnz)dz

∣∣∣∣∣
≤ Kρ−1

n E

[∫ an,k−π/Rn

an,k−1

In,k
∣∣GT,z(z; x)− GT,z (z +π/Rn ; x)

∣∣dz

]
. (A.20)

To bound the integrand on the majorant side of (A.20), we note that GT,z(z; x) =
gT,z(z; x) + gT,z (−z; x), where gT,z(z; x) ≡ ∂gT (z; x)/∂z. By setting φT (x) =
x fT (x), we can write gT,z(z; x) = φT

(
xez)h(z)+ (FT

(
xez)− FT (x)

)
h′(z). Hence, for

any y, z ∈ R,∣∣gT,z(z; x)− gT,z (y; x)
∣∣

≤ ∣∣φT
(
xez)h(z)−φT

(
xey)h (y)

∣∣
+ ∣∣(FT

(
xez)− FT (x)

)
h′(z)− (FT

(
xey)− FT (x)

)
h′ (y)

∣∣
≤ ∣∣φT

(
xez)−φT

(
xey)∣∣ ·h(z)+φT

(
xey) · |h (y)−h(z)|

+ ∣∣FT
(
xez)− FT

(
xey)∣∣ · ∣∣h′(z)

∣∣+ ∣∣FT
(
xey)− FT (x)

∣∣ · ∣∣h′ (y)−h′(z)
∣∣ .

We further note that under Assumption SA, fT (·) and therefore φT (·) are supported on a
compact subset of (0,∞). Then, by Assumption B, (A.13) and (A.20),

E

∣∣∣∣∣
∫ an,k

an,k−1

In,k GT (z; x)sin(Rnz)dz

∣∣∣∣∣≤ Kρ−1
n k−1. (A.21)
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Next, by Assumption B1,

E

[∣∣∣∣∣
∫ an,k

an,k−1

(
1− In,k

)
GT (z; x)sin(Rnz)dz

∣∣∣∣∣
]

≤ KE

[
(1− In,k)

∫ an,k

an,k−1

|h(z)|dz

]
≤ K k−1

E
[
1− In,k

]
≤ Kρ−1

n k−1.

(A.22)

Therefore,

E

∣∣∣∣∣
∫ an+2π Nn/Rn

an

GT (z; x)sin(Rnz)dz

∣∣∣∣∣≤ E
⎡⎣ Nn∑

k=1

∣∣∣∣∣
∫ an,k

an,k−1

GT (z; x)sin(Rnz)dz

∣∣∣∣∣
⎤⎦

≤ Kρ−1
n

[Mρn ln(ρn)]∑
k=1

k−1,

where the first inequality is by the triangle inequality; the second inequality is by (A.21),
(A.22), and Nn ≤ [Mρn ln(ρn)]. From here, we readily derive (A.19).

Step 4. Now, note that∣∣∣∣∫ ∞
an+2π Nn/Rn

gT (z; x)sin(Rnz)dz

∣∣∣∣≤ ∫ ∞
3ln(ρn)

∣∣∣∣∣(FT
(
xez)− FT (x)

) e3z/2

e2z −1

∣∣∣∣∣dz

≤ K
∫ ∞

3ln(ρn)
e−z/2dz,

and∣∣∣∣∫ ∞
an+2π Nn/Rn

gT (−z; x)sin(Rnz)dz

∣∣∣∣≤ ∫ ∞
3ln(ρn)

∣∣∣∣∣(FT
(
xe−z)− FT (x)

) e−3z/2

e−2z −1

∣∣∣∣∣dz

≤ K
∫ ∞

3ln(ρn)
e−3z/2dz.

Recalling GT (z; x) = gT (z; x)− gT (−z; x), we derive∣∣∣∣∫ ∞
an+2π Nn/Rn

GT (z; x)sin(Rnz)dz

∣∣∣∣≤ Kρ
−3/2
n . (A.23)

Combining (A.18), (A.19), and (A.23), we have∫ ∞
0

GT (z; x)sin(Rnz)dz = Op

(
ρ−1

n ln(ρn)
)
. (A.24)

The assertion of the lemma then follows from (A.16), (A.17), and (A.24). n
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Proof of Lemma 3.2. With a standard localization procedure, we can suppose that
Assumption SA holds without loss of generality. We can further suppose that Rn ≥ 2 and
�n ≤ 1. It is easy to see that

sup
x∈K

∣∣F̂T,n,Rn (x)− FT,Rn (x)
∣∣≤ 4∑

j=1

ζj,n, (A.25)

where, with the notations of Lemma A.2 and 
∗ (R,u) = supx∈K |
(R,ux)|, we set

ζ1,n =
∫ ∞

0

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

(
cos
(√

2uχn
i

)
− cos

(√
2uβn

i

))∣∣∣∣∣∣

∗ (Rn,u)

u
du,

ζ2,n =
∫ ∞

0

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

exp
(−uV(i−1)�n

)−∫ T

0
exp(−uVs)ds

∣∣∣∣∣∣

∗ (Rn,u)

u
du,

ζ3,n =
∫ ∞

0

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

(
cos
(√

2uβn
i

)
− exp

(−uV(i−1)�n

))∣∣∣∣∣∣

∗ (Rn,u)

u
du,

ζ4,n =
∫ ∞

0

∣∣∣∣∣∣�n

[T/�n ]∑
i=1

(
cos

(√
2u

�n
i X√
�n

)
− cos

(√
2uχn

i

))∣∣∣∣∣∣

∗ (Rn,u)

u
du.

By Lemma A.1 and Rn ≤ ρn , given any η1,η2 ∈ [0,1/2), we have for all u > 0,


∗ (Rn,u) ≤ K exp
(πρn

2

)
min

{
uη1 ,ρnu−1,ρ2

n u−1−η2
}

, (A.26)

where we have used the fact that K is bounded above and away from zero.
By (A.3) and (A.26), where the latter is applied with η1 = 0 and η2 = η for η being the

constant in the statement of the lemma, we have

E
∣∣ζ1,n

∣∣≤ K exp
(πρn

2

)∫ ∞
0

min
{

u1/2�
1/2
n ,1

}
min

{
u−1,ρnu−2,ρ2

nu−2−η
}

du

≤ K exp
(πρn

2

)(
ρ

1/2
n �

1/2
n +ρ2

n�
1+η
n

)
, (A.27)

where the second line is obtained by a direct (but somewhat tedious) calculation of the
integral above.

By (A.4) and (A.26), for η1 ∈ (0,1/2), we have

E
∣∣ζ2,n

∣∣≤ K exp
(πρn

2

)∫ ∞
0

min
{

u�
1/2
n ,1

}
min

{
u−1,ρnu−2,ρ2

n u−2−η
}

du

+ K�n exp
(πρn

2

)∫ ∞
0

min
{

uη1−1,ρnu−2,ρ2
n u−2−η

}
du.

Moreover, by direction calculation, we have∫ ∞
0

min
{

uη1−1,ρnu−2,ρ2
n u−2−η

}
du ≤ Kρ

η1/(1+η1)
n + Kρ

1−1/η
n ,
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and∫ ∞
0

min
{

u�
1/2
n ,1

}
min

{
u−1,ρnu−2,ρ2

nu−2−η
}

du

≤ Kρn ln(ρn)�
1/2
n + Kρ2

n�
(1+η)/2
n .

Hence,

E
∣∣ζ2,n

∣∣≤ K exp
(πρn

2

)(
ρn ln(ρn)�

1/2
n +ρ2

n�
(1+η)/2
n

)
. (A.28)

By (A.5) and (A.26), we have

E
∣∣ζ3,n

∣∣≤ K�
1/2
n exp

(πρn

2

)∫ ∞
0

min{u,1}min
{

u−1,ρnu−2,ρ2
n u−2−η

}
du

≤ K exp
(πρn

2

)
ln (ρn)�

1/2
n . (A.29)

Now, consider ζ4,n . We denote r̃ = r ∧ 1. By (A.6) and (A.26), and a direct calculation
of the integral below, we have

E
∣∣ζ4,n

∣∣≤ K�
r̃(1/r−1/2)
n exp

(πρn

2

)∫ ∞
0

ur̃/2 min
{

u−1,ρnu−2,ρ2
n u−2−η

}
du

≤ K exp
(πρn

2

)
ρ

r̃/2
n �

r̃(1/r−1/2)
n . (A.30)

Finally, we combine (A.25) and (A.27)–(A.30) to derive the assertion of the lemma. n

Proof of Theorem 3.1. The assertion follows directly from Lemmas 3.1 and 3.2. n

A.4. Proof of Theorem 3.2.

By localization, we can assume (10) holds for Tm = T and Cm = K without loss of gener-
ality. Since ρn → ∞, we can also suppose ρn ≥ 1. Let 
∗ (Rn,u) be defined as in the proof
of Lemma 3.2. Recall from (A.26) that, given any η1,η2 ∈ [0,1/2), we have for all u > 0,

u−1
∗ (Rn,u) ≤ K exp
(πρn

2

)
min

{
u−1+η1 ,ρnu−2,ρ2

nu−2−η2
}

. (A.31)

Below, we fix η1 and η2 such that η1 ∈ (c̄,1/2) and η2 ∈ (max{c̄,1/3},1/2).
We start with an estimate. Let a ∈ (−η1,1+η2) be a constant. Straightforward algebra

yields∫ ∞
0

ua min
{

u−1+η1 ,ρnu−2,ρ2
n u−2−η2

}
du

=
∫ ρ

1/(1+η1)
n

0
u−1+η1+adu +ρn

∫ ρ
1/η2
n

ρ
1/(1+η1)
n

ua−2du +ρ2
n

∫ ∞
ρ

1/η2
n

ua−2−η2 du

≤ K

(
ρ

a+η1
1+η1
n +ρ

1+ a−2
1+η1

+ 1
η2

n +ρ

a−1+η2
η2

n

)
≤ Kρ4

n .

(A.32)
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Now, observe that for any compact K⊂ (0,∞),

E

[
sup
x∈K

∣∣F̃T,n,Rn (x)− FT,Rn (x)
∣∣]≤

∫ ∞
0
E
∣∣L̃T,n (u)−LT (u)

∣∣
∗ (Rn,u)

u
du

≤ K�δ̄
n

∫ ∞
0

(
u−c̄ +u1+c̄

)
∗ (Rn,u)

u
du

≤ K exp
(πρn

2

)
�δ̄

nρ4
n , (A.33)

where the first inequality is by the triangle inequality; the second inequality follows from
(10); the third inequality follows from (A.31) and (A.32). Under condition (ii), the majorant
side of the above display goes to zero. The assertion of the theorem then readily follows
from Lemma 3.1 and (A.33). �

A.5. Proof of Theorem 3.3

Part (a) Let (Tm)m≥1 be the localizing sequence of stopping times as in Assumption C. By
localization, we can suppose that the stopped process

(
Vt∧Tm

)
t≥0 takes values in Km =

[cm ,Cm ] for some constants Cm > cm > 0 without loss of generality. By enlarging Km
if necessary, we suppose that K ⊆ Km without loss. Let Mm = ln(Cm/cm). Observe that
x, y ∈K and |z| ≥ Mm imply FT ∧Tm

(
xez)− FT ∧Tm

(
yez)= 0. Hence, for any x, y ∈K,

E

[∣∣∣∣∫ ∞
−∞
(
FT ∧Tm

(
xez)− FT ∧Tm(x)− (FT ∧Tm

(
yez)− FT ∧Tm(y)

)) e3z/2 sin(Rnz)

e2z −1
dz

∣∣∣∣1+ε
]

≤ KE

[∣∣FT ∧Tm (x)− FT ∧Tm (y)
∣∣1+ε

∣∣∣∣∫
(−∞,−Mm ]∪[Mm ,∞)

e3z/2 sin
(
Rnz

)
e2z −1

dz

∣∣∣∣1+ε
]

+ KE

[∣∣∣∣∫ Mm

−Mm

(
FT ∧Tm

(
xez)− FT ∧Tm (x)

− (FT ∧Tm

(
yez)− FT ∧Tm (y)

))e3z/2 sin
(
Rnz

)
e2z −1

dz

∣∣∣∣1+ε
]

. (A.34)

By Assumption C2 and Hölder’s inequality,

E

[∣∣FT ∧Tm (x)− FT ∧Tm (y)
∣∣1+ε

∣∣∣∣∫
(−∞,−Mm ]∪[Mm ,∞)

e3z/2 sin(Rnz)

e2z −1
dz

∣∣∣∣1+ε
]

≤ KmE
[∣∣FT ∧Tm (x)− FT ∧Tm (y)

∣∣1+ε
]

≤ Km |x − y|1+ε .

(A.35)

Note that for any x, y ∈K, and z ∈ R,∣∣FT ∧Tm

(
xez)− FT ∧Tm (x)− (FT ∧Tm

(
yez)− FT ∧Tm (y)

)∣∣
=
∣∣∣∣∫ y

x
fT ∧Tm (v)dv −

∫ y

x
ez fT ∧Tm

(
vez)dv

∣∣∣∣
≤
∫ y

x
fT ∧Tm

(
vez) ∣∣ez −1

∣∣dv +
∫ y

x

∣∣ fT ∧Tm

(
vez)− fT ∧Tm (v)

∣∣dv.
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Thus by Hölder’s inequality, the second term on the majorant side of (A.34) can be
bounded by

KmE

⎡⎣∫ Mm

−Mm

(∫ y

x
fT ∧Tm

(
vez) ∣∣ez −1

∣∣dv

)1+ε
∣∣∣∣∣ e3z/2

e2z −1

∣∣∣∣∣
1+ε

dz

⎤⎦
+ KmE

⎡⎣∫ Mm

−Mm

(∫ y

x

∣∣ fT ∧Tm

(
vez)− fT ∧Tm (v)

∣∣dv

)1+ε
∣∣∣∣∣ e3z/2

e2z −1

∣∣∣∣∣
1+ε

dz

⎤⎦ .

(A.36)

The two terms in (A.36) can be further bounded as follows. By Hölder’s inequality and
Assumption C2, the first term in (A.36) can be bounded by

KmE

[∫ Mm

−Mm

(∫ y

x
fT ∧Tm

(
vez)dv

)1+ε

dz

]
≤ Km |x − y|1+ε .

By Hölder’s inequality and Assumption C3, the second term in (A.36) can be bounded by

Km

∫ Mm

−Mm

E

[(∫ y

x

∣∣ fT ∧Tm

(
vez)− fT ∧Tm (v)

∣∣dv

)1+ε
]∣∣∣∣ 1

ez −1

∣∣∣∣1+ε

dz

≤ Km |x − y|1+ε
∫ Mm

−Mm

1

|ez −1|1+ε−γ̃
dz

≤ Km |x − y|1+ε .

Thus, (A.36) can be further bounded by Km |x − y|1+ε . Combining this estimate with
(A.35), we deduce that

The left-hand side of (A.34) ≤ Km |x − y|1+ε . (A.37)

Next, observe that by Assumption C2,

E

⎡⎣∣∣∣∣∣
∫ ∞
−∞

(
FT ∧Tm

(
xez)− FT ∧Tm (x)

) e3z/2 sin(Rnz)

e2z −1
dz

∣∣∣∣∣
1+ε

⎤⎦
≤ KE

⎡⎣∣∣∣∣∣
∫ 1

−1

(
FT ∧Tm

(
xez)− FT ∧Tm (x)

) e3z/2 sin(Rnz)

e2z −1
dz

∣∣∣∣∣
1+ε

⎤⎦
+ KE

⎡⎣∣∣∣∣∣
∫
R\[−1,1]

(
FT ∧Tm

(
xez)− FT ∧Tm (x)

) e3z/2 sin(Rnz)

e2z −1
dz

∣∣∣∣∣
1+ε

⎤⎦
≤ KE

[∫ 1

−1

∣∣FT ∧Tm

(
xez)− FT ∧Tm (x)

∣∣1+ε
∣∣∣∣ 1

ez −1

∣∣∣∣1+ε

dz

]
+ K

≤ KE

[∫ 1

−1

∣∣∣∣∫
[x∧xez ,x∨xez ]

fT ∧Tm (v)dv

∣∣∣∣1+ε ∣∣∣∣ 1

ez −1

∣∣∣∣1+ε

dz

]
+ K

≤ K .
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Equipped with (A.37) and the estimate displayed above, we can apply Theorem 20 in
Ibragimov and Has’minskii (1981) to show that the collection of processes∫ ∞
−∞

(
FT ∧Tm

(
xez)− FT ∧Tm (x)

) e3z/2 sin (Rnz)

e2z −1
dz, x ∈K,n ≥ 1,

is stochastically equicontinuous. By (A.17), we see that the processes FT ∧Tm ,Rn (x) −
FT ∧Tm (x), x ∈ K, n ≥ 1, are also stochastically equicontinuous. Combining this result
with Lemma 3.2, we deduce that F̂T,n,Rn (x) − FT (x), x ∈ K, n ≥ 1, are stochastically
equicontinuous in restriction to the event {T ≤ Tm}. By Theorem 3.1, (F̂T,n,Rn (x) −
FT (x))1{T ≤Tm } = op (1) for each x ∈K. Hence, for each m ≥ 1,

sup
x∈K

∣∣(F̂T,n,Rn (x)− FT (x)
)

1{T ≤Tm }
∣∣ P−→ 0.

By using a standard localization argument, we readily derive the asserted convergence.
Part (b) The proof of part (b) is the same as part (a) except for the following difference:

instead of using Lemma 3.2 and Theorem 3.1, we use (A.33) and Theorem 3.2 in the
proof. �

A.6. Proof of Theorem 3.4

Part (a). Let N1 be an arbitrary subsequence of N. Under the condition of the theorem,
there exists a further subsequence N2 ⊆ N1, such that supx∈K |F̂T,n,Rn (x)− FT (x)| → 0
as n → ∞ along N2 on some P-full event �∗.

Now, fix a sample path in �∗. Let T be the collection of continuity points of QKT (·).
We have 1{F̂T,n,Rn (x)<τ } → 1{FT (x)<τ } along N2 for x ∈ {x ∈K : FT (x) �= τ }. For each

τ ∈ T , the set {x ∈K : FT (x) = τ } charges zero Lebesgue measure. By bounded conver-
gence, along N2,

Q̂KT,n,Rn
(τ ) → infK+

∫ supK
infK

1{FT (x)<τ }dx = QKT (τ ) , ∀τ ∈ T . (A.38)

Since FT (x) is continuous in x , by Lemma 21.2 of van der Vaart (1998) and (A.38), we
have F̂KT,n,Rn

(x) → FT (x) along N2 for all x ∈K. Since F̂KT,n,Rn
(·) is also increasing, we

further have supx∈K |F̂KT,n,Rn
(x)− FT (x)| → 0 along N2.

We have shown that for any subsequence, we can extract a further subsequence along
which supx∈K |F̂KT,n,Rn

(x) − FT (x)| → 0 almost surely. Hence, supx∈K |F̂KT,n,Rn
(x) −

FT (x)| = op (1).
Part (b). Let N1 and N2 be given as in part (a). Since the continuity points of QT (·)
are also continuity points of QKT (·), by (A.38), we have Q̂KT,n,Rn

(
τ∗)→ QKT

(
τ∗) along

N2 almost surely. The assertion of part (b) then follows a subsequence argument as in
part (a). �
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