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Abstract

We study derived categories of Gorenstein varieties X and X+ connected by a flop.
We assume that the flopping contractions f : X → Y , f+ : X+ → Y have fibers of
dimension bounded by one and Y has canonical hypersurface singularities of multi-
plicity two. We consider the fiber product W = X ×Y X+ with projections p : W → X,
p+ : W → X+ and prove that the flop functors F = Rp+∗ Lp∗ : Db(X)→ Db(X+), F+ =
Rp∗Lp+∗ : Db(X+)→ Db(X) are equivalences, inverse to those constructed by Van den
Bergh. The composite F+ ◦ F : Db(X)→ Db(X) is a non-trivial auto-equivalence. When
variety Y is affine, we present F+ ◦ F as the spherical cotwist of a spherical couple
(Ψ∗,Ψ) which involves a spherical functor Ψ constructed by deriving the inclusion of
the null category Af of sheaves F ∈ Coh(X) with Rf∗(F) = 0 into Coh(X). We con-
struct a spherical pair (Db(X), Db(X+)) in the quotient Db(W )/Kb, where Kb is the
common kernel of the derived push-forwards for the projections to X and X+, thus
implementing in geometric terms a schober for the flop. A technical innovation of the
paper is the L1f∗f∗ vanishing for Van den Bergh’s projective generator. We construct
a projective generator in the null category and prove that its endomorphism algebra is
the contraction algebra.

1. Introduction

A homological interpretation of the minimal model program (MMP) in birational geometry was
proposed in [BO95, BO02]. The basic idea is that MMP is about ‘minimisation’ of the derived
category Db(X) of coherent sheaves on a variety X for varieties in a given birational class. More
precisely, it is expected that if X allows a divisorial contraction or a flip X ��� Y , then Db(X)
has a semi-orthogonal decomposition (SOD) with one component of SOD equivalent to Db(Y ).
Thus, minimizing the birational model should have the categorical meaning of chopping off semi-
orthogonal factors of the derived category. A minimal model is expected to be a representative
in the birational class of a variety whose derived category does not allow semi-orthogonal factors
equivalent to the derived category of a variety birationally equivalent to X.

As MMP in dimension greater than two deals with singular varieties, the right choice of the
derived category to consider also matters. In particular, for Q-Gorenstein varieties the derived
category of a suitable stack is relevant (cf. [Kaw02, Kaw09]). Minimal models are not unique, and
MMP considers birational maps, called flops, that link various minimal models. Conjecturally,
flops induce derived equivalences [BO95, Kaw02, BO02].
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There is substantial evidence in favour of this conjectural picture, starting from the original
paper [BO95], where various instances of flops were proved to induce derived equivalences, and
for simple higher-dimensional flips, the required SOD was constructed.

We expect that the whole zoology of categories, functors and natural transformations relevant
to MMP should be governed by interesting hidden homotopy types, maps and higher homotopies.
The present work can be considered as taking steps in this direction for categories and functors
invoked by flops.

It was mentioned by the authors of [BO95] that the functor that provides an equivalence
Db(X)→ Db(X+), where X and X+ are connected by a flop, when composed with the analogous
functor in the opposite direction Db(X+)→ Db(X) is not the identity but produces a non-trivial
auto-equivalence of Db(X) (nowadays called a flop–flop functor). For Atiyah flop, the functor is
given by what is now known as the spherical twist with respect to the spherical object OC(−1),
where C is the (rational) exceptional curve. It was probably one of the first appearances of
the spherical twists. (However, we should also mention here the work of Mukai [Muk87] and
Kuleshov [Kul90] who used the action of spherical twists in their non-derived version to describe
moduli of sheaves on K3 surfaces. A quick generalisation to the Calabi–Yau/derived case was
understood by the authors of [BO95] in those days of sturm und drang on derived categories in
Moscow in the early 1990s). Kontsevich suggested that the spherical twist of Atiyah flop should
be transferred by mirror symmetry into the equivalence of the Fukaya category induced by the
Dehn twist along a vanishing cycle. Properties of spherical twists with respect to spherical objects
were later scrutinised by Seidel and Thomas in [ST01] and for more general spherical functors
by Anno and Logvinenko in [AL17].

Spherical (co)twist is a unification tool for various non-trivial auto-equivalences of Db(X)
(cf. [Add16]) such as tensor products with line bundles, twists around spherical objects [ST01],
EZ-twists [Hor05] or window shifts [DS14].

The homotopy meaning of spherical (co)twists can be read off from their interpreta-
tion via schobers, i.e. categorifications of perverse sheaves on stratified topological spaces,
suggested by Kapranov and Schechtman [KS14]. The homotopy type of the underlying strat-
ification (the punctured disc for the case of one spherical functor) encodes the algebra of
functors and natural transformations in the schober. The schober on the punctured disc
has one of possible incarnations via a spherical pair, i.e. a pair of admissible subcate-
gories in a triangulated category satisfying conditions that imply a spherical functor between
them.

We study functors and natural transformations for flops with dimension of fibers of the
flopping contractions bounded by one. We construct the spherical pair (Db(X),Db(X+)) in the
appropriate quotient of the derived category of X ×Y X+. The orthogonal complement to Db(X)
in that quotient is the bounded derived category of the abelian null category

Af = {E ∈ Coh(X) |Rf∗E = 0}. (1)

By deriving the embedding Af → Coh(X) we obtain the spherical functor Ψ: Db(Af )→ Db(X).
The spherical cotwist of the spherical couple (see Appendix C) (Ψ∗,Ψ) is the flop–flop
functor.

We lift our functors and natural transformations to bicategories Bimod and FM (see
Appendix C). We systematically consider 2-categorical adjunctions instead of the usual adjunc-
tions of functors, scrutinise the uniqueness of adjoints and of associated twists and cotwists, i.e.
the cones of adjunction units and counits.

Now we describe our results in more detail.
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The flop functor and Van den Bergh’s functor
We consider a flopping contraction f : X → Y and its flop f+ : X+ → Y with dimension of fibers
bounded by one. Exceptional loci of f and f+ are assumed to have codimension greater than
one in X, respectively in X+, whereas varieties X, X+ and Y are assumed to be Gorenstein and
Y is assumed to have canonical hypersurface singularities of multiplicity two.

Consider the diagram for the fiber product:

X ×Y X+

p

������������ p+

���
��������

X

f ���
���������� X+

f+
�������������

Y

where p and p+ denote the projections to the factors. The flop functor is

F = Rp+
∗ Lp

∗ : Dqc(X)→ Dqc(X+).

Note that this functor does not necessarily induce an equivalence if the dimension of fibers of f
is greater than one (see [Nam04]), which means that the functor needs an adjustment for fibers
of higher dimension.

The above assumptions on the flopping contraction are those adopted by Van den Bergh
in [VdB04]. We use also some techniques borrowed from his work. Van den Bergh constructed
an equivalence Σ: Db(X) �−→ Db(X+), which is given via the identification of both categories
with the derived category of modules over a sheaf of non-commutative algebras on affine Y . We
first give a new interpretation for functor Σ. To this end, we identify Db(X) with Hot−,b(P−1),
the homotopy category of complexes of projective objects P−1 in the heart −1Per(X/Y ) of the
perverse t-structure, introduced by Bridgeland in [Bri02]. We show that Σ can be defined as the
functor (f+∗f∗(−))∨∨ applied term-wise to complexes of objects in P−1. We give an independent
proof that the flop functor is an equivalence and that it can be extended to an equivalence Σqc

between unbounded categories of quasi-coherent sheaves (Proposition 4.6).
Then we show that the flop functor is given in the same way by the term-wise application

of the functor f+∗f∗(−). To this end, we need one of the technical innovations of our paper,
the L1f∗f∗-vanishing for objects in P−1. We prove (Lemma 3.4) that if f : X → Y is a flopping
contraction satisfying the above conditions, then L1f∗f∗M is zero, for anyM∈P−1. The proof
of the vanishing is based on a local presentation of Y as a divisor in a smooth variety Y. Note that,
since Y is singular, object Lf∗f∗M in general has infinitely many non-zero cohomology sheaves,
more precisely, they satisfy 2-periodicity (see § 3.5), which is reminiscent of matrix factorisations
[Buc86, Orl04].

We consider a divisorial embedding i : Y → Y into a smooth Y together with g = i ◦ f ,
g+ = i ◦ f+. If the base Y of the flopping contraction is affine, then the flop functor F
and Van den Bergh’s equivalence Σqc : Dqc(X)→ Dqc(X+) fit into a functorial exact triangle
(Proposition 4.13):

Σqc[1]→ Lg+∗Rg∗ → F → Σqc[2]. (2)

As both Lg+∗Rg∗ and Σqc take Db(X) to Db(X+), this allows us to conclude that the flop
functor also preserves the boundedness of the derived categories.
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Theorem 4.21 states that Σqc is actually the inverse of the opposite flop functor

F+ = Rp∗Lp+∗ : Dqc(X+)→ Dqc(X).

This implies that flop functors F and F+ yield (not mutually inverse) equivalences between
Db(X) and Db(X+). Following an argument of Chen [Che02], we generalise this statement to
the case when base Y is quasi-projective (see § 4.6).

In addition, we show that the composite F+F , the ‘flop–flop’ functor, is the term-wise
extension of f∗f∗(−)|P−1 .

The null category and spherical functor Ψ
One of the original motivations for our work was to recover the importance of the null category
for f as in (1). Category Af admits a projective generator P, which we obtain from Van den
Bergh’s projective generator M for the perverse heart −1Per(X/Y ) by a projection to the null
category (see Proposition 2.4). Deriving the embedding Af → Coh(X) gives us functor

Ψ: Db(Af )→ Db(X).

We prove that, for a flopping contraction f : X → Y with affine Y , functor Ψ is spherical.
The flop–flop functor F+F is the spherical cotwist of the spherical couple (Ψ∗,Ψ), i.e. the Ψ∗ � Ψ
adjunction unit fits into a functorial exact triangle:

F+F → IdDb(X) → ΨΨ∗ → F+F [1].

We also show that the spherical twist Db(Af )→ Db(Af ) of the couple (Ψ∗,Ψ) is the shifted
identity functor IdDb(Af )[4] (see Corollary 5.18).

Spherical pairs
We assume again f : X → Y to be a flopping contraction with affine Y . Functor p∗ induces
an isomorphism of endomorphism algebras of a projective generator P ∈ Af and of p∗P ∈
Coh(X ×Y X+). Moreover, ExtiX×Y X+(p∗P, p∗P) = 0, for i > 0 (see Proposition 5.3). Thus, we
construct a fully faithful functor D(Af )→ Dqc(X ×Y X+).

We consider the ‘common kernel subcategories’:

Kb = {E ∈ Db(X ×Y X+) |Rp∗(E) = 0, Rp+
∗ (E) = 0},

K− = {E ∈ D−(X ×Y X+) |Rp∗(E) = 0, Rp+
∗ (E) = 0}.

The composite Db(X)
Lp∗−−→ D−(X ×Y X+)→ D−(X ×Y X+)/K− (not Lp∗ itself) factors via

Db(X ×Y X+)/Kb, thus inducing a fully faithful functor (Proposition 5.8)

L̃p∗ : Db(X)→ Db(X ×Y X+)/Kb.
We prove the existence of SODs (see [Bon89]):

Db(X ×Y X+)/Kb = 〈Db(Af+), L̃p∗Db(X)〉 = 〈L̃p∗Db(X),Db(Af )〉. (3)

As a result, we obtain a geometric description of the category Db(Af+):

Db(Af+) � {E ∈ Db(X ×Y X+) |Rp∗(E) = 0}/Kb.
By exchanging the roles of X and X+ in (3) we obtain SODs

Db(X ×Y X+)/Kb = 〈Db(Af ), L̃p+∗Db(X+)〉 = 〈L̃p+∗Db(X+),Db(Af+)〉. (4)

Together decompositions (3) and (4) provide us with a geometric description of 4-periodical
SODs (see Proposition B.3), whose relation to spherical functors was basically discovered by
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Halpern-Leistner and Shipman [HS16] (we thank Kapranov for explanations on this). Two
pairs of subcategories (Db(X),Db(X+)), (Db(Af ),Db(Af+)) are spherical pairs [KS14] (see
Theorem 5.17). The corresponding spherical functor for the second spherical pair is Ψ.

The contraction algebra
Assume the base Y of the flopping contraction f to be the spectrum of a complete Noetherian
local ring. Then the reduced fiber of f over the unique closed point of Y is a union of n smooth
irreducible rational curves C1, . . . , Cn (see Theorem D.1). The category −1Per(X/Y ) has n+ 1
irreducible projective objects M0, . . . ,Mn, with M0 � OX (see [VdB04]). M =

⊕n
i=0Mi is a

projective generator for −1Per(X/Y ).
We prove that the endomorphism algebra

AP = HomAf
(P,P)

of the corresponding projective generator for Af , P = ker(f∗f∗M→M), is isomorphic to the
contraction algebra introduced in [IW14], which is defined as the quotient of HomX(M,M) by
the ideal of morphisms that factor via direct sums of copies of OX (Theorem 6.2). This theorem
relates our work to the results of Donovan and Wemyss [DW16, DW19], where contraction
algebras appear in the context of non-commutative deformations.

Appendices
There are five appendices attached to the main body of the paper.

Appendix A. This appendix is an extract of some properties of the functor f !, right dual to Rf∗,
and the Grothendieck duality.

Appendix B. In this appendix we introduce functorial exact triangles and use them to define
spherical functors. We recall after [KS14] the notion of a spherical pair and the associated spher-
ical functor. 4-periodical SODs introduced by Halpern-Leistner and Shipman [HS16] produce
spherical pairs.

Appendix C. In this appendix we discuss a bicategory C and a pair of 1-morphisms s ∈
HomC(A,B), r ∈ HomC(B,A) that fit into a 2-categorical adjunction (s, r, η, ε). When C is
1-triangulated (meaning the categories of 1-morphisms are triangulated), we define the twist
ts ∈ HomC(B,B) and the cotwist cs ∈ HomC(A,A) as the cones of the counit ε : sr → IdB and
the unit η : IdA → rs. By using pseudo-functors and 2-categorical equivalences we show that
the twist and cotwist are in a suitable sense invariant under replacing A and B by equiva-
lent objects. If ts and cs are invertible in the 2-categorical sense, we say that (s, r, η, ε) is a
spherical couple.

We lift exact functors between triangulated categories to 1-morphisms in appropriate
1-triangulated bicategories. The first bicategory is Bimod whose objects are DG algebras and
categories of 1-morphisms are defined as the derived categories of DG bimodules. The second
one is the Fourier–Mukai bicategory FM of schemes and the derived categories of coherent
sheaves on their products as categories of 1-morphisms. Both bicategories admit 2-functors to
the bicategory Cat of categories, functors and natural transformations. More precisely, we have
Φ: Bimod→ Cat, Φ(A) = D(A) and Ξ: FM→ Cat, Ξ(X) = Dqc(X).

The above theory of 2-categorical adjunctions ensures that once a lift of an exact functor
Dqc(X)→ Dqc(Y ) to a 1-morphism in Bimod or FM admitting an adjoint is fixed, we obtain
essentially unique exact functors corresponding to the twist and the cotwist.
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We describe 2-categorical adjunctions in Bimod using formulae for adjoint bimodules as
in [AL21]. For E ∈ Dqc(X × Y ) we discuss functors adjoint to ΞE : Dqc(X)→ Dqc(Y ) and the
conditions under which they are FM functors. Results of [LS16] allow us to transfer between
Bimod and FM via fixing compact generators for Dqc(X) and Dqc(Y ). We use the 2-categorical
adjunctions in Bimod to construct functorial exact triangles for ΞE and its adjoints. We check
that these triangles are, up to isomorphism, independent of the choice of compact generators.
In particular, given a morphism f : X → Y , we discuss the lift of Rf∗, its adjoints, and the
adjunction (co)units to Bimod and FM. We also describe a 2-morphism in Bimod whose
image under Φ is the base-change morphism.

Appendix D. This appendix is devoted to the description of the reduced fiber of a flop-
ping contraction f : X → Y with fibers of dimension bounded by one over a closed point
of Y .

Appendix E. In this appendix we show that cohomology of an appropriate complex allow us
to calculate morphisms in the derived category of an abelian category between bounded above
complexes with bounded cohomology.

Notation
We denote by k an algebraically closed field of characteristic zero. For a Noetherian k scheme
X, by Coh(X), respectively QCoh(X), we denote the category of coherent, respectively quasi-
coherent, sheaves on X.

For an abelian category A, we denote by Db(A) and D(A) the bounded and unbounded
derived categories of A. We write Db(X) = Db(Coh(X)), Dqc(X) = D(QCoh(X)).

For an abelian categoryA, by Perf(A) we denote the full subcategory of Db(A) of objects that
are quasi-isomorphic to finite complexes of projective objects in A. For a scheme X, by Perf(X)
we denote the category of perfect complexes on X, i.e. objects of Db(X) locally quasi-isomorphic
to finite complexes of locally free sheaves.

For a k-algebra A, we denote by Mod–A the abelian category of right A modules.
For a t-structure (T�0, T�0) on a triangulated category T with heart A = T�0 ∩ T�0 and an

object T ∈ T , we denote by HiA(T ) the ith cohomology of T with respect to the t-structure
(T�0, T�0). The truncation functors are denoted by τA�i and τA�i. If T = Dqc(X) or Db(X) with
the standard t-structure with heart QCoh(X), respectively Coh(X), we shorten the notation to
HiX(T ), τX�i and τX�i respectively.

Assumptions
Throughout the paper we assume X and Y to be normal varieties over k. We usually work under
one of the following assumptions on a morphism f : X → Y .

(a) We assume f : X → Y is a proper morphism with dimension of fibers bounded by one and
such that Rf∗OX � OY .

(b) We assume f : X → Y is a projective birational morphism with dimension of fibers bounded
by one between quasi-projective Gorenstein varieties of dimension n � 3. The exceptional
locus of f is of codimension greater than one in X. Variety Y has canonical hypersurface
singularities of multiplicity two.

(c) We assume the same as in assumption (p) and we further assume that variety Y is affine
and is embedded as a principal divisor into a smooth variety Y of dimension n+ 1.

(d) We assume the same as in assumption (p) with an extra assumption that Y = SpecR, where
R is a complete local k-algebra.
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Let f satisfy assumption (p). As Y has canonical singularities, Rf∗OX � OY (cf. [Elk81]), i.e.
assumption (d) is satisfied when Y has rational singularities and f : X → Y is a smooth birational
resolution.

2. The null category Af

Let f : X → Y be a proper morphism of Noetherian schemes. In this section we introduce the
null category of f :

Af = {E ∈ Coh(X) |Rf∗(E) = 0}. (5)

Under the assumption that the dimension of fibers of f is bounded by one, Y is affine and
Rf∗OX = OY , we construct a projective generator P for Af . We also study the behaviour of the
null category under decomposition f = h ◦ g and under restriction to fibers.

2.1 The triangulated and abelian null category of a morphism of schemes
For a proper morphism of Noetherian schemes f : X → Y , we consider the triangulated null
category Cf defined as the kernel of functor Rf∗ restricted to Db(X):

Cf = {E· ∈ Db(X) |Rf∗(E·) = 0}. (6)

Similarly, we define C−f ⊂ D−(X) and Cf qc ⊂ Dqc(X). Denote by ιf ∗ : Cf qc → Dqc(X) the
inclusion functor. As Lf∗ : Dqc(Y )→ Dqc(X) is fully faithful with right adjoint Rf∗, Dqc(X)
admits a SOD Dqc(X) = 〈Cf qc, Lf

∗Dqc(Y )〉, [Bon89, Lemma 3.1]. In particular, ιf ∗ admits a left
adjoint ι∗f : Dqc(X)→ Cf qc, which fits into a functorial exact triangle (see (B.1)):

Lf∗Rf∗ → IdDqc(X) → ιf∗ι∗f → Lf∗Rf∗[1]. (7)

For the null category of f as in (5), we have Af = Coh(X) ∩ Cf .

Lemma 2.1. Let f : X → Y be a proper morphism with dimension of fibers bounded by one.
Then category Af is abelian. The embedding functor Af → Coh(X) is exact and fully faithful.
Its image is closed under extensions.

Proof. LetA,B be objects in Af and let ϕ ∈ HomX(A,B). Consider the kernelK, the cokernel C,
and the image I of ϕ. As Rf∗A � 0 � Rf∗B, the long exact sequences of higher derived functors
for f∗ applied to short exact sequences on X

0→ K → A→ I → 0, 0→ I → B → C → 0,

together with vanishing of Rif∗, for i > 1, imply that first I, hence K and C lie in Af . That Af

is closed under extensions is obvious. �
It follows that Ext1X(A,B) = Ext1Af

(A,B), for A,B ∈ Af .

Lemma 2.2 [Bri02, Lemma 3.1]. Let X and Y be Noetherian schemes and f : X → Y a proper
morphism with fibers of dimension bounded by one. Then E ∈ Cf if and only if HiX(E) ∈ Af ,
for all i ∈ Z. In particular, Af ⊂ Cf is the heart of a bounded t-structure.

Remark 2.3. The restriction of the standard t-structure on Dqc(X) to

Cf qc := {E· ∈ Dqc(X) |Rf∗(E·) = 0}

was considered by Bridgeland [Bri02] for a birational morphism of projective varieties satisfy-
ing assumption (d) which is easily generalised to a projective morphism f : X → Y satisfying
assumption (d). In this case, category Dqc(X) admits a recollement [BBD82] or, equivalently, an
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admissible subcategory, Cf qc (see [Bon89]). The Verdier quotient Dqc(X)/Cf qc is identified with
Dqc(Y ). The t-structure on Cf qc with heart Af [−p] can be glued with the standard t-structure on
Dqc(Y ) (see [BBD82]). As functor f ! is needed for the gluing of t-structures, one has to consider
unbounded derived categories of quasi-coherent sheaves on X and Y . The heart of the resulting
t-structure is the category pPerqc(X/Y ) of perverse sheaves. If p = −1 or p = 0, the t-structures
with hearts pPerqc(X/Y ) can also be obtained by the tilting in torsion pairs (T−1,F−1), (T0,F0)
in QCoh(X) (see [VdB04]), where

T0 = {T ∈ Coh(X) |R1f∗(T ) = 0}, (8)

F0 = {E ∈ Coh(X) | f∗(E) = 0, Hom(Af , E) = 0}, (9)

T−1 = {T ∈ Coh(X) |R1f∗(T ) = 0, Hom(T,Af ) = 0}, (10)

F−1 = {E ∈ Coh(X) | f∗(E) = 0}. (11)

By restricting the torsion pairs to Coh(X) one can define abelian categories pPer(X/Y ) as
subcategories of Db(X). Thus, for p = −1, 0,

pPer(X/Y ) := {E ∈ Db(X) |H0(E) ∈ Tp, H−1(E) ∈ Fp and Hi(E) = 0, for i �= −1, 0}.

2.2 A projective generator for Af

Let f : X → Y satisfy assumption (d) and assume Y is affine. By [VdB04, Proposition 3.2.5],
there exists a vector bundle M on X which is a projective generator for −1Per(X/Y ). Consider

P := H−1
X ι∗fM. (12)

It is an object in Af , which, by abuse of notation, we identify with its image under ιf∗.

Proposition 2.4. Sheaf P is a projective generator for the category Af .

Proof. As the t-structure on Cf qc is defined as the restriction of the standard t-structure on
Dqc(X), the functor ιf∗ : Cf qc → Dqc(X) is exact, in particular, it commutes with the truncation
functors τ�i. This implies isomorphism of functors

τX�−1ιf∗ � ιf∗τ
Af

�−1.

It follows that τX�−1ιf∗ι
∗
fM is isomorphic to ιf∗ ◦ −1ι∗fM, where

−1ι∗f := H−1
Af
◦ ι∗f : −1Per(X/Y )→ Af [1]

is the left adjoint functor to the inclusion Af [1]→ −1Per(X/Y ). By Lemma 2.5, P ∈ Af is a
projective generator. �
Lemma 2.5. Let D0 and D be triangulated categories with t-structures with hearts A0 ⊂ D0

and A ⊂ D, and i∗ : D0 → D a t-exact functor with left adjoint i∗. If M∈ A is projective, then
P := H0(i∗M) ∈ A0 is projective. Moreover, if M∈ A is a projective generator and i∗ is fully
faithful, then P ∈ A0 is a projective generator.

Proof. Let E be an object in A0. Then i∗E ∈ A, hence 0 = Ext1D(M, i∗E) � Ext1D0
(i∗M, E). As

functor i∗ is left adjoint to a t-exact functor, it is right t-exact, i.e. i∗M∈ D�0
0 . Thus, we have

an exact triangle
τ�−1i

∗M→ i∗M→ P → τ�−1i
∗M[1]. (13)

As, for degree reasons, HomD0(τ�−1i
∗M,E) = 0, by applying HomD0(−, E) to (13), we get that

Ext1D0
(P, E) = 0, i.e. P ∈ A0 is projective.
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If M∈ A is a projective generator and i∗ is fully faithful, then, for any non-zero E ∈ A0,
object i∗E is non-zero, hence HomD(M, i∗E) � HomD0(i∗M, E) �= 0. It follows from the long
exact sequence obtained by applying HomD0(−, E) to (13) that HomD0(P, E) �= 0, i.e. P is a
projective generator for A0. �
Remark 2.6. If morphism f satisfies assumption (d) and Y is affine, the category 0Per(X/Y )
has a projective generator N =M∨ (see [VdB04, Proposition 3.2.5]). An argument analogous
to that in the proof of Proposition 2.4 shows that PN := H0

Xι
∗
fN is a projective generator

for Af .

For a sheaf F with R1f∗F = 0, the cohomology sequence of triangle (7) applied to F gives
an exact sequence

0→ H−1
X (ιf∗ι

∗
fF )→ f∗f∗F → F → H0

X(ιf∗ι∗fF )→ 0. (14)

As by [VdB04, Lemma 3.1.3] morphism f∗f∗M→M is surjective, sequence

0→ P → f∗f∗M→M→ 0 (15)

is exact in Coh(X).
Let f : X → Y satisfy assumption (d) and Y = SpecR be a spectrum of a complete Noethe-

rian local ring R. The reduced fiber Cred =
⋃n
i=1Ci of f over the unique closed point y ∈ Y is a

tree of rational curves (see a more precise statement in Theorem D.1).
The Picard group of X is isomorphic to Zn, where the isomorphism is given by the degrees

of the restriction to irreducible components of Cred: L �→ deg(L|Ci)i=1,...,n.

Remark 2.7 (Cf. [VdB04, Lemma 3.4.4]). Let xi ∈ Ci ⊂ X be a closed point such that xi /∈ Ck,
for any k �= i, and ji : Xi → Xi a closed embedding of a neighbourhoodXi of xi inX into a smooth
variety Xi. There exists an effective Cartier divisor Di ⊂ Xi such that scheme-theoretically
Di ∩ ji∗Ci = {ji∗xi}. By pulling back Di to Xi, we obtain an effective divisor Di ⊂ X such that
scheme-theoretically Di.Ci = {xi} and Di.Ck = 0, for k �= i. We denote by ιDi : Di → X the
embedding of Di into X.

Denote by Li the line bundle on X defined by

Li := OX(Di). (16)

For every i, Van den Bergh defined a vector bundle Mi via the exact sequence

0→ Ori−1
X →Mi → Li → 0 (17)

corresponding to a choice of ri − 1 generators of Ext1X(Li,OX) as an R-module. Denote M0 :=
OX . Then

M =
n⊕
i=0

Mi

is a projective generator for −1Per(X/Y ) (see [VdB04, Proposition 3.5.4]). The dual vector
bundle

N =M∨ (18)

is a projective generator for 0Per(X/Y ) (see [VdB04, Proposition 3.2.5]).
We put

Pi = H−1
X ι∗fMi. (19)

By Proposition 2.4, sheaf P =
⊕n

i=1 Pi is a projective generator for Af .
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Example. Let X be a smooth threefold, f : X → Y a flopping contraction. Assume Y = SpecR
has rational singularities and Cred � P1 ⊂ X. Then the normal bundle NX/Cred

is isomorphic
either to O(−1)⊕O(−1), O ⊕O(−2) or O(1)⊕O(−3). Let D ⊂ X be a divisor such that
D.Cred = 1. For the first two cases,M� OX ⊕OX(D), and it is of higher rank for the third case.
If NX/Cred

� O(−1)⊕O(−1), the projective generator P isO(−1). When NX/Cred
� O ⊕O(−2),

P is an n-iterated extension of O(−1) by O(−1), where n is the width of Cred, see [Rei83]
(cf. [Tod07]).

2.3 Basic properties of Af

Let f : X → Y satisfy assumption (d) and let E be a coherent sheaf on Y . By the derived
projection formula, we have Rf∗Lf∗(E) � E. As f has fibers of dimension bounded by one,
Leray spectral sequence Rpf∗Lqf∗(E)⇒ Hp−qX E degenerates. Hence, an exact sequence:

0→ R1f∗L1f∗E → E → f∗f∗E → 0. (20)

Lemma 2.8. Let f : X → Y and E be as above. Then R1f∗f∗E = 0 and Rf∗Lif∗E = 0, for any
i > 1. Further suppose that E has no torsion supported at the image f(Ex f) of the exceptional
locus of f . Then f∗f∗(E) � E and sheaf L1f∗E is in Af .

Proof. The derived projection formula Rf∗Lf∗E � E and Leray spectral sequence
Rpf∗Lqf∗(E)⇒ Hp−qX E imply R1f∗f∗E � 0, f∗L1f∗E � 0, Rf∗Lif∗E � 0, for any i > 1. As
R1f∗L1f∗E is supported on f(Ex f), the assumption that E has no torsion supported on f(Ex f)
and sequence (20) imply that R1f∗L1f∗E is zero and E � f∗f∗E. �
Lemma 2.9. Let f : X → Y and E be as above. If E = f∗E′, for some E′ ∈ Coh(X), then
f∗f∗(E) � E and sheaves Lif∗E are in Af , for i > 0.

Proof. Sequence (20) implies that morphism α : f∗E′ → f∗f∗f∗E′ is surjective. Morphism α is the
inclusion of a direct summand, because its composition with the canonical map f∗f∗f∗E′ → f∗E′

is the identity. Hence, α is an isomorphism. Exact sequence (20) implies that R1f∗L1f∗f∗E′ = 0.
The rest follows from Lemma 2.8. �
Proposition 2.10. Let f : X → Y be a proper morphism with dimension of fibers bounded by
one. Consider a decomposition for f :

X
g

���
��

��
��

f

��

Z

h����
��

��
�

Y

Then, for E ∈ Coh(X) with R1f∗E = 0, we have R1g∗E = 0. Functor g∗ restricts to an exact
functor g∗ : Af → Ah.

Proof. Morphism g is proper by the valuative criterion. Replace Z by the (closed) image of g, if
necessary. Then h becomes a proper morphism, cf. [Gro61, Corollaire 5.4.3]. As the dimension
of fibers for f is bounded by one, so is the dimension of fibers for h.

As Rf∗(E) is a sheaf on Y , spectral sequence Rqh∗Rsg∗E ⇒ Rq+sf∗E implies that
Rh∗R1g∗(E) = 0. Sheaf R1g∗(E) is supported in the locus of points z ∈ Z such that the fiber
of morphism g over z is one-dimensional. As the null category of a finite morphism is zero,
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morphism h : Z → Y restricted to the support of R1g∗(E) must have fibers of dimension one.
Let y ∈ Y be a point in h(SuppR1g∗(E)). Then the fiber of f over y is two-dimensional, which
contradicts the assumptions. Thus, R1g∗(E) is zero.

For any E ∈ Af , the spectral sequence Rph∗Rqg∗E ⇒ Rp+qf∗E = 0 degenerates. It follows
that g∗E ∈ Ah. As R1g∗(E) = 0, functor g∗ : Af → Ah is exact. �
Proposition 2.11. Let f : X → Y be a proper morphism with dimension of fibers bounded by
one and g : Z → Y a morphism of schemes over field k. Assume a coherent sheaf E on X satisfy
Rlf∗E = 0, for l � l0, for some l0 ∈ {0, 1}. Then RlπZ∗π∗XE = 0, for l � l0, where πX : W → X
and πZ : W → Z are the projections for W = X ×Y Z:

X ×Y Z
πX ��

πZ

��

X

f

��
Z

g
�� Y

(21)

Proof. The construction of X ×Y Z and the statement are local on Y , hence we may assume
that Y = Spec(R) is affine. Moreover, the statement is local on Z, so we may further reduce to
the case when Z = Spec(A) is affine. Hence, g : Z → Y is an affine morphism, which implies that
πX is affine.

The commutativity of (21) implies R(fπX)∗π∗XE � R(gπZ)∗π∗XE. Morphisms g and πX are
affine, hence we have an isomorphism Rlf∗(πX∗π∗XE) � g∗RlπZ∗(π∗XE), for any l � 0. Morphism
g is affine, thus g∗RlπZ∗(π∗XE) is zero if and only if RlπZ∗(π∗XE) is also zero. Hence, we need to
show that Rlf∗(πX∗π∗XE) = 0, for l � l0.

Morphism πX is affine, hence πX∗π∗XE � E ⊗ πX∗(OX×Y Z). The base-change morphism
(cf. (47)) f∗g∗OZ → πX∗OX×Y Z is an isomorphism. Indeed, this can be checked locally on X:
if X = Spec(B), then both sheaves πX∗OX×Y Z and f∗g∗OZ correspond to B-module B ⊗R A.
Thus,

πX∗π∗XE � E ⊗ f∗g∗OZ � H0
X(E ⊗L Lf∗g∗OZ).

Derived projection formula Rf∗(E ⊗L Lf∗g∗OZ) � Rf∗(E)⊗L g∗OZ implies that Rf∗(E ⊗L
Lf∗g∗OZ) ∈ D(Y )<l0 . Morphism f is proper and with dimension of fibers bounded by one,
hence Rpf∗(F ) = 0, for p > 1 and for any sheaf F . It follows that spectral sequence

Rpf∗HqX(E ⊗L Lf∗g∗OZ)⇒ Rp+qf∗(E ⊗L Lf∗g∗OZ)

degenerates. Therefore, Rlf∗(πX∗π∗XE) � Rlf∗H0
X(E ⊗ Lf∗g∗OZ) = 0, for l � l0. �

Corollary 2.12. Let f : X → Y and g : Z → Y be as in Proposition 2.11. For E ∈ Af , its
pull-back π∗XE is an object in AπZ .

3. L1f∗ vanishing and 2-periodicity

Let f : X → Y satisfy assumption (d). For p = −1, 0, we denote by Pp the category of locally pro-
jective objects in pPer(X/Y ). An objectM belongs to Pp if there exists an affine open covering
Y =

⋃
Yi, inducing X =

⋃
Xi with Xi = f−1(Yi), such that M|Xi is projective in pPer(Xi/Yi).

By [VdB04, Proposition 3.2.6] objects in P−1 and P0 are locally free sheaves on X.
In this section we discuss a spherical couple associated to a Cartier divisor. Under the assump-

tion that Y has hypersurface singularities we prove that the sheaf L1f∗f∗M is zero, for any
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object M∈P−1. Though technical, this result is crucial for the various description of the flop
and flop–flop functors presented in the subsequent sections.

3.1 Cartier divisors and spherical couples
Let X be a quasi-compact, quasi-separated scheme. By an effective Cartier divisor i : D → X we
mean a subscheme whose ideal sheaf ID is invertible. Here we discuss a 2-categorical adjunction
and a spherical couple in the bicategory FM (see Appendix C) related to such a divisor.

Denote by Γ ⊂ D ×X, Γt ⊂ X ×D the graphs of i. Sheaf OΓ ∈ Dqc(D ×X) is an FM kernel
for Ri∗ : Dqc(D)→ Dqc(X), and OΓt ∈ Dqc(X ×D) is an FM kernel for Li∗ : Dqc(X)→ Dqc(D).

For a scheme Y , we denote by ΔY ⊂ Y × Y the diagonal and, for closed Z ⊂ Y , by ΔZ,Y the
image of Z under the diagonal morphism diagY : Y → Y × Y . For F ∈ Dqc(D × Y ), we have

F ∗ OΓt = (i× IdY )∗F ∈ Dqc(X × Y ). (22)

In particular,
OΓ ∗ OΓt = (i× IdX)∗OΓ � OΔD,X .

Embedding ΔD,X ⊂ ΔX gives

η : OΔX → OΔD,X � OΓt ∗ OΓ. (23)

For any scheme Y , and objects F ∈ Dqc(X × Y ), G ∈ Dqc(Y ×X), we have

F ∗ OΓ ∗ OΓt � (i× IdY )∗(i× IdY )∗F, OΓ ∗ OΓt ∗G � (IdY ×i)∗(IdY ×i)∗G.
One checks locally that for F ∈ QCoh(X × Y ) and G ∈ QCoh(Y ×X) morphisms

F � F ∗ OΔX
F∗η−−→ F ∗ OΓ ∗ OΓt � (i× IdY )∗(i× IdY )∗F � F ⊗OD×Y ,

G � OΔX ∗G η∗G−−→ OΓ ∗ OΓt ∗G � (IdY ×i)∗(IdY ×i)∗G � G⊗OY×D

are induced by restriction morphisms OX×Y → OD×Y and OY×X → OY×D, respectively.
For any scheme Y and F ∈ Dqc(X × Y ), we have

F ∗ OΓ � (i× IdY )∗F ∈ Dqc(D × Y ). (24)

Hence,
OΓt ∗ OΓ � (i× IdD)∗OΓt � (i× IdD)∗(i× IdD)∗OΔD ∈ Dqc(D ×D).

Subscheme D ×D ⊂ X ×D is a Cartier divisor with ideal sheaf ID×D. Therefore, object
(i× IdD)∗(i× IdD)∗OΔD has two non-zero cohomology sheaves, OΔD in degree 0 and OΔD ⊗
ID×D|D×D in degree −1. Truncation to the zeroth cohomology gives morphism

ε : OΓt ∗ OΓ � (i× IdD)∗(i× IdD)∗OΔD → OΔD (25)

Formulas (22) and (24) imply that, for any scheme Y and objects F ∈ Dqc(D × Y ) and G ∈
Dqc(Y ×D), we have

F ∗ OΓt ∗ OΓ � (i× IdY )∗(i× IdY )∗F, OΓt ∗ OΓ ∗G � (IdY ×i)∗(IdY ×i)∗G.
One checks locally along D that for F ∈ QCoh(D × Y ) and G ∈ QCoh(Y ×D) morphisms

(i× IdY )∗(i× IdY )∗F � F ∗ OΓt ∗ OΓ
F∗ε−−→ F ∗ OΔD � F,

(IdY ×i)∗(IdY ×i)∗G � OΓt ∗ OΓ ∗G ε∗G−−→ OΔD ∗G � G
are the truncations to the zeroth cohomology.
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An early version of formula (26) in the following theorem was first proven in [BO95,
Lemma 3.3] under the assumption that both varieties are smooth. The result was also stated
without proof in [Ann07, Add16].

Theorem 3.1. Let i : D → X be the embedding of an effective Cartier divisor. Then
(OΓt ,OΓ, η, ε) is a spherical couple in the bicategory FM. Object diagD∗ ID|D[2] is the
spherical twist and diagX∗ ID the spherical cotwist. The associated functorial exact triangles
read

IdDqc(X)⊗ID → IdDqc(X)
η−→ Ri∗Li∗ → IdDqc(X)⊗ID[1], (26)

IdDqc(D) ⊗ ID|D[1]→ Li∗Ri∗
ε−→ IdDqc(D) → IdDqc(D) ⊗ ID|D[2]. (27)

Proof. First, we check that (OΓt ,OΓ, η, ε) is a 2-categorical adjunction, i.e. that (C.1) are equal
to the identity morphisms.

As OΓ � (IdD×i)∗OΔD , the composite OΓ
η∗OΓ−−−→ OΓ ∗ OΓt ∗ OΓ

OΓ∗ε−−−→ OΓ reads

(IdD×i)∗OΔD
η∗OΓ−−−→ (IdD ×i)∗(IdD×i)∗(IdD ×i)∗OΔD

OΓ∗ε−−−→ (IdD ×i)∗OΔD .

Object (IdD ×i)∗OΔD is supported on D ×D, hence the first morphism, restriction to D ×D,
is the identity on the zeroth cohomology. The second morphism is the truncation at zeroth
cohomology, hence (OΓ ∗ ε) ◦ (η ∗ OΓ) = IdOΓ

.

As OΓt � (i× IdD)∗OΔD , the composite OΓt

OΓt∗η−−−−→ OΓt ∗ OΓ ∗ OΓt

ε∗OΓt−−−−→ OΓt reads

(i× IdD)∗OΔD

OΓt∗η−−−−→ (i× IdD)∗(i× IdD)∗(i× IdD)∗OΔD

ε∗OΓt−−−−→ (i× IdD)∗OΔD .

The arguments as above show that (ε ∗ OΓt) ◦ (OΓt ∗ η) is the identity on OΓt .
Now we calculate the twist and cotwist of the 2-categorical adjunction (OΓt ,OΓ, η, ε).

Morphism η in (23) is induced by the morphism OX → OD with kernel ID. Hence,

diagX∗ ID → diagX∗ OX
η−→ diagX∗ OD → diagX∗ ID[1]

is an exact triangle in Dqc(X ×X). Thus, the cotwist equals diagX∗ ID. It is an equivalence whose
inverse is diagX∗ I−1

D . The corresponding functorial exact triangle is (26).
Morphism ε in (25) is induced by the truncation to the zeroth cohomology of the object (i×

IdD)∗(i× IdD)∗OΔD . As we noted before, (i× IdD)∗(i× IdD)∗OΔD has two non-zero cohomology
sheaves and the truncation to the zeroth cohomology yields an exact triangle

OΔD ⊗ ID×D|D×D[1]→ (i× IdD)∗(i× IdD)∗OΔD → OΔD → OΔD ⊗ ID×D|D×D[2].

The twist

OΔD ⊗ ID×D|D×D[1] � diagD∗ ID|D[1]

is an equivalence whose inverse is diagD∗ I−1
D |D[−1]. The corresponding functorial exact triangle

is (27). �

3.2 L1f∗ vanishing and consequences
Vanishing of L1f∗f∗(−) is local on Y , therefore throughout this section we assume that Y is
affine and fix a closed embedding i : Y → Y of Y as the zero locus of a regular function on a
smooth affine Y. As Y ⊂ Y is a principal Cartier divisor, the sheaf IY is isomorphic to OY .

The following lemma is one of the key technical points of this paper.
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Lemma 3.2. Let f : X → Y satisfy assumption (p) and let Y = SpecR be a spectrum of a
complete Noetherian local ring with hypersurface singularities. Let further Di ⊂ X be as in
Remark 2.7. Then L1f∗f∗ODi � 0.

Proof. Let ιi : Di → X denote the embedding of Di into X. We denote by h the composite
h = ifιi : Di → Y. Morphism h is finite, hence h∗ is exact and, by Grothendieck duality (A.1),
we have

ExtiY(Rh∗ODi ,OY) � Rh∗ExtiDi
(ODi , h

!OY) � Rh∗HiDi
(h!OY). (28)

Divisor Di is Cartier in a Gorenstein scheme, hence it is Gorenstein itself. As Y is smooth and it is
the spectrum of a complete ring, we have ω·

Y � OY [n+ 1]. It follows that h!OY = h!ω·
Y [−n− 1] =

ωDi [−2] is a sheaf in homological degree 2. As h∗ is exact,Rh∗HiDi
(h!OY) � h∗HiDi

(h!OY). Hence,
by (28), we have

ExtiY(h∗ODi ,OY) = 0, for i �= 2.

As Y is affine, ExtiY(h∗ODi ,OY) = 0, for i �= 2. Hence, the projective dimension of h∗ODi as
an OY module is two. In other words, h∗ODi has a locally free resolution

0→ E−2 → E−1 → E0 → h∗ODi → 0.

Denote by E· the complex 0→ E−2 → E−1 → E0 → 0. The cohomology of complex i∗i∗E· is
TorY(h∗ODi ,OY ). As Y ⊂ Y is a Cartier divisor, OY has a resolution of length two on Y, i.e.
the zeroth and first Tor groups only can be non-zero. As functor i∗ is exact, we conclude that
the morphism i∗E−2 → i∗E−1 is injective.

Morphism f is birational, hence the higher derived functors of f∗ are torsion. In particular,
the kernel of f∗i∗E−2 → f∗i∗E−1 is torsion, meaning zero because f∗i∗E−2 is locally free. This
shows that morphism f∗i∗E−2 → f∗i∗E−1 is also injective, thus complex Ẽ· := f∗i∗E· has zero
cohomology except for H0

X(Ẽ·) and H−1
X (Ẽ·).

Let E ⊂ X be the exceptional locus of f . Assume L1f∗f∗ODi �= 0. Its support is contained in
E. Moreover, because L1f∗f∗ODi ∈ Af (see Lemma 2.9), the support of this sheaf should contain
at least one component of the curve in the fiber over the closed point of Y (see Theorem D.1
for the structure of the fiber). Therefore, there exists a closed point x ∈ E \Di in the support
of L1f∗f∗ODi .

By Theorem 3.1 for divisor Y in Y, object i∗E· � Li∗i∗f∗ODi fits into an exact triangle

f∗ODi [1]→ i∗E· → f∗ODi → f∗ODi [2].

By applying functor Lf∗ to this triangle, we obtain an exact sequence

f∗f∗ODi → H−1
X (Ẽ·)→ L1f∗f∗ODi → 0.

Sheaf f∗f∗ODi is supported on the preimage of f(Di) ⊂ Y , i.e. on the set E ∪Di. Let us restrict
our attention to an open affine neighbourhood ĩ : X̃ ↪→ X of point x. The support of both sheaves
f∗f∗ODi and L1f∗f∗ODi is contained in E. Therefore, the assumptions on the exceptional locus
for f imply that H−1

X (Ẽ) is a non-zero sheaf with support of some codimension l > 1.
Let j : X̃ → X be a closed embedding into a smooth variety of dimension m. We have ω

X̃
�

ĩ!f !OY � ĩ!OX � OX̃ , hence Grothendieck duality (A.1) gives

Ext·X (j∗Ẽ·, ωX ) � j∗Ext·X̃(Ẽ·,OX̃ [n−m]).

Complex Ẽ· consists of three locally free sheaves, thus ExtkX(Ẽ·,OX) is zero, for k > 2. It follows
that ExtkX (j∗Ẽ·, ωX ) = 0, for k > m− n+ 2. By applying functor Hom·

X (−, ωX ) to the exact
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triangle

j∗H−1
X (Ẽ·)[1]→ j∗Ẽ· → j∗H0

X(Ẽ·)→ j∗H−1
X (Ẽ·)[2],

we obtain an isomorphism

ExtkX (j∗H−1
X (Ẽ·), ωX ) �−→ Extk+2

X (j∗H0
X(Ẽ·), ωX ), (29)

for any k � m− n+ 2. Sheaf j∗H−1
X (Ẽ·) is non-zero with support of codimension l +m−

n � m− n+ 2. It follows that sheaf Extl+m−n
X (j∗H−1

X (Ẽ·), ωX ) is non-zero with support of
codimension l +m− n, cf. [HL10, Proposition 1.1.6].

On the other hand, the codimension of the support of Extl+m−n+2
X (j∗H0

X(Ẽ·), ωX ) is greater
than or equal to l +m− n+ 2, which contradicts (29). �
Lemma 3.3. Let f : X → Y satisfy assumption (d) and let Y = SpecR be a spectrum of a
complete Noetherian local ring. Let further Mi be the projective object in −1Per(X/Y ) as
in (17) and Ni = HomX(Mi,OX) the projective object in 0Per(X/Y ). Then there exist exact
sequences

0→ OriX →Mi → ODi → 0, (30)

0→ Ni → OriX → ODi → 0. (31)

Proof. The sheaf Mi is defined as an extension

0→ Ori−1
X →Mi

q−→ OX(Di)→ 0.

For any divisor Di, one can find a linearly equivalent divisor D′
i such that Di ∩D′

i is empty.
Indeed, let D′

i be a divisor as in Remark 2.7 linearly equivalent to Di which intersects Ci in a
point x′i, not equal to xi = Di ∩ Ci. Then Di ∩D′

i contains no closed points (as all closed points
of X lie on C), hence empty. It follows that ODi(Di) � ODi(D

′
i) � ODi and sequence

0→ OX → OX(Di)
r−→ ODi → 0

is exact. As Ext1X(OX ,OX) � 0, the snake lemma for the two top rows of the following diagram
gives the following commutative diagram in which rows and columns are exact sequences.

0 �� ODi

� �� ODi

Ori−1
X

��

		

Mi

q
��

rq

		

OX(Di)

r

		

Ori−1
X

��

�
		

OriX ��

		

OX

		

It gives exact sequence (30). By considering local homomorphisms into the structure sheaf we
obtain sequence (31). �
Lemma 3.4. Let f : X → Y satisfy assumption (p) and assume that Y has hypersurface
singularities. Then the sheaf L1f∗f∗M is zero, for anyM∈P−1.

Proof. The statement is local in Y , therefore we might assume that Y = SpecR is a spectrum
of a complete Noetherian local ring with hypersurface singularities. Then M is a direct sum of
copies of Mi and OX . Thus, it suffices to verify the lemma for Mi, as clearly L1f∗OY = 0.
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As R1f∗OX � 0, applying Rf∗ to sequence (30) gives an exact sequence

0→ OriY → f∗Mi → f∗ODi → 0.

It implies an exact sequence

0→ L1f∗f∗Mi → L1f∗f∗ODi → OriX .

By Lemma 3.2, the sheaf L1f∗f∗ODi is zero, hence the result. �
Lemma 3.5. Let f : X → Y satisfy assumption (p) and let Y have hypersurface singularities.
Let N be a locally projective object in 0Per(X/Y ). Then f∗f∗N is torsion-free and sequence

0→ f∗f∗N → N → Q→ 0, (32)

is exact for the sheaf Q = H0
X(ιf∗ι∗fN ), which is locally projective in Af .

Proof. First, we show that f∗f∗N is torsion-free. This can be done locally, i.e. we may assume
that Y is a spectrum of a complete Noetherian local ring. By [VdB04, Lemma 3.5.2] sheaf N is
a direct sum of copies of OX and Ni, where Ni are vector bundles dual to Mi.

By [VdB04, Lemma 3.1.2], the sheaf R1f∗Ni is zero. By applying f∗ to sequence (31), we
obtain an exact sequence on Y

0→ f∗Ni → OriY → f∗ODi → 0. (33)

As f∗ODi is a torsion sheaf, f∗Ni is non-zero. By applying f∗ to sequence (33), we obtain

0→ L1f∗f∗ODi → f∗f∗Ni → OriX .

It implies that the torsion of f∗f∗Ni is L1f∗f∗ODi , which is zero by Lemma 3.2. Hence, sheaf
f∗f∗Ni is torsion free and the counit morphism εN : f∗f∗Ni → Ni is an embedding (εN is non-
zero as under the f∗ � f∗ adjunction it corresponds to the identity endomorphism of f∗Ni).

The cokernel of the morphism f∗f∗N → N is, by the definition of ι∗f , isomorphic toH0
X(ι∗fN ),

hence Q is an object in Af . Now let E be any object in Af . Then E, considered as an object
in Db(X), lies in 0Per(X/Y ), hence Ext1X(N , E) � 0. Moreover, f∗ � f∗ adjunction implies that
HomX(f∗f∗N , E) � 0. Thus, by applying higher derived functors of HomX(−, E) to sequence
(32), we obtain Ext1X(Q, E) � 0, which proves that Q ∈ Af is indeed a projective object. �
Remark 3.6. In the complete local case, P in formula (12) is isomorphic to Q of Lemma 3.5.
Indeed, applying ι∗f to sequences (30) and (31) and using the fact that ι∗f (OX) � 0, we obtain
an isomorphism H0

X(ι∗fNi) � H−1
X (ι∗fODi) � H−1

X (ι∗fMi).

The t-structure on Db(X) with heart −1Per(X/Y ) is obtained from the standard t-structure
by a tilt in the torsion pair (T−1,F−1) as in (10) and (11), see [VdB04, Lemma 3.1.2]. Hence,
for any F ∈ Db(X), sequence

0→ F−1(Hi−1
X (F ))[1]→ Hi−1Per(F )→ T−1(HiX(F ))→ 0 (34)

is exact in Coh(X), where by T−1(G) and F−1(G) we denote the torsion and torsion-free part,
respectively, of a coherent sheaf G with respect to the torsion pair (T−1,F−1).

Proposition 3.7. Let f : X → Y satisfy assumption (p) and assume that Y has hypersurface
singularities. LetM be a projective object in −1Per(X/Y ). Then

H0
−1Per(Lf

∗f∗M) = f∗f∗M.
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Proof. Lemma 3.8 implies that f∗f∗M is an object in Coh(X) ∩ −1Per(X/Y ), hence
T−1(f∗f∗M) = f∗f∗M. Moreover, L1f∗f∗M = 0 by Lemma 3.4. We conclude by
sequence (34). �
Lemma 3.8. Let f : X → Y satisfy assumption (d) and let E be a coherent sheaf on Y . Then
f∗E is an object in pPer(X/Y ), for p = −1, 0. If, moreover, E is locally free and Y is affine, then
f∗E is an object in Pp, for p = −1, 0.

Proof. We have Coh(X) ∩ 0Per(X/Y ) = T0 and Coh(X) ∩ −1Per(X/Y ) = T−1, for categories T0
and T−1 defined in (8) and (10), respectively.

Let E be a coherent sheaf on Y . By Lemma 2.9, sheaf R1f∗f∗E is zero, hence f∗E is an
object in 0Per(X/Y ). From adjunction

HomX(f∗E,Af ) � HomY (E, f∗Af ) � 0,

it follows that f∗E lies also in −1Per(X/Y ).
Now we assume further that E is locally free and Y is affine. Let E′ be any object in

pPer(X/Y ), for p = −1, 0. Then

Ext1X(f∗E,E′) � Ext1X(Lf∗E,E′) � Ext1Y (E,Rf∗E′).

Because Rf∗ is exact for the perverse t-structures on Db(X), object Rf∗E′ is a coherent sheaf on
Y . As E is locally free and Y is affine, Ext1Y (E,Rf∗E′) � 0, i.e. f∗E is projective in pPer(X/Y ).

�
Remark 3.9. For any locally free sheaf E on Y , we also have an isomorphism
H0

−1Per(X/Y )(Lf
∗E) = f∗E . Indeed, Lf∗E is isomorphic to f∗E and the latter is an object in

−1Per(X/Y ), by Lemma 3.8.

3.3 The equivalence of reflexive sheaves under flopping contractions
Recall that a sheaf F is normal when, for any open sets U ⊂ V such that codimension of V \ U
in V is greater than one, the restriction morphism F (V )→ F (U) is an isomorphism.

Lemma 3.10 [Har80, Proposition 1.6]. Let X be a normal, integral Noetherian scheme. A sheaf
F on X is reflexive if and only if it is torsion-free and normal.

For a scheme X, denote by Ref (X) the category of reflexive sheaves.

Lemma 3.11 (Cf. [VdB04, Lemma 4.2.1]). Let f : X → Y be a projective birational morphism,
X,Y normal Noetherian and the exceptional locus of f have codimension > 1 in X. Then the
following functors are mutually inverse equivalences:

f∗ : Ref(X)→ Ref(Y ), (f∗(−))∨∨ : Ref(Y )→ Ref(X).

Proof. For a torsion-free sheaf F on X, its push-forward f∗F is also torsion-free. Thus, f∗F will
be reflexive if we check that it is normal.

Let G be a torsion-free sheaf on Y which is not normal. There exist open sets j : U ↪→ V
with the complement of U in codimension greater than one in V such that canonical morphism
G→ j∗j∗G is not an isomorphism. Then we have a non-trivial extension

0→ G→ j∗j∗G→ Q→ 0.

The question is local, so we can assume Y to be affine. Sheaf Q is supported in codimension
greater than one, hence there exists a closed subscheme Z ⊂ Y of codimension greater than one
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such that sequence
0→ K → O⊕k

Z → Q→ 0

is exact. As G is torsion-free, Hom(K,G) is zero. Hence, vanishing of Ext1Y (OZ , G) implies that
Ext1Y (Q,G) is also zero. Thus, in order to show that a torsion-free sheaf G is normal it suffices
to check that Ext1Y (OZ , G) vanishes, for any closed Z ⊂ Y of codimension greater than one.

Group Ext1Y (OZ , f∗F ) is zero if and only if morphism Hom(OY , f∗F )→ Hom(IZ , f∗F ) given
by short exact sequence

0→ IZ → OY → OZ → 0

is an isomorphism. By adjunction, HomY (IZ , f∗F ) is isomorphic to HomX(f∗IZ , F ). Exceptional
locus of f has codimension greater than one, hence f∗IZ is isomorphic to OX in codimension
one. As F is reflexive, this implies HomX(f∗IZ , F ) = HomX(OX , F ).

Thus, functor f∗ maps reflexive sheaves on X to reflexive sheaves on Y . Clearly, the same is
true about (f∗(−))∨∨.

Now let F be an object in Ref (X). Adjunction implies a morphism α : (f∗f∗F )∨∨ → F∨∨ �
F . Both sheaves are reflexive and α is an isomorphism outside exceptional locus of f , which has
codimension greater than one. Therefore, α is an isomorphism.

For G ∈ Ref (Y ), reflexification f∗G→ (f∗G)∨∨ together with adjunction G→ f∗f∗G give
β : G→ f∗((f∗G)∨∨). Again, morphism β is an isomorphism in codimension one between reflexive
sheaves, hence an isomorphism.

Finally, a morphism between reflexive sheaves is determined by its restriction to any open
set with the complement of codimension greater than one. Thus, functors f∗ and (f∗(−))∨∨ give
isomorphisms on the groups of morphisms between objects in Ref (X) and Ref (Y ). �

Let f : X → Y satisfy assumption (a). For M an object in P−1, put

N+ := (f+∗f∗M)∨∨. (35)

By Lemma 3.11, sheaf N+ belongs to Ref (X+).

Proposition 3.12. Let f : X → Y satisfy assumption (a) and f+ : X+ → Y its flop. Then
functor

(f+∗f∗(−))∨∨ : Ref(X)→ Ref(X+)

restricts to equivalences P−1
�−→P+

0 and P0
�−→P+

−1.

Proof. By [VdB04, Proposition 3.2.6], categories P−1 and P0 are subcategories of Ref (X).
By [VdB04, Proposition 4.3.1], subcategories f∗P−1 and f+∗ P+

0 of Ref (Y ) are equivalent. By
Lemma 3.11, the subcategory (f+∗f∗P−1)∨∨ of Ref (X+) corresponds to P−1 under equivalences
Ref (X) � Ref (Y ) � Ref (X+), hence P+

0 � (f+∗f∗P−1)∨∨.
Exchanging the roles of f and f+, we get equivalence of P+

−1 with P0. �

3.4 A divisorial embedding into a smooth scheme and cohomology
We assume that Y is affine and fix a closed embedding i : Y → Y of Y as the zero locus of a
regular function on a smooth affine Y. Denote g = i ◦ f , i.e. consider the following commutative
diagram.

X
g



�
��

��
��

f

��
Y

i �� Y
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We describe objects Lg∗g∗M and Lg∗f∗N , for anyM∈P−1, N ∈P0. First, we prove that
the sheaves g∗M, g∗N have short locally free resolutions.

Recall that a morphism f : X → Y is crepant if Lf∗(ω·
Y ) � ω·

X .

Lemma 3.13. A proper morphism f : X → Y of Gorenstein varieties is crepant if and only if
f !(OY ) � OX .

Proof. As X and Y are Gorenstein, ω·
X and ω·

Y are, up to shift, line bundles. In particular, ω·
Y

is a perfect complex, hence, by Lemma A.1, f !(ω·
Y ) � f !(OY )⊗ Lf∗(ω·

Y ). Isomorphism ω·
X �

f !(ω·
Y ) � f !(OY )⊗ Lf∗(ωY )· implies f !(OY ) � ω·

X ⊗ (Lf∗(ω·
Y ))−1. Hence, Lf∗(ω·

Y ) � ω·
X if and

only f !(OY ) � OX . �
Lemma 3.14. Let X, Y be Gorenstein and f : X → Y a crepant morphism satisfying assump-
tion (d). Assume Y is affine and i : Y → Y an embedding of Y as a Cartier divisor into a smooth
Y. Denote g = i ◦ f : X → Y. Then g∗M and g∗N , for M∈P−1, N ∈P0, admit locally free
resolutions of length two.

Proof. LetM be an object in P−1. As Y is affine, the length of the locally free resolution for g∗M
is l + 1, for the maximal l such that ExtlY(g∗M,OY) is non-zero. Thus, the question is local on Y
and, by restricting to a smaller affine open subset, we can assume that ω·

Y � OY [n+ 1] and ω·
Y �

OY [n]. Then ω·
X � OX [n], because f is crepant. Let N = RHomX(M,OX) = HomX(M,OX).

It is an object in P0, see [VdB04, Proposition 3.2.6]. As N is an object in 0Per(X/Y ), we have
Rg∗N � g∗N . Then we have, by Grothendieck duality (A.1),

RHomY(g∗M,OY) � RHomY(Rg∗M, ωY)[−1] � Rg∗RHomX(M, ωX)[−1] � g∗N [−1].

Hence, g∗M is of projective dimension one. Analogously, for N ∈P0, its dual M =
RHomX(N ,OX) lies in P−1 and RHom(g∗N ,OY) � g∗M[−1]. �
Proposition 3.15. Let f : X → Y be as in Lemma 3.14. Let further p ∈ {−1, 0} and R ∈Pp

be a projective object in pPer(X/Y ). Then the object Lg∗Rg∗R has cohomology

HiX(Lg∗Rg∗R) =

⎧⎪⎨⎪⎩
R, if i = −1,
f∗f∗R, if i = 0,
0, otherwise.

The same cohomology is for the t-structure with heart pPer(X/Y ).

Proof. As R1g∗R = 0, the zero cohomology of Lg∗Rg∗R is the sheaf g∗g∗R. The adjunction
counit for i : Y → Y gives an isomorphism g∗g∗

�−→ f∗f∗, hence H0
X(Lg∗Rg∗R) = f∗f∗R.

As g∗R admits a locally free resolution (see Lemma 3.14):

0→ E−1 → E0 → g∗R → 0,

the sheaves HiX(Lg∗Rg∗R) are zero, for i � −2. Moreover, L1g∗g∗R is reflexive, as the kernel of
a morphism of locally free sheaves [Har80, Proposition 1.1].

Applying Lf∗ to exact triangle f∗R[1]→ Li∗g∗R → f∗R → f∗R[2] (given by Theorem 3.1
for Y ⊂ Y) implies the exact sequence

L2f∗f∗R → f∗f∗R → L1g∗g∗R → L1f∗f∗R.

As f is an isomorphism in codimension one, the sheaves L2f∗f∗R and L1f∗f∗R have the
support of codimension at least two. As the universal map f∗f∗R → (f∗f∗R)∨∨ is also an iso-
morphism in codimension one, the induced map (f∗f∗R)∨∨ → L1g∗g∗R is an isomorphism in
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codimension one. Hence, it is an isomorphism, see Lemma 3.10. It follows that L1g∗g∗R �
(f∗f∗R)∨∨. As R is locally free [VdB04, Proposition 3.2.6], (f∗f∗R)∨∨ � R by Lemma 3.11.

By Lemma 3.8, f∗f∗R is an object of pPer(X/Y ). As the same holds for R ∈Pp ⊂
pPer(X/Y ), the exact triangle R[1]→ Lg∗g∗R → f∗f∗R is also the decomposition of Lg∗g∗R in
the t-structure with heart pPer(X/Y ). �

Proposition 3.15 implies that triangle

M[1]→ Lg∗g∗M→ f∗f∗M→M[2] (36)

is exact. By Lemma 3.14, object Lg∗g∗M is quasi-isomorphic to a complex f∗F−1 → f∗F0, for
some locally free sheaves F−1, F0 on Y . Hence, sequence

0→M→ f∗F−1 → f∗F0 → f∗f∗M→ 0 (37)

is a projective resolution for f∗f∗M in −1Per(X/Y ), see Lemma 3.8.
Note that short exact sequence (15) and Lemma 3.8 imply that

0→ f∗f∗M→M→ P[1]→ 0 (38)

is a short exact sequence in −1Per(X/Y ).

3.5 2-periodicity
Proposition 3.16. Let f : X → Y satisfy assumption (d) and assume that Y ⊂ Y is a principal
divisor in a smooth affine Y. Then there exists a morphism Lf∗ → Lf∗[2] of functors Dqc(Y )→
Dqc(X), which, for any E in Db(Y ), is an isomorphism on almost all cohomology sheaves of
Lf∗(E).

Proof. By applying Lf∗ to functorial exact triangle (27), we obtain a morphism Lf∗E → Lf∗E[2]
with cone Lf∗Li∗i∗E[1]. As Y is smooth, Db(Y) coincides with the category of perfect complexes
on Y. It follows that the functor Lf∗Li∗i∗ takes Db(Y ) to Db(X) (even to Perf(X)), hence, for
any E ∈ Db(Y ), there exists l ∈ Z such that Hi(Lf∗Li∗i∗E) = 0, for i < l. Then HiLf∗E �
Hi−2Lf∗E, for any i < l. �

Now let f : X → Y be a crepant morphism of Gorenstein varieties satisfying assumption (p)
and assume that Y ⊂ Y is a principal divisor in a smooth Y. Then IY � OY , hence composing
functorial exact triangle (27) with Lf∗ and precomposing with Rf∗ gives a functorial exact
triangle

Lf∗Rf∗[1]→ Lg∗Rg∗ → Lf∗Rf∗ → Lf∗Rf∗[2]. (39)

Object Lg∗g∗M has only two non-zero cohomology sheaves described by Proposition 3.15,
for anyM∈P−1. Then the long exact sequence of cohomology sheaves for triangle (39) applied
to M implies short exact sequence

0→ L2f∗f∗M→ f∗f∗M→M→ 0

and isomorphisms Llf∗f∗M� Ll+2f∗f∗M, for l � 1. Hence, we have 2-periodicity

Llf∗f∗M�
{
P, for even l � 2,
0, for odd l.

(40)

Remark 3.17. From Propositions 3.16 and 3.15 it follows that

Llf∗f∗N �
{
Q, for odd l � 1,
0, for even l � 2.

1144

https://doi.org/10.1112/S0010437X22007497 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007497


Flops and spherical functors

Remark 3.18. Let f : X → Y be a crepant morphism of Gorenstein varieties satisfying assump-
tion (d) such that Y ⊂ Y is a principal divisor in a smooth affine Y. Using Proposition 3.15 we
construct a projective resolution

0→ N → f∗E−1 → f∗E0 → f∗f∗N → 0 (41)

of f∗f∗N in 0Per(X/Y ). Here, E−1 and E0 are locally free sheaves on Y such that Li∗g∗N is
quasi-isomorphic to E−1 → E0 (see Lemma 3.14).

Proposition 3.19 (Cf. [DW16, Proposition 5.6]). Let f : X → Y satisfy assumption (a),M be
in P−1 and N in P0. Then there exist locally free sheaves F−1, F0, E−1, E0 on Y such that

0→M→ f∗F−1 → f∗F0 →M→ PM[1]→ 0

0→ N → f∗E−1 → f∗E0 → N → PN → 0

are projective resolutions of PM[1] = H−1
X ι∗fM[1] and PN = H0

Xι
∗
fN respectively in −1Per(X/Y )

and 0Per(X/Y ).

Proof. Composing resolution (37) with sequence (38) gives the projective resolution for PM[1]
Similarly, resolution (41) and sequence (32) give projective resolution for PN . �

4. The flop functor and Van den Bergh’s functor

Now let X, X+ and Y be quasi-projective Gorenstein varieties of dimension n such that X and
X+ are related by a flop over Y . We assume that Y has canonical hypersurface singularities
of multiplicity two. Note that this condition is satisfied if Y has dimension three and terminal
Gorenstein singularities. We assume that fibers of f have dimension bounded by one and the
exceptional locus of f has codimension greater than one in X. Then morphism f+ satisfies the
same conditions.

Van den Bergh in [VdB04] proved an equivalence of Db(X) with Db(X+) under these
assumptions.

We consider a diagram

X ×Y X+

p+

���
��������

p

������������

X

f ���
���������� X+

f+
�������������

Y

(42)

and the flop functor

F = Rp+
∗ Lp

∗ : Dqc(X)→ Dqc(X+). (43)

In this section we give an alternative description of the flop functor and the functor Σ
considered in [VdB04] under an extra assumption that Y is affine. We show that these are
inverse to each other. Keeping the assumption that Y is affine we also provide an alternative
description of the flop–flop functor

F+F = Rp∗ Lp+∗Rp+
∗ Lp

∗ : Dqc(X)→ Dqc(X). (44)
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We construct a functorial exact triangle relating Σ, F and the derived push-forward to a
smooth scheme Y. We conclude that the flop functor induces an equivalence Db(X) �−→ Db(X+)
and, following [Che02], show that F is an equivalence also in the case when Y is not affine.

Lemma 4.1. Let g : X → Z be a proper surjective morphism with connected fibers. If Z is
normal, then g∗OX � OZ .

Proof. For Stein decomposition g : X → SpecZ g∗OX
ϕ−→ Z, morphism ϕ is finite and has con-

nected fibers, hence it is birational. As a finite birational morphism onto a normal variety is an
isomorphism, ϕ is an isomorphism. It follows that g∗OX � OZ . �
Remark 4.2. We assume that X and X+ are normal varieties. As morphism p is proper, sur-
jective and with connected fibers, Lemma 4.1 implies that p∗OX×Y X+ � OX . Moreover, by
Proposition 2.11, the sheaf R1p∗OX×Y X+ vanishes. It follows that p satisfies assumption (d).

4.1 An alternative description of Van den Bergh’s functor
Lemma 4.3. Let f : X → Y satisfy assumption (d), Y affine and M1, M2 objects in Pp, for
p = −1 or 0. Then ExtiX(M1,M2) = 0, for i � 1.

Proof. By [VdB04, Proposition 3.2.6], objects in Pp are vector bundles on X. Hence,
Exti(M1,M2) � 0, for i > 0. As morphism f has fibers of dimension bounded by one, the local-
to-global spectral sequence implies that Exti(M1,M2) � H0(Y,Rif∗Hom(M1,M2)) vanishes,
for i > 1. Group Ext1X(M1,M2) is isomorphic to Ext1pPer(X/Y )(M1,M2), hence also zero, as
M1 is an object of Pp. �

Let P ⊂ B be a full subcategory of an abelian category closed under extensions. Denote by
Hot−,bB (P) the homotopy category of bounded above complexes of objects in P with bounded
cohomology in B. We use the notation Hot−,b(P) when the category B is clear from the context.
Denote by Hot−,b(P)�l the full subcategory of complexes with non-zero cohomology in degree
up to l. Denote by Hot−(P) the category of bounded above complexes of objects in P without
any constraint on cohomology. Finally, denote by Hotb(P) the full subcategory of bounded
complexes in Hot−,b(P). Categories Hot−,b(P), Hot−(P) and Hotb(P) are triangulated by
[Nee90]. If P is the category of projective objects in pPer(X/Y ), for p = −1, 0, then we use the
above notation for the embedding Pp ⊂ Coh(X).

Assume that morphism f : X → Y satisfies assumption (a). As pPer(X/Y ) has enough pro-
jective objects, for p = −1 or 0, category Db(pPer(X/Y )) is equivalent to Hot−,b(Pp), see
[GM03, Theorem III.5.21].

Proposition 4.4. Let f : X → Y satisfy assumption (d) and Y affine. Then categories Db(X)
and Db(pPer(X/Y )) are equivalent, for p = −1 or 0.

Proof. As objects in Pp are coherent sheaves on X, we have a functor Θ: Hot−,b(Pp)→ Db(X).
There exists N0 such that ExtqX(P,C) = 0, for any P ∈Pp and C ∈ pPer(X/Y ) and q � N0.
Indeed, C has non-zero cohomology sheaves in degrees −1 and 0 only, and objects in Pp

are locally free sheaves on X (see [VdB04, Proposition 3.2.6]). Then Proposition E.4 implies
that cohomology groups of complex

∏
j−i=p HomX(Ai, Bj) are isomorphic to HomX(A·, B·), for

any A·, B· ∈ Hot−,b(Pp) (see Lemma 4.3). Hence, Hom·
X(A·, B·) � HomHot−,b(Pp)(A

·, B·), i.e.
Θ is fully faithful. It is essentially surjective, because pPer(X/Y ) is the heart of a bounded
t-structure. �
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By Proposition 3.12, functor

Σo := (f+∗f∗(−))∨∨ : P−1 →P+
0 (45)

is fully faithful. Denote by

Σ: Hot−,b(P−1)→ Hot−(P+
0 ) (46)

the functor obtained by applying Σo term-wise to complexes of objects of P−1.

Theorem 4.5. Let f : X → Y satisfy assumption (a) and f+ : X+ → Y be the flop of f . Then
functor Σ induces an equivalence between Db(X) and Db(X+).

Proof. Lemma 3.11 implies that functor

To := (f∗f+
∗ (−))∨∨ : P+

0 →P−1

is the inverse of Σo. Let us extend it term-wise to a functor

T : Hot−,b(P+
0 )→ Hot−(P−1).

Proposition 3.12 implies that Σ and T are inverse equivalences between P−1 and P+
0 . Hence,

they are also inverse equivalences between Hot−(P−1) and Hot−(P0). By Proposition 4.4, we
have Db(X) � Hot−,b(P−1) and Db(X+) � Hot−,b(P+

0 ). Thus, it suffices to show that Σ takes
Hot−,b(P−1) to Hot−,b(P+

0 ) and T takes Hot−,b(P+
0 ) to Hot−,b(P−1).

Let E be in Hot−,b(P−1) and assume that Σ(E) has unbounded cohomology. If cohomology
of Σ(E) is unbounded with respect to the standard t-structure it is also unbounded with respect
to the t-structure with heart 0Per(X+/Y ), because these two t-structures are related by a tilt.
Let N+ be the projective generator of 0Per(X+/Y ). Then dimk Hom·

X+(N+,Σ(E)) is infinite.
By adjunction of inverse functors, we have that dimk Hom·

X(T (N+), E) is infinite. As To(N+) is
in P−1, it contradicts the boundedness of the cohomology of E with respect to the t-structure
with heart −1Per(X/Y ). Analogously, T takes Hot−,b(P+

0 ) to Hot−,b(P−1). �
Let us show that Theorem 4.5 may be considered as a write-up of Van den Bergh’s theorem.
Let f : X → Y satisfy assumption (a). As f has fibers of dimension bounded by one, [VdB04,

Lemma 3.2.2] implies that for an f -ample line bundle L both L ⊕OX and OX ⊕ L−1 are compact
generators of Dqc(X). It follows that both the projective generator M =

⊕
Mi of −1Per(X/Y )

(defined as in Remark 2.7) and N = Hom(M,OX) of 0Per(X/Y ) (see Remark 2.6) are com-
pact generators of the category Dqc(X). Analogous result holds for projective generators for
−1Per(X+/Y ) and 0Per(X+/Y ).

As (f+∗f∗(−))∨∨ restricts to an equivalence P−1 →P+
0 , Proposition 3.12, N+ (as in (35))

is a projective generator for 0Per(X+/Y ) and the endomorphisms algebras of M and N+ are
isomorphic.

Moreover, by Lemma 4.3, both M and N+ have no higher self Ext groups. Hence, by the
result of Keller [Kel06] both Dqc(X) and Dqc(X+) are equivalent to the derived category of DG
modules over the algebra A = HomX(M,M), cf. [BVdB03]. Denote by

Σqc : Dqc(X) �−→ Dqc(X+)

the resulting equivalence.

Proposition 4.6. Let f : X → Y satisfy assumption (a). Functor Σqc|Db(X) : Db(X)→ Db(X+)
is an equivalence that takes −1Per(X/Y ) to 0Per(X+/Y ), and it coincides with Van den Bergh’s
equivalence in [VdB04, Theorem 4.4.2].
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Proof. Category Hot−,b(P−1) is a subcategory of the homotopy category of complexes of pro-
jective A-modules; it consists of bounded above complexes. As Σo as in (45) maps projective
generator for −1Per(X/Y ) to the projective generator for 0Per(X+/Y ), we have Σqc|P−1 =
Σo. We conclude that Σ = Σqc|Hot−,b(P−1)

is the equivalence defined by Van den Bergh in
[VdB04, Theorem 4.4.2]. �

Categories P0 and P+
−1 are also equivalent. We can thus analogously construct an

equivalence Σ−1
qc : Db(X)→ Db(X+) that takes 0Per(X/Y ) to −1Per(X+/Y ).

4.2 An alternative description of the flop functor
Consider diagram (42). The counit of f∗ � f∗ adjunction

f∗f∗ → Id

gives a morphism

p∗f∗f∗ → p∗.

Isomorphism p∗f∗ � p+∗f+∗ and p+∗ � p+∗ adjunction lead to a base-change morphism

ε : f+∗f∗ → p+
∗ p

∗. (47)

Note that the morphism ε is, by definition, the composition

ε : f+∗f∗ → p+
∗ p

+∗f+∗f∗ → p+
∗ p

∗. (48)

Analogous argument gives a derived base change

ε̃ : Lf+∗Rf∗ → Rp+
∗ Lp

∗. (49)

Lemma 4.7. Let f satisfy assumption (a) and M be an object in P−1. Then εM : f+∗f∗M→
p+∗ p∗M is an isomorphism.

Proof. As M is locally free [VdB04, Propostion 3.2.6], applying p∗ to sequence (15) we obtain
an exact sequence

0→ p∗P → p∗f∗f∗M→ p∗M→ 0

on X ×Y X+. Sheaf P is in Af , hence Proposition 2.11 implies an isomorphism

p+
∗ p

∗f∗f∗M �−→ p+
∗ p

∗M.

As diagram (42) is commutative, p+∗ p∗f∗f∗M� p+∗ p+∗f+∗f∗M. Isomorphism f+∗f∗M�
f+∗f+∗ N+ (see Proposition 3.12) together with Lemma 3.5 implies that f+∗f∗M is torsion-free.
Moreover, by Remark 4.2, Rp+∗ OX×Y X+ = OX+ . Thus, conditions of Lemma 2.8 are satisfied
and we have an isomorphism f+∗f∗M �−→ p+∗ p+∗f+∗f∗M. Hence, εM is a composite of two
isomorphisms in (48). �
Proposition 4.8. Let f satisfy assumption (a). Then the flop functor Rp+∗ Lp∗ on P−1 is
isomorphic to the non-derived flop functor p+∗ p∗.

Proof. Every object in P−1 locally free, [VdB04, Propostion 3.2.6], hence Lp∗|P−1 � p∗|P−1 .
Moreover, because R1f∗P−1 � 0, [VdB04, Lemma 3.1.2] Proposition 2.11 implies that
R1p+∗ p∗P−1 � 0. �
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We define functor
f+∗f∗ : Hot−,b(P−1)→ Hot−(f+∗f∗P−1)

term-wise. We use the same notation for the composite of the above functor with the canonical
functor Hot−(f+∗f∗P−1)→ D−(X+). Also term-wise, we define a functor

p+
∗ p

∗ : Hot−,b(P−1)→ D−(X+).

Lemma 4.9. Let f satisfy assumption (a). Then the functor f+∗f∗ maps Hot−,b(P−1) to
Db(X+). The functor f∗f∗ maps Hot−,b(P−1) to Db(X).

Proof. The i∗ � i∗ adjunction counit induces an isomorphism g+∗g∗
�−→ f+∗f∗. Hence, it is enough

to show that the term-wise extension of g+∗g∗ maps Hot−,b(P−1) to Db(X+).
Functor Rg∗ preserves the bounded derived category of coherent sheaves, because g is

proper, and so does Lg+∗, because Y is smooth. Hence, for P · in Hot−,b(P−1) � Db(X) (see
Proposition 4.4), Lg+∗Rg∗(P ·) is an object in Db(X+). For P ∈P−1, we denote by P+ =
(f+∗f∗P )∨∨ the corresponding object in P+

0 (see Proposition 3.12). As f+∗ P+ = f∗P and
g+∗ P+ = g∗P , Proposition 3.15 for g+, f+ and P+ instead of g, f and R, implies that the first
sheet of the spectral sequence Ep,q1 = Hq

X+(Lg+∗g∗P p)⇒ Hp+qX+ (Lg+∗Rg∗P ·) has two non-zero
rows:

E•,0
1 = f+∗f+

∗ P
+• = g+∗g+

∗ P
+• = g+∗g∗P •, E•,−1

1 = P+•.

By Theorem 4.5, the complex P+• is in Hot−,b(P+
0 ), hence cohomology of the -1st row is

bounded: EN,−1
2 = 0, for N � N0. The spectral sequence implies that, for sufficiently negative

N , HNX+(g+∗g∗P •) = EN,02 = EN,0∞ = HNX+(Lg+∗g∗P •) = 0, i.e. g+∗g∗(P •) ∈ Db(X+).
The proof of the boundedness for f∗f∗(P •) = g∗g∗(P •) is similar with the use of

Proposition 3.15 for M instead of N+. �
Proposition 4.10. Let f satisfy assumption (a). Then functors f+∗f∗ and p+∗ p∗ are isomorphic
on the category Hot−,b(P−1). They are also isomorphic to the flop functor restricted to Db(X)
under the equivalence Db(X) � Hot−,b(P−1).

Proof. Proposition 4.8 implies that the canonical morphism p+∗ p∗|P−1 → Rp+∗ p∗|P−1 is an iso-
morphism. All objects in P−1 are locally free [VdB04, Propostion 3.2.6], hence canonical
morphism Rp+∗ Lp∗|P−1 → Rp+∗ p∗|P−1 is also an isomorphism. This implies isomorphism of
p+∗ p∗|P−1 and Rp+∗ Lp∗|P−1 .

Lemma 4.7 assures that the base change εM : f+∗f∗M→ p+∗ p∗M is an isomorphism, for all
M∈P−1.

Thus, all three functors are isomorphic on P−1. Induction on triangles shows that the
isomorphism extends to Hotb(P−1). By Lemmas 4.9 and 4.11, they are also isomorphic on
Hot−,b(P−1). �

In the proof of Proposition 4.10 we use the fact that in order to check that a natural trans-
formation gives an isomorphism of two functors defined on Hot−,b(P−1), it suffices to check that
it gives an isomorphism of the functors restricted to Hotb(P−1), which we prove now.

Lemma 4.11. Let A, B be abelian categories, P ⊂ B a full subcategory closed under extensions
and F,G : Hot−,bB (P)→ D−(A) exact functors. Assume there exists n0 such that both F and

G map Hot−,bB (P)�0 to D−(A)�n0 and that the image of either F or G is contained in Db(A).
Let κ : F |Hotb

B(P) → G|Hotb
B(P) be an isomorphism of functors. Then κ admits an extension to a

functorial isomorphism κ̃ : F → G.
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Proof. Let E be an object in Hot−,b(P). We denote by σ�kE the ‘stupid’ truncation:

σ�k(E)i =

{
Ei, if i � k,

0, otherwise.

Morphism σ�lE → E induces isomorphisms τ�mF (σ�lE) �−→ τ�mF (E), τ�mG(σ�lE) �−→
τ�mG(E), for any m ∈ Z, and l � m− n0. We have

τ�mF (E) � τ�mF (σ�lE) � τ�mG(σ�lE) � τ�mG(E), (50)

for any l � m− n0. Let us assume that F (E) is an object in Db(A). There exists N such that
morphism F (E)→ τ�mF (E) is an isomorphism, for any m � N . Thus, isomorphisms (50) imply
that G(E) is also an object in Db(A). We define κ̃ as the composite of isomorphisms

F (E)→ τ�mF (E)→ τ�mF (σ�lE)
τ�mκσ�lE−−−−−−→ τ�mG(σ�lE)→ τ�mG(E)→ G(E),

for any m � N and l � m− n0. As κ is a natural transformation, τ�mκσ�lE � τ�mκσ�l′E , for
any l, l′ � m− n0. Hence, κ̃ does not depend on the choice of m � N and l � m− n0. �

4.3 A functorial exact triangle of functors Dqc(X) → Dqc(X+)
Assume that f : X → Y satisfies assumption (a), i.e. there exists a closed embedding i : Y → Y,
for a smooth Y of dimension n+ 1. Then, X ×Y X+ � X ×Y X+, i.e. diagram

X ×Y X+

p

������������ p+

���
��������

X

g
���

���������� X+

g+
�������������

Y

(51)

is fibered.
Recall, that we denote by F = Rp+∗ Lp∗ the flop functor and by Σ: Hot−,b(P−1)→ Db(X+)

the term-wise extension of Σo = (f+∗f∗(−))∨∨ : P−1 →P+
0 .

Lemma 4.12. Let f : X → Y satisfy assumption (a). Functors Rf+∗ Σ, Rf∗ : Hot−,b(P−1)→
Db(Y ) are isomorphic.

Proof. Consider morphism α : f∗|P−1 → f+∗ Σo|P−1 defined as the composite

f∗
ηf∗−−→ f+

∗ f
+∗f∗

f+∗ βf+∗f∗−−−−−−→ f+
∗ (f+∗f∗(−)∨∨) = f+

∗ Σo,

for the unit η of f+∗ � f+∗ adjunction and the reflexification β : (−)→ (−)∨∨. Lemma 3.11 implies
that α is an isomorphism of functors (see Lemma 4.11).

Morphism α yields morphism α− : f−∗ → (f+∗ Σ) of the term-wise extension of functors
f∗|P−1 and f+∗ Σo|P−1 to the category Hot−,b(P−1). As α is an isomorphism, the same is true
about α−.

Now let E be an object in Db(X). It is isomorphic to a complex P· in Hot−,b(P−1). The first
layer of spectral sequence

E1
p,q = Rpf∗Pq ⇒ Rp+qf∗E
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has only one non-zero row. Hence, complex f∗P· is isomorphic to Rf∗E. Analogously, because
Σo(P−1) �P+

0 , complex f+∗ Σ(P·) is isomorphic to Rf+∗ ΣE. Thus, α− induces an isomorphism
of Rf∗ and Rf+∗ Σ. �
Proposition 4.13. Let f : X → Y satisfy assumption (a) and let Σqc be as in Proposition 4.6.
The derived base change ε̃ induces a functorial exact triangle of functors Dqc(X)→ Dqc(X+):

Σqc[1]→ Lg+∗Rg∗
ε̃−→ F → Σqc[2].

Proof. We have already seen in § 4.1 that there exists a choice of compact generators M and
N+ of Dqc(X) and Dqc(X+), respectively, such that Dqc(X) � D(Mod–A) � Dqc(X+), for an
algebra A = HomX(M,M) (see Lemma 4.3). Under these equivalences, functor Σqc is given by
algebra A considered as an Aop ⊗A bimodule.

Appendix C, allows us to lift the base change Lg+∗Rg∗ → Rp+∗ Lp∗ to a 1-morphism in
Bimod. It induces a functorial exact triangle

Σ′ → Lg+∗Rg∗ → Rp+
∗ Lp

∗ → Σ′[1]. (52)

Let us show that functors Σ′|P−1 and Σo[1]|P−1 are isomorphic. To this end, we consider
an object M in P−1. By Proposition 3.12, object N+ := (f+∗f∗(M))∨∨ lies in P+

0 . Thus,
Proposition 3.15 yields an exact triangle

N+[1]→ Lg+∗Rg+
∗ N+ → f+∗f+

∗ N+ → N+[2]. (53)

By Lemma 3.11, we have f+∗ N+ � f∗M, hence g+∗ N+ � g∗M. Proposition 4.10 assures that
f+∗f∗M� F (M), hence triangle (53) reads

Σo(M)[1]→ Lg+∗Rg∗M→ F (M)→ Σo(M)[2]. (54)

There exists a morphism from triangle (54) to triangle (52) applied toM which is equal to the
identity morphism on Lg+∗g∗M and on F (M) = Rp+∗ Lp∗M. Indeed, the map Lg+∗Rg∗M→
F (M) in (54) is the composite

Lg+∗Rg∗M
τ�0−−→ f+∗f∗M �−→ p+

∗ p
∗M �−→ Rp+

∗ Lp
∗M

of the truncation τ�0, which in this case is taking the zeroth cohomology, followed by the base-
change isomorphism (see Proposition 4.10) and then by the isomorphism p+∗ p∗M� Rp+∗ Lp∗M
(see Proposition 4.8). Note that, under the isomorphism f+∗f∗ � g+∗g∗ of functors Coh(X)→
Coh(X+), induced by the i∗ � i∗ adjunction counit, the base change f+∗f∗ → p+∗ p∗ corre-
sponds to the base change g+∗g∗ → p+∗ p∗. On the other hand, the map Lg+∗Rg∗ → Rp+∗ Lp∗

in (52) is the (derived) base change. For the degree reason (as Rp+∗ Lp∗M is a sheaf by
Proposition 4.8), the derived base change for M factors via H0(Lg+∗Rg∗M). The existence
of the desired morphism of triangles follows from the fact that the restriction of the derived base
change to zeroth cohomology is the non-derived base change. Thus, for any M in P−1, there
exists an isomorphism αM : Σo(M)[1]→ Σ′(M). It is unique, as HomX+(Σo(M)[1],
F (M)[−1]) = Ext−2

X+(N+, f+∗f+∗ N+) = 0 (for degree reasons). Morphism αM when composed
with Σ′(M)→ Lg+∗Rg∗(M) is equal to βM, for a morphism β = ηΣo : Σo[1]→ Lg+∗Rg∗. Here,
η : Id[1]→ g+!Rg+∗ [1] � Lg+∗Rg+∗ is the adjunction unit (we use Rg+∗ Σo � Rg∗ which
follows from Lemma 4.12).

For any M,M1 ∈P−1 and ϕ : M �→M1, both compositions

Σo(M)[1]
Σo(ϕ)[1]−−−−−→ Σo(M1)[1]

αM1−−−→ Σ′(M1), Σo(M)[1] αM−−→ Σ′(M)
Σ′(ϕ)−−−→ Σ′(M1)
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fit into the following commuting diagram.

F (M1)[−1] �� Σ′(M1) �� Lg+∗Rg∗(M1)

F (M)[−1]

F (ϕ)[−1]

		

�� Σo(M)[1] ��

		

Lg+∗Rg∗(M)

Lg+∗Rg∗(ϕ)

		

As both HomX+(Σo(M)[1], F (M1)) and HomX+(Σo(M)[1], F (M1)[−1]) vanish (also for degree
reasons), we have Σ′(ϕ) ◦ αM = αM1 ◦ Σo(ϕ)[1], i.e. α extends to a morphism of functors
α : Σo[1]|P−1 → Σ′|P−1 . Moreover, any ψ in HomX+(Σo(M)[1],Σo(M1)[1]) � HomX(M,M1)
uniquely determines ψ̃ : Σ′(M)→ Σ′(M1). Similarly, as HomX+(Σ′(M), F (M1)) = 0 =
HomX+(Σ′(M), F (M1)[−1]), any τ ∈ HomX+(Σ′(M),Σ′(M1)) determines τ̃ : Σo(M)[1]→
Σo(M1)[1]. Thus, morphism α : HomX+(Σo(M)[1],Σo(M1)[1])→ HomX+(Σ′(M),Σ′(M1)) is
a bijection. It follows that α is an isomorphism of functors α : Σo[1]|P−1

�−→ Σ′|P−1 .
Lemma 4.3 implies that Dqc(X) � D(Mod–A), for an algebra A. Furthermore, by definition,

functor Σqc is isomorphic to the bimodule functor ΦA, for A considered as Aop ⊗A bimodule.
By construction (via an exact triangle), Σ′ is also a bimodule functor. Thus, assumptions of
Lemma C.12 are satisfied and we conclude that Σ′[−1] � Σqc. Hence, functorial exact triangle
(52) reads

Σqc[1]→ Lg+∗Rg∗ → F → Σqc[2]. �

Corollary 4.14. Let f : X → Y satisfy assumption (p). The flop functor F takes Db(X) to
Db(X+).

Proof. The statement is local in Y , therefore we can assume that morphism f satisfies assump-
tion (a). As both Lg+∗Rg∗ and Σqc take Db(X) to Db(X+) (see Theorem 4.5), the functorial
exact triangle of Proposition 4.13 implies that the flop functor F takes Db(X) to Db(X+). �

4.4 An alternative description of the flop–flop functor
We show that F+F on category Hot−,b(P−1) is isomorphic to f∗f∗. First, we show vanishing of
higher inverse images of projective objects in Af and then extend Proposition 4.8 to the sheaf
f∗f∗N .

Lemma 4.15. Let f : X → Y satisfy assumption (a) and P be projective in Af . Then Ljp∗P = 0,
for j � 2.

Proof. The statement is local in X, in particular in Y . Therefore, we can assume that f satisfies
assumption (c) and P is a direct sum of copies of Pi as in (19).

Consider the counit Lg∗g∗Mi →Mi of the Lg∗ � Rg∗ adjunction. It gives an exact triangle

Lg∗g∗Mi →Mi → SMi → Lg∗g∗Mi[1]. (55)

Applying functor Lp∗ to it yields an exact triangle on X ×Y X+:

L(p∗g∗)g∗Mi → p∗Mi → Lp∗SMi → L(p∗g∗)g∗Mi[1].

Lemma 3.14 implies that Lj(p∗g∗)g∗Mi = 0, for j � 2. Thus, Ljp∗SMi = 0, for j > 2.
Proposition 3.15, the long exact sequence of cohomology associated to triangle (55) and

sequence (15) imply that SMi has two non-zero cohomology sheaves:

Mi[2]→ SMi → Pi[1]→Mi[3].
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By applying Lp∗ and looking at the cohomology sheaves of the obtained triangle, we obtain an
isomorphism Ljp∗Pi � Lj+1p∗SMi � 0, for j � 3, and an exact sequence

0→ L2p∗Pi → p∗Mi → L2p∗SMi → L1p∗Pi → 0.

Sheaf L2p∗Pi is supported on the exceptional divisor of p, hence it is torsion. As p∗Mi is locally
free, L2p∗Pi = 0. �
Lemma 4.16. Let f : X → Y satisfy assumption (a). Then, for any N ∈P0, the pullbacks of
N andM+ = (f+∗f∗N )∨∨ fit into the short exact sequence

0→ p+∗M+ → p∗N → L1p+∗(f+∗f+
∗ M+)→ 0 (56)

on X ×Y X+.

Proof. By Proposition 3.15, we have an exact triangle

N [1]→ Lg∗g∗N → f∗f∗N → N [2]. (57)

By applying Lp∗ to (57), we obtain an exact triangle

Lp∗N [1]→ L(p∗g∗)g∗N → Lp∗(f∗f∗N )→ Lp∗N [2]. (58)

As g∗N has a locally free resolution of length two (see Lemma 3.14), L2(p∗g∗)g∗N = 0. The long
exact sequence of cohomology for triangle (58) implies the exact sequence

0→ L2p∗(f∗f∗N )→ p∗N → L1(p∗g∗)g∗N → L1p∗(f∗f∗N )→ 0. (59)

As N is locally free, L>0p∗N = 0. Hence, by applying Lp∗ to sequence (32), we obtain iso-
morphisms L3p∗Q � L2p∗(f∗f∗N ) and L2p∗Q � L1p∗(f∗f∗N ), where Q = H0

X(ιf∗ι∗fN ) is a
projective object in Af . In view of Lemma 4.15, sequence (59) is reduced to an isomorphism
p∗N � L1(p∗g∗)g∗N .

Let M+ = (f+∗f∗N )∨∨ be an object in P+
−1. Proposition 3.12 implies that f+∗ M+ � f∗N ,

hence g+∗M+ � g∗N . As diagram (51) commutes, we have

p∗N � L1(p∗g∗)g∗N � L1(p+∗g+∗)g+
∗M+. (60)

By applying Lp+∗ to sequence (36), we obtain an exact sequence

0→ L2p+∗(f+∗f+
∗ M+)→ p+∗M+ → L1(p+∗g+∗)g+

∗M+ → L1p+∗(f+∗f+
∗ M+)→ 0. (61)

Now consider sequence (15) with f+, M+ and P+ instead of f , M and P. Apply functor Lp+∗

to it. Then Lemma 4.15 for f+, p+ and P+ instead of f ,p and P, implies that L2p+∗(f+∗f+∗ M+)
� 0. Hence, sequence (61) can be rewritten as

0→ p+∗M+ → L1(p+∗g+∗)g+
∗M+ → L1p+∗(f+∗f+

∗ M+)→ 0. (62)

Sequence (62) together with isomorphism (60) imply that (56) is exact. �
Proposition 4.17. Let f satisfy assumption (a). Then flop functor Rp+∗ Lp∗ on category
f∗f∗P0 is isomorphic to the non-derived flop functor p+∗ p∗.

Proof. In view of Lemma 4.15, Ljp∗Q � 0, for any Q projective in Af and any j � 2. As any
object N in P0 is locally free [VdB04, Proposition 3.2.6], by applying Lp∗ to sequence (32),
we obtain an isomorphism Lp∗f∗f∗N � p∗f∗f∗N . As diagram (42) commutes, the latter sheaf
is isomorphic to p+∗f+∗f∗N . Lemma 2.8 implies that R1p+∗ p+∗(E) � 0, for any sheaf E on X+.
Thus, Rp+∗ p+∗f+∗f∗N � p+∗ p+∗f+∗f∗N � p+∗ p∗f∗f∗N . �
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Base change ε given by (47) and an analogous ε+ : f∗f+∗ → p∗p+∗ together with the adjunction
unit ηf

+
: Id→ f+∗ f+∗ give ε̃ : f∗f∗ → p∗p+∗p+∗ p∗ which is the composite

ε̃ : f∗f∗
f∗ηf+

f∗−−−−−→ f∗f+
∗ f

+∗f∗
ε+(f+∗f∗)−−−−−−→ p∗p+∗f+∗f∗

(p∗p+∗)ε−−−−−→ p∗p+∗p+
∗ p

∗. (63)

Proposition 4.18. Let f satisfy assumption (a). Morphism ε̃ is an isomorphism on the category
Hot−,b(P−1).

Proof. We check that, for any M∈P−1, the map ε̃M is a composition of three isomorphisms.
TakeN+ := (f+∗f∗M)∨∨ as in (35). In view of Lemma 3.11, f∗M� f+∗ N+. Then Lemma 2.9

implies that morphism ηf
+

f∗M : f∗M→ f+∗ f+∗f∗M is an isomorphism, hence so is f∗ηf+
f∗ onM.

Natural transformation ε+ is the composite of the adjunction unit ηp and the counit εf
+

as
in (48). We check that both maps

f∗f+
∗ f

+∗f∗M
ηp

f∗f+∗ f+∗f∗M−−−−−−−−−→ p∗p∗f∗f+
∗ f

+∗f∗M,

p∗p+∗f+∗f+
∗ f

+∗f∗M
p∗p+∗εf+

f+∗f∗M−−−−−−−−−→ p∗p+∗f+∗f∗M
are isomorphisms. As f∗f+∗ f+∗f∗M� f∗f∗M, morphism ηp

f∗f+∗ f+∗f∗M is an isomorphism if

and only if ηpf∗f∗M is also an isomorphism. Object N+ satisfies R1f+∗ N+ = 0, hence, by
Proposition 2.11, R1p∗p+∗N+ = 0. As, by Lemma 2.8, Rip∗p∗M = 0, for i � 1, applying Rp∗ to
sequence (56) with the roles of f and f+ exchanged gives R1p∗L1p∗(f∗f∗M) � R1p∗p+∗N+ = 0.
Then, short exact sequence (20), for E = f∗f∗M and p instead of f , implies that the adjunction
unit ηpf∗f∗M : f∗f∗M �−→ p∗p∗(f∗f∗M) is an isomorphism.

By the definition of the adjunction, morphism εf
+

f+∗f∗M fits into the following commutative
triangle.

f+∗f+∗ f+∗f∗M
εf+

f+∗f∗M

��											

f+∗f∗M

f+∗ηf+

f∗M
��










 Idf+∗f∗M �� f+∗f∗M

We have already seen that ηf
+

f∗M is an isomorphism, hence the same is true about f+∗ηf
+

f∗M. As,

clearly, Idf+∗f∗M is an isomorphism, so is the third morphism in the triangle εf
+

f+∗f∗M.
Finally, by Lemma 4.7, εM : f+f∗M→ p+∗ p∗M is an isomorphism, hence so is p∗p+∗εM.
Thus, for anyM∈P−1, we have an isomorphism f∗f∗M→ p∗p+∗p+∗ p∗M. By induction on

triangles, the isomorphism extends to Hotb(P−1). Lemmas 4.9 and 4.11 imply that base change
ε̃ is an isomorphism on Hot−,b(P−1). �
Proposition 4.19. Let f : X → Y satisfy assumption (a). The flop–flop functor F+F restricted
to Db(X) is isomorphic to term-wise functor f∗f∗ on the category Hot−,b(P−1) under the
equivalence Hot−,b(P−1) � Db(X).

Proof. In view of Proposition 4.18, it suffices to check that functors p∗p+∗p+∗ p∗ and
Rp∗Lp+∗Rp+∗ Lp∗ are isomorphic on Hot−,b(P−1). By Proposition 4.8, we have an isomorphism
Rp+∗ Lp∗M� p+∗ p∗M, for any M∈P−1. Proposition 4.10 implies that p+∗ p∗M� f+∗f∗M,
hence Rp∗Lp+∗p+∗ p∗M� p∗p+∗p+∗ p∗M by Proposition 4.8. By induction on triangles, we have
an isomorphism on Hotb(P−1). We conclude by Lemma 4.11. �
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4.5 The flop functor as the inverse of Van den Bergh’s functor
We show that the flop functor F+ : Db(X+)→ Db(X) and functor Σ are inverse to each other.
In view of Theorem 4.5, this statement is equivalent to the flop functor F+ being isomorphic to
the term-wise functor T = (f∗f+∗ (−))∨∨.

Proposition 4.20. Let f : X → Y satisfy assumption (a). The flop functor is isomorphic to
(f+∗f∗(−))∨∨ as a functor P0 →P+

−1.

Proof. Let N be an object in P0 and M+ = (f+∗f∗N )∨∨ its image under the equivalences of
Lemma 3.11. Lemma 2.9 and Proposition 4.18 give isomorphisms

p+
∗ p

+∗f+∗f+
∗ M+ � p+

∗ p
+∗p+

∗ p
∗p∗p+∗M+ � p+

∗ p
∗p∗p+∗M+ � f+∗f+

∗ M+.

Thus, sequence (20) implies that Rp+∗ (L1p+∗f+∗f+∗ M+) � 0. Moreover, we have Rp+∗ p+∗M+ �
M+. Hence, by applying Rp+∗ to sequence (56), we obtain

Rp+
∗ p

∗N � Rp+
∗ p

+∗M+ �M+.

Hence, the flop functor takes N to M+.
Let εN : f+∗f∗N → p+∗ p∗N �M+ be the base change. As f∗N � f+∗ M+, we have f+∗f∗N �

f+∗f+∗ M+. The kernel of reflexification f+∗f+∗ M+ → (f+∗f+∗ M+)∨∨ �M+ is torsion and
p+∗p∗N �M+ is torsion-free, hence, by applying functor HomX+(−, p+∗p∗N ) to sequence (15)
with f and M replaced by f+ and M+, we obtain an isomorphism HomX+(M+, p+∗p∗N ) �
HomX+(f+∗f+∗ M+, p+∗p∗N ). It follows that εN factors uniquely via a morphism ε̃N : M+ �
(f+∗f∗N )∨∨ → p+∗ p∗N which is easily checked to be functorial. Thus, there exists a morphism
ε̃ : (f+∗f∗(−))∨∨ → p+∗ p∗(−) of functors.

Objects of P0 and P+
−1 are reflexive on X and X+, hence any morphism N1 → N2 (and

M+
1 →M+

2 ) is determined by its restrictions to any open set with the complement of codimen-
sion greater than one. In particular, by its restriction to the complement U ⊂ X of the exceptional
set of f (and f+). Flop functor is Rp+∗ Lp∗ and the other functor is (f+∗f∗(−))∨∨. Then, tak-
ing into account that maps f , f+, p and p+ are isomorphisms outside the exceptional sets
and (f+)−1 ◦ f = p+ ◦ p−1 on U , the morphism HomX(N1,N2)→ HomX+(M+

1 ,M+
2 ) induced

by the flop functor F coincides with the morphism given by (f+∗f∗(−))∨∨. It follows that ε̃ is
an isomorphism of functors. �
Theorem 4.21. Let f : X → Y satisfy assumption (a). The flop functor F takes 0Per(X/Y ) to
−1Per(X+/Y ). It is isomorphic to Σ−1

qc in the category of bimodule functors Dqc(X)→ Dqc(X+).

Proof. The same argument as in the proof of Proposition 4.6 shows that Σ−1
qc is the term-wise

extension of (f+∗f∗(−))∨∨ to the category Hot−,b(P0). Proposition 4.20 implies that F |P0 �
Σ−1

qc |P0 .
Categories Dqc(X) and Dqc(X+) have compact generators N ∈P0 and M+ =

(f+∗f∗N )∨∨ ∈P+
−1. For algebras AX = HomX(N ,N ) and AX+ = HomX+(M+,M+), we have

equivalences Dqc(X) � D(Mod–AX), Dqc(X+) � D(Mod–AX+). By construction, functor Σ−1
qc is

isomorphic to a bimodule functor ΦM1 , for some Aop
X ⊗AX+ DG bimodule M1, see Appendix C.

Similarly, the flop functor F is isomorphic to ΦM2 , for some DG bimodule M2. More-
over, from the construction of Σ−1

qc , it follows that Hi(M1) = 0, for i �= 0 (see the discussion
before Proposition 4.6). By Lemma C.12, isomorphism F |P0 � Σ−1

qc |P0 implies an isomorphism
F � Σ−1

qc . �
As an immediate consequence of Theorems 4.5 and 4.21 we obtain the following corollary.
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Corollary 4.22. Let f : X → Y satisfy assumption (a). Then the flop functor F induces an
equivalence of Db(X) with Db(X+).

In view of Proposition 4.13 and Theorem 4.21 we have a functorial exact triangle of functors
Dqc(X)→ Dqc(X+)

(F+)−1[1]→ Lg+∗Rg∗ → F → (F+)−1[2]. (64)

Moreover, it restricts to a functorial exact triangle of functors Db(X)→ Db(X+).

Corollary 4.23. Let f : X → Y satisfy assumption (a). The flop functor F : Db(X)→ Db(X+)
is t-exact when Db(X) is endowed with the t-structure with heart pPer(X/Y ) and Db(X+) with
the t-structure with heart p−1Per(X+/Y ). Moreover, F induces an equivalence of Af with Af+ [1].

Proof. As Rf+∗ ◦ F � Rf∗ and, by Theorem 4.21, functor F takes 0Per(X/Y ) to −1Per(X+/Y ),
the flop F induces an equivalence of Af ⊂ 0Per(X/Y ) with Af+ [1] ⊂ −1Per(X+/Y ).

Category pPer(X/Y ) is defined by two conditions; we require that Rf∗E is a pure sheaf, for
any E ∈ pPer(X/Y ), and that Af [−p] ⊂ pPer(X/Y ). It follows from the properties of F that
F (pPer(X/Y )) ⊂ p−1Per(X+/Y ). As F is an equivalence, both categories are hearts of bounded
t-structures on Db(X+). It follows that F (pPer(X/Y )) = p−1Per(X+/Y ). �
Corollary 4.24. Let morphism f : X → Y satisfy assumption (a). Then categories Db(X) and
Db(pPer(X/Y )) are equivalent, for p ∈ Z.

Proof. Corollary 4.23 implies that, for any p ∈ Z, category pPer(X/Y ) is equivalent either
to 0Per(X/Y ) or to −1Per(X/Y ). Hence, Db(pPer(X/Y )) � Db(qPer(X/Y )), for q ∈ {−1, 0},
q ∼= p mod 2. By Proposition 4.4, the latter category is equivalent to Db(X), which finishes
the proof. �

Let f : X → Y satisfy assumption (a). Proposition 2.11 implies that Rp∗OX×Y X+ =
OX . Thus, commutativity of diagram (42) yields isomorphisms F+ ◦ Lf+∗ � Rp∗Lp+∗Lf+∗ �
Rp∗Lp∗Lf∗ � Lf∗. Hence, also F+ ◦ Lg+∗ � Lg∗. Composing triangle (64) with F+ leads to a
functorial exact triangle of functors Dqc(X)→ Dqc(X):

IdDqc(X)[1]→ Lg∗Rg∗ → F+F → IdDqc(X)[2]. (65)

4.6 Reduction to the affine case
We have shown with Corollary 4.22 that, if a morphism f : X → Y satisfies assumption (a), then
the flop functor F is an equivalence of Db(X) with Db(X+). Now, following [Che02], we show
that the flop functor is also an equivalence, provided morphism f satisfies assumption (p).

Note that the condition on Y to have hypersurface singularities means that completions of
the local rings at all closed points of Y are defined by one equation in regular complete local
rings.

Lemma 4.25. Let Y be an irreducible variety of dimension n with hypersurface singularities.
Then it has a finite open covering by affine subvarieties Yi such that every Yi admits a closed
embedding as a principal divisor into a smooth affine Yi.

For the reader’s convenience, we give the proof of this statement.

Proof. Let y ∈ Y be a closed point. As Zariski topology is quasi-compact, it is enough to show the
existence of an affine open neighbourhood of y which admits a closed embedding into a smooth
affine Y of dimension n+ 1. As the statement is local, we can assume that Y is affine. Then Y
is realised as a closed subscheme in Am. We can assume that m > n+ 1, because otherwise the
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proof is obvious. Let Am ⊂ Pm be the compactification to a projective space and Ȳ ⊂ Pm the
closure of Y in Pm.

As Y has hypersurface singularities, the Zariski tangent space at point y ∈ Y has dimension
� n+ 1. It follows that we can choose a point z in Pm \ Ȳ such that the line (zy) ⊂ Pm does not
contain any point of Ȳ except for y and is not tangent to Y at y.

Denote by Y1 the image of Ȳ under the projection p : Pm → Pm−1 with centre in z. By
the choice of z, the morphism Ȳ → Y1 is an isomorphism for some Zariski neighbourhoods of y
and p(y). We can keep projecting in the same manner, if necessary, by replacing Ȳ ⊂ Pm with
Y1 ⊂ Pm−1, until we come to the projective space of dimension n+ 1 and a closed irreducible
subvariety Y ′ in it of dimension n together with a morphism π : Ȳ → Y ′ which is an isomorphism
in neighbourhoods of y and π(y).

We can find an affine open neighbourhood Y ⊂ Pn+1 of π(y) such that π gives an isomorphism
of Y ′ ∩ Y with a neighbourhood of y ∈ Y . By choosing a smaller affine Y, if necessary, we can
assume that Y ′ ∩ Y ⊂ Y is cut out by a single equation. Then Y ′ ∩ Y is affine and embedded as
a principal divisor in Y, so we are done. �

We consider f : X → Y which satisfies assumption (p). Lemma 4.25 implies the existence
of a finite affine covering Y =

⋃
Yi such that, for every i, space Yi admits an embedding as a

principal Cartier divisor to a smooth affine Yi.
For every i, we pull back the whole diagram to Yi as follows.

Xi

fi 

�
��

��
��

�
X+
i

f+
i����

��
��

��
X

f 















 X+

f+����
��

��
��

Yi �� Y

Note that, for any i, morphism fi satisfies assumption (a).

Proposition 4.26. Let f : X → Y and fi : Xi → Yi be as above. Assume that flop functors
Fi : Db(Xi)→ Db(X+

i ) are equivalences, for every i. Then the flop functor F : Db(X)→ Db(X+)
is an equivalence.

Proof. As X is Gorenstein, category Db(X) has a spanning class Ω = {Ox}, where x runs over
all closed points in X (see [HLdS07, Lemma 1.26]). With such a choice of a spanning class the
same argument as in [Che02, Proposition 3.2] proves that F is an equivalence if all Fi are. �

5. Spherical pairs

With the notation of (42), we consider the category Db(X ×Y X+) and its quotient by the
intersection Kb of kernels of Rp∗ and Rp+∗ . We prove that Db(Af ) is equivalent to the full
subcategory of Db(X ×Y X+)/Kb defined as the kernel of Rp+∗ . We show that Db(X ×Y
X+)/Kb admits SODs 〈Db(Af ),Db(X+)〉 = 〈Db(X),Db(Af )〉 and similarly for Af+ . We con-
clude that (Db(X),Db(X+)) and (Db(Af ),Db(Af+)) are spherical pairs, which yields a geometric
incarnation of the schober [KS14] related to the flop.

5.1 Category D(Af) as a full subcategory of Dqc(X ×Y X+)
Lemma 5.1. Let f : X → Y satisfy assumption (a) and let P be a projective object in Af . Then
p∗p∗P � P, Rp∗L1p∗P = 0 and Rp∗p∗P � P.
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Proof. By Corollary 4.23, the flop functor F+ induces an equivalence of Af+ and Af [1]. Hence,
there exists projective P+ ∈ Af+ such that P[1] � Rp∗Lp+∗P+. As Lip+∗P+ = 0, for i > 1, by
Lemma 4.15, and Rp∗p+∗P+ = 0, by Corollary 2.12, we have P � p∗L1p+∗P+. Then, according
to Lemma 2.9, we have p∗p∗P � P and Rp∗L1p∗P = 0. As Rp∗Lp∗P � P, it follows that
Rp∗p∗P � P. �
Lemma 5.2. Let f : X → Y satisfy assumption (a) and let M be a projective object in
−1Per(X/Y ). There exists an exact triangle

p∗P → Lp+∗(f+∗f∗M)→ Lp∗M→ p∗P[1], (66)

for P := H−1
X (ι∗fM) projective in Af .

Proof. By Lemma 4.15, we have Ljp∗P = 0, for j > 1 and any projective object P in Af . Thus,
applying Lp∗ to sequence (15) and using the fact that M is locally free, we get an isomorphism
Ljp∗P � Ljp∗(f∗f∗M), for j > 0. Further, as Lp∗M� p∗M, i.e. Lip∗M = 0, for i � 1, the
sequence

0→ p∗P → p∗f∗f∗M→ p∗M→ 0 (67)

obtained by applying p∗ to sequence (15) is short exact. We also have

p∗f∗f∗M� Lp+∗(f+∗f+
∗ N+) � Lp+∗(f+∗f∗M), (68)

for N+ ∈P+
0 given by (35). Indeed, commutativity of diagram (42) implies that p∗f∗f∗M�

p+∗f+∗f∗M. Further, Lemma 3.11 yields f∗M� f+∗ N+. Finally, P+ = H0
X(ι∗f+N+) is a projec-

tive object in Af+ , according to Lemma 3.5, hence Ljp+∗P+ = 0, for j > 1 (by Lemma 4.15).
Thus, applying p+∗ to sequence (32) on X+ yields Ljp+∗(f+∗f+∗ N+) = 0, for j > 0.

It follows that the triangle given by short exact sequence (67) is isomorphic to a triangle of
the form (66). �
Proposition 5.3. Let f : X → Y satisfy assumption (a) and let M be a projective
object in −1Per(X/Y ). Then p∗P ∈ Perf(X ×Y X+), HomX×Y X+(p∗P, p∗P) � HomX(P,P) and
ExtiX×Y X+(p∗P, p∗P) = 0, for i > 0, where P = H−1

X (ι∗fM) is projective in Af .

Proof. SheafM is locally free on X, hence Lp∗M∈ Perf(X ×Y X+). Sequence (41) implies that
f+∗f+∗ N+ ∈ Perf(X+), hence Lp+∗f+∗f∗N is also a perfect complex on X ×Y X+. Triangle (66)
implies that p∗P ∈ Perf(X ×Y X+).

By adjunction and Lemma 5.1, we have HomX×Y X+(p∗P, p∗P) � HomX(P,P). Thus, it
suffices to check that ExtiX×Y X+(p∗P, p∗P) = 0, for i > 0. Applying Hom(−, p∗P) to triangle
(66) yields, for any i ∈ Z, an isomorphism

Exti+1
X×Y X+(Lp∗M, p∗P) � ExtiX×Y X+(p∗P, p∗P),

because Extj
X×Y X+(Lp+∗(f+∗f∗M), p∗P) � Extj

X+(f+∗f∗M, Rp+∗ p∗P) = 0 (see Corollary 2.12).
Sheaf M is projective in −1Per(X/Y ) and P[1] ∈ −1Per(X/Y ). Thus, by Lemma 5.1 again, we
conclude that

Exti+1
X×Y X+(Lp∗M, p∗P) � Exti+1

X (M, Rp∗p∗P) � ExtiX(M,P[1]) = 0,

for i �= 0, which finishes the proof. �
Now let M be a projective generator of −1Per(X/Y ) and P = H−1

X (ι∗fM). Denote by

AP := HomX×Y X+(p∗P, p∗P)
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the endomorphism algebra of p∗P. Functor HomX×Y X+(p∗P,−) : QCoh(X ×Y X+)→ Mod–AP
has left adjoint (−)⊗AP

p∗P : Mod–AP → QCoh(X ×Y X+), [Pop73, Theorem 3.6.3]. We denote
by p̄∗ : D(Af )→ Dqc(X ×Y X+) its derived functor.

As P is a projective generator of Af , categories D(Af ) and D(Mod–AP ) are equivalent. We
also have D(Mod–AP ) � [SF–AP ], for the category SF–AP ⊂ DGMod–AP of semi-free AP DG
modules, i.e. DG modules that admit a filtration with direct sums of shifts of representable DG
modules as the graded factors of the filtration [Dri04].

Proposition 5.4. Functor p̄∗ : D(Af )→ Dqc(X ×Y X+) is fully faithful.

Proof. By [Kel94, Lemma 4.2], in order to prove that functor D(Mod–AP )→ Dqc(X ×Y
X+) is fully faithful, it suffices to show that it induces a bijection HomD(Af )(P,P[n])→
HomX×Y X+(p∗P, p∗P[n]), for any n ∈ Z and that p∗P ∈ Dqc(X ×Y X+) is compact. Both
statements follow from Proposition 5.3. �

Functor p∗ restricts to a fully faithful functor Db(Af )→ D−(X ×Y X+). We show that
Db(Af ) is, in fact, a subquotient of Db(X ×Y X+). Following an idea of Kapranov, we show
that the flop–flop functor is a spherical cotwist arising from a spherical pair.

5.2 Spherical pairs (Db(X), Db(X+)), (Db(Af), Db(Af+))
For a morphism f : X → Y satisfying (a) and its flop f+ : X+ → Y , we consider

K = {E ∈ D−(X ×Y X+) |Rp∗(E) = 0, Rp+
∗ (E) = 0} (69)

and quotient category D−(X ×Y X+)/K. In the above, as in diagram (42), morphisms p and p+

denote the projections for X ×Y X+. As both p and p+ have fibers of dimension bounded by one,
category K inherits the standard t-structure from D−(X ×Y X+) (Lemma 2.2). In particular,
K ∈ K if and only if Hi(K) ∈ K, for all i ∈ Z.

Let MorK ⊂ D−(X ×Y X+) denote the category with objects as in D−(X ×Y X+) and mor-
phisms f : E → F such that the cone of f lies in K (see [Ver77, Nee01]). The quotient category
D−(X ×Y X+)/K has the same objects as D−(X ×Y X+). For any pair of objects E,F , mor-

phisms E → F in D−(X ×Y X+)/K are equivalence classes of triples (f, Z, g), where Z
f−→ E is a

morphism in MorK and Z
g−→ F is a morphism in D−(X ×Y X+). We have (f, Z, g) ∼ (f ′, Z ′, g′)

if there exists a triple (f ′′, Z ′′, g′′) and Z ′′ u−→ Z, Z ′′ v−→ Z ′ for which diagram

Z
f

����
��

��
�� g

���
��

��
��

�

E Z ′′f ′′�� g′′ ��

u

		

v

��

F

Z ′
f ′

���������� g′

����������

(70)

commutes, cf. [Nee01].
We denote by Kb the intersection K ∩Db(X ×Y X+). The embedding Db(X ×Y X+)→

D−(X ×Y X+) induces a functor

χ : Db(X ×Y X+)/Kb → D−(X ×Y X+)/K. (71)

Lemma 5.5. Functor χ is fully faithful.
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Proof. It is clear from the above definitions that χ is well-defined. Let us check that χ is faithful.
To this end, we assume that (f, Z, g), (f ′, Z ′, g′) are morphisms E1 → E2 in Db(X ×Y X+)/Kb
which are equivalent as morphisms in D−(X ×Y X+)/K. Let (f ′′, Z ′′, g′′) with Z ′′ ∈ D−(X ×Y
X+) be the triple defining the equivalence as in (70). Choose l ∈ Z such that E1, E2, Z and Z ′

belong to Db(X ×Y X+)�l. Then

Hi(Cone(τ�lf ′′)) =

{
Hi(Cone(f ′′)), for i � l − 1,
0, for i < l − 1,

(72)

implies that all cohomology sheaves of Cone(τ�lf ′′) belong to K, i.e. Cone(τ�lf ′′) is an object in
Kb. The truncation τ�l of diagram (70) is isomorphic to the original diagram on the boundary
diamond, whereas the middle line (τ�lf ′′, τ�lZ ′′, τ�lg′′) defines a morphism in Db(X ×Y X+)/Kb.
Hence, (f, Z, g) ∼ (f ′, Z ′, g′) holds in Db(X ×Y X+)/Kb.

Finally, let (f, Z, g) be a morphism E1 → E2 in D−(X ×Y X+)/K and assume there exists
l ∈ Z such that both Hi(E1) and Hi(E2) vanish, for i � l. Then (72) implies that τ�lf ∈ MorK.
Hence, (τ�lf, τ�lZ, τ�lg) is a morphism E1 → E2 in Db(X ×Y X+)/Kb which functor χ takes to
a morphism equivalent to (f, Z, g). Thus, functor χ is also full. �

In view of Lemma 5.5, we can regard Db(X ×Y X+)/Kb as a full subcategory of D−(X ×Y
X+)/K.

Proposition 5.6. The composite of Lp∗ : Db(X)→ D−(X ×Y X+) with the quotient functor
Q : D−(X ×Y X+)→ D−(X ×Y X+)/K takes Db(X) to the essential image of χ.

Proof. Let E ∈ Db(X)�l. As p has fibers of dimension bounded by one and Rp∗Lp∗(E) � E, we
have Rp∗Hj(Lp∗E) = 0, for j < l − 1.

As −1Per(X/Y ) is obtained from Coh(X) by means of the tilt in a torsion pair, sequence
(34) implies that Hj−1Per(X/Y )

(E) = 0, for j < l. By Corollary 4.23, object Rp+∗ Lp∗(E) lies in

Db(X+)�l
0Per(X+/Y )

. Category Coh(X+) is obtained from 0Per(X+/Y ) by the tilt in a torsion

pair, hence Rp+∗ Lp∗E ∈ Db(X+)�l−1
X+ . Finally, the dimension of fibers of p+ being bounded by

one implies that Rp+∗ Hj(Lp∗E) = 0, for j < l − 2. Thus, τ�l−3Lp
∗E lies in K, i.e. morphism

Lp∗E → τ�l−2Lp
∗E is an isomorphism in D−(X ×Y X+)/K. �

We denote by
L̃p∗ : Db(X)→ Db(X ×Y X+)/Kb

the functor invoked by Lemma 5.5 and Proposition 5.6.
In order to show existence of a right adjoint to L̃p∗, we first prove the following general

statement.

Lemma 5.7. Let D be a triangulated category and K a thick triangulated subcategory. Let
further E ∈ D be such that HomD(E,K) = 0, for any K ∈ K. Then, for any F ∈ D, we have an
isomorphism

HomD(E,F ) �−→ HomD/K(E,F ).

Proof. We have the map

α : HomD(E,F )→ HomD/K(E,F ), α : h �→ (id, E, h).

Now let (f, Z, g) be any element in HomD/K(E,F ). By definition, f is a morphism in MorK. In
other words we have an exact triangle

Z
f−→ E → K → Z[1],
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with K ∈ K. As both HomD(E,K) and HomD(E,K[−1]) vanish, object Z is uniquely decom-
posed as Z � K[−1]⊕ E and f = (0, id) is the projection to E. Accordingly, we have a
decomposition g = (gK , gE). Diagram

K[−1]⊕ E
(0,id)

������������ (gK ,gE)

���
���������

E E
id��

(0,id)

		

gE �� F

commutes, i.e. (f, Z, g) ∼ (id, E, gE). Thus, map α is surjective.
Now let (id, E, g) ∼ (id, E, g′) in D/K. For the triple (f ′′, Z ′′, g′′) giving the equivalence (see

diagram (70)), we have, as above, the decomposition Z ′′ = K ′′[−1]⊕ E. Commutativity of

E
id

��������������������
g

��������������������

E K ′′[−1] ⊕(0,id)�� E (g′′K ,g
′′
E) ��

(0,id)

		

(0,id)

��

F

E

id

�������������������� g′

��������������������

yields g = g′′E = g′, i.e. α is also a monomorphism. �

Proposition 5.8. Functor L̃p∗ is fully faithful and has the right adjoint Rp∗ : Db(X ×Y
X+)/Kb → Db(X).

Proof. First, note that functor Rp∗ : Db(X ×Y X+)/Kb → Db(X) is well-defined, because Kb ⊂
KerRp∗.

For any E ∈ Db(X) and F ∈ D−(X ×Y X+), we have an isomorphism HomX×Y X+(Lp∗E,
F ) � HomX(E,Rp∗F ). As functor χ is fully faithful (Lemma 5.5), in order to prove that Rp∗ is
right adjoint to L̃p∗, it suffices to show that, for any F ∈ D−(X ×Y X+), we have

HomX×Y X+(Lp∗E,F ) � HomD−(X×Y X+)/K(Lp∗E,F ). (73)

By adjunction, HomX×Y X+(Lp∗E,K) = 0, for any K ∈ K, thus (73) follows from Lemma 5.7.
As functor Lp∗ : Db(X)→ D−(X ×Y X+) is fully faithful, isomorphism (73), for F =

Lp∗(E′), implies that functor L̃p∗ is fully faithful too. �
As Rp∗L̃p∗ � IdDb(X), we have a SOD [Bon89, Lemma 3.1]

Db(X ×Y X+)/Kb = 〈C, L̃p∗Db(X)〉, (74)

with C = {E ∈ Db(X ×Y X+)/Kb |Rp∗E = 0}. We aim at showing that C � Db(Af+).
By Proposition 5.3, we know that, for a projective object M∈ −1Per(X/Y ) and P =

H−1
X ι∗fM, the endomorphisms algebras of p∗P and P are isomorphic. Next, we show that they

remain the same when we pass to the quotient category D−(X ×Y X+)/K.

Lemma 5.9. Let P be as above. Then, for any E ∈ D−(X ×Y X+),

HomX×Y X+(p∗P, E) � HomD−(X×Y X+)/K(p∗P, E).

Proof. By Lemma 5.7, it suffices to check that HomX×Y X+(p∗P,K) = 0, for any K ∈ K. It
immediately follows from applying Hom(−,K) to triangle (66). �
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Consider the composite functor

p̃∗ : Db(Af )
p̄∗|Db(Af )

−−−−−−→ D−(X ×Y X+)
Q−→ D−(X ×Y X+)/K,

where Q denotes the quotient functor and p∗ is as in Proposition 5.4. Recall that we assume
Y = SpecR to be affine and Noetherian. Endomorphism algebra AP of P is finite over R, hence
Noetherian. Thus, the category mod–AP of finitely generated right AP modules is abelian. As
P is a projective generator of Af , Db(Af ) is equivalent to Db(mod–AP ). Using this equivalence
and taking into account Proposition 5.3, we can define p̃∗, right adjoint to p̃∗, as

p̃∗ : Db(X ×Y X+)→ Db(mod–AP ), p̃∗ : E �→ RHomX×Y X+(p∗P, E). (75)

Finally, let P be the category of projective objects in Af of the form H−1
X (ι∗fM), forM∈P−1.

As there is no non-trivial extension of objects in P, it is an exact subcategory of Af . Moreover,
for any E ∈ Af , there existsM∈P−1 and ϕ : M→ E[1], surjective in −1Per(X/Y ). As functor
ιf∗ : Af [1]→ −1Per(X/Y ) is t-exact, its left adjoint ι∗f is right exact, i.e. morphism H−1

X (ι∗fM)→
H−1
X (ι∗fE[1]) � E is surjective in Af . This implies that

Db(Af ) � Hot−,b(P).

The last equivalence allows us to view p̃∗ as a functor

p̃∗ : Hot−,b(P)→ D−(X ×Y X+)/K. (76)

It is the term-wise extension of the functor p∗ : P → D−(X ×Y X+)/K.
Lemma 5.1 implies that the adjunction unit Id→ p̃∗p̃∗ is an isomorphism on P. By

Lemma 4.11 we have an isomorphism

IdDb(Af ) → p̃∗p̃∗ (77)

of functors Db(Af )→ Db(Af ).
The embedding Af → 0Per(X/Y ) is an exact functor of abelian categories. Hence, it induces

the functor

Ψ: D(Af )→ Dqc(X).

Lemma 5.10. There exists an isomorphism Rp∗p̃∗
�−→ Ψ|Db(Af ) of functors Hot−,b(P)→ Db(X).

Proof. Lemma 5.1 implies that the adjunction unit gives an isomorphism Ψ|P
�−→ p∗p∗|P of

functors P → Coh(X). As functor Ψ|Db(Af ) takes Hot−,b(P) to Db(X), Lemma 4.11 implies
that the term-wise extension of p∗p∗ to the category Hot−,b(P) is isomorphic to Ψ|Db(Af ).

Now let P· be a complex in Hot−,b(P) and F = p̃∗P·. Lemma 5.1 implies that the first layer
of spectral sequence

Eq,r1 = Rqp∗p∗Pr ⇒ Rq+rp∗F.

has one non-zero row only. Hence, Rp∗F is quasi-isomorphic to p∗p∗P·, which finishes the proof.
�

Proposition 5.11. There exists a fully faithful functor

p̃∗ : Db(Af )→ Db(X ×Y X+)/Kb.
Proof. Proposition 5.4 implies that p̃∗ : Db(Af )→ D−(X ×Y X+) is fully faithful. In order

to show that the composite Db(Af )
p̃∗−→ D−(X ×Y X+)

Q−→ D−(X ×Y X+)/K is fully faithful,
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we check that, for any E ∈ Db(Af ) and F ∈ D−(X ×Y X+), we have

HomX×Y X+(p̃∗E,F ) � HomD−(X×Y X+)/K(p̃∗E,F ).

By Lemma 5.7, it suffices to check that Hom(p̃∗E,K) = 0, for any E ∈ Db(Af ) and any K ∈ K.
By induction on triangles, Lemma 5.9 implies that, for any i ∈ Z, Hom(σ�ip̃∗E,K) = 0. As, for
any P ∈P, the space Hom(p∗P,K) vanishes, we have Extj((p̃∗E)i,K) = 0, for any i and j. It
then follows from Lemma E.2 that Hom(p̃∗E,K) = 0.

Thus, it suffices to show that functor p̃∗ takes Db(Af ) to the image of Db(X ×Y X+)/Kb in
D−(X ×Y X+)/K, see (71). Consider E ∈ Db(Af ). We shall show that p̃∗E is quasi-isomorphic
in D−(X ×Y X+)/K to a complex with bounded cohomology. To this end, we shall find N such
that τ<N p̃∗E is an object in K.

First, we note that Rp+∗ (p∗Pi) = 0, for any i ∈ Z (Corollary 2.12). Thus, the term-wise
definition of p̃∗ (76) implies that Rp+∗ (p̃∗E) = 0 and, as p+ has fibers of dimension bounded
by one, Rp+∗ Hi(p̃∗E) = 0, for any i ∈ Z (see Lemma 2.2).

By Lemma 5.10, we have Rp∗p̃∗E � Ψ(E) ∈ Db(X)�k, for some k ∈ Z. As p has fibers of
dimension bounded by one, it follows that Rp∗Hi(p̃∗E) = 0, for i < k − 1. Thus, τ<k−1p̃

∗E lies
in K. �
Lemma 5.12. LetM be a projective generator of −1Per(X/Y ) and put P = H−1

X (ι∗fM). Further,

let C ∈ D−(X ×Y X+) be such that Rp+∗ C = 0 and RHomX×Y X+(p∗P,C) = 0. Then Rp∗C = 0.

Proof. Applying RHomX×Y X+(−, C) to triangle (66) yields RHomX×Y X+(Lp∗M, C) �
RHomX(M, Rp∗C) = 0. As M is a compact generator of Dqc(X), cf. [VdB04, Lemma 3.2.2]
and the proof of Proposition 4.6, it follows that Rp∗C = 0. �
Proposition 5.13. Category Db(X ×Y X+)/Kb admits a SOD

Db(X ×Y X+)/Kb = 〈p̃∗Db(Af ), L̃p+∗Db(X+)〉.
Proof. As p̃∗ is defined term-wise, Corollary 2.12 implies that Rp+∗ ◦ p̃∗ = 0. In view of SOD (74)
and Proposition 5.11, it suffices to show that any E ∈ Db(X ×Y X+)/Kb such that Rp+∗ E = 0
is isomorphic to p̃∗F , for some F ∈ Db(Af ).

Consider triangle

p̃∗p̃∗(E)→ E → CE → p̃∗p̃∗(E)[1] (78)

in D−(X ×Y X+). As Rp+∗ E = 0 and Rp+∗ p̃∗(F ) = 0, for any F ∈ Db(Af ), by applying Rp+∗ to
triangle (78) we obtain Rp+∗ CE = 0. In view of isomorphism (77), by applying p̃∗ to triangle
(78), we obtain p̃∗CE = 0. By formula (75), RHom(p∗P, CE) = 0. By Lemma 5.12, Rp∗CE = 0,
i.e. CE ∈ K. Hence, p̃∗p̃∗E → E is an isomorphism in Db(X ×Y X+)/Kb. �

The following corollary gives a geometric description for the category Db(Af ).

Corollary 5.14. We have an equivalence of categories

Db(Af ) = {E ∈ Db(X ×Y X+) |Rp+
∗ (E) = 0}/Kb.

Proposition 5.13 implies the existence of p̃! : Db(X ×Y X+)/Kb → Db(Af ), left adjoint to p̃∗,
which is defined by the functorial exact triangle

L̃p+∗Rp+
∗ → Id→ p̃∗p̃! → L̃p+∗Rp+

∗ [1] (79)

associated to a SOD. By exchanging the role of X and X+ we also obtain p̃+
! : Db(X ×Y

X+)/Kb → Db(Af+).
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Lemma 5.15. The composite p̃!p̃
+∗p̃+

! p̃
∗ : Db(Af )→ Db(Af ) is isomorphic to IdDb(Af )[4].

Proof. First, we check that p̃+
! p̃

∗ restricts to a functor P →P+. By Lemma 5.10, Rp∗p̃∗ � Ψ.
Hence, for P ∈ Af projective, triangle (79), with p and p+ interchanged, applied to p∗P = p̃∗P
yields an exact triangle

L̃p∗P → p∗P → p̃+∗p̃+
! p̃

∗P → L̃p∗P [1].

By Lemma 4.15 object Lp∗P has two non-zero cohomology sheaves, p∗P and L1p∗P . It fol-
lows that p̃+∗p̃+

! p̃
∗P � L1p∗P [2]. Hence, in view of Lemma 5.10, Ψp̃+

! p̃
∗P � Rp+∗ p̃+∗p̃+

! p̃
∗P �

Rp+∗ L1p∗P [2]. As Rp+∗ Lp∗ restricts to an equivalence Af
�−→ Af+ [1], Corollary 4.23, object

Rp+∗ L1p∗P = P+ is projective in Af+ . Hence p̃+
! p

∗P [−2] = P+ is projective in Af+ .
As p̃+

! p̃
∗[−2] maps objects of P to objects of Af+ , it maps acyclic complexes in P to acyclic

complexes. Hence, the class P is adapted to p̃+
! p̃

∗[−2], i.e. the functor can be calculated term-
wise using the equivalence Db(Af ) � Hot−,b(P). The same is true for the functor p̃!p̃

+∗[−2] in
the opposite direction. Moreover, because p̃+

! p̃
∗[−2] maps complexes of objects of P to complexes

of objects of P+ also the composite p̃!p̃
+∗p̃+

! p̃
∗[−4] can be calculated term-wise. Therefore, it

suffices to check that p̃!p̃
+∗p̃+

! p̃
∗[−4]|P � IdP .

Precomposing triangle (79), with p and p+ interchanged, with p̃∗, composing with p̃! and
using the isomorphism p̃!p̃

∗ � Id, we arrive at an exact triangle

p̃!L̃p
∗Rp∗p∗P → P → p̃!p̃

+∗p̃+
! p̃

∗P → p̃!L̃p
∗Rp∗p∗P [1]. (80)

First, we calculate the image of p̃!L̃p
∗Rp∗p∗P � p̃!L̃p

∗ΨP � p̃!L̃p
∗P under Ψ = Rp∗p̃∗ using

triangle (79) composed with Rp∗ and applied to L̃p∗P :

Rp∗Lp+∗Rp+
∗ L̃p

∗P → Rp∗L̃p∗P → Ψp̃!L̃p
∗P → Rp∗Lp+∗Rp+

∗ L̃p
∗P [1].

By Lemma 5.1 we have Rp∗L̃p∗P � P . As Rg∗P = 0, triangle (65) implies that
Rp∗Lp+∗Rp+∗ L̃p∗P � P [2]. It follows that Ψp̃!L̃p

∗P has non-zero cohomology in degrees 0 and
−3 only, both isomorphic to P . The map p̃!L̃p

∗Rp∗p∗P → P in (80) is the composition of two
adjunction counits L̃p∗Rp∗ → Id and p̃!p̃

∗ → Id. The first when applied to p∗P is the truncation
at the zero cohomology, the second is an isomorphism. Hence, p̃!p̃

+∗p̃+
! p̃

∗P � P [4]. �
Proposition 5.16. Category Db(X ×Y X+)/Kb admits a SOD

Db(X ×Y X+)/Kb � 〈L̃p∗Db(X), p̃∗Db(Af )〉. (81)

Proof. Functor p̃∗(−) � RHomDb(X×Y X+)/Kb(p∗P,−) is right adjoint to the fully faithful functor
p̃∗ of Proposition 5.11.

First, we check that p̃∗L̃p∗(E) = 0, for any E ∈ Db(X). It follows from Lemma 5.9 that the
above statement is equivalent to

HomX×Y X+(p∗P, Lp∗E) = 0,

for any E ∈ Db(X).
By applying HomX×Y X+(−, Lp∗E) to triangle (66), we learn that HomX×Y X+(p∗P, Lp∗E)

is a cone of a morphism

θE : HomX×Y X+(Lp∗M, Lp∗E)→ HomX×Y X+(Lp+∗(f+∗f∗M), Lp∗E).

As Rp∗OX×Y X+ � OX , we have

HomX×Y X+(Lp∗M, Lp∗E) � HomX(M, E). (82)
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Moreover, in view of Proposition 4.10, we have

HomX×Y X+(Lp+∗f+∗f∗M, Lp∗E) � HomX+(F (M), F (E)). (83)

We check that under isomorphisms (82) and (83) morphism θE coincides with the morphism νE
induced by functor F :

νE : HomX(M, E)→ HomX+(F (M), F (E)).

By (67) and (68), morphism ϕ : Lp+∗f+∗f∗M→ Lp∗M in triangle (66) is the composite of the
isomorphism κ : Lp+∗f+∗f∗M �−→ p+∗f+∗f∗M �−→ p∗f∗f∗M with the (non-derived) pull-back p∗

of the f∗ � f∗ adjunction counit εM : f∗f∗M→M. We use isomorphism (82) to identify α ∈
HomX(M, E) with Lp∗(α) ∈ Hom(Lp∗(M), Lp∗(E)). Under isomorphism (83), the composition
Lp∗(α) ◦ ϕ reads as Rp+∗ Lp∗(α) ◦Rp+∗ (p∗(εM) ◦ κ) ◦ ηM, for the Lp+∗ � Rp+∗ adjunction unit

ηM : f+∗f∗M→ Rp+∗ Lp+∗f+∗f∗M. The composite f+∗f∗M
ηM−−→ Rp+∗ Lp+∗f+∗f∗M

Rp+∗ (κ)−−−−→
Rp+∗ p∗f∗f∗M

Rp+∗ (εM)−−−−−−→ Rp+∗ p∗M is the base change (49). It follows that Rp+∗ Lp∗(α) ◦
Rp+∗ (p∗(εM) ◦ κ) ◦ ηM is the image of F (α) = Rp+∗ Lp∗(α) ∈ Hom(F (M), F (E)) under the
isomorphism Hom(F (M), F (E)) � Hom(f+∗f∗M, F (E)) given by Proposition 4.10.

As the flop functor is an equivalence of categories (see Corollary 4.22), νE is an isomorphism,
i.e. HomX×Y X+(p∗P, Lp∗E) � Cone(θE) � 0.

In order to prove the SOD (81) it suffices to show that, for any E ∈ Db(X ×Y X+)/Kb such
that p̃∗(E) � 0, we have E � L̃p∗(E′), for some E′ ∈ Db(X).

Now let E ∈ Db(X ×Y X+)/Kb satisfy p̃∗E � 0. Consider an exact triangle

L̃p∗Rp∗E → E → C̃E → L̃p∗Rp∗E[1]. (84)

We have Rp∗C̃E = 0. Moreover, because p̃∗L̃p∗Rp∗E = 0, it follows that p̃∗CE = 0. Now, we
proceed as in the proof of Lemma 5.12 to show that Rp+∗ C̃E � 0.

Applying RHomX×Y X+(−, C̃E) to triangle (66) yields

RHomX×Y X+(Lp+∗(f+∗f∗M), C̃E) � RHomX+(f+∗f∗M, Rp+
∗ C̃E) = 0.

By Proposition 4.10, the sheaf f+∗f∗M is isomorphic to the flop F (M). As the flop functor F is
an equivalence (see Corollary 4.22), F (M) is a compact generator of Db(X+). Thus, vanishing
of RHomX+(F (M), Rp+∗ C̃E) implies that Rp+∗ C̃E � 0.

Hence, in triangle (84) sheaf C̃E is an object of Kb. Therefore, E � L̃p∗Rp∗E in Db(X ×Y
X+)/Kb. �
Theorem 5.17. Category Db(X ×Y X+)/Kb admits 4-periodical SODs

Db(X ×Y X+)/Kb = 〈p̃∗Db(Af ), L̃p+∗Db(X+)〉 = 〈L̃p+∗Db(X+), p̃+∗Db(Af+)〉

= 〈p̃+∗Db(Af+), L̃p∗Db(X)〉 = 〈L̃p∗Db(X), p̃∗Db(Af )〉.

In particular, (p̃∗Db(Af ), p̃+∗Db(Af+)) and (L̃p∗Db(X), L̃p∗Db(X+)) are spherical pairs.

Proof. Propositions 5.13 and 5.16 for X and X+ imply the 4-periodical SODs. Proposition B.3
claims that (p̃∗Db(Af ), p̃+∗Db(Af+)) and (L̃p∗Db(X), L̃p∗Db(X+)) are spherical pairs. �
Corollary 5.18. Functor Ψ: Db(Af )→ Db(X) is spherical. The unit and counit for the Ψ∗ �
Ψ adjunction fit into functorial exact triangles:

Ψ∗Ψ→ IdDb(Af ) → IdDb(Af )[4]→ Ψ∗Ψ[1], F+F → IdDb(X) → ΨΨ∗ → F+F [1]. (85)
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Proof. By Proposition B.3 and Theorem 5.17 (p̃∗Db(Af ), p̃+∗Db(Af+)) is a spherical pair. By
Proposition B.2 the corresponding spherical functor is Rp∗p̃∗. By Lemma 5.10 the latter is
isomorphic to Ψ.

By Proposition B.2 the cone of the counit Ψ∗Ψ→ IdDb(Af ) is isomorphic to p̃!p̃
+∗p̃+

! p̃
∗ and the

cone of the unit IdDb(X) → ΨΨ∗ is Rp∗L̃p+∗Rp+∗ L̃p∗ � Rp∗Lp+∗Rp+∗ Lp∗ = F+F . We conclude
by the isomorphism p̃!p̃

+∗p̃+
! p̃

∗ � IdDb(Af )[4], Lemma 5.15. �

6. Contraction algebra as the endomorphism algebra of a projective generator

In [DW16] Donovan and Wemyss considered a morphism f : X → Y between Gorenstein vari-
eties of dimension three that contracts a rational irreducible curve C to a point. If Y is a
spectrum of a complete local Noetherian ring, the category −1Per(X/Y ) has projective genera-
tor. In [DW16] a contraction algebra Acon is defined as the quotient of the endomorphism algebra
of the projective generator for −1Per(X/Y ) by morphisms which factor through OX . Algebra
Acon is shown to govern non-commutative deformations of OC(−1). If NX/C � OC ⊕OC(−2),
algebra Acon is commutative and was first considered in terms of deformation theory by Toda
in [Tod07].

We prove in our, more general, set-up that Acon is isomorphic to the endomorphism algebra
of a projective generator for Af .

Category 0Per(X/Y ) has a projective generator N and Q = H0
X(ι∗fN ) is a projective gen-

erator for Af , Lemma 3.5. Endomorphisms algebras AQ = EndX(Q) and AX = EndX(N ) are
Noetherian, and we have equivalences D(Mod–AQ) � D(Af ), D(Mod–AX) � Dqc(X).

Projective generator Q for Af is an object in 0Per(X/Y ). It follows that Q′ :=
RHomX(N ,Q) is an Aop

Q ⊗k AX module and, under the above equivalences, functor Ψ is
isomorphic to

Ψ � ΦQ′ : D(Mod–AQ)→ D(Mod–AX).

Proposition 3.19 yields a finite projective resolution ofQ in 0Per(X/Y ). Hence,Q′ is a perfect AX
DG module and by Proposition C.6 the right adjoint Ψ! exists and is isomorphic to a bimodule
functor.

Proposition 6.1. Let f satisfy assumption (a), let Mi be as in (17) and let Pi be as in (19).
Then ΨΨ!(Mi) � ΨPi[−2].

Proof. Considering the right adjoint to the functorial exact triangles of Corollary 5.18 yields an
exact triangle:

ΨΨ!(Mi)→Mi → (F+F )−1(Mi)→ ΨΨ!(Mi)[1]. (86)

Put Ki = (F+F )−1(Mi). As Rf∗F+F = Rf∗, we have Rg∗Ki � Rg∗Mi. Hence, by
Proposition 3.15, H0

X(Lg∗Rg∗Ki) = f∗f∗Mi, H−1
X (Lg∗Rg∗Ki) =Mi and the remaining coho-

mology sheaves vanish. Considering long exact sequence of cohomology sheaves of the exact
triangle obtained by applying functorial exact triangle (65) to Ki:

Ki[1]→ Lg∗Rg∗Ki →Mi → Ki[2],

we get that H0(Ki) �Mi and H1(Ki) � Pi (as Pi is the kernel of the surjective morphism
f∗f∗Mi →Mi). The long exact sequence of cohomology sheaves of (86) yields an isomorphism
ΨΨ!(Mi) � Pi[−2] � ΨPi[−2]. �
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Theorem 6.2. Let f satisfy assumption (c), letMi be as in (17) and let Pi be as in (19). The
endomorphism algebra

AP = HomAf

( n⊕
i=1

Pi,
n⊕
i=1

Pi
)

is isomorphic to the quotient of HomX(
⊕n

i=1Mi,
⊕n

i=1Mi) by the subspace of morphisms that
factor via direct sums of copies of the structure sheaf.

Proof. By Proposition 6.1 ΨΨ!(Mi) � ΨPi[−2]. As Ψ|Af
is fully faithful, we have Ψ!(Mi) �

Pi[−2]. Thus, functor Ψ! gives a homomorphism of algebras

ϕ : HomX(M,M)→ AP = HomDb(Af )(Ψ
!M,Ψ!M) � HomX(ΨΨ!M,M),

where M =
⊕

iMi. The triangle of functors right adjoint to the second triangle of (85) implies
that the morphism ϕ fits into an exact sequence

HomX((F+F )−1M,M)
ψ−→ HomX(M,M)

ϕ−→ HomX(ΨΨ!M,M)

→ HomX((F+F )−1M[−1],M).

By Corollary 4.22,

HomX(F−1F+−1(M)[−1],M) � Ext1X+(F+−1(M), F (M)).

Theorem 4.21 implies that F+−1(M) � N+ is a projective object in 0Per(X+/Y ). On the other
hand, F (M) � f+∗f∗M by Proposition 4.19. By Lemma 3.11, f+∗f∗M� f+∗f+∗ N+. Then,
Lemma 2.9 implies that R1f+∗ (f+∗f∗M) = 0, i.e. f+∗f∗M is an object in 0Per(X+/Y ) (see
Remark 2.3 and formula (8) therein). Thus,

HomX((F+F )−1M[−1],M) � Ext1X+(N+, f+∗f∗M) � Ext10Per(X/Y +)(N+, f+∗f∗M) = 0,

i.e. morphism ϕ is surjective.
Let us now describe the image of ψ. Triangle (64) with roles of X and X+ interchanged,

when applied to N+, gives an exact triangle

M[−2]→ (F+F )−1M→ Lg∗Rg∗M[−1]→M[−1],

in view of (F+F )−1M� F−1(N+), Rg+∗ N+ � Rg∗M, and F+(N+) �M. As Ext1X(M,M) =
0 = Ext2X(M,M), we have isomorphisms HomX(M, (F+F )−1M) � HomX(M, Lg∗Rg∗M[−1])
and HomX((F+F )−1M,M) � HomX(Lg∗Rg∗M[−1],M). Thus, a morphism M→M is
decomposed asM→ (F+F )−1M→M if an only if it is decomposed asM→ Lg∗Rg∗M[−1]→
M. By Lemma 3.14, object Lg∗Rg∗M is quasi-isomorphic to a complex {OSX → OSX}, for some
S ∈ Z+. Thus, ‘stupid’ truncation gives an exact triangle

OSX [−2]→ OSX → Lg∗Rg∗M[−1]→ OSX [−1].

As Ext1X(OSX ,M) = 0 = Ext2X(OSX ,M), we have HomX(M, Lg∗Rg∗M[−1]) � HomX(M,OSX)
and HomX(Lg∗Rg∗M[−1],M) � HomX(OSX ,M). Hence, a morphism M→M factors via
Lg∗Rg∗M[−1] if and only if it factors via OSX .

Therefore, the image of ψ is contained in the space of morphisms M→M that factor via
OSX . Conversely, for a projective generator P of Af ,

RHomDb(Af )(Ψ
!M,Ψ!OX) � RHomDb(Af )(P,Ψ!OX [2]) � RHomX(ΨP,OX [2])

� RHomX(ΨP, f !OY [2]) � RHomY (Rf∗ΨP,OY [2]) = 0,
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which implies that the space of morphismsM→M that factor via direct sums of copies of OX
is annihilated by Ψ!, i.e. it is contained in the kernel of ϕ. �
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Appendix A. Grothendieck duality and the twisted inverse image functor

Let f : X → Y be a proper morphism of Noetherian schemes. The direct image functor Rf∗,
considered as a functor Dqc(X)→ Dqc(Y ), admits the right adjoint denoted by f !. Functor f !

maps D+
qc(Y ) to D+

qc(X) and, for any E· ∈ Dqc(X) and F · ∈ D+
qc(Y ), the sheafified Grothendieck

duality

Rf∗RHomX(E·, f !(F ·)) = RHomY (Rf∗(E·), F ·), (A.1)

is satisfied, see [LH09, Corollary 4.2.2].
We construct a morphism α : Lf∗(−)⊗ f !(OY )→ f !(−). In view of adjunction

HomX(Lf∗(F ·)⊗ f !(OY ), f !(F ·)) � HomY (Rf∗(Lf∗(F ·)⊗ f !(OY )), F ·),

constructing αF · is equivalent to finding a morphism Rf∗(Lf∗(F ·)⊗ f !(OY ))→ F ·. By projec-
tion formula, we have

Rf∗(Lf∗(F ·)⊗ f !(OY )) = F · ⊗Rf∗f !(OY ).

Let ε : Rf∗f !(OY )→ OY be the counit of adjunction. Then morphism

idF · ⊗ ε : F · ⊗Rf∗f !(OY )→ F · ⊗OY � F ·

gives a morphism

αF · : Lf∗(F ·)⊗ f !(OY )→ f !(F ·). (A.2)

Lemma A.1. Let f : X → Y be a proper morphism. Then αF · is an isomorphism for F · ∈
Perf(Y ).

Proof. Morphism αOY
is clearly an isomorphism. By Deligne’s appendix to [Har66], functor f !

is defined locally on Y , hence α is also an isomorphism for any complex F · which is locally
quasi-isomorphic to a complex of locally free sheaves, i.e. for F · ∈ Perf(Y ). �

By [LH09, § 4.7], morphism Lf∗(F ·)⊗ f !(OY )→ f !(F ·) is an isomorphism for all F · in
Dqc(Y ) if and only if f is proper and of finite Tor dimension.
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Appendix B. Functorial exact triangles, spherical functors and pairs

Let C and D be triangulated categories. The category of exact functors C → D is not triangulated,
thus we cannot speak about exact triangles of functors. Instead, we work with a weaker notion
of a functorial exact triangle by which we mean a triple of exact functors C → D and natural
transformations between them

F1(−)→ F2(−)→ F3(−)→ F1(−)[1] (B.1)

such that when applied to any object C ∈ C they give an exact triangle in D. Note that (B.1) is
not an exact triangle in any triangulated category.

A basic example of a functorial exact triangle is given by an SOD

D = 〈A,B〉.

Denote by iA : A → D the embedding functor and by i∗A its left adjoint. Similarly, let iB : B → D
be the embedding and i!B its right adjoint. Then the i∗A � iA adjunction unit η and the i!B � iB
adjunction counit ε fit into a functorial exact triangle [Bon89]:

iBi!B
ε−→ IdD

η−→ iAi∗A → iBi!B[1]. (B.2)

Consider a general adjoint pair F � F ! of exact functors with F : C → D. If the adjunction
counit ε fits into a functorial exact triangle

FF ! ε−→ IdD → T → FF ![1]

we refer to T as a twist functor. If the adjunction unit η fits into a functorial exact triangle

C → IdC
η−→ F !F → C[1]

we refer to C as a cotwist functor.
Constructions and uniqueness of twist and cotwist functors are discussed in details in § C.4

in the framework of 2-categories. Let us briefly say that twist and cotwist are well-defined if F
is a functor D(A)→ D(B), for some DG algebras A and B, given by the tensor product with an
Aop ⊗B DG bimodule and both of his adjoints are of this form too. If F satisfies this condition,
we say that it is an A and B perfect bimodule functor. Indeed, in this case the bimodule defining
F is perfect as an A and B module, cf. Proposition C.6. Once the bimodule corresponding to F
is fixed, the twist T and the cotwist C are defined uniquely up to isomorphisms.

Consider an A and B perfect bimodule functor F : D(A)→ D(B). Here F is spherical [AL17]
if it admits both adjoints F ∗ � F � F ! and the twist T and the cotwist C are both equivalences.
If this is the case we refer to T as a spherical twist and to C as a spherical cotwist.

By [AL17], a functor F is spherical if and only if the dual twist T ′ and the dual cotwist C ′

are equivalences, where T ′ and C ′ are functors which fit into functorial exact triangles

F ∗F ε′−→ IdC → C ′ → F ∗F [1], T ′ → IdD
η′−→ FF ∗ → T ′[1],

for the F ∗ � F adjunction unit η′ and counit ε′.
Spherical functors can be constructed via spherical pairs. We recall the definition following

[KS14]. Let E be a triangulated category and E+, E− ⊂ E a pair of admissible subcategories
[Bon89]. Let i± : E± → E be the inclusions. They admit left i∗± and right i!± adjoint functors
E → E±. By j± : ⊥E± → E we denote the inclusions of the left orthogonal complements and by
j!± : E → ⊥E± their right adjoints. We assume that all these functors are induced by appropriate
DG functors.
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Definition B.1 [KS14, Definition 3.4]. The pair (E+, E−) of admissible subcategories is a
spherical pair if

(i) the composites i∗+i− : E− → E+, i∗−i+ : E+ → E− are equivalences;
(ii) the composites j!+j− : ⊥E− → ⊥E+, j!−j+ : ⊥E+ → ⊥E− are equivalences.

Proposition B.2 [KS14, Propositions 3.6, 3.7]. Let (E+, E−) ⊂ E be a spherical pair. Then
functor Ψ := j!−i+ : E+ → ⊥E− is spherical. The unit and the counit for the Ψ∗ � Ψ adjunction
fit into functorial exact triangles:

Ψ∗Ψ ε−→ IdE+ → i∗+i−i
∗
−i+ → Ψ∗Ψ[1], j!−j+j

!
+j− → Id⊥E−

η−→ ΨΨ∗ → j!−j+j
!
+j−[1]. (B.3)

The functorial exact triangles (B.3) are deduced from functorial exact triangles (B.2) for the
SODs related to (admissible subcategories) E+ and E−. Therefore, in the presence of spherical
pairs, one can define spherical functors purely in the realm of triangulated categories.

With the following proposition we describe spherical pairs associated to 4-periodical SODs

T = 〈A,B〉 = 〈B, C〉 = 〈C,D〉 = 〈D,A〉. (B.4)

Proposition B.3. Let T be a triangulated category with 4-periodical SODs (B.4). Then pairs
(A, C), (B,D) of subcategories of T are spherical.

Proof. We prove that (A, C) is a spherical pair. Let iA : A → T denote the inclusion functor and
i∗A its left adjoint, similarly for C ⊂ T . The composite i∗CiA : A → C is the right mutation over B,
hence it is an equivalence [BK89, Lemma 1.9]. Similarly, the right mutation i∗AiC over D is an
equivalence, (i), the first condition of Definition B.1 is satisfied.

Now let iB : B → T denote the inclusion functor and i!B : T → B its right adjoint, similarly
for D ⊂ T . The composites i!BiD, respectively i!DiB, are the left mutations over C, respectively
A, hence they are equivalences. It follows that (A, C) is a spherical pair in T . The proof for the
pair (B,D) is analogous. �
Remark B.4. In [HS16, Theorem 3.11], Halpern-Leistner and Shipman proved that any spherical
functor F : C → D is given by 4-periodical SODs.

Appendix C. Lifting to the bicategory Bimod

Let k be a field. For a k-linear DG category E , we denote by [E ] the homotopy category of E ,
i.e. the category with the same objects as in E and morphisms the zeroth cohomology of the DG
complexes of morphisms in E (see [BK90]). It is an ordinary k-linear category.

By a DG enhancement of a triangulated category C we mean a choice of a pre-triangulated
DG category E together with an equivalence C � [E ] which is compatible with the induced trian-
gulated structure on [E ] (see [BK90]). A choice of suitable DG enhancements for our categories
prompts a convenient replacement for the category of functors, as well as a lift of adjunction
(co)units to morphisms in this replacement. This allows us to get an interpretation for ‘cones’
of morphisms of functors that we need in the main body of the text.

For the sake of simplicity, we take as DG enhancements of our categories only suitable
categories of DG modules over DG algebras. The category of functors is replaced by the derived
category of bimodules, and natural transformations by morphisms in the latter category. As a
result we arrive at the bicategory Bimod whose objects are DG algebras and 1-morphisms are
objects of the derived categories of DG bimodules. There is (after a suitable choice of universe)
a bifunctor Φ : Bimod→ Cat to the 2-category of categories. We are interested in lifting of
adjoint pairs of functors in Cat along the functor Φ.
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In the general framework of 2-categories (or bicategories), we have the uniqueness of the
2-categorical adjunction for a given 1-morphism. In addition, we show that 2-adjunctions can
be transported over equivalences of objects in 2-categories, which implies an invariance of
2-categorical adjunctions in Bimod under the choice of DG enhancements.

By fixing a lift of a functor to a 1-morphism in Bimod, we get an essentially unique
2-categorical adjunction. This allows us to define a unique twist and cotwist of 2-categorical
adjunctions as 1-morphisms in Bimod, thus interpreting constructions of Anno and Logvinenko
[AL17]. In particular, we have the notion of spherical twists for spherical functors and, slightly
more generally, for spherical couples.

Further we show how the 2-adjunction theory can be applied to functors between derived
categories of (quasi-)coherent sheaves. Here another suitable 2-category is the category FM
whose objects are schemes and 1-morphisms are objects of the derived category of the product
of two schemes. By the results of Lunts and Schnürer [LS16] the 2-categorical adjunctions, twists
and cotwists are readily transferred to this context. We discuss uniqueness of the functorial exact
triangles associated to an FM functor and its adjoints. We also construct a 2-categorical lift to
Bimod of the base-change morphism.

Finally, we provide a criterion for isomorphism of functors in terms of the restriction to one
(generating) object.

C.1 Abstract 2-categorical adjunctions and spherical couples
Let C be a (strict) 2-category. A quadruple (s, r, η, ε) of 1-morphisms s ∈ HomC(A,B),
r ∈ HomC(B,A) and 2-morphisms η : IdA → rs, ε : sr → IdB is a 2-categorical (A,B)-
adjunction if

s
sη−→ srs

εs−→ s, r
ηr−→ rsr

rε−→ r (C.1)

are equal to the identity morphisms of s and r, respectively. In this case, r is said to be a right
2-categorical adjoint of s, s a left 2-categorical adjoint of r and η and ε the unit and counit
of the adjunction. We write s � r if there exist η and ε such that (s, r, η, ε) is a 2-categorical
adjunction. The choice of such η and ε is not unique.

The proof of the following fact is standard.

Lemma C.1 (Cf. [Bén65, TV15]). Let s be a 1-morphism. If s has a right 2-categorical adjoint,
then the 2-categorical adjunction (s, r, η, ε) is unique up to a canonical 2-isomorphism. More

precisely, for any other adjunction (s, r′, η′, ε′), the composite α : r
η′r−−→ r′sr rε−→ r′ is a unique

2-isomorphism commuting with the units and counits. Conversely, any 2-isomorphism α : r → r′

yields a 2-categorical adjunction (s, r′, αs ◦ η, ε ◦ sα−1).

An (A,B)-equivalence in C is a quadruple (f, g, ν, μ) of 1-morphisms f ∈ HomC(A,B), g ∈
HomC(B,A) and 2-isomorphisms ν : IdA

�−→ gf , μ : fg �−→ IdB. It is an adjoint (A,B)-equivalence
if (f, g, ν, μ) is, in addition, a 2-categorical (A,B)-adjunction.

Let C1 and C2 be 2-categories. A pseudo-functor θ : C1 → C2 consists of a map θ : Ob(C1)→
Ob(C2), functors θC,C′ : HomC1(C,C ′)→ HomC2(θ(C), θ(C ′)), for any pair (C,C ′) of objects of
C1, and 2-isomorphisms u : θ(IdC)→ Idθ(C), for any object C ∈ C1, and a : θ(g ◦ f)→ θ(g) ◦ θ(f),
for any pair (f, g) of composable 1-morphisms in C1. These need to satisfy coherence conditions:
for any triple (h, g, f) of composable 1-morphisms in C1, the two possible 2-morphisms θ(h ◦ g ◦
f)→ θ(h) ◦ θ(g) ◦ θ(f) induced by a are equal, and so are the 2-morphisms θ(f)→ θ(f) ◦ θ(Id),
θ(g)→ θ(Id) ◦ θ(g) induced by a and u−1.
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We say that a pseudo-functor θ : C1 → C2 is a pseudo-equivalence if θC1,C2 is an equivalence for
all (C1, C2) ∈ C1.

Let α : e→ f , α′ : e′ → f ′ be 2-morphisms in a 2-category C. We say that α and α′ are
isomorphic, and depict it by α � α′, if there exist isomorphisms τe : e �−→ e′, τf : f �−→ f ′ such
that τf ◦ α = α′ ◦ τe.

Lemma C.2. Let θ : C1 → C2 be a pseudo-functor and (s, r, η, ε) a 2-categorical (A,B)-
adjunction in C1. Then θ(s) fits into a 2-categorical (θ(A), θ(B))-adjunction (θ(s), θ(r), η′, ε′)
such that θA,A(η) � η′, θB,B(ε) � ε′.
Proof. A standard diagram chasing shows that for η′ and ε′ defined as the composites

η′ : Idθ(A)
u−1

−−→ θ(IdA)
θ(η)−−→ θ(rs) a−→ θ(r)θ(s),

ε′ : θ(s)θ(r) a−1

−−→ θ(sr)
θ(ε)−−→ θ(IdB) u−→ Idθ(B)

equalities (C.1) hold, i.e. (θ(s), θ(r), η′, ε′) is a 2-categorical (θ(A), θ(B))-adjunction.
By definition of η′ and ε′, diagrams

Idθ(A)

η′
�� θ(r)θ(s)

θ(IdA)

u �
		

θA,A(η)
�� θ(rs)

a�
		

θ(s)θ(r)
ε′ �� Idθ(B)

θ(sr)

a �
		

θB,B(ε)
�� θ(IdB)

u�
		

commute, which proves isomorphisms θA,A(η) � η′ and θB,B(ε) � ε′. �
Proposition C.3. Let C be a 2-category, (fA, gA, νA, μA) an (A,A′)-equivalence and
(fB, gB, νB, μB) a (B,B′)-equivalence in C. Denote by CA,B, respectively CA′,B′ , the full
2-subcategories of C with two objects A and B, respectively A′ and B′. The four functors

θS,T (−) := fT ◦ (−) ◦ gS : HomC(S, T )→ HomC(S′, T ′),

defined for pairs (S, T ) ∈ {(A,A), (A,B), (B,A), (B,B)} of objects of CA,B and the corresponding
pair (S′, T ′) of objects of CA′,B′ , can be extended to a pseudo-equivalence θ : CA,B → CA′,B′ .

Proof. By changing the 2-isomorphism νA, μA, νB, and μB if necessary, one can assume that
(fA, gA, νA, μA) and (fB, gB, νB, μB) are adjoint equivalences [Mac71].

Functor θS,T is an equivalence with quasi-inverse gT ◦ (−) ◦ fS . We need to define morphisms
u and a from the definition of pseudo-functors. The 2-isomorphisms u are defined as μA and μB:

θA,A(IdA) = fA ◦ gA
μA−−→ IdA′ , θB,B(IdB) = fB ◦ gB

μB−−→ IdB′ .

For a pair (f, g) of 1-morphisms such that B is the target of f and the source of g, the
2-isomorphism a:

fTg ◦ g ◦ f ◦ gSf

fTg◦g◦νB◦f◦gSf−−−−−−−−−−→ fTg ◦ g ◦ fB ◦ gB ◦ f ◦ gSf
,

where Sf , Tg ∈ {A,B} are the source of f and the target of g, respectively. Similarly, we use νA
if A is the target of f and the source of g.

Equalities (C.1) for 2-adjunctions (fA, gA, νA, μA) and (fB, gB, νB, μB) imply that u and a
defined in this way satisfy the required coherence conditions. �
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We say that a 2-category C is 1-triangulated if, for any pair (B,C) of objects of C, the
category HomC(B,C) is triangulated and, for any ϕA ∈ HomC(A,B), ϕD ∈ HomC(C,D), functors
(−) ◦ ϕA : HomC(B,C)→ HomC(A,C), ϕD ◦ (−) : HomC(B,C)→ HomC(B,D) are exact.

A 2-categorical (A,B)-adjunction (s, r, η, ε) in a 1-triangulated 2-category C induces
1-endomorphisms cs, ts defined via exact triangles:

cs → IdA
η−→ rs→ cs[1], sr

ε−→ IdB → ts → sr[1]. (C.2)

We say that ts is the twist and cs the cotwist for the 2-categorical adjunction (s, r, η, ε).

Proposition C.4. Let (s, r, η, ε) be a 2-categorical (A,B) adjunction in a 1-triangulated
2-category C. Consider a pair of (A,A′)- and (B,B′)-equivalences and the induced pseudo-
equivalence θ : CA,B → CA′,B′ . Then the twist tθ(s) is isomorphic to θ(ts) and the cotwist cθ(s)
is isomorphic to θ(cs).

Proof. By Proposition C.3 (A,A′)- and (B,B′)-equivalences induce a pseudo-equivalence
θ : CA,B → CA′,B′ Lemma C.2 implies that (θ(s), θ(r), η′, ε′) is an (A′, B′)-adjunction and θ(η) �
η′, θ(ε) � ε′. The isomorphism of cones follows. �

We say that a 2-categorical (A,B)-adjunction (s, r, η, ε) is a spherical couple if the twist ts,
and respectively the cotwist cs, defined in (C.2), is a (B,B)-, respectively (A,A)-equivalence.

Under the above assumption, octahedron

scs[1] �� 0 �� tss

0 ��

		

s
� ��

		

s

		

scs ��

		

s ��

�
		

srs

		

implies an isomorphism

tss � scs[2]. (C.3)

A 1-morphism s : A→ B is said to be spherical [AL17] if it has the 2-categorical left and
right adjoints and (s, r, η, ε) is a spherical couple. It is convenient to think of twist and cotwist
as being assigned to a spherical couple, because their definition needs only one adjoint, not two
as in the definition of the spherical functor.

C.2 The bicategory Bimod
Let k be a field. We fix a universe U and consider the bicategory Bimod whose objects are
unital DG k-algebras, 1-morphisms A→ B are objects in the derived category DU (Aop ⊗k B) of
Aop ⊗k B DG U-modules and 2-morphisms are morphisms in DU (Aop ⊗k B). Often, we drop
the universe U from the notation. The derived tensor product of bimodules M ⊗LB N , for
M ∈ D(Aop ⊗k B) and N ∈ D(Bop ⊗k C), defines the composition of 1-morphisms in Bimod.
The derived tensor product is unique up to a canonical isomorphism, i.e. a pair of bimod-
ule isomorphisms M �−→M ′, N �−→ N ′ in the derived categories induces a unique isomorphism
M ⊗LB N

�−→M ′ ⊗LB N ′. Various choices involved in the definition of the derived tensor product
are controlled by these isomorphisms. In particular, they allow to construct the associators and
unitors in the bicategory Bimod. We write formulas as if the composition of 1-morphisms in
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Bimod was strictly associative and the identity morphisms were strict. If necessary, all mor-
phisms of associativity and unitors can readily find their places in formulas. Equally, one can
refer to the fact that every bicategory is biequivalent to a 2-category [MP85].

The tensor product is an exact functor, hence the 2-category Bimod is 1-triangulated.
Let V be a universe such that DU (Aop ⊗k B) is an essentially V-small category, for any pair

A, B of unital DG k-algebras, cf. [Mac71]. Let further CatV denote the 2-category of V-small
categories, functors and natural transformations. Consider the 2-functor

Φ: Bimod→ CatV , Φ(A) = D(A). (C.4)

For M ∈ D(Aop ⊗k B), ΦM : D(A)→ D(B) is the functor

ΦM (−) = (−)⊗LAM.

Finally, morphism α : M →M ′ induces a natural transformation Φα : ΦM → ΦM ′ .
In particular, as Φ is a 2-functor, the tensor product of bimodules corresponds to the

composition of tensor functors:
ΦM1 ◦ ΦM2 � ΦM2⊗LM1

.

We note that the 2-functor Φ is, in general, neither full nor faithful.
Note that by [Toë07, Corollary 7.6], any DG enhanceable (i.e. admitting a lift to a functor of

suitable DG enhancements) commuting with direct sums functor D(A)→ D(B) is of the form
ΦM , for some bimodule M . We refer to functors of the form ΦM as bimodule functors.

An exact triangle of bimodules in the category D(Aop ⊗B):

M1 →M2 →M3 →M1[1]

induces via the functor Φ a functorial exact triangle

ΦM1(−)→ ΦM2(−)→ ΦM3(−)→ ΦM1(−)[1]. (C.5)

Lemma C.5. Functor Φ is conservative on the categories of 1-morphisms in Bimod.

Proof. Let A and B be unital DG algebras and f : M1 →M2 a morphism in D(Aop ⊗B) such

that Φf : ΦM1 → ΦM2 is an isomorphism. Morphism f fits into an exact triangle M1
f−→M2 →

M3 →M1[1]. For any E ∈ D(A), complex ΦM1(E)
Φf−−→ ΦM2(E)→ ΦM3(E)→ ΦM1(E)[1] is an

exact triangle. As Φf is an isomorphism, ΦM3(E) � 0. In particular, M3 � ΦM3(A) � 0, which
implies that f is an isomorphism. �

C.3 The bicategory FM
Let k be a field. Consider the bicategory FM whose objects are quasi-compact, quasi-separated
k-schemes. The category of morphisms X → Y is the derived category HomFM(X,Y ) = Dqc(X ×
Y ) of U-quasi-coherent sheaves on X × Y and the composition is given by the convolution: for
schemes X, Y , Z, K ∈ Dqc(X × Y ) and L ∈ Dqc(Y × Z) their composition is

L ∗K := πXZ∗(π∗Y ZL⊗ π∗XYK),

where πXY : X × Y × Z → X × Y , πY Z : X × Y × Z → Y × Z, πXZ : X × Y × Z → X × Z are
the projections.

The identity in FM is given by the structure sheaf of the diagonal Δ ⊂ X ×X. For K in
Dqc(X × Y ), the unitor is given by the flat base change and projection formula isomorphisms:

π13∗(π∗23K ⊗ π∗12OΔ) = π13∗(π∗23K ⊗ π∗12Δ∗OX) �−→ π13∗(π∗23K ⊗ (Δ× IdY )∗π∗1OX)
�−→ π13∗(Δ× IdY )∗((Δ× IdY )∗π∗23K ⊗ π∗1OX) � IdX∗(Id∗

X K)⊗OX×Y ) � K,
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where π12, π13 and π23 are projections from X ×X × Y to the corresponding factors, similarly,
π1 and π2 are projections from X ×X. We denote by Δ: X → X ×X the diagonal embedding
and by Δ× IdY : X × Y → X ×X × Y the map induced by Δ and the identity on Y . The
second unitor is defined analogously.

The associator in FM is defined analogously, using the projection formula and the flat base
change isomorphism for the projections from W ×X × Y × Z to the triple and double products.

Similarly to Bimod, we consider FM as a 1-triangulated bicategory.
Consider the bifunctor

Ξ: FM→ CatV , Ξ(X) = Dqc(X)

which assigns to a 1-morphism K ∈ Dqc(X × Y ) the Fourier–Mukai functor with kernel K:

ΞK(−) = RpY ∗(Lp
∗
X(−)⊗K),

where pX : X × Y → X, pY : X × Y → Y are the projections. A 2-morphism α : K → K ′ induces
a natural transformation Ξα : ΞK → ΞK′ .

The isomorphism IdDqc(X) → Ξ(OΔ) is induced by the projection formula

(−) = OX ⊗ (−) = IdX∗(OX ⊗ Id∗
X(−)) � π2∗Δ∗(OX ⊗Δ∗π∗1(−)) �−→ π2∗(Δ∗OX ⊗ π∗1(−)),

where π1, π2 : X ×X → X are the projections to the corresponding factors.
For K ∈ Dqc(X × Y ), L ∈ Dqc(Y × Z), the composition coherence isomorphism Ξ(L)⊗

Ξ(K) �−→ Ξ(L ∗K) is again given by the flat base change and projection formula:

Ξ(L) ◦ Ξ(K)(−) = qZ∗(L⊗ q∗Y rY ∗(K ⊗ r∗X(−))) �−→ qZ∗(L⊗ πY Z∗π∗XY (K ⊗ r∗X(−)))
�−→ qZ∗πY Z∗(π∗Y ZL⊗ π∗XYK ⊗ π∗XY r∗X(−)) = pZ∗πXZ∗(π∗Y ZL⊗ π∗XYK ⊗ π∗XZp∗X(−))
�−→ pZ∗(πXZ∗(π∗Y ZL⊗ π∗XYK)⊗ p∗X(−)) = Ξ(L ∗K)(−),

where πXY , πXZ and πY Z are the projections from X × Y × Z to the corresponding products
X × Y , X × Z and Y × Z. We denote by rX , rY the projections from X × Y , by pX , pZ the
projections from X × Z and by qY , qZ the projections from Y × Z.

An exact triangle in the category Dqc(X × Y )

E1 → E2 → E3 → E1[1]

induces via the functor Ξ a functorial exact triangle of FM functors:

ΞE1 → ΞE2 → ΞE3 → ΞE1 [1]. (C.6)

C.4 2-adjunctions, spherical couples and spherical 1-morphisms in Bimod
Any 2-functor preserves 2-adjunctions, in particular the 2-functor Φ maps a 2-categorical adjunc-
tion (M,R, η, ε) in Bimod to a pair of adjoint functors ΦM � ΦR between the corresponding
derived categories.

Let A and B be unital DG algebras. We discuss when a pair of adjoint functors between
D(A) and D(B) can be lifted to a 2-categorical adjunction in Bimod. For M ∈ (Aop ⊗k B),
define its A and B duals MA,MB ∈ D(Bop ⊗k A) (see [AL21]):

MA := RHomA(M,A), MB := RHomB(M,B).

We have several (derived) evaluation and action morphisms [AL21]:

εR : MB ⊗LAM → B, εL : M ⊗LB MA → A,

ηR : A→M ⊗LB MB, ηL : B →MA ⊗LAM.
(C.7)
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Note that ηR is defined if M is B-perfect, i.e. if its image in D(B) lies in the full subcategory of
compact objects. Respectively, ηL is defined if M is A-perfect.

The following proposition allows us to lift suitable pairs of adjoint functors between
triangulated categories to 2-categorical adjunctions in Bimod.

Proposition C.6. Let M be in D(Aop ⊗k B).

(i) ThenM is A-perfect if and only if the left adjoint Φ∗
M to ΦM exists. Under these assumptions

functor Φ∗
M is isomorphic to ΦMA and the evaluation and action maps yield a 2-categorical

adjunction (MA,M, ηL, εL) in the bicategory Bimod.
(ii) Then M is B-perfect if and only if ΦM maps compact objects to compact ones if and only

if the right adjoint Φ!
M is isomorphic to ΦMB . Under these assumptions the evaluation and

action maps yield a 2-categorical adjunction (M,MB, ηR, εR).

Proof. This is basically the statement of [AL21, Propositions 4.2 and 4.7]. In [AL21] object
M is lifted to M in a suitable (weak, in the sense of Drinfeld [Dri04]) DG enhancement for
D(Aop ⊗k B). The A and B duals of M are defined, which lift MA and MB. Also, the evaluation
and action maps are constructed on the DG level. With [AL21, Proposition 4.7] the authors check
that the composites in (C.1) are identities of objects in the derived categories of bimodules. �

Consider B-perfect M ∈ D(Aop ⊗k B). The 2-categorical adjunction (M,MB, ηR, εR) in
Bimod (Proposition C.6(ii)) allows us to consider the twist TB and the cotwist CA, defined
with triangles (C.2). Lemma C.1 implies that TB and CA are unique up to isomorphisms. Apply-
ing functor Φ as in (C.4) we obtain endo-functors ΩA,M and ΘB,M of D(A), respectively D(B).
They fit into functorial exact triangles:

ΩA,M → IdD(A)
ηR−→ Φ!

MΦM → ΩA,M [1],

ΦMΦ!
M

εR−→ IdD(B) → ΘB,M → ΦΦ![1].

Uniqueness of TA and CB implies that ΩA,M = ΦCA
and ΘB,M = ΦTB

are defined uniquely by
M up to a (non-unique) functorial isomorphism. Note that we do not claim that the cotwist
functor ΩA,M and twist functor ΘB,M are uniquely defined by the functor ΦM .

Assume now that M is A-perfect. According to Proposition C.6(i), we can consider the twist
TA and the cotwist CB for the 2-categorical adjunction (MA,M, ηL, εL). By applying functor
Φ as in (C.4), we obtain endo-functors ΩB,M = ΦCB

and ΘA,M = ΦTA
. Those fit into functorial

exact triangles:

ΩB,M → IdD(B)
ηL−→ ΦMΦ∗

M → ΩB,M [1],

Φ∗
MΦM

εL−→ IdD(A) → ΘA,M → Φ∗
MΦM [1].

We say that ΦM is a spherical functor if M is a spherical 1-morphism in Bimod.

Theorem C.7 [AL17, 5.1 and 5.2]. Let M be an A and B-perfect bimodule. Functor ΦM is
spherical if any two of the following hold:

(S1) ΘB,M is an equivalence;
(S2) ΩA,M is an equivalence;
(S3) composite Φ∗

MΘB,M [−1]→ Φ∗
MΦMΦ!

M → Φ!
M is an isomorphism of functors;

(S4) composite Φ!
M → Φ!

MΦMΦ∗
M → ΩA,MΦ∗

M [1] is an isomorphism of functors.

Then also ΩB,M and ΘA,M are also equivalences of categories, quasi-inverse to ΘB,M and ΩA,M ,
respectively.
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C.5 Lifting push-forwards, pull-backs and the base change to Bimod
We fix a DG enhancement [BK90] for the category Dqc(X), for example, by h-injective complexes
[Spa88, KS06]. Let P ∈ Dqc(X) be a compact generator (see [BVdB03]) and A the DG endomor-
phism algebra of its lift to the DG enhancement. Then D(A) � Dqc(X) by [Kel94], which paves
the way to performing the necessary constructions in the category Bimod. With Proposition C.9
we check that the constructed functorial exact triangles are independent of the choice of P .

Assume that X and Y are Noetherian separated schemes such that any perfect complex
on both X and Y is isomorphic to a bounded complex of locally free sheaves. Choose compact
generators in Dqc(X) and in Dqc(Y ) and fix lifts of the generators to DG enhancements of both
categories. Denote by AX and AY their DG endomorphism algebras.

By [LS16] there exists a choice of equivalences ΥX : Dqc(X)→ D(AX), ΥY : Dqc(Y )→
D(AY ) and ΥX,Y : Dqc(X × Y ) � D(Aop

X ⊗AY ) which map FM functors Dqc(X)→ Dqc(Y ) to
bimodule functors D(AX)→ D(AY ). More precisely, for any E ∈ Dqc(X × Y ) the diagram

D(AX)
ΦΥX,Y (E)

�� D(AY )

Dqc(X)

ΥX �
		

ΞE �� Dqc(Y )

ΥY �
		

(C.8)

commutes up to a functorial isomorphism.
Commutativity of (C.8) implies that having fixed compact generators forDqc(X) and Dqc(Y ),

we can view FM functors Dqc(X)→ Dqc(Y ) as bimodule functors and vice versa.
Fix compact generators for Dqc(X) and Dqc(Y ) and consider E ∈ Dqc(X × Y ). In view of

(C.8), for

M = ΥX,Y (E),

functors ΥY ΞE and ΦMΥX are isomorphic.

Lemma C.8. If ΞE has left adjoint Ξ∗
E , then Ξ∗

E � ΞΥ−1
Y,X(MAX ) is an FM functor. If ΞE maps

compact objects to compact objects, then the right adjoint exists and it is an FM functor,
Ξ!
E � ΞΥ−1

Y,X(MAY ).

Proof. If Ξ∗
E exists then ΥXΞ∗

EΥ−1
Y is left adjoint to ΦM . Proposition C.6(i) implies that

ΥXΞ∗
EΥ−1

Y � ΦMAX . Commutativity of (C.8) implies Ξ∗
E � ΞΥ−1

Y,X(MAX ).

If ΞE maps compact objects to compact objects then so does ΦM � ΥY ΞEΥ−1
X . By

Proposition C.6(ii), Φ!
M � ΦMAY . Moreover, Υ−1

X ΦMAY ΥY is right adjoint to ΞE , i.e. Ξ!
E �

Υ−1
X ΦMAY ΥY . As above we conclude that Ξ!

E � ΞΥ−1
Y,X(MAY ). �

The 2-categorical adjunctions (MAX ,M, ηL, εL), (M,MAY , ηR, εR) in Bimod define the twist
and the cotwist by triangles (C.2). In view of the isomorphism ΞE � ΦM and the uniqueness of
adjoint functors (see Lemma C.1), the functorial exact triangles read

Ξ∗
EΞE → IdDqc(X) → ΘX,E → Ξ∗

EΞE [1],

ΩY,E → IdDqc(Y ) → ΞEΞ∗
E → ΩY,E [1],

ΞEΞ!
E → IdDqc(Y ) → ΘY,E → ΞEΞ!

E [1],

ΩX,E → IdDqc(X) → Ξ!
EΞE → ΩX,E [1].

(C.9)
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Note that we construct the triangles via the category Bimod. We do not check that (C.9) are
induced by morphisms between the convolutions of E with FM kernels of the adjoint functors
and the structure sheaf of the diagonal.

Proposition C.9. Consider E ∈ Dqc(X × Y ). Then, up to an isomorphism, the functorial exact
triangles of FM functors (C.9) do not depend on the choice of compact generators for Dqc(X)
and Dqc(Y ).

Proof. Another choice of generators for Dqc(X) and Dqc(Y ) gives equivalences ΥB
X : Dqc(X) �−→

D(BX), ΥB
Y : Dqc(Y ) �−→ D(BY ), for some DG algebras BX , BY . The composite ΥB

X ◦Υ−1
X ,

respectively ΥB
Y ◦Υ−1

Y , is DG enhanceable and commutes with direct sums, hence it
admits a lift to a bimodule functor, cf. [Toë07]. Functor ΥB

X ◦Υ−1
X , respectively ΥB

Y ◦Υ−1
Y ,

together with its quasi-inverse yields (AX , BX)-equivalence, respectively (AY , BY )-equivalence,
in Bimod. By Proposition C.4, the induced pseudo-equivalence θ : BimodAX ,AY

→BimodBX ,BY

preserves the twist and the cotwist of the adjunction. The image of θ under functor Φ yields the
required isomorphism of functorial triangles induced by Υ and ΥB. �

Let f : X → Y be a proper morphism. The FM kernel of the functor Rf∗ : Dqc(X)→ Dqc(Y )
is the structure sheaf of the graph of f . As functor Lf∗, left adjoint to Rf∗, exists, the functorial
exact triangles of endo-functors of Dqc(X) and Dqc(Y ) are

Lf∗Rf∗ → IdDqc(X) → ΘX,f → Lf∗Rf∗[1],

ΩY,f → IdDqc(Y ) → Rf∗Lf∗ → ΩY,f [1].

Assume further that f is of finite Tor dimension. Then Rf∗ : Dqc(X)→ Dqc(Y ) maps compact
objects to compact objects and we have functorial exact triangles:

Rf∗f ! → IdDqc(Y ) → ΘY,f → Rf∗f ![1],

ΩX,f → IdDqc(X) → f !Rf∗ → ΩX,f [1].

Without the assumption on the Tor-dimension of f the pair Rf∗ � f ! admits a lift to DG functors
of the categories of ind-coherent sheaves [GR17].

In the following we discuss compatibility of liftings of push-forward functors to Bimod with
the composition of 1-morphisms.

Let X be a quasi-compact quasi-separated scheme over a field k. Let C (X) denote the
category of complexes of sheaves of OX -modules with quasi-coherent cohomology and I (X)
its full subcategory of h-injective objects. The category I (X) is a DG enhancement for
Dqc(X). By [Sch18, Corollary 2.3] there exists a DG functor ιX : C (X)→ I (X) together with a
natural transformation αX : IdC (X) → ιX whose evaluation at every object of C (X) is a quasi-
isomorphism. In fact, functor ιX is defined in [Sch18] on the bigger category of complexes of
OX -modules, here we denote by the same letter its restriction to C (X).

Let f : X → Y be a morphism of quasi-compact quasi-separated schemes. The composite

f̃∗ : I (X)
f∗−→ C (Y ) ιY−→ I (Y )

defines a DG functor such that the induced functor on homotopy categories is isomorphic to
Rf∗. For g : Y → Z, the natural transformation αY : IdC (Y ) → ιY yields a morphism

β : g̃f∗ = ιZg∗f∗ → ιZg∗ιY f∗ = g̃∗f̃∗ (C.10)

which induces an isomorphism of the induced functors of homotopy categories.
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Let EX ∈ I (X) be an object whose image in the homotopy category is a compact generator.
Denote by AX its DG endomorphism algebra. Then

HomI (X)(EX ,−) : I (X)→ DGModU -AX

induces an equivalence

ζX : Dqc(X) �−→ D(AX).

Analogously, a lift to I (Y ) of a compact generator for Dqc(Y ) to I (Y ) yields an equivalence
ζY : Dqc(Y )→ D(AY ). Consider an Aop

X ⊗AY -bimodule:

Mf := HomI (Y )(EY , f̃∗EX). (C.11)

Then

ΦMf
◦ ζX � ζY ◦Rf∗. (C.12)

Proposition C.10. Consider morphisms X
f−→ Y

g−→ Z of quasi-compact separated schemes and
denote by AZ the DG endomorphism algebra of a lift EZ of a compact generator for Dqc(Z) to
I (Z). Then there exists a canonical isomorphism in D(Aop

X ⊗AZ):

Mf ⊗LAY
Mg →Mgf (C.13)

Proof. Morphism β (C.10) applied to EX is a quasi-isomorphism of h-injective complexes, hence
it has a homotopy inverse. It follows that morphism of DG bimodules

δ : Mgf = HomI (Z)(EZ , g̃f∗EX)
β◦(−)−−−−→ HomI (Z)(EZ , g̃∗f̃∗EX) =: Ngf

has a homotopy inverse, i.e. the induced morphism δ in D(Aop
X ⊗AZ) is an isomorphism. In

particular, for equivalence ζZ : Dqc(Z)→ D(AZ) induced by EZ , formula (C.12) with f replaced
by gf , ζY by ζZ , and Mf by Mgf implies ζZ ◦R(gf)∗ � ΦNgf

◦ ζX .
Functor g̃∗ together with the composition of morphisms in I (Z) defines a morphism of

bimodules

γ : Mf ⊗AY
Mg = HomI (Y )(EY , f̃∗EX)⊗AY

HomI (Z)(EZ , g̃∗EY )

→ HomI (Z)(EZ , g̃∗f̃∗EX) =: Ngf .

Let γ be the induced morphism in D(Aop
X ⊗AZ).

Formula (C.12) and its analogue for g : Y → Z yields isomorphisms ζZ ◦ (Rg∗ ◦Rf∗) �
ΦMg ◦ ζY ◦Rf∗ � ΦMg ◦ ΦMf

◦ ζX � ΦMf⊗L
AY

Mg
◦ ζX . Therefore, ΦNgf

and ΦMf⊗L
AY

Mg
corre-

spond via ζX and ζZ to R(gf)∗ and Rg∗ ◦Rf∗. As these functors are isomorphic, we conclude
that applying Φ to γ yields an isomorphism of functors. As, by Lemma C.5, Φ is conservative, γ
is an isomorphism. Then δ

−1 ◦ γ is the sought isomorphism (C.13). �
Note that as functor ΦMf

: D(AX)→ D(AY ) has left adjoint, Proposition C.6(ii) implies a
2-categorical adjunction (MAX

f ,Mf , ηL, εL) in the category Bimod.
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Consider the following commutative diagram of morphisms of quasi-compact quasi-separated
schemes.

Z
p

����
��

��
� q

���
��

��
��

�

X
f

���
��

��
��

W
g

����
��

��
��

Y

(C.14)

We search for a 1-morphism in Bimod whose image under the functor Φ as in (C.4) is the base
change Lg∗Rf∗ → Rq∗Lp∗.

Choose EX ∈ I (X), EY ∈ I (Y ), EZ ∈ I (Z) and EW ∈ I (W ) whose images in the homo-
topy categories are compact generators. Denote by AX , AY , AZ and AW their DG endomorphism
algebras. Let Mf , Mq, Mg and Mp be DG bimodules as in (C.11).

In view of Proposition C.10 equality f ◦ p = g ◦ q implies an isomorphism ν : Mp ⊗LAX
Mf →

Mq ⊗LAW
Mg. Consider the composite

ω : Mf ⊗LAY
MAW
g →MAZ

p ⊗LAZ
Mp ⊗LAX

Mf ⊗LAY
MAW
g

→MAZ
p ⊗LAZ

Mq ⊗LAW
Mg ⊗LAY

MAW
g →MAZ

p ⊗LAZ
Mq (C.15)

where the first map is induced by the lift of the Lp∗ � Rp∗ adjunction unit to the unit AX →
MAZ
p ⊗LAZ

Mp of the 2-categorical (AX , AZ)-adjunction, the second by ν and the third by the
lift of the Lg∗ � Rg∗ adjunction counit to the counit Mg ⊗LAY

MAW
g → AW of the (AY , AW )-

adjunction. Then ω is a lift of the ‘base change’ Lg∗Rf∗ → Rq∗Lp∗ to a 1-morphism in Bimod.
The base-change morphism ω (C.15) is the composite of appropriate adjunction units and

counits. Hence, Proposition C.9 implies that ω yields a unique up to isomorphism morphism
Lg∗Rf∗ → Rq∗Lp∗ of FM functors.

C.6 Isomorphisms of functors via the restriction to one object
Throughout the paper we repeatedly use the fact that, for algebras A, B and functors
F,G : D(A)→ D(B) defined by pure modules, an isomorphism of F and G on generators yields
an isomorphism F

�−→ G.

Lemma C.11. Let A, B be algebras and let M be a complex of A−B bimodules such that
H i(M) = 0, for i �= j, for a fixed j ∈ Z. Let also E ⊂ D(A) be the full subcategory with one
object A. Then the quasi-isomorphism class of M is determined by the isomorphism class of the
restriction functor ΦM |E : E → D(B).

Proof. By definition, M � ΦM (A) as a right B module. Functor ΦM |E gives a map A �
HomA(A,A)

β−→ HomB(M,M). By assumption on M , we have a quasi-isomorphism M � Hj(M),
hence HomB(M,M) � HomB(Hj(M), Hj(M)). Then morphism β recovers the left A module
structure of Hj(M), hence the quasi-isomorphism class of M as an A−B bimodule. �

As an easy corollary, we obtain the following lemma.

Lemma C.12. Let A, B be algebras and let M1, M2 be complexes of A−B bimodules such
that H i(M1) = 0, for i �= j, for a fixed j ∈ Z. Let E ⊂ D(A) denote the full subcategory with one
object A. Then functors ΦM1 and ΦM2 are isomorphic if and only if ΦM1 |E and ΦM2 |E are.
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Proof. As ΦM1(A) �M1 and ΦM2(A) �M2, isomorphism of functors ΦM1 |E � ΦM2 |E implies a
quasi-isomorphism of M1 and M2 as complexes of right B modules. Therefore, H i(M2) = 0, for
i �= j. We conclude by Lemma C.11. �

Appendix D. The structure of the reduced fiber

Let f : X → Y be a proper morphism with fibers of dimension bounded by one such that
Rf∗(OX) = OY . Let C denote the reduced fiber of f over a closed point of Y .

Applying functor Rf∗ to the short exact sequence

0→ IC → OX → OC → 0

of sheaves on X, we obtain a surjective morphism R1f∗OX → R1f∗OC , which implies

H1(OC) = 0.

Moreover, by [Har77, Corollary II.11.3], C is connected, i.e. H0(OC) = k.
Let C =

⋃
Ci be a reduced curve such that all of its irreducible components Ci are smooth.

An incidence graph is a bipartite graph whose vertices correspond to irreducible components
and singular points of C. An edge connects a vertex corresponding to an irreducible component
Ci with a vertex corresponding to a singular point c ∈ Sing(C) if and only if c ∈ Ci. Note that
the incidence graph can be simply connected even though the dual intersection graph might be
not, as the example of three curves meeting in one point shows: the incidence graph is a tree, a
point connected with three other points, whereas the dual graph is a triangle.

We say that a reduced curve has normal crossing singularities if all components of the curve
are smooth and the Zariski tangent space at every singular point is the direct sum of tangent
subspaces corresponding to components that meet at this point.

Theorem D.1. Let C be a reduced proper algebraic curve over field k. Then H1(OC) = 0 if
and only if the following conditions are satisfied:

(i) every irreducible component Ci of C is a smooth rational curve;
(ii) the incidence graph of C has no cycles;

(iii) the curve has normal crossing singularities.

Proof. Assume that H1(OC) = 0. Let Ci be an irreducible component of C. The restriction
morphismOC → OCi gives a surjection on cohomologyH1(OC)→ H1(OCi), henceH1(OCi) = 0.
Let

πi : C̃i → Ci

denote the normalisation of Ci. Consider a short exact sequence of sheaves on Ci:

0→ OCi → πi∗OC̃i
→ F → 0.

As F is supported at singular points of Ci, the group H1(F) vanishes, hence H1(O
C̃i

) = 0. As

C̃i is smooth, it is isomorphic to P1
k.

Sequence

0→ H0(OCi)→ H0(O
C̃i

)→ H0(F)→ 0

is exact and the first morphism is an isomorphism. It follows that H0(F) = 0, i.e. sheaf F is
trivial. This proves that Ci is isomorphic to its normalisation C̃i, which is a smooth rational
curve. This proves condition (i).
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Assume that the incidence graph of C has a cycle. Let C ′ ⊂ C be the corresponding (minimal)
cycle of smooth rational curves, a subscheme in C with irreducible components C1, . . . , Cl. Again,
we know that H1(OC′) = 0. Then we have a short exact sequence

0→ OC′ →
l⊕

i=1

OCi →
l⊕

i=1

Oci → 0,

where c1, . . . , cl are singular points of C ′. From long exact sequence of cohomology groups it
follows that H1(OC′) = k. This contradiction proves condition (ii).

Note that, for curves C satisfying conditions (i) and (ii), there exists a universal curve C̄ and
morphism

π̄ : C̄ → C,

with the property that C̄ has normal crossing singularities and, for every curve D with normal
crossing singularities and a map D → C, there is a unique lifting map D → C̄.

The construction of the curve C̄ is simple. Consider an affine neighbourhood U ⊂ C of every
point of the curve which does not contain more than one singular point. Assume there is one.
The irreducible components that meet at the singular point give some affine subschemes in U .
As the category of affine schemes is opposite to the category of unital commutative algebras,
we can define the open chart Ū of the universal curve over U as a colimit over the diagram of
embedding of the singular point into all these affine subschemes (by taking the spectrum of the
limit over the diagram of the corresponding commutative algebras). It has one normal crossing
singularity.

If U has no singular points, then we put Ū = U . We can glue Ū over C into a curve, C̄, with
normal crossing singularities. Conditions (i) and (ii) guarantee that C̄ has the required universal
property. As we do not need this for our purpose, we skip the proof.

Clearly, π̄ is a set-theoretic isomorphism. We again have a short exact sequence with sheaf
F supported at singular points of C:

0→ OC → π̄∗OC̄ → F → 0,

whose long exact sequence of cohomology shows that F is trivial sheaf. This implies that the
schematic structure of C and C̄ coincide, which proves condition (iii).

Conversely, assume that C is a reduced curve satisfying conditions (i), (ii) and (iii). We
can assume that the curve is connected. We proceed by induction on the number of irreducible
components of C. The base of induction, the case of a single component, is obvious. As the
incidence graph is a tree, then we can choose an irreducible component C1 which has only one
singular point, c. The curve C ′, the union of the other components, satisfies the same assumptions
as C. Hence,H1(OC′) = 0 by induction hypothesis. As the point c is a normal crossing singularity,
then the kernel of the restriction morphism OC → OC′ is easily seen to be OC1(−1). Then looking
at the cohomology sequence for the short exact sequence

0→ OC1(−1)→ OC → OC′ → 0,

we see that H1(OC) = 0. �

Appendix E. Calculation of Ext groups for bounded above complexes

Let A be an abelian category and A· a bounded above complex over A. Its ‘stupid’ truncations
σ�iA define direct system σ�iA· → σ�i−1A

·. Given a complex B·, we are interested in the group
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Hom·(A·, B·) in terms of the stupid truncations of both complexes. There is a spectral sequence
with E1-layer:

Epq1 =
⊕
j−i=p

Extq(Ai, Bj). (E.1)

If both complexes A·, B· have finite number of non-trivial components, then it is well-known that
spectral sequence (E.1) converges. If complex B· is infinite then we need to put some conditions
on A· in order to guarantee the spectral sequence is converging to Hom·(A·, B·). We show that
if, in addition, both complexes are bounded above and Extq(Ai, Bj) = 0, for q > 0 and i, j ∈ Z,
then we have a graded complex with terms

Cp =
∏
j−i=p

Hom(Ai, Bj) (E.2)

whose cohomology calculate Extp(A·, B·). Here the differentials are the limits of the relevant
differentials in the sequence (E.1) when we allow the truncations of A· and B· to go to infinity.

Recall the following fact about cohomology of limits. Let (Mi)i∈Z be an inverse system of
abelian groups andM = lim←−Mi. We say that system (Mi)i∈Z satisfies (�) if morphismMi →Mi−1

is surjective, for any i.

Lemma E.1 [Spa88, Lemma 0.11]. Let (Ai
fi−→ Bi

gi−→ Ci
hi−→ Di)i∈Z be an inverse system of com-

plexes of abelian groups such that systems (Ai), (Bi), (Ci), (Di) satisfy (�) for all i. Denote

by (A
f−→ B

g−→ C
h−→ D) the limit complex. Let A′

i, B
′
i, C

′
i and D′

i be kernels of Ai → Ai−1,
Bi → Bi−1, Ci → Ci−1 and Di → Di−1, respectively. Assume there is j ∈ Z such that sequence
A′
i → B′

i → C ′
i → D′

i is exact for all i > j. Then the natural homomorphism Kerg/Imf →
Kergj/Imfj is an isomorphism.

Lemma E.2. Let A· and B· be complexes over A, A· bounded above. Assume l ∈ Z such that
ExtjDb(A)

(Ai, B·) = 0, for j < l and all i. Then the canonical morphism

Extj(A·, B·)→ lim←−Extj(σ�iA·, B·)

is an isomorphism for any j ∈ Z. Here σ�iA· is the ‘stupid’ truncation of A·.

Proof. Fix I·, an h-injective resolution of B· (see [Spa88]). The direct system σ�i+1A
· → σ�iA·

induces an inverse system αi : HomCom(σ�iA·, I·)→ HomCom(σ�i+1A
·, I·). Morphism αi is sur-

jective, i.e. property (�) is satisfied, and its kernel is complex HomCom(Ai[−i], I·). Cohomology
of this complex is Hj(HomCom(Ai[−i], I·)) � Extj+iDb(A)

(Ai, B·).
Our assumption implies that, for any j, there exists Nj ∈ Z such that, for i < Nj , complex

HomCom(Ai[−i], I·) is exact at degree j. By Lemma E.1, we conclude that

Hj(lim←−HomCom(σ�iA·, I·)) � Hj(HomCom(σ�iA·, I·)) � ExtjDb(A)
(σ�iA·, B·). (E.3)

In particular, the inverse system ExtjDb(A)
(σ�iA·, B·)→ ExtjDb(A)

(σ�i+1A
·, I·) stabilises, hence

the right-hand side of (E.3) is isomorphic to lim←−ExtjDb(A)
(σ�iA·, B·), for i sufficiently negative.

Moreover, we have lim←−HomCom(σ�iA·, I·) � HomCom(A·, I·). Hence, isomorphism (E.3) yields

ExtjDb(A)
(A·, B·) � Hj(HomCom(A·, I·)) � lim←−ExtjDb(A)

(σ�−iA·, B·). �

For the reader’s convenience, we also give a proof of the following well-known fact.

Lemma E.3. Let A· and B· be complexes over A such that A· is finite and B· is bounded above
and with bounded cohomology. Assume there exists N ∈ Z such that ExtjA(Ai, A) = 0, for all
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j > N , i ∈ Z and A ∈ A. Then, there exists a spectral sequence

Ep,q1 =
⊕
k

Extp(Ak, Bk+q) ⇒ Ext·
Db(A)(A

·, B·). (E.4)

Proof. For any n ∈ Z, injective resolutions Ii,· of Bi give an injective resolution J ·
n of σ�nB·

such that complex J ·
n admits a filtration with graded factors Ii,·. The filtered complex J ·

n yields
a spectral sequence

nEp,q1 =
⊕

{k | k+q�n}
Extp(Ak, Bk+q) ⇒ Hom·

Db(A)(A
·, σ�nB·). (E.5)

It follows from our assumptions that nEp,q1 is stationary for fixed p, q and n→ −∞. Moreover,
the term nEp,q1 is zero, for any p /∈ [0, N ] or for any sufficiently positive q. This confirms existence
of the spectral sequence (E.4) and also implies that the lth layer nEp,ql is stationary for fixed
p, q and n→ −∞ and l→∞.

As B· has bounded cohomology, for n sufficiently negative, we have τ�n+1σ�nB· � B· and
τ�nσ�nB· � Hn(σ�nB·)[−n]. Then triangle τ�nσ�nB· → σ�nB· → τ�n+1σ�nB· reads

Hn(σ�nB·)[−n]→ σ�nB· → B· → Hn(σ�nB·)[−n+ 1].

As A· is finite, the assumptions on Ai imply that there exists Ñ such that Hom(A·, C[k]) =
0, for k > Ñ and all C ∈ A. Thus, Extj(A·,Hn(σ�nB·)[−n]) � Hom(A·,Hn(σ�nB·)[j − n]) =
0, for n < j − Ñ . Then, for n < j − Ñ , we have from the above triangle an isomorphism
Extj−1

Db(A)
(A·, σ�nB·) � Extj−1

Db(A)
(A·, B·).

This shows that the spectral sequence in (E.4) converges to Hom·
Db(A)(A

·, B·). �

Proposition E.4. Let A·, B· be bounded above complexes of objects in A with bounded coho-
mology. Assume that there exists N ∈ Z such that Extj(Ai, A) = 0, for all j > N , i ∈ Z and
A ∈ A. Assume further that Extj(Ai, Bk) = 0, for j > 0 and all i, k ∈ Z. Then, ExtjDb(A)

(A·, B·)
is isomorphic to the jth cohomology group of complex (E.2).

Proof. Lemma E.3 applied to σ�iA· and B·, for any i ∈ Z, implies that the spec-
tral sequence (E.4) reduces to a single row. Hence, we have Extj(σ�iA·, B·) �
Hj(⊕k>i Hom(Ak, B·+k)). The direct system σ�i+1A

· → σ�iA· induces an inverse system of
complexes

⊕
k>i Hom(Ak, B·+k)→

⊕
k>i+1 Hom(Ak, B·+k) satisfying condition (�). The kernel

of
⊕

k>i Hom(Ak, B·+k)→
⊕

k>i+1 Hom(Ak, B·+k) is a complex Hom(Ai, B·)[i]. By Lemma E.3,
we have Hj(Hom(Ai, B·)[i]) � Extj+i(Ai, B·), thus, for a fixed j and any sufficiently negative i,
complex Hom(Ai, B·)[i] is exact at degree j. Lemma E.1 implies that, for such i, we have

Hj

( ∏
k

Hom(Ak, B·+k)
)
� Hj

( ⊕
k>i

Hom(Ak, B·+k)
)
� Extj(σ�iA·, B·).

Thus, Extj(σ�iA·, B·) is stationary, and Hj(
∏
k Hom(Ak, B·+k)) � lim←−Extj(σ�iA·, B·). As B·

has bounded cohomology, the assumptions of Lemma E.2 are satisfied. It follows that the latter
space is isomorphic to Extj(A·, B·). �
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