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AN ALTERNATIVE APPROACH TO LAGUERRE
POLYNOMIAL IDENTITIES IN COMBINATORICS

WAYNE W. BARRETT

1. In their paper ‘‘Permutation Problems and Special Functions,” Askey and
Ismail [1] give the following striking identity. Consider three boxes containing
j, k, m distinguishable balls, and consider all possible rearrangements of these
balls such that each box still has the same number of balls;i.e., jend up in the
first, k in the second, m in the third. One disregards the order of the balls within
a box so there are (j 4+ k 4+ m)!/(jlk'm!) possible rearrangements. Let R
be the number of rearrangements where an even number of balls change boxes
and R, the number of rearrangements where an odd number change boxes. The
identity is

(1.1) Ry — Ry = 27t+m+! fo ’ L, (%) Ly (%) L (x)e™dx
where
12 LE =3 <—1)’(ﬁ)x7;

is the jth Laguerre polynomial. These polynomials are orthonormal with
respect to the weight function e~*; i.e.

fm L;(x)Li(x)e "dx = 8.
0

In combinatorial theory Laguerre polynomials are called Rook polynomials.
Substituting for L;(x), Ly(x) and L, (x) in (1.1) from (1.2) and integrating
one obtains

(1.3) Ry — Ry = 2 Zi;) fﬁo fi (myyeere LR (J) (k ) (m)

= = risl! r s t

The method of proof for (1.1) in [1] was to first calculate the generating func-
tion for

f " L) L) Ly, ()¢ d

which is elementary. The result is the reciprocal of a simple cubic polynomial
of three variables, x, v, z, in which no variable is squared or cubed. Thus the
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coefficient of x7y*z™ in the power series expansion of this rational function is

fo " L) L) Ly ().

Then by using a powerful theorem of MacMahon's called the Master Theorem
[8, pp. 93-98] (also stated in [1]) this coefficient can be identified except for a
constant multiple with the coefficient of x7y*2™ in the expansion of
x—y—2)(—x+y—2)*—x—19-432)™ and by examination one sees
that the coefficient of x’y*2™ in (x —y —2)/(—x+ 3y —2)¥(—x — y + 2)™
is RE — Ro.

Our object is to prove the identity (1.1) by proving (1.3) directly. This not
only avoids the Master Theorem, but also has some additional interest since
when combined with the recent work of Ismail and Tamhankar [5] it provides
an elementary and purely combinatorial proof of the positivity of

fo " L) L () L ()™ .

The idea for the proof can be discovered by doing a simple example. If
j =2,k =1,m = 1, there are 12 rearrangements and it is easy to see in this
case that Rz = 8 and. Ry = 4 so that Rz — Ry = 4. If one evaluates the
Laguerre integral one has

prrivint [ (1 o b ) (1 — 21— e
0

=16 — 32 4+ 44 — 36 + 12 = 4,

and the identity holds. We see that the way the integral counts is in a sense
uneconomical; the numbers alternate in sign and each overcompensates for
the previous one. However this extravagance cancels out in the end giving the
correct result. This reminds one of the derangement problem in probability
where one counts the number of ways an event can happen by successive inclu-
sion and exclusion, and this is the method of counting we use to establish (1.3).

Let .S, be the set of all permutations of the integers 1, 2, ..., n. .S, has n!
elements. Here n = j 4+ k& + m. Let
Ai={r €Sl =@ =jt,e=1,...,5;
Aipi={rneSlj+1=rG+17) =j+kand,i=1,...,%k; and

Aj+k+z'={WESn'j+k+1§T(j+k+i)§n}» i=1,...,m.

Then U1 A, represents the event ‘‘one ball remains in the same box’’ and
N1 A4; the event ‘“‘all balls remain in the same box’’. When counting we have
to divide by jlk!m! since we are disregarding order within a box.

Let p, = P{A4,}, the probability of 4., p,, = P{4, N A},

Prsi=P{A. NANAY, ... r,s,t...=1,...,n
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Finally let So=1,38 = Zr P Se = Zr<s Drs, Sz = Zr<s<tpmtv ... . Then
from (4, p. 106] we have

THEOREM 1. For any integer M with 1 < M = n the probability P, that

exactly M among the n events Ay, . .., A, occur simultaneously 1s given by
M+1 M+ 2
PM=SM—( ]‘}_ )SM+1+( ]l—; )SM+2_-~~:E(]‘12)Sn-

Multiplying both sides by »! changes all probabilities into numbers of ways
an event can occur.

The number of ways that r of the events A4,,...,4; s of the
events 441, ..., 415 and ¢ of the events 4,241, ..., 4, can occur is

CrnComCo JOROMD (0 — (r + 5 4+ £))1/jlkIm!

Here j" =jG—-1)...G—r+1), ;,C, = (J), and we have divided by
7lk!m! for the reason noted above. ’

Therefore, applying the theorem above, the number of rearrangements
leaving exactly M balls fixed is

(14) NM = j=0 I§=0 27?:0 (—'1)7+s+t‘M(r+s+t)CMjcr sz mcz
X F MmO (n — (r + s + £))!/jkIm!
with » + s + ¢ = M. Hence the number of rearrangements leaving an even

number of balls fixed minus the number of rearrangements leaving an odd
number of balls fixed is

2h=0 (— 1) Ny

Substituting from (1.4) in this last equation, and noting that

r+s+1

~ T+s+t
(T+s+t)(/M =2

and j"/j! = 1/(; — r)! it is easily seen that
Zﬁ (_I)MNM = Zzo ZI§=0 Z'Lo (—2)T+S+chr kcs nCy
Xn—+s+)/G—=r)l(k—s)m— 1)l
Replacingr by j — 7, sby & — s, t by m — ¢t and using n = j 4+ & 4 m gives

S0 (D) Ny = (1) 2 T ST T (— )

Lt () () ()

To change this to the number of rearrangements where an even number of balls
move minus the number of rearrangements where an odd number of balls move
we multiply by (—1)" and this is the right hand side of (1.3) which completes
the proof.
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It is apparent that there is nothing special about three boxes, and the proof
above generalizes to NV boxes with the corresponding integral of N Laguerre
polynomials on the right hand side of (1.1).

It is only fair to say that although the above proof is simpler than the
original, the identity would not easily have been discovered this way since no
combinatorial interpretation of the right hand side of (1.3) comes readily to
mind. Hence the discovery of (1.1) had to follow the method of Askey and
Ismail or some other means.

2. Earlier we mentioned that the above argument provides an elementary
proof of the positivity of the integral

f: L;(x)Ly (%)L, (x)e dx.

By using the binomial theorem Ismail and Tamhankar [5] proved that the
coefficient of 7is* ™ in (r — s — )/ (—7r 4+ s — )¥(— r — s + t)™ is positive.
As noted before this coefficient is Ry — R, which is

27+k+m+lf L, () Li(x) L, (x)e dx
0

by (1.1) which completes the proof.

Ismail and Tamhankar first proved the positivity of the coefficient of #/s¥™
in (r —s—t)(—r—+s—t)¥(—r — s)™ from which the positivity of the
corresponding coefficient in (r —s — t)/(—7r +s — D)¥(—r — s + £)™ fol-
lows immediately from the binomial theorem

(r—s=—0(—r+s—0—r—s+ "= YionCa"*
X —s—t)(—r+s—t(—r—s)t

The coefficient of r/s*™in (r — s — t)(—r + s — )¥(— r — s)™also has a
combinatorial meaning [5]. Consider again three boxes with j, k, and m balls
and consider all possible rearrangements such that no ball remains in the last
box; i.e., the box with m balls is a derangement box. Then the coefficient of
rist™ equals Dz — D, where Dy is the number of rearrangements where an
even number of balls change boxes and D, the number where an odd number
change. Notice that at least 2m balls must always change boxes and the total
number of rearrangements is

(n_m)Cmm! (n - m)'/]'k'm' = (n_m)Cm(n - m)'/]'k' .

Here n = 5 + k + m.
It follows from Askey, Ismail and Koornwinder [2], again via the Master
Theorem, that this number equals an integral of Laguerre polynomials:

(2.1) Dy — Do = 27t* f €L, (3¢) Ly (3x) Ly, (x)dx.
0

They actually prove a more general result:
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Letting B(j, k, m) be the coefficient of r/s*™ in
(A = N7 =20 = N)s = VM= VAT = N7 + s — V1 — M)
X [— VM =T = s]™,
2.2) B,k m) = fo " L, 0m) Le((1 — N)x) L ()dx.

We now prove (2.1) by extending the method in section 1. First we make a
trivial change of variables

(2.3) Dz — Dy = 2“"“[ L;(x)Ly(x) Ly (2%)e dx.
0

Substituting from (1.2) and integrating:
(24) Dy — Dy =
2+ 3] 0 T Yo (1) 5+ 1) [Cr i ComCo/27F0r s ]

which is the same as the right hand side of (1.3) except a factor of 2’ is missing
in the denominator. Because of this we can perform the ¢ sum,

o (DG (r+ s+ )Y/t = 200 (1) 'WCo(t + 1) 45
where (a), =a(a 4+ 1) ... (¢ + n — 1). Replacing ¢t by m — {, this is
(—1)m ZT=0 (_l)lmct(m — i+ 1)r+s-

This is a Vandermonde sum. Using that summation formula or the binomial
coefficient identity (12.18) in [4, p. 65] this equals (—1)",,,C.(r + s)!. Sub-
stituting back in (2.4),

(25) DE - DO = (—1)m2j+k £=0 Z,;=0 (_“ %)7+s<7 + S)!]C, sz (H-S)Cm/r!S!

We now show (2.5) by counting Dy — D, using Theorem 1. But now we
only need the events 44, ..., 4 ;. from before. The number of ways that r
of the events 44, ..., 4; and s of the events 4,1, ..., 4 ;44 can occur is

Cri " C Ry Com!(n —m — v — $)!/flklm!.
Then by Theorem 1, the number of rearrangements leaving M balls fixed is
NIH = 23::0 Zﬁ:ﬂ (_1)r+S_M r+sCM jcr kcs (n—m—r—s)cm(n —m
—r—35)l/G =)k —s)!

with the restriction that 7 + s < n — 2m. Therefore the number of rearrange-

ments leaving an even number of balls fixed minus the number of rearrange-
ments leaving an odd number of balls fixed is

n—2m

2 (=) Ny
M=0
Substituting for N, and bringing the summation over M inside,

S5 (— 1PNy = Theo Thoo (=200 — m — 7 — 5)!
X jcrkcs (n—m—T—S)Cm/(j - 1’)'(k - S)'
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with » + s £ n — 2m. Replacing » by j — » and s by ¢ — s and
using n = j + k + m gives
S (=1MN, = (=1)"(—=1)m2i+k 2.7:0 lec=0 (= 1)+3(r + 5)!
X iCriCs (49 C/ 715!

with » + s = m. To change this to Dy — Dy, the number of rearrangements
where an even number move minus the number where an odd number mouve,
we multiply by (—1)". Noting also that 7 + s = m is now superfluous we have
(2.5) which ends the proof.

Using the result of Ismail and Tamhankar [5] that the coefficient of r/s*™
in (r —s—18)(—r+s—t)¥(—r — s)™ is positive we have a new proof of
the positivity of

j; i ¢ "L ;(3%) L (%) Ly (x)dx.

3. It now is natural to try to extend this argument to prove (2.2). Ismail and
Tamhankar [5] proved the positivity of B(j, k, m) as before, by an elementary
application of the binomial theorem, so the positivity of the integral in (2.2)
(Koornwinder's inequality [2], |7]) follows from the identity (2.2). However,
now the weights assigned to different rearrangements are distinctly inhomo-
geneous due to the inhomogeneity of

[ = Nx =M1 = Ny — V)
X [= VAL = Nx + 2 — V1 = =V =1 = y)m

and for each M several different weights are assigned to the rearrangements
leaving M balls fixed. Hence a more refined argument is needed.
Evaluating the integral in (2.2) as before

@3.1) fo " L, ) L (1 — N)x) L ()

= 2 I 0 koD o (—1)YTN (1 = N (r + 5+ £)1,C 1k ComC /IS
Now by the binomial theorem

B(j, kym) = 2i_o Yoo (L — N)'NC, . Co(— 1)

X (coefficient of x7-7y*¥=5z™ in

VAT = Ny + VA2V = N + /1 — halF
X [V 4+ 71 = Mm).

When this is expanded, each term x7~7y*—%2™ has the same coefficient,
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N=(1 — N)*=*. Thus,
(32) B, kym) = (=1)" Xioo Ximo (=1)*(1 = NN
CraCN~T(1 = N)*=* X (coefficient of x7="y*=%2™ in
[y + 217"[x + 2][x + ¥]").
It is not difficult to see that the coefficient of x?y*z™ in
(v +2)(x + 2)x+ )"

is D(j, k, m), the number of derangements of three boxes containing j, k, and
m balls respectively; i.e., the number of rearrangements such that the number

of balls in each box remains unchanged and no ball remains in its original box.
From Askey, Ismail, and Rashed [3], or Jackson [6],

63) DGkm) = (-1 [ LWL WL e

where n = j + k + m. Actually they give the corresponding formula for an
arbitrary number of boxes. In both references a proof of (3.3) is given using
the principle of inclusion and exclusion, the main tool we have been using here.
Evaluating the integral in (3.3)
(84) D@, kym) = (—1)" Xiog Ximo Lo (=1)++4,C, 1 CsnC
X (r+ s+ t)!/rislt!.
Since D(j, k, m) is also given by formula (1.4) with M = 0, by making the
substitutionsr —»j — v, s =k — s, { > m — { we can arrive at (3.4) directly
here in our notation.
Writing (3.2) as
B(j, kym) = (—1)N(1 = N Sig Shoo (—1)7FN=7 (1 — )=
X jCTszD(j -7, k -3, m)
and substituting for D(j — 7, & — s, m) from (3.4),
B(j, kym) = (—1)"N(1 — N)* i Xico (—1)7HN =7 (1 = N
X jcr kcs<__1)j—r+k—s+m Zu=0 j—r Zv=0 k—s Z’:‘zo(_l)u+v+t
X (u + v+ t)!(j—r)cu(k—s)cvmct/u!v!“ .

The upper limits in the # and v sums can be changed to j and k respectively
since this only introduces zero terms. Therefore

B(, kym) = N1 — N 2] Xieo (1 = N)/N),C,xC,
X Z;’=0 ZI:}=0 77=0 (_1)u+v+t(i—r)cu(Ic—s)cvmct(u + v+ t)'/u il

Interchanging the order of summation, performing the sums and then re-
labeling u, v as 7 and s,

B(], k, ’WL) = Lo ZI;=O ZT=O (_1)r+s+t}\r(1 - )\)sjcr kcs mCt
X (r+ s+ t)!/risl!
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which is the right hand side of (3.1). This completes the proof of the identity
(2.2).

It appears that the elementary approach used in this paper is a general
method for proving Laguerre polynomial identities in combinatorics.
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