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Abstract

We study a service system in which, in each service period, the server performs

the current set B of tasks as a batch, taking time s(B), where the function s(·) is

subadditive. A natural definition of ‘traffic intensity under congestion’ in this setting

is ρ := limt→∞ t
−1Es(all tasks arriving during time [0, t]). We show that ρ < 1 and a

finitemean of individual service times are necessary and sufficient to imply stability of the

system. Akey observation is that the numbers of arrivals during successive service periods

form a Markov chain {An}, enabling us to apply classical regenerative techniques and to

express the stationary distribution of the process in terms of the stationary distribution of

{An}.

Keywords: Gated service discipline; job scheduling; queueing; regenerative process;

stability; stochastic scheduling; subadditive
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1. Introduction

In a general model of a batch service system, tasks are presented to a server at random

times. On completing a service, the server examines the set A of tasks to be done, and chooses

(according to some strategy) a subset B ⊆ A as the next batch of tasks to be accomplished.

In many contexts, the service time s(B) to accomplish task set B (for simplicity we assume

service times are deterministic) will be a subadditive function of task sets:

s(B1 ∪ B2) ≤ s(B1)+ s(B2). (1.1)

In particular, subadditivity is pervasive when a server must physically move (combining two

trips into one trip saves time and distance) or where there is some start-up time for each new

batch (so combining two batches eliminates one start-up time). For instance, consider the

following examples:
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622 D. ALDOUS ET AL.

• A retail store’s delivery van. A ‘task’ is to deliver a package to a house.

• Thin client computing, that is, replacing a PC and purchased software applications by a

cheaper device which downloads rented software from the Internet as needed. So a ‘task’

involves start-up time spent downloading some set of software.

Realistic modeling of any particular example will involve more specific structure (e.g. specific

forms of s(·), capacity constraints). But can we say anything interesting when we assume only

subadditivity for s(·)? This mathematically natural question has apparently not been studied

before, so we make a modest start here. We take a model (stated more precisely in Section 2)

which is simple in other respects:

• single server;

• deterministic service times;

• Poisson arrivals (with general type-space).

In contrast to classical multiclass queueing theory which envisages a small number of customer

classes (see e.g. [14, Chapter 10]), we envisage every task being different, that is, the type of

each arrival may be chosen from some diffuse distribution.

Subadditivity as a proof technique is pervasive throughout modern applied probability. In

the queueing context it has been used to study stability and Lyapunov exponents: see e.g. the

work of Baccelli and his coworkers ([2] and references) regarding max-plus systems, and [3]

regarding parallel processing systems. Our use of subadditivity is less standard since a weak

model hypothesis is used in place of more structured ones.

Perhaps themost interesting questions about ourmodel involve the server’s choice of strategy,

where we seek to minimize some long-run average cost per unit time; we outline some such

questions in Section 5. Such long-run questions beg the more fundamental question of when

the system is stable. In this paper we study the simple strategy in which the server adopts the

entire set of waiting tasks as the next batch. This can be called a batch clearing system; or

in the terminology of polling service systems a gated service discipline. Intuitively, stability

should be closely related to the condition

ρ := lim
t→∞

t−1Es(all tasks arriving during time [0, t]) < 1 (1.2)

because under this condition we expect that (for large t0) all arrivals in an interval of duration

t0 can typically be served in the next interval of duration t0, so that waiting times should

not grow much beyond t0. Our main result, Theorem 3.1, shows that the condition (1.2),

together with finite expectation of the time s(X1) to serve a single customer, establishes stability

(i.e. convergence to stationarity) of the queueing system as a whole, and hence of the usual

characteristics such as service time, waiting time and queue length. These conditions are also

necessary. Moreover, Corollary 4.2 shows that if Es2(X1) < ∞, then the stationary waiting

time or queue length have finite mean. So if there is a bounded waiting-cost function then (cf.

Corollary 4.1) the asymptotic waiting cost per unit time is finite.

The case where s(·) is additive is essentially the M/G/1 queue, for which the process of

arrivals during successive service periods is i.i.d. (see Section 5 for elaboration). Keys to our

analysis are the observations (Lemmas 2.1 and 3.3) that in the subadditive case the process of

arrivals during successive service periods is Markov and the mean service time of a batch is

finite. In Section 3 we combine this with the observation that the process regenerates when

empty, and deduce the convergence theorem.
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On the stability of a batch clearing system 623

Our model could be restated in the general framework of state-dependent service models.

Such queueing models (in particular, polling systems [12]) have been widely studied. The

regenerative technique is the standard way to prove stability—see e.g. [13] for a recent account

of its queueing uses and [11] for the case of clearing systems—but it seems simpler to give

direct regenerative proofs of our results than to adapt some other general set-up.

2. The model and first lemmas

We restate the model more carefully using the language of queueing theory. Consider a

single-server queue with Poisson arrivals at rate λ. Customers are numbered as 1, 2, 3, . . .

according to their arrival times 0 < T1 < T2 < · · · . The nth customer has a task of type Xn,

where {Xn; n = 1, 2, 3, . . . } are i.i.d. random variables (with some distribution � on some

type-space X, the details being irrelevant for our purposes). Service time is specified by a

measurable function s : {finite subsets of X} → [0,∞) for which the key assumption is the

subadditive property (1.1). We assume s(∅) = 0 for the empty set ∅. It may also be natural to

assume monotonicity:

if B1 ⊂ B2 then s(B1) ≤ s(B2),

and nontriviality:

s(B) = 0 only if B is empty.

However, we shall not use these assumptions throughout the paper. Sets like B are really

multisets; we won’t labor the distinction. The verbal description of the batch clearing system

translates into the following inductive description of the nth service period [γn, ηn) and the

index Jn of the final customer in the nth batch. For n = 1, 2, . . . ,

γn = max(ηn−1, TJn−1+1),

Jn = max{j : Tj ≤ γn},

ηn = γn + s(XJn−1+1, . . . , XJn),

initialized by γ0 = η0 = J0 = 0. Note thatwewrite s(X1, . . . , Xj ) instead of s({X1, . . . , Xj }).

Consider

An = number of arrivals during nth service period

= max{j : Tj < ηn} − Jn,

setting A0 = 0. This is almost the same as

A′
n = Jn+1 − Jn

= size of (n+ 1)th batch served.

The difference is that An = 0 implies that A′
n = 1; in other words,

A′
n = max(1, An). (2.1)

A key observation is that {An} is Markov. This is intuitively clear: the number of arrivals during

the (n+ 1)th service depends only on the duration of the (n+ 1)th service, which depends only

on the number and types of arrivals during the nth service, but the types are independent of the

number. We write the argument more carefully below.
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624 D. ALDOUS ET AL.

Lemma 2.1. The sequence {An; n ≥ 0} is the discrete-time Markov chain on states {0, 1,

2, . . . } with A0 = 0 and transition probabilities

pij = E

(

(λs(X1, . . . , Xi′))
j

j !
e−λs(X1,...,Xi′ )

)

, where i′ = max(1, i). (2.2)

Hence the Markov chain {An} is irreducible and aperiodic.

Proof. WriteGn = σ(J1, . . . , Jn+1;X1, . . . , XJn+1) for the information knownat the start of

the (n+1)th service. SoAn and the duration ηn+1 −γn+1 are Gn-measurable. The conditional

distribution of An+1 given Gn is Poisson with mean ηn+1 − γn+1 = s(XJn+1, . . . , XJn+1).

Write Fn = σ(Gn−1, Jn + 1, . . . , Jn+1), so that An is Fn-measurable. Conditional on Fn,

(XJn+1, . . . , XJn+1) is distributed as (X̂1, . . . , X̂A′
n
), where the X̂i are independent copies of

the Xi . So the conditional distribution of An+1 given σ(A1, . . . , An) ⊆ Fn is the Poisson

mixture specified by the random parameter s(X̂1, . . . , X̂A′
n
). This establishes the Markov

property and the formula for transition probabilities.

Lemma 2.1 immediately implies that {A′
n, n ≥ 0} is also Markov. For n = 1, 2, 3, . . . write

Sn for the service time of the nth batch. So, as in the proof above,

Sn+1 = s(XJn+1, . . . , XJn+1)

D

= s(X̂1, . . . , X̂A′
n
) (2.3)

and (Sn, n ≥ 1) is also a Markov chain. Related to Sn is

S′
n = time between start of nth and (n+ 1)th services

= γn+1 − γn.

Here S′
n − Sn = 0 unless An = 0, in which case S′

n − Sn has exponential(λ) distribution, i.e.,

with mean 1/λ. In particular

E(S′
n − Sn) = λ−1P(An = 0). (2.4)

We next note some consequences of subadditivity. Write

Yn = s(X1, . . . , Xn),

f (n) = EYn.

If Es(X1) < ∞, then by subadditivity of s(·) we have EYn ≤ nEY1 < ∞. So f (n) is

finite-valued and subadditive:

f (n1 + n2) ≤ f (n1)+ f (n2).

Lemma 2.2. (i) If EY1 <∞, then

lim
n→∞

EYn

n
= β, (2.5)

for some 0 ≤ β <∞.

(ii) For each k ≥ 2, if EY k1 <∞, then

lim
n→∞

EY kn

nk
= βk. (2.6)
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Proof. Part (i) is a classical consequence of deterministic subadditivity (see e.g. Theo-

rem 6.6.1(a) of [5]). For (ii), we first note that Yn is subadditive, since s(·) is so. Kingman’s

subadditive ergodic theorem (see e.g. Theorem 6.6.1 of [5]) implies that

lim
n→∞

Yn

n
= β, a.s., (2.7)

for the β defined by (i). Fix a > β and write Y kn as

Y kn = Y kn 1(Yn < na)+ Y
k
n 1(Yn ≥ na),

where 1(·) is the indicator function. Using the bounded convergence theorem and (2.7), we

have

lim
n→∞

EY kn 1(Yn < na)

nk
= βk.

On the other hand, the subadditivity of Yn implies that

Yn ≤

n
∑

i=1

s(Xi).

This together with the convexity of xk yields

E

(

Y kn

nk
1(Yn ≥ na)

)

≤ E

((

1

n

n
∑

i=1

s(Xi)

)k

;

n
∑

i=1

s(Xi) ≥ na

)

≤
1

n
E

( n
∑

i=1

sk(Xi);

n
∑

i=1

s(Xi) ≥ na

)

= E

(

sk(X1);

n
∑

i=1

s(Xi) ≥ na

)

,

where the last equality holds because the s(Xi)s are i.i.d. Since we can choose any a > β,

take a > EY1. Then the law of large numbers implies that the last term of the above formula

converges to 0. Thus we get (2.6).

It is straightforward to check that the congested traffic intensity ρ defined at (1.2) satisfies

ρ = λβ, (2.8)

where λ is the Poisson arrival rate of customers and β is the mean congested service time per

customer defined by (2.5).

3. The convergence theorem

In the following lemma, by positive-recurrence of a Markov chain we mean stability, that

is, the existence of a limiting stationary distribution.

Lemma 3.1. If ρ < 1 and Es(X1) < ∞, then {An; n ≥ 0}, {A′
n; n ≥ 1}, {Sn; n ≥ 1} and

{S′
n; n ≥ 1} are positive-recurrent.
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Proof. Consider {An}, which is irreducible and aperiodic. We use Foster’s theorem with

test function h(i) = i for a discrete-time Markov chain (see e.g. Theorem 5.1.1 in [4]). For

i ≥ 1

E(An+1 |An = i)− i = λE(Yi)− i

= i

(

λ
E(Yi)

i
− 1

)

≤ i(ρ + o(1)− 1) (by (2.5), (2.8))

→ −∞ as i → ∞.

The Lyapunov condition is thus satisfied, and so {An} is positive-recurrent and converges in

distribution to a stationary batch size:

An
D

−→ A, say.

From (2.1),

A′
n = max(1, An)

D

−→ max(1, A) = A′, say.

Also

Sn+1
D

= s(X̂1, . . . , X̂A′
n
) (by (2.3))

D

−→ s(X̂1, . . . , X̂A′)

D

= S, say,

where S is therefore the stationary service time. Similarly, using the argument preceding (2.4),

(Sn, S
′
n)

D

−→ (S, S′),

where in particular the limit satisfies

E(S′ − S) = λ−1P(A = 0). (3.1)

An obvious feature of our batch clearing system is that it regenerates each time an arriving

customer finds an empty queue. The first such time is the first arrival time T1. The next

regeneration time τ is given by

τ − T1 =

N
∑

n=1

S′
n,

where N = min{n ≥ 1 : An = 0}. By the regenerative cycle formula,

E

N
∑

n=1

S′
n = (EN)(ES′). (3.2)

By positive-recurrence of {An} (Lemma 3.1) we have EN < ∞. We need to know that the

hypotheses of Lemma 3.1 imply that ES′ < ∞; this is part of Lemma 3.3, whose statement

and proof we defer. Granted that ES′ < ∞, we have shown that the mean duration E(τ − T1)

of a regenerative cycle is finite. So we can apply classical results on regenerative processes.
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To this end, we describe the state of the batch clearing system as follows. Write the state as

ξ = (u, C,B), where

u is the time since the starting instant of the latest service;

C is the set of types of customers being served;

B is the set of types of customers waiting.

Note that C is empty only when the system state is empty. For convenience, this empty state is

denoted by ∅. Let )(t) be the system state at time t . The argument above is then summarized

by the following lemma.

Lemma 3.2. Under the assumptions of Lemma 3.1, the process )(t) has the stationary distri-

bution given by

P() ∈ ·) =
E

∫ τ

T1
1()(t) ∈ ·) dt

E(τ − T1)
.

To state a more helpful expression for the stationary distribution, we introduce the following

notation. Write #B for the size of set B. Write X(i) or X
∗(i) for a random set distributed

as {X1, . . . , Xi}. Write P (t) for a Poisson process with rate 1. We also write C and B for

measurable subsets of the second and third components of the system state, respectively.

Theorem 3.1. Suppose ρ < 1 and Es(X1) < ∞. Then P()(t) ∈ ·) → P() ∈ ·) as t goes

to infinity, where → means the setwise convergence for all measurable subsets. The limit

distribution is as follows. For each pair C,B of measurable subsets and each integer i ≥ 1,

P() ∈ (du, {C ∈ C; #C = i},B))

=
P(A′ = i, s(X(i)) ≥ u,X(i) ∈ C,X∗(P (λu)) ∈ B) du

ES′
, 0 < u <∞, (3.3)

where the random quantities A′,X(i),X∗(i),P (·) in the numerator are independent. More-

over

P() = ∅) = 1 −
ES

ES′
. (3.4)

Proof. The setwise convergence is immediate from the following observations. A regener-

ative process converges to its stationary version in the sense of the total variation as the time

goes to infinity if the regeneration cycle has a finite expectation (see, e.g., Section III.18 of [7]),

and we have verified this condition, provided ES′ <∞. Thus, we only need to show (3.3) and

(3.4). From the mean cycle formula concerning the service starting instants, we have

P() ∈ ·) =
1

E(γ2 − γ1)
E

( ∫ γ2

γ1

1()(u) ∈ ·) du

)

, t ≥ 0. (3.5)

Hence, from (3.5), we have, for i ≥ 1,

P() ∈ ((0, t], {C ∈ C; #C = i},B))

=
1

ES′
E

∫ S′

0

1(u ≤ t ≤ S,A′ = i,X(i) ∈ C,X(P (λu)) ∈ B) du

=
1

ES′

∫ t

0

P(S ≥ u,A′ = i,X(i) ∈ C,X(P (λu)) ∈ B) du,
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since E(γ2 − γ1) = E(S′), where S = s(X(i)). This is equivalent to (3.3). We finally get (3.4)

from

P() = ∅) =
1

ES′
E

∫ S′

0

1(T1 ≥ u,P (λS) = 0) du

=
ET1

ES′
P(P (λS) = 0)

= 1 −
ES

ES′
,

where the last equality follows from P(P (λS) = 0) = P(A = 0) and (2.4).

As part of the proof of Theorem 3.1 we needed to know that ES′ < ∞, which by (2.4) is

equivalent to ES <∞. This follows from (3.1) and the k = 1 case of the next lemma.

Lemma 3.3. Suppose ρ < 1. For each positive integer k, the following are equivalent:

(i) Esk(X1) <∞;

(ii) EAk <∞;

(iii) ESk <∞.

Proof. Recall [5, p. 19] that the factorial moments of P (x) are

EP (x)(P (x)− 1) · · · (P (x)− k + 1) = xk. (3.6)

Let b > 0, and recall that Yi = s(X(i)). From (2.2)

E(Akn+1 ∧ b) = P(An = 0)E(P k(λY1) ∧ b)+

∞
∑

j=1

P(An = j)E(P k(λYj ) ∧ b), (3.7)

with P (·) independent of {Yn}. Since An
D

−→ A, letting n→ ∞ in the formula above yields

E(Ak ∧ b) = P(A = 0)E(P k(λY1) ∧ b)+

∞
∑

j=1

P(A = j)E(P k(λYj ) ∧ b). (3.8)

Letting b → ∞ shows that

E(Ak ∧ b) ≥ P(A = 0)EP k(λY1) ≥ λkEY k1 .

So (ii) implies that EY k1 < ∞, which is assertion (i). Conversely, suppose EY k1 < ∞. From

(3.6), for every 0 < δ < 1 we can find a d such that

E(P k(x) ∧ b) ≤ (EP k(x)) ∧ b ≤ (1 + δ)(xk ∧ b)+ d.

This implies that

E(P (λY kj ) ∧ b) ≤ (1 + δ)(λkEY kj ∧ b)+ d <∞.
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Substituting into (3.8),

E(Ak ∧ b) ≤ P(A = 0)((1 + δ)λkEY k1 + d)+

∞
∑

j=1

((1 + δ)λk(EY kj ∧ b)+ d)P(A = j).

Using either (2.5) for k = 1 or (2.6) for k ≥ 2, we have for all ε and suitably chosen d ′

λkEY kj ≤ λk(mk + ε)j k + d ′.

Hence we conclude that there exist 0 < g < 1 and h > 0 such that

E(Ak ∧ b) ≤ gE(Ak ∧ b)+ h

for n ≥ 1 and therefore

E(Ak ∧ b) <
h

1 − g
<∞.

Letting b → ∞ implies that EAk <∞, which is (ii). The equivalence of (iii) follows from the

fact that

ESk =

∞
∑

j=1

EY kj P(A = j) ≤

∞
∑

j=1

((mk + ε)j k + d ′)j kP(A = j),

and the corresponding lower bound with −ε.

For completeness, let us prove necessity in Theorem 3.1.

Proposition 3.1. If )(t) converges in distribution, then ρ < 1 and Es(X1) <∞.

Proof. It is not difficult to see that convergence of )(t) to some limit ) implies that

P() = ∅) > 0. Indeed, for each state ξ , there is a nonrandom time t0 ≥ 0 (the time to

serve all customers present) such that, for the process started at state ξ , )(t) attains the empty

state with positive probability for each t > t0. This remains true if the initial state is random.

So any stationary distribution ) for the process must have P() = ∅) > 0. Hence the inter-

regeneration time τ − T1 has finite mean. Since τ − T1 is stochastically larger than s(X1), we

deduce that Es(X1) <∞. Moreover, in the notation of (3.2),

(EN)(ES′) <∞,

so that {An} is positive-recurrent, implying that An
D

−→ A for some A, and

ES = Es(X(A′)) ≤ ES′ <∞.

In the subadditive limit (2.5), β = infn(Es(X(n)))/n, and so

Es(X(n)) ≥ nβ. (3.9)

So βEA′ ≤ Es(X(A′)) <∞, implying that

lim sup
n

EAn ≤ EA ≤ EA′ <∞. (3.10)
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But, as in (3.7),

EAn+1 = P(An = 0)λEs(X1)+

∞
∑

j=1

λEs(X(An))1(An = j)

≥ P(An = 0)λβ + λβ

∞
∑

j=1

EAn1(An = j) (by (3.9))

= ρP(An = 0)+ ρEAn.

If ρ ≥ 1, summing over all n ≥ 1 yields

lim inf
n→∞

EAn ≥ ρ

∞
∑

n=1

P(An = 0)

= ∞

because P(An = 0) → P(A = 0) > 0. But this contradicts (3.10), so we must instead have

ρ < 1.

For the discrete-time chain {An} the situation is more complicated, since ρ < 1 may not

be necessary for {An} to be positive-recurrent (see [10] for the additive case). We state here a

partial result.

Proposition 3.2. The chain {An} is transient if there exist a θ0 ∈ (0, 1] and an ε > 0 such that

lim sup
n→∞

E(e−θ0Yn+θ0(1+ε)n) ≤ 1. (3.11)

The proof is given in Appendix A. It is easy to see that (3.11) implies that ρ > 1. For some

s(·), in particular if s(·) is additive, (3.11) is equivalent to ρ > 1, provided Es(X1) <∞.

4. Characteristics of the stationary distribution

Assume now that ρ < 1 and Es(X1) < ∞, so we are in the setting of Theorem 3.1. Let

us elaborate the model by introducing a waiting cost function c : X → (0,∞), where c(x)

is interpreted as a waiting cost per unit time for a type-x customer, incurred from arrival until

service is complete. For a set B write c(B) =
∑

x∈B c(x). So the instantaneous cost rate

associated with a state ξ is

ĉ(ξ) =

{

0 if ξ = ∅,

c(C)+ c(B) if ξ = (u, C,B).

In the setting of Theorem 3.1 the system has a long run average waiting cost per unit time given

by

c̄ = Eĉ()).

Corollary 4.1. We have

c̄ =
(λ/2)(ES2)(Ec(X1))+ E[c(X(A′))s(X(A′))]

ES′
.

In particular, if Es2(X1) <∞ and Ec2(X1) <∞, then c̄ <∞.
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Proof. The formula can be established by integrating over the distribution (3.3) of). More

intuitively, consider a typical S′-interval. The first term in the numerator is the mean total cost

over the interval associated with new customers arriving during the interval, while the second

term is the cost associated with the customers being served. Because S′-intervals occur at rate

1/ES′, a regenerative argument rederives the formula.

If Es2(X1) < ∞, then Lemma 3.3 implies that S
D

= s(X(A′)) has finite second moment;

similarly, if Ec2(X1) < ∞, then c(X(A′)) has finite second moment; and so when both

conditions hold we have c̄ <∞.

A natural characteristic of the batch clearing system is the queue length process {L(t)}.

Of course, Theorem 3.1 implies that as t → ∞ this characteristic converges in distribution

to the stationary distribution L, and we can write expressions in the spirit of (3.3) for their

distributions. Note that the special case c(·) ≡ 1 of Corollary 4.1 gives the stationary mean

queue length, which is related to the mean stationary sojourn time of a customer by Little’s law.

Thus, writingW for the stationary sojourn time, we have the next corollary.

Corollary 4.2. We have

EL = λEW =
(λ/2)ES2 + E[A′s(X(A′))]

ES′
.

In particular, Lemma 3.3 implies that EL (or EW ) is finite if and only if Es2(X1) <∞.

As in classical queueing theory, we expect that the kth moments of L and W are finite if

and only if Esk+1(X1) < ∞, and this can be verified in our model (see Appendix B for their

verifications).

5. Discussion

The requirement that service times be deterministic is in fact no restriction. Random service

times could be represented as s(X1, . . . , Xi, Ui), where as before the Xs are i.i.d. with some

distribution � on some type-space X, and now the Ui are independent U(0, 1). Subadditivity

is now defined via the usual stochastic partial order on probability measures on [0,∞). But an

exercise in measure theory (which we leave to the reader) shows that, given any such s(·), we

can find an enlarged type-space X̂ and i.i.d. X̂-valued random variables X̂i and a subadditive

function ŝ(·) such that

s(X1, . . . , Xi, Ui)
D

= ŝ(X̂1, . . . , X̂i), i = 1, 2, . . . .

We take Xn as the type of a customer. It is also natural to consider it as the original service

time of the customer. In this case the type-space is (0,∞) (note that this identification cannot

be made in the general subadditive case). A typical service function s(·) of this case is a linear

function, i.e. for some nonnegative constant a > 0,

s(X1, . . . , Xi) = a +X1 + · · · +Xi .

In particular, when s(·) is additive (i.e. a = 0), our model is essentially the M/G/1 queue as

mentioned in Section 1. More precisely, consider the usual Galton–Watson branching process

associated with the M/G/1 queue, in which arrivals during one customer’s service are the

children of that customer. Then a batch service interval in our additive model corresponds to
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the time taken to serve all members of one generation in theM/G/1 queue. And the server’s

busy periods are identical in the two processes. See [10], [12] for related work.

As also mentioned in Section 1, perhaps the most interesting questions about the model

involve the server’s choice of strategy. Consider the setting of Corollary 4.1 where the ‘clearing’

algorithm CLEAR has some mean cost per unit time c̄(CLEAR) < ∞. There will be

some optimal strategy OPT (depending on c(·), s(·), λ and the type-distribution �) such that

c̄(OPT) is the minimal cost over all strategies. It is not hard to give an example to show that

c̄(CLEAR)/c̄(OPT) is not bounded by any absolute constant (there is an example with two

types of customer and c(·) ≡ 1), so that the ‘clearing’ strategy may be inefficient. Calculating

the exact optimal strategy at any level of generality seems hopeless. But in the spirit of the

competitive analysis of algorithms [6] we can ask if there exists any simple-to-describe strategy

STRAT such that

c̄(STRAT)/c̄(OPT) is bounded by some constant. (5.1)

In a first draft of this paper we conjectured that a greedy algorithm

choose as the next batch the subset B of current tasks that maximizes
∑

x∈B

c(x)

s(B)

might satisfy (5.1), but John Tsitsiklis (private communication) gave an example where this

greedy strategy is not even stable.

Appendix A.

We give here the proof of Proposition 3.2. We first state the following lemma.

Lemma A.1. Let

φn(t) = − log E(e−tYn), n = 1, 2, . . . .

Then

(i) for each t ≥ 0 the sequence {φn(t), n = 1, 2, . . . } is subadditive;

(ii) the function φn(t) is concave;

(iii) the limit

φ(t) = inf
n≥1

φn(t)

n
= lim
n→∞

φn(t)

n

exists and is increasing and concave.

Proof. Since s(·) is subadditive we have

e−ts(X1,...,Xn+n′ ) ≥ e−ts(X1,...,Xn) e−ts(Xn+1,...,Xn+n′ ).

Hence

E(e−tYn+n′ ) ≥ E(e−tYn)E(e−tYn′ ).

Taking the logarithms of both sides and multiplying by −1 shows the subadditivity. Laplace

transforms are logarithmically convex. Hence φn(t)/n is concave and φ(t) is concave as the

infimum of concave functions.
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Proof of Proposition 3.2. Without loss of generality we assume that λ = 1. We use Theo-

rem 8.4.2 of [8] (or Theorem 3.7 of [4, Chapter 5] but the test function must be negative) with

h(n) = 1 − θn, F = {0, 1, . . . , n0}, where 0 < θ < 1 and n0 are suitably chosen. We have

∞
∑

k=0

pnkh(k) =

∞
∑

k=0

(1 − θk)E

(

Y kn

k!
e−Yn

)

= 1 − E(e−(1−θ)Yn)

and therefore we want

1 − E(e−(1−θ)Yn) > 1 − θn, n > n0, (A.1)

which implies that An is transient. We show now how to choose θ and n0. From (iii) of

Lemma A.1, the limit φ(t) of φn(t)/n exists. From (3.11), there exists i0 such that

−
1

n
log E(e−θ0Yn) ≥ θ0(1 + ε), ∀n ≥ i0.

Hence, writing θ0 = 1 − θ1, we have

φ(1 − θ1) = lim
n→∞

−
1

n
log E(e−θ0Yn) > θ0 = 1 − θ1.

Since φ(1− θ) is concave, this implies that the left-hand derivative of φ(1− θ) at θ = 1 is less

than −1. Hence the concavity of − log θ together with its derivative at θ = 1 yields that there

exists a positive θ2 < θ1 such that

φ(1 − θ2) > − log θ2.

Then, for n0 = 0,

1

n
φn(1 − θ2) ≥ φ(1 − θ2) > − log θ2, n > n0,

which yields (A.1) for θ = θ2.

Appendix B.

We first consider a distributional relationship between L and A. To this end, we apply the

rate conservation law to the process U(t) ≡ zL
∗(t) with 0 ≤ z ≤ 1, assuming {L∗(t)} to be

a stationary version of the queue length process {L(t)} (see e.g. [9] for the rate conservation

law). Since U(t) has jumps at arrival instants as well as service completion instants, we have,

using PASTA (see e.g. [14]),

λE(zL − z(L+1))+ νE(z(A
′+P (λYA′ )) − zP (λYA′ )) = 0,

where ν is the mean departure rate of the batches. This yields

λE(zL(z− 1)) = νE(zP (λYA′ )(zA
′

− 1)). (B.1)

Let B(j, k) be j !/(j − k)! for j ≥ k and 0 otherwise. For z < 1, differentiate both sides of

(B.1) k + 1 times. Then, letting z go to 1 yields

λ(k + 1)EB(L, k) = ν

k
∑

ℓ=0

(

k + 1

ℓ

)

EB(P (λYA′), ℓ)B(A′, k + 1 − ℓ). (B.2)
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In particular, for k = 0, λ = νEA′. Since

EA′ = P(A = 0)+ E(A)

= λ

(

P(A = 0)
1

λ
+ E(YA′)

)

= λES′,

we have ν = 1/ES′ as expected. For k = 1, (B.2) obviously leads to Corollary 4.2. From (B.2),

it is also not hard to see that, for any positive integer k, ELk < ∞ if and only if EAk+1 < ∞,

which is equivalent to Esk+1(X1) <∞ by Lemma 3.3.

For the stationary sojourn timeW for a customer, we decompose it as

W = WQ + S,

where WQ is the waiting time before service. Obviously we can use PASTA for WQ, so it has

the same distribution as the remaining service time of a batch at an arbitrary point in time. From

Theorem 3.1, it is easy to see that the latter has finite kth moment if and only if ESk+1 < ∞.

Hence, using the inequality

xk ≤ (x + y)k ≤ 2k−1(xk + yk), x, y ≥ 0,

we have that EW k <∞ if and only if ESk+1 <∞.
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