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Flops and spherical functors

Agnieszka Bodzenta and Alexey Bondal

ABSTRACT

We study derived categories of Gorenstein varieties X and X' connected by a flop.
We assume that the flopping contractions f: X — Y, fT: XT — Y have fibers of
dimension bounded by one and Y has canonical hypersurface singularities of multi-
plicity two. We consider the fiber product W = X xy X with projections p: W — X,
pT: W — X+ and prove that the flop functors F' = Rpf Lp*: D*(X) — DY(X ), F+ =
Rp.Lpt™: DP(XT) — Db(X) are equivalences, inverse to those constructed by Van den
Bergh. The composite F* o F': DY(X) — Db(X) is a non-trivial auto-equivalence. When
variety Y is affine, we present F'* o F as the spherical cotwist of a spherical couple
(U*,¥) which involves a spherical functor ¥ constructed by deriving the inclusion of
the null category @7y of sheaves F € Coh(X) with Rf.(F) = 0 into Coh(X). We con-
struct a spherical pair (D?(X), D?(X¥)) in the quotient D*(W)/K’, where K’ is the
common kernel of the derived push-forwards for the projections to X and X, thus
implementing in geometric terms a schober for the flop. A technical innovation of the
paper is the L' f* f, vanishing for Van den Bergh’s projective generator. We construct
a projective generator in the null category and prove that its endomorphism algebra is
the contraction algebra.

1. Introduction

A homological interpretation of the minimal model program (MMP) in birational geometry was
proposed in [BO95, BO02]. The basic idea is that MMP is about ‘minimisation’ of the derived
category DY(X) of coherent sheaves on a variety X for varieties in a given birational class. More
precisely, it is expected that if X allows a divisorial contraction or a flip X --» Y, then D°(X)
has a semi-orthogonal decomposition (SOD) with one component of SOD equivalent to D°(Y").
Thus, minimizing the birational model should have the categorical meaning of chopping off semi-
orthogonal factors of the derived category. A minimal model is expected to be a representative
in the birational class of a variety whose derived category does not allow semi-orthogonal factors
equivalent to the derived category of a variety birationally equivalent to X.

As MMP in dimension greater than two deals with singular varieties, the right choice of the
derived category to consider also matters. In particular, for Q-Gorenstein varieties the derived
category of a suitable stack is relevant (cf. [Kaw02, Kaw09]). Minimal models are not unique, and
MMP considers birational maps, called flops, that link various minimal models. Conjecturally,
flops induce derived equivalences [BO95, Kaw02, BO02].
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A. BODZENTA AND A. BONDAL

There is substantial evidence in favour of this conjectural picture, starting from the original
paper [BO95], where various instances of flops were proved to induce derived equivalences, and
for simple higher-dimensional flips, the required SOD was constructed.

We expect that the whole zoology of categories, functors and natural transformations relevant
to MMP should be governed by interesting hidden homotopy types, maps and higher homotopies.
The present work can be considered as taking steps in this direction for categories and functors
invoked by flops.

It was mentioned by the authors of [BO95] that the functor that provides an equivalence
Db(X) — DY(X), where X and X+ are connected by a flop, when composed with the analogous
functor in the opposite direction D’(X*) — D(X) is not the identity but produces a non-trivial
auto-equivalence of D°(X) (nowadays called a flop-flop functor). For Atiyah flop, the functor is
given by what is now known as the spherical twist with respect to the spherical object O (—1),
where C is the (rational) exceptional curve. It was probably one of the first appearances of
the spherical twists. (However, we should also mention here the work of Mukai [Muk87] and
Kuleshov [Kul90] who used the action of spherical twists in their non-derived version to describe
moduli of sheaves on K3 surfaces. A quick generalisation to the Calabi—Yau/derived case was
understood by the authors of [BO95] in those days of sturm und drang on derived categories in
Moscow in the early 1990s). Kontsevich suggested that the spherical twist of Atiyah flop should
be transferred by mirror symmetry into the equivalence of the Fukaya category induced by the
Dehn twist along a vanishing cycle. Properties of spherical twists with respect to spherical objects
were later scrutinised by Seidel and Thomas in [ST01] and for more general spherical functors
by Anno and Logvinenko in [AL17].

Spherical (co)twist is a unification tool for various non-trivial auto-equivalences of D°(X)
(cf. [Add16]) such as tensor products with line bundles, twists around spherical objects [STO01],
EZ-twists [Hor05] or window shifts [DS14].

The homotopy meaning of spherical (co)twists can be read off from their interpreta-
tion via schobers, i.e. categorifications of perverse sheaves on stratified topological spaces,
suggested by Kapranov and Schechtman [KS14]. The homotopy type of the underlying strat-
ification (the punctured disc for the case of one spherical functor) encodes the algebra of
functors and natural transformations in the schober. The schober on the punctured disc
has one of possible incarnations via a spherical pair, i.e. a pair of admissible subcate-
gories in a triangulated category satisfying conditions that imply a spherical functor between
them.

We study functors and natural transformations for flops with dimension of fibers of the
flopping contractions bounded by one. We construct the spherical pair (D?(X), D?(X™)) in the
appropriate quotient of the derived category of X xy X*. The orthogonal complement to D?(X)
in that quotient is the bounded derived category of the abelian null category

oy = {E € Coh(X) | Rf,E = 0}. (1)

By deriving the embedding A; — Coh(X) we obtain the spherical functor ¥: D°(f) — Db(X).
The spherical cotwist of the spherical couple (see Appendix C) (¥*,¥) is the flop—flop
functor.

We lift our functors and natural transformations to bicategories Bimod and FM (see
Appendix C). We systematically consider 2-categorical adjunctions instead of the usual adjunc-
tions of functors, scrutinise the uniqueness of adjoints and of associated twists and cotwists, i.e.
the cones of adjunction units and counits.

Now we describe our results in more detail.
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The flop functor and Van den Bergh’s functor
We consider a flopping contraction f : X — Y and its flop f™ : X+ — Y with dimension of fibers
bounded by one. Exceptional loci of f and f* are assumed to have codimension greater than
one in X, respectively in X, whereas varieties X, X and Y are assumed to be Gorenstein and
Y is assumed to have canonical hypersurface singularities of multiplicity two.

Consider the diagram for the fiber product:

X Xy X+t
2N
X Xt
\ %
Y
where p and p* denote the projections to the factors. The flop functor is

F = Rpf Lp*: Dye(X) — Dye(XT).

Note that this functor does not necessarily induce an equivalence if the dimension of fibers of f
is greater than one (see [Nam04]), which means that the functor needs an adjustment for fibers
of higher dimension.

The above assumptions on the flopping contraction are those adopted by Van den Bergh
in [VdB04]. We use also some techniques borrowed from his work. Van den Bergh constructed
an equivalence X: DY(X) = DP(Xt), which is given via the identification of both categories
with the derived category of modules over a sheaf of non-commutative algebras on affine Y. We
first give a new interpretation for functor ¥. To this end, we identify Db(X) with Hot~*(2_,),
the homotopy category of complexes of projective objects &2_1 in the heart ~!Per(X/Y) of the
perverse t-structure, introduced by Bridgeland in [Bri02]. We show that ¥ can be defined as the
functor (f* f.(—))V" applied term-wise to complexes of objects in &2_;. We give an independent
proof that the flop functor is an equivalence and that it can be extended to an equivalence ¢
between unbounded categories of quasi-coherent sheaves (Proposition 4.6).

Then we show that the flop functor is given in the same way by the term-wise application
of the functor f™*f.(—). To this end, we need one of the technical innovations of our paper,
the L' f* f,-vanishing for objects in #_1. We prove (Lemma 3.4) that if f: X — Y is a flopping
contraction satisfying the above conditions, then L' f* f, M is zero, for any M € Z_;. The proof
of the vanishing is based on a local presentation of Y as a divisor in a smooth variety ). Note that,
since Y is singular, object Lf* f.M in general has infinitely many non-zero cohomology sheaves,
more precisely, they satisfy 2-periodicity (see §3.5), which is reminiscent of matrix factorisations
[Buc86, Orl04].

We consider a divisorial embedding i: Y — ) into a smooth ) together with g =io f,
gt =io ft. If the base Y of the flopping contraction is affine, then the flop functor F
and Van den Bergh’s equivalence Ygo: Dge(X) — Dge(X ) fit into a functorial exact triangle
(Proposition 4.13):

Yqc[l] = LgT* Ry, — F — Sc[2]. (2)

As both Lg™*Rg, and Y take D°(X) to D°(XT), this allows us to conclude that the flop
functor also preserves the boundedness of the derived categories.
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Theorem 4.21 states that ¥ is actually the inverse of the opposite flop functor
F* = Rp.Lp™: Dge(X ) — Dye(X).

This implies that flop functors F' and F* yield (not mutually inverse) equivalences between
DY(X) and DY(X ™). Following an argument of Chen [Che02], we generalise this statement to
the case when base Y is quasi-projective (see §4.6).

In addition, we show that the composite F'TF, the ‘flop-flop’ functor, is the term-wise
extension of f*f.(—)|z_,.

The null category and spherical functor ¥

One of the original motivations for our work was to recover the importance of the null category
for f as in (1). Category 7y admits a projective generator P, which we obtain from Van den
Bergh’s projective generator M for the perverse heart ~!Per(X/Y’) by a projection to the null
category (see Proposition 2.4). Deriving the embedding o7y — Coh(X) gives us functor

U: D(oty) — DO(X).

We prove that, for a flopping contraction f: X — Y with affine Y, functor ¥ is spherical.
The flop—flop functor F* F is the spherical cotwist of the spherical couple (¥*, ¥), i.e. the U* 4 ¥
adjunction unit fits into a functorial exact triangle:

FYF — Idps(x) — VO* — FTF[1].

We also show that the spherical twist D°(a7;) — D°() of the couple (¥*, ¥) is the shifted
identity functor Idps(,,)[4] (see Corollary 5.18).

Spherical pairs
We assume again f: X — Y to be a flopping contraction with affine Y. Functor p* induces
an isomorphism of endomorphism algebras of a projective generator P € &/ and of p*P €
Coh(X xy XT). Moreover, Extg(xy)ﬁ (p*P,p*P) =0, for i > 0 (see Proposition 5.3). Thus, we
construct a fully faithful functor D(#;) — Dge(X xy X ).

We consider the ‘common kernel subcategories’:

KP = {F € D"(X xy XT7)| Rp.(E) = 0, Rp] (E) = 0},
K™ ={F € D™ (X xy X7)|Rp.(E) = 0, Rp{ (E) = 0}.
The composite DY(X) 225 D= (X xy XT) — D~ (X xy X+)/K~ (not Lp* itself) factors via
DY(X xy X+)/KP, thus inducing a fully faithful functor (Proposition 5.8)
Lp*: D*(X) — D(X xy XT)/KL.
We prove the existence of SODs (see [Bon89)):
DV(X xy XH)/KP = (D¥(ets), Iy DY(X)) = (EpDH(X), DP(a7y). 3)
As a result, we obtain a geometric description of the category Db(szfjur):
D' (etp+) = {E € D*(X xy X)| Rp.(E) = 0}/K".

By exchanging the roles of X and X in (3) we obtain SODs

DH(X sy X)/K! = (D(ery), Ip*"DU(XT)) = Iyt DAX ). DY) (4)

Together decompositions (3) and (4) provide us with a geometric description of /-periodical
SODs (see Proposition B.3), whose relation to spherical functors was basically discovered by
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Halpern-Leistner and Shipman [HS16] (we thank Kapranov for explanations on this). Two
pairs of subcategories (D(X),D*(XV)), (D*(s), D*(o#;+)) are spherical pairs [KS14] (see
Theorem 5.17). The corresponding spherical functor for the second spherical pair is V.

The contraction algebra
Assume the base Y of the flopping contraction f to be the spectrum of a complete Noetherian
local ring. Then the reduced fiber of f over the unique closed point of Y is a union of n smooth
irreducible rational curves Cj, ..., C, (see Theorem D.1). The category ~'Per(X/Y) has n + 1
irreducible projective objects My, ..., My, with My ~ Ox (see [VdB04]). M =P M, is a
projective generator for ~!Per(X/Y).

We prove that the endomorphism algebra

Ap = Homy, (P, P)

of the corresponding projective generator for «7;, P = ker(f* fsM — M), is isomorphic to the
contraction algebra introduced in [IW14], which is defined as the quotient of Homx (M, M) by
the ideal of morphisms that factor via direct sums of copies of Ox (Theorem 6.2). This theorem
relates our work to the results of Donovan and Wemyss [DW16, DW19], where contraction
algebras appear in the context of non-commutative deformations.

Appendices
There are five appendices attached to the main body of the paper.

Appendiz A. This appendix is an extract of some properties of the functor f', right dual to Rfs,
and the Grothendieck duality.

Appendiz B. In this appendix we introduce functorial exact triangles and use them to define
spherical functors. We recall after [KS14] the notion of a spherical pair and the associated spher-
ical functor. 4-periodical SODs introduced by Halpern-Leistner and Shipman [HS16] produce
spherical pairs.

Appendiz C. In this appendix we discuss a bicategory C and a pair of l-morphisms s €
Home (A, B), r € Home(B, A) that fit into a 2-categorical adjunction (s,r,n,¢). When C is
1-triangulated (meaning the categories of 1-morphisms are triangulated), we define the twist
ts € Home (B, B) and the cotwist ¢ € Home(A, A) as the cones of the counit e: sr — Idp and
the unit n: Id4 — rs. By using pseudo-functors and 2-categorical equivalences we show that
the twist and cotwist are in a suitable sense invariant under replacing A and B by equiva-
lent objects. If t5 and ¢s are invertible in the 2-categorical sense, we say that (s,r,n,¢) is a
spherical couple.

We lift exact functors between triangulated categories to 1-morphisms in appropriate
1-triangulated bicategories. The first bicategory is Bimod whose objects are DG algebras and
categories of 1-morphisms are defined as the derived categories of DG bimodules. The second
one is the Fourier—-Mukai bicategory FM of schemes and the derived categories of coherent
sheaves on their products as categories of 1-morphisms. Both bicategories admit 2-functors to
the bicategory Cat of categories, functors and natural transformations. More precisely, we have
$¢: Bimod — Cat, ®(A4) = D(A) and Z: FM — Cat, Z(X) = Dy.(X).

The above theory of 2-categorical adjunctions ensures that once a lift of an exact functor
Dye(X) — Dye(Y) to a 1-morphism in Bimod or FM admitting an adjoint is fixed, we obtain
essentially unique exact functors corresponding to the twist and the cotwist.
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We describe 2-categorical adjunctions in Bimod using formulae for adjoint bimodules as
in [AL21]. For £ € Dqc(X x Y) we discuss functors adjoint to Zg: Dgc(X) — Dgc(Y) and the
conditions under which they are FM functors. Results of [LS16] allow us to transfer between
Bimod and FM via fixing compact generators for Dy.(X) and Dy (Y). We use the 2-categorical
adjunctions in Bimod to construct functorial exact triangles for Z¢ and its adjoints. We check
that these triangles are, up to isomorphism, independent of the choice of compact generators.
In particular, given a morphism f: X — Y, we discuss the lift of Rfy, its adjoints, and the
adjunction (co)units to Bimod and FM. We also describe a 2-morphism in Bimod whose
image under ® is the base-change morphism.

Appendiz D. This appendix is devoted to the description of the reduced fiber of a flop-
ping contraction f: X — Y with fibers of dimension bounded by one over a closed point
of Y.

Appendiz E. In this appendix we show that cohomology of an appropriate complex allow us
to calculate morphisms in the derived category of an abelian category between bounded above
complexes with bounded cohomology.

Notation

We denote by k an algebraically closed field of characteristic zero. For a Noetherian k& scheme
X, by Coh(X), respectively QCoh(X), we denote the category of coherent, respectively quasi-
coherent, sheaves on X.

For an abelian category A, we denote by D?(A) and D(A) the bounded and unbounded
derived categories of A. We write D’(X) = D’(Coh(X)), Dgc(X) = D(QCoh(X)).

For an abelian category A, by Perf(A) we denote the full subcategory of D?(A) of objects that
are quasi-isomorphic to finite complexes of projective objects in A. For a scheme X, by Perf(X)
we denote the category of perfect complexes on X, i.e. objects of Db(X ) locally quasi-isomorphic
to finite complexes of locally free sheaves.

For a k-algebra A, we denote by Mod—A the abelian category of right A modules.

For a t-structure (7<o, 7>0) on a triangulated category 7" with heart A = Ty N 7> and an
object T' € 7, we denote by H@(T) the ith cohomology of T" with respect to the t-structure
(7<0,7>0). The truncation functors are denoted by T“;i and Téi. If T = Dye(X) or DP(X) with
the standard t-structure with heart QCoh(X), respectively Coh(X), we shorten the notation to
Hi(T), Tgi and Tgi respectively.

Assumptions
Throughout the paper we assume X and Y to be normal varieties over k. We usually work under
one of the following assumptions on a morphism f: X — Y.

(a) We assume f: X — Y is a proper morphism with dimension of fibers bounded by one and
such that Rf.Ox ~ Oy.

(b) We assume f: X — Y is a projective birational morphism with dimension of fibers bounded
by one between quasi-projective Gorenstein varieties of dimension n > 3. The exceptional
locus of f is of codimension greater than one in X. Variety Y has canonical hypersurface
singularities of multiplicity two.

(c) We assume the same as in assumption (p) and we further assume that variety Y is affine
and is embedded as a principal divisor into a smooth variety ) of dimension n + 1.

(d) We assume the same as in assumption (p) with an extra assumption that ¥ = Spec R, where
R is a complete local k-algebra.
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Let f satisfy assumption (p). As Y has canonical singularities, Rf.Ox ~ Oy (cf. [Elk81)), i.e.
assumption (d) is satisfied when Y has rational singularities and f: X — Y is a smooth birational
resolution.

2. The null category #/¢

Let f: X — Y be a proper morphism of Noetherian schemes. In this section we introduce the
null category of f:

oy = {E € Coh(X) | Rf.(E) = 0}. (5)

Under the assumption that the dimension of fibers of f is bounded by one, Y is affine and
Rf.Ox = Oy, we construct a projective generator P for o7;. We also study the behaviour of the
null category under decomposition f = h o g and under restriction to fibers.

2.1 The triangulated and abelian null category of a morphism of schemes
For a proper morphism of Noetherian schemes f: X — Y, we consider the triangulated null
category Cy defined as the kernel of functor Rf, restricted to D*(X):

Cr={E € D"(X)|Rf.(E") = 0}. (6)
Similarly, we define C; C D™ (X) and Cp . C Dqc(X). Denote by 5 : Cr . — Dqe(X) the
inclusion functor. As Lf*: Dyc(Y) — Dqc(X) is fully faithful with right adjoint Rf., Dqc(X)
admits a SOD Dgc(X) = (Cy ., Lf*Dgc(Y)), [Bon89, Lemma 3.1]. In particular, ¢, admits a left
adjoint ¢} : Dgc(X) — Cy,., which fits into a functorial exact triangle (see (B.1)):
Lf*Rfe — ldp . (x) = tpsty — LI Rf[1]. (7)
For the null category of f as in (5), we have 7y = Coh(X) NC;y.

LEMMA 2.1. Let f: X — Y be a proper morphism with dimension of fibers bounded by one.
Then category /s is abelian. The embedding functor «/y — Coh(X) is exact and fully faithful.
Its image is closed under extensions.

Proof. Let A, B be objects in <7y and let ¢ € Homx (A, B). Consider the kernel K, the cokernel C,
and the image I of ¢. As Rf. A ~ 0~ Rf.B, the long exact sequences of higher derived functors
for f, applied to short exact sequences on X

0-K—-A—-1—-0, 0—-1—-B—C—0,

together with vanishing of R’ f,, for i > 1, imply that first I, hence K and C lie in fy. That o7}
is closed under extensions is obvious. O

It follows that Ext (A, B) = Exty, (4, B), for A, B € <7}.

LEMMA 2.2 [Bri02, Lemma 3.1]. Let X and Y be Noetherian schemes and f: X — Y a proper
morphism with fibers of dimension bounded by one. Then E € Cy if and only if H% (E) € <},
for all i € Z. In particular, @7y C C; is the heart of a bounded t-structure.

Remark 2.3. The restriction of the standard t-structure on Dy (X) to
quc = {E" € Dye(X) | Rf:(E") = 0}

was considered by Bridgeland [Bri02] for a birational morphism of projective varieties satisfy-
ing assumption (d) which is easily generalised to a projective morphism f: X — Y satisfying
assumption (d). In this case, category Dy.(X) admits a recollement [BBD82] or, equivalently, an
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admissible subcategory, Cy, . (see [Bon89]). The Verdier quotient Dqc(X)/Cr, . is identified with
Dqe(Y'). The t-structure on Cy . with heart «/¢[—p| can be glued with the standard ¢-structure on
Dy(Y) (see [BBD82]). As functor f' is needed for the gluing of ¢-structures, one has to consider
unbounded derived categories of quasi-coherent sheaves on X and Y. The heart of the resulting
t-structure is the category PPerq.(X/Y") of perverse sheaves. If p = —1 or p = 0, the t-structures
with hearts PPerq.(X/Y") can also be obtained by the tilting in torsion pairs (7_1, F_1), (7o, Fo)
in QCoh(X) (see [VdB04]), where

To = {T € Coh(X) | R f.(T) = 0}, (8)
Fo={E € Coh(X)| f.(E) = 0, Hom(«7, E) = 0}, (9)
) ( )
) 1)

T_1 = {T € Coh(X) | R f.(T) = 0, Hom(T, <) = 0}, (10
F_1 ={F € Coh(X) | f«(E) = 0}. (1
By restricting the torsion pairs to Coh(X) one can define abelian categories PPer(X/Y) as
subcategories of D*(X). Thus, for p = —1,0,
PPer(X/Y) :={E € D"(X)|H*(E) € T,, H '(E) € F, and H'(E) = 0, for i # —1,0}.

2.2 A projective generator for </

Let f: X — Y satisfy assumption (d) and assume Y is affine. By [VdB04, Proposition 3.2.5],

there exists a vector bundle M on X which is a projective generator for ~'Per(X/Y’). Consider
P = H;(lb?/\/l. (12)

It is an object in <7y, which, by abuse of notation, we identify with its image under ¢ y,.

PROPOSITION 2.4. Sheaf P is a projective generator for the category </;.

Proof. As the t-structure on quc is defined as the restriction of the standard t-structure on
Dye(X), the functor ¢f,: C fqe = Dqyc(X) is exact, in particular, it commutes with the truncation
functors 7>;. This implies isomorphism of functors
=4
Tg_lbf* ~ Lf*T>f1.
It follows that T§_1L f*a}/\/i is isomorphic to ¢y, o *1L32./\/l, where
-1 -1 -1
vp = H%f oiy: T Per(X/Y) — a[1]

is the left adjoint functor to the inclusion @7¢[1] — ~!'Per(X/Y). By Lemma 2.5, P € &/ is a
projective generator. ([l

LEMMA 2.5. Let Dy and D be triangulated categories with t-structures with hearts Ay C Dy
and A C D, and ix: Dy — D a t-exact functor with left adjoint i*. If M € A is projective, then
P = H(i* M) € Ay is projective. Moreover, if M € A is a projective generator and i, is fully
faithful, then P € Ay is a projective generator.

Proof. Let E be an object in Ag. Then i, F € A, hence 0 = Exth(M, i, E) ~ Ex‘clp0 (*M,E). As
functor ¢* is left adjoint to a t-exact functor, it is right t-exact, i.e. i*M € D0<0. Thus, we have
an exact triangle

T<_1Z'*M — Z*M — P — Tg_li*M[l]. (13)

As, for degree reasons, Homp, (1<_13*M, E) = 0, by applying Homp,(—, E) to (13), we get that
Ext%)o (P,E) =0, ie. P € A is projective.
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If M € A is a projective generator and i, is fully faithful, then, for any non-zero F € Ay,
object i, E is non-zero, hence Homp(M, i, E) ~ Homp,(i*M, E) # 0. It follows from the long
exact sequence obtained by applying Homp,(—, E) to (13) that Homp, (P, E) # 0, i.e. P is a
projective generator for Ajg. O

Remark 2.6. If morphism f satisfies assumption (d) and Y is affine, the category “Per(X/Y)
has a projective generator N’ = MY (see [VdB04, Proposition 3.2.5]). An argument analogous

to that in the proof of Proposition 2.4 shows that Py := H%L}N is a projective generator
for a7y.

For a sheaf ' with R!f,F = 0, the cohomology sequence of triangle (7) applied to F gives
an exact sequence

0= Hy (tp.ljF) = [ foF = F — H (13 F) — 0. (14)
As by [VdB04, Lemma 3.1.3] morphism f* f, M — M is surjective, sequence
0—-P— ffiM—- M —0 (15)

is exact in Coh(X).

Let f: X — Y satisfy assumption (d) and Y = Spec R be a spectrum of a complete Noethe-
rian local ring R. The reduced fiber Creq = |J;_; C; of f over the unique closed point y € Y is a
tree of rational curves (see a more precise statement in Theorem D.1).

The Picard group of X is isomorphic to Z", where the isomorphism is given by the degrees
of the restriction to irreducible components of Cieq: £ — deg(L|c;)i=1,....n-

Remark 2.7 (Cf. [VdB04, Lemma 3.4.4]). Let z; € C; C X be a closed point such that x; ¢ Cy,
for any k # i, and j;: X; — X a closed embedding of a neighbourhood X; of z; in X into a smooth
variety X;. There exists an effective Cartier divisor D; C &; such that scheme-theoretically
D; N jixC; = {Jixx; }. By pulling back D; to X;, we obtain an effective divisor D; C X such that
scheme-theoretically D;.C; = {z;} and D;.C}y =0, for k #i. We denote by tp,: D; — X the
embedding of D; into X.

Denote by £; the line bundle on X defined by

For every i, Van den Bergh defined a vector bundle M; via the exact sequence
0— 0% =M — L —0 (17)
corresponding to a choice of r; — 1 generators of Extk(ﬁi, Ox) as an R-module. Denote M :=
Ox. Then
n
M=@m
i=0
is a projective generator for ~'Per(X/Y) (see [VABO04, Proposition 3.5.4]). The dual vector
bundle
N = MY (18)
is a projective generator for “Per(X/Y) (see [VAB04, Proposition 3.2.5]).
We put
Pi =My jM,. (19)

By Proposition 2.4, sheaf P = ;" ; P; is a projective generator for .o7;.
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Ezxample. Let X be a smooth threefold, f: X — Y a flopping contraction. Assume Y = Spec R
has rational singularities and Cieq ~ P' C X. Then the normal bundle N X/Croq 18 isomorphic
either to O(—1) ® O(—1), OB O(-2) or O(1) ® O(—3). Let D C X be a divisor such that
D.Cieq = 1. For the first two cases, M ~ Ox @ Ox (D), and it is of higher rank for the third case.
If Nx/c,.. =~ O(—1) @ O(—1), the projective generator P is O(—1). When Ny /¢, , ~ O © O(-2),
P is an n-iterated extension of O(—1) by O(—1), where n is the width of Cieq, see [Rei83]
(cf. [Tod07)).

2.3 Basic properties of .2/

Let f: X — Y satisfy assumption (d) and let E be a coherent sheaf on Y. By the derived
projection formula, we have Rf,Lf*(E)~ E. As f has fibers of dimension bounded by one,
Leray spectral sequence RP f,L1f*(E) = H’;(_qE degenerates. Hence, an exact sequence:

0— RY.L'f*E - FE — f.f*E — 0. (20)

LEMMA 2.8. Let f: X — Y and E be as above. Then R' f,f*E = 0 and Rf,L'f*E = 0, for any
i > 1. Further suppose that E has no torsion supported at the image f(Ex f) of the exceptional
locus of f. Then f.f*(E) ~ E and sheaf L' f*E is in <.

Proof. The derived projection formula Rf,Lf*E ~FE and Leray spectral sequence
RPf,L1f*(E) = H5% “E imply RYf.f*E ~0, f.L'f*E ~0, Rf.L'f*E ~0, for any i > 1. As
Rf, L' f*F is supported on f(Ex f), the assumption that £ has no torsion supported on f(Ex f)
and sequence (20) imply that R!f,L' f*E is zero and E ~ f,f*E. O

LEMMA 2.9. Let f: X =Y and E be as above. If E = f,FE', for some E' € Coh(X), then
f«f*(E) ~ E and sheaves L' f*E are in oy, for i > 0.

Proof. Sequence (20) implies that morphism «: f,E’ — f.f*f+E' is surjective. Morphism « is the
inclusion of a direct summand, because its composition with the canonical map f,f*f« E' — f.FE’
is the identity. Hence, « is an isomorphism. Exact sequence (20) implies that R! f, L' f* f.E' = 0.
The rest follows from Lemma 2.8. O

ProprosITION 2.10. Let f: X — Y be a proper morphism with dimension of fibers bounded by
one. Consider a decomposition for f:

Then, for E € Coh(X) with R'f.E =0, we have R'g.FE = 0. Functor g, restricts to an exact
functor g.: @y — .

Proof. Morphism ¢ is proper by the valuative criterion. Replace Z by the (closed) image of g, if
necessary. Then h becomes a proper morphism, cf. [Gro61, Corollaire 5.4.3]. As the dimension
of fibers for f is bounded by one, so is the dimension of fibers for h.

As Rf.(E) is a sheaf on Y, spectral sequence RIh,R®g.FE = RITSf.FE implies that
Rh,R'g.(E) = 0. Sheaf R'g.(FE) is supported in the locus of points z € Z such that the fiber
of morphism ¢ over z is one-dimensional. As the null category of a finite morphism is zero,
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morphism h: Z — Y restricted to the support of R'g.(FE) must have fibers of dimension one.
Let y € Y be a point in h(Supp R'g«(E)). Then the fiber of f over y is two-dimensional, which
contradicts the assumptions. Thus, R'g.(E) is zero.

For any E € </, the spectral sequence RPh,RIg,E = RPT1f,E = 0 degenerates. It follows
that g, F € @,. As ng*(E) = 0, functor g,: &/y — 27, is exact. O

ProrosiTION 2.11. Let f: X — Y be a proper morphism with dimension of fibers bounded by
one and g: Z — Y a morphism of schemes over field k. Assume a coherent sheaf E on X satisfy

R'f.E =0, for | > ly, for some ly € {0,1}. Then R'nz.n%E =0, for | > ly, where mx: W — X
and my: W — Z are the projections for W = X Xy Z:

TX

XxyZ —X

l lf (21)
A Y

Proof. The construction of X xy Z and the statement are local on Y, hence we may assume
that Y = Spec(R) is affine. Moreover, the statement is local on Z, so we may further reduce to
the case when Z = Spec(A) is affine. Hence, g: Z — Y is an affine morphism, which implies that
mx is affine.

The commutativity of (21) implies R(frx)«m%E ~ R(gnz).7%E. Morphisms g and wx are
affine, hence we have an isomorphism R fa(mxem} E) ~ g*RlWZ* (r% E), for any { > 0. Morphism
g is affine, thus g, R'm . (7% E) is zero if and only if Rlmz, (7% E) is also zero. Hence, we need to
show that le*(WX*W}E) =0, for I > lo.

Morphism 7x is affine, hence mx. 7% E ~ EF ® mx.«(Oxx, 7). The base-change morphism
(cf. (47)) f*9:0z — mx+Oxxy 7z is an isomorphism. Indeed, this can be checked locally on X:
if X = Spec(B), then both sheaves mx.Oxx, z and f*g.0Oz correspond to B-module B ®p A.
Thus,

T E ~ E® [*9.07 ~ HX(E ®" Lf*g.02).
Derived projection formula Rf.(E ®" Lf*g.0z) ~ Rf.(E) @ g.0z implies that Rf.(E ®F

Lf*9.0z) € D(Y)<lo. Morphism f is proper and with dimension of fibers bounded by one,
hence RPf,(F) =0, for p > 1 and for any sheaf F. It follows that spectral sequence

RY fHY (E @F Lf*g.07) = RPYUf(E @l Lf*g.07)
degenerates. Therefore, le*(TrX*W;(E) ~ le*Hg((E ® Lf*g.0z) =0, for I > . O

COROLLARY 2.12. Let f: X —Y and g: Z — Y be as in Proposition 2.11. For E € g/}, its
pull-back 7% E is an object in </, .

3. L'f* vanishing and 2-periodicity

Let f: X — Y satisfy assumption (d). For p = —1, 0, we denote by &, the category of locally pro-
jective objects in PPer(X/Y’). An object M belongs to &7, if there exists an affine open covering
Y = Y;, inducing X = |JX; with X; = f~1(Y;), such that M|, is projective in PPer(X;/Y;).
By [VdB04, Proposition 3.2.6] objects in &_; and & are locally free sheaves on X.

In this section we discuss a spherical couple associated to a Cartier divisor. Under the assump-
tion that Y has hypersurface singularities we prove that the sheaf L' f*f,M is zero, for any
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object M € &_;. Though technical, this result is crucial for the various description of the flop
and flop—flop functors presented in the subsequent sections.

3.1 Cartier divisors and spherical couples

Let X be a quasi-compact, quasi-separated scheme. By an effective Cartier divisor i: D — X we

mean a subscheme whose ideal sheaf Zp is invertible. Here we discuss a 2-categorical adjunction

and a spherical couple in the bicategory FM (see Appendix C) related to such a divisor.
Denote by I' € D x X, I' C X x D the graphs of i. Sheaf Or € Dy(D x X) is an FM kernel

for Riy: Dyc(D) — Dqc(X), and Opt € Dye(X x D) is an FM kernel for Li*: Dqc(X) — Dye(D).
For a scheme Y, we denote by AY C Y x Y the diagonal and, for closed Z C Y, by A%Y the

image of Z under the diagonal morphism diag? : Y — Y x Y. For F € Dye(D x Y), we have

F s Op = (i x Idy),F € Dge(X X Y). (22)

In particular,
Or * O = (Z X Idx)*Or ~ OAD,X.

Embedding APX ¢ AX gives
1n: Oax — Opap,x =~ Opt * Or. (23)
For any scheme Y, and objects F' € Dqc(X X Y), G € Dyc(Y x X), we have
F % Op Ot >~ (i x Idy)«(i x Idy)*F, Or % Opt * G >~ (Idy xi).(Idy x3)*G.
One checks locally that for F' € QCoh(X x Y) and G € QCoh(Y x X) morphisms
FoFxOux 20 FaOp s Ope ~ (i x Idy )u(i x Iy )*F ~ F @ Opyy,

G~ Opx %G 2% O % Ope + G = (Idy xi)4(Idy xi)*G ~ G ® Oyxp

are induced by restriction morphisms Oxxy — Opxy and Oyxx — Oy« p, respectively.
For any scheme Y and F' € Dy (X x Y'), we have

FxOp ~ (i x Idy)*F € Dgo(D x V). (24)
Hence,
Or‘t * Op ~ (’L X IdD)*OFt ~ (Z X IdD)*(i X IdD)*OAD € DqC(D X D)

Subscheme D x D C X x D is a Cartier divisor with ideal sheaf Zpyp. Therefore, object
(1 x Idp)*(i x Idp)«Oap has two non-zero cohomology sheaves, Oxp in degree 0 and Oxp ®
Ipxp|pxp in degree —1. Truncation to the zeroth cohomology gives morphism

e: Ope * Op ~ (i x Idp)* (i x Idp)«Oap — Oxbp (25)

Formulas (22) and (24) imply that, for any scheme Y and objects F' € Dy(D x Y) and G €
Dyc(Y x D), we have

F s Ort % Op ~ (i x Idy)*(i x Idy )« F, Orp¢ * Op * G ~ (Idy x7)*(Idy xi).G.
One checks locally along D that for F' € QCoh(D x Y) and G € QCoh(Y x D) morphisms

(i x Idy)*(i x Idy ), F ~ F % Ope % Op 225 F x Opp ~ F,

(Idy xi)*(Idy xi),G ~ Op % Op % G =% Opp G~ G

are the truncations to the zeroth cohomology.
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An early version of formula (26) in the following theorem was first proven in [BO95,
Lemma 3.3] under the assumption that both varieties are smooth. The result was also stated
without proof in [Ann07, Add16].

THEOREM 3.1. Let i: D — X be the embedding of an effective Cartier divisor. Then
(Ort,Or,n,€) is a spherical couple in the bicategory FM. Object diagPTp|p[2] is the
spherical twist and diagfID the spherical cotwist. The associated functorial exact triangles
read

Idp,.(x) ®Zp — Idp,.(x) = Ri.Li* — Idp,(x) ®Ipll], (26)

IquC(D) ®ID’D[1] — Li*Ri, 5 IquC(D) — Iquc(D) ®ID‘D[2]- (27)

Proof. First, we check that (Ort, Op,n,¢) is a 2-categorical adjunction, i.e. that (C.1) are equal
to the identity morphisms.

. . (@
As Or ~ (Idp xi)+Oap, the composite Op I, Or « Ort * Op Orse, Or reads

(IdD Xi)*OAD ﬂ (IdD Xi)*(IdD Xi)*(IdD Xi)*OAD % (IdD Xi)*OAD.

Object (Idp x7)+Oap is supported on D x D, hence the first morphism, restriction to D x D,
is the identity on the zeroth cohomology. The second morphism is the truncation at zeroth

cohomology, hence (Or ) o (n* Or) = Ido,..

O (@)
As Ot ~ (i x Idp)«Oap, the composite Or¢ e, Ort * Or x Opt oo, Ort reads

Ot % *O
(i x Idp)«Opp —o (i x Idp)«(i x Idp)*(i x Idp)«Oap it LN (i x Idp)«Opnp.
The arguments as above show that (e x Opt) o (Or¢ x 1) is the identity on Or«.
Now we calculate the twist and cotwist of the 2-categorical adjunction (Ort,Or,n,¢).
Morphism 7 in (23) is induced by the morphism Ox — Op with kernel Zp. Hence,

diagXZp — diagX Ox L diagX Op — diagXZp[1]

is an exact triangle in Dy (X x X). Thus, the cotwist equals diagXZp. Tt is an equivalence whose
inverse is diagfl’l_)l. The corresponding functorial exact triangle is (26).

Morphism ¢ in (25) is induced by the truncation to the zeroth cohomology of the object (i x
Idp)*(i x Idp)«Oap. As we noted before, (i x Idp)*(i x Idp).Oap has two non-zero cohomology
sheaves and the truncation to the zeroth cohomology yields an exact triangle

Oap @ Ipxp|lpxp[l] — (i x Idp)*(i x Idp)«Oap — Oap — Opap @ Ipxp|DxD[2]-
The twist
OAD ®ID><D‘D><D[1] = diagEID’D[l]

is an equivalence whose inverse is diag? IBI| p[—1]. The corresponding functorial exact triangle
is (27). 0

3.2 L'f* vanishing and consequences

Vanishing of L!f*f.(—) is local on Y, therefore throughout this section we assume that Y is

affine and fix a closed embedding i: Y — ) of Y as the zero locus of a regular function on a

smooth affine Y. As Y C ) is a principal Cartier divisor, the sheaf 7y is isomorphic to Oy.
The following lemma is one of the key technical points of this paper.
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LEMMA 3.2. Let f: X — Y satisfy assumption (p) and let Y = Spec R be a spectrum of a
complete Noetherian local ring with hypersurface singularities. Let further D; C X be as in
Remark 2.7. Then L' f* f.Op, ~ 0.

Proof. Let 1;: D; — X denote the embedding of D; into X. We denote by h the composite
h =ifi: D; — ). Morphism h is finite, hence h, is exact and, by Grothendieck duality (A.1),
we have

Eaty(Rh.Op,, Oy) ~ Rh.Exth, (Op,, h'Oy) ~ Rh,H}, (h'Oy). (28)

Divisor D; is Cartier in a Gorenstein scheme, hence it is Gorenstein itself. As ) is smooth and it is
the spectrum of a complete ring, we have w}, ~ Oy[n + 1]. It follows that 'Oy = h'w}[-n — 1] =
wp,[—2] is a sheaf in homological degree 2. As h, is exact, Rh*Hh(h!Oy) o~ h*’Hh(h!Oy). Hence,
by (28), we have

Exty(hOp,,0y) =0, fori+#2.

As Y is affine, Extg,(h*ODi, Oy) =0, for 7 # 2. Hence, the projective dimension of h,Op, as
an Oy module is two. In other words, h,Op, has a locally free resolution

0—-&2—E1—& — hsOp, — 0.

Denote by &£. the complex 0 — & 9 — £ 1 — & — 0. The cohomology of complex i,i*E. is
Tory(h*ODi7 Oy). As Y C Y is a Cartier divisor, Oy has a resolution of length two on Y, i.e.
the zeroth and first Tor groups only can be non-zero. As functor i, is exact, we conclude that
the morphism i*€_9 — ¢*€_1 is injective.

Morphism f is birational, hence the higher derived functors of f* are torsion. In particular,
the kernel of f*i*€_g9 — f*i*E_; is torsion, meaning zero because f*i*E_s is locally free. This
shows that morphism f*i*_o — f**€_; is also injective, thus complex E = f*i*&. has zero
cohomology except for H (€.) and H ' (E.).

Let E C X be the exceptional locus of f. Assume L' f* f,Op, # 0. Its support is contained in
E. Moreover, because L' f* f.Op, € </ (see Lemma 2.9), the support of this sheaf should contain
at least one component of the curve in the fiber over the closed point of ¥ (see Theorem D.1
for the structure of the fiber). Therefore, there exists a closed point 2z € E'\ D; in the support
of L' f*£.0p,.

By Theorem 3.1 for divisor Y in Y, object i*E. ~ Li*i, f,Op, fits into an exact triangle

[+Op,[1] — "€ — f.Op, — f.Op,[2].
By applying functor Lf* to this triangle, we obtain an exact sequence
f*1.0p, = H (E) — L' f* f.Op, — 0.

Sheaf f*f.Op, is supported on the preimage of f(D;) C Y, i.e. on the set E U D;. Let us restrict
our attention to an open affine neighbourhood it X — X of point z. The support of both sheaves
f*f+Op, and L' f* f,Op. is contained in E. Therefore, the assumptions on the exceptional locus
for f imply that H)_(l (5~ ) is a non-zero sheaf with support of some codimension [ > 1.

Let j: X — X be a closed embedding into a smooth variety of dimension m. We have wg ~

POy 27 0x ~ 0 %> hence Grothendieck duality (A.1) gives
Eaty (€., wx) = juEaty(E, Ogln —m)).

Complex E. consists of three locally free sheaves, thus Extlﬁf(g., Ox) is zero, for k > 2. It follows
that Exth (j.E.,wx) =0, for k >m —n + 2. By applying functor Hom, (—,wx) to the exact
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triangle
FHREN] = G — G HE (&) — juH (E)2],
we obtain an isomorphism
Exth (1 HX (E),wx) = Exth? (. HY(£), wx), (29)

for any k> m —mn+ 2. Sheaf j*H;(l (€~) is non-zero with support of codimension [+ m —
n>m—mn+2. It follows that sheaf Sxtl;m_"(j*H;(l (£.),wy) is non-zero with support of
codimension | +m — n, cf. [HL10, Proposition 1.1.6].

On the other hand, the codimension of the support of Sactl;mfnﬁ(j*?{g((g.),wx) is greater
than or equal to [ +m — n + 2, which contradicts (29). O

LEMMA 3.3. Let f: X — Y satisfy assumption (d) and let Y = Spec R be a spectrum of a
complete Noetherian local ring. Let further M; be the projective object in ~'Per(X/Y) as
in (17) and N; = Homx(M;, Ox) the projective object in “Per(X/Y). Then there exist exact

sequences
0— 0% - M; —Op, —0, (30)
0—N; — 0% — Op, — 0. (31)

Proof. The sheaf M; is defined as an extension
0— O;(i_l — M, 4 Ox(D;) — 0.

For any divisor D;, one can find a linearly equivalent divisor D} such that D; N D) is empty.
Indeed, let D] be a divisor as in Remark 2.7 linearly equivalent to D; which intersects C; in a
point z}, not equal to z; = D; N C;. Then D; N D} contains no closed points (as all closed points
of X lie on C), hence empty. It follows that Op,(D;) ~ Op,(D}) ~ Op, and sequence

0— Ox — Ox(D;) & Op, — 0

is exact. As Ext4(Ox, Ox) ~ 0, the snake lemma for the two top rows of the following diagram
gives the following commutative diagram in which rows and columns are exact sequences.

~

0

Op,

Op,

oy — 0% Ox

It gives exact sequence (30). By considering local homomorphisms into the structure sheaf we
obtain sequence (31). O

LEMMA 3.4. Let f: X — Y satisfy assumption (p) and assume that Y has hypersurface
singularities. Then the sheaf L' f* f,M is zero, for any M € Z_;.

Proof. The statement is local in Y, therefore we might assume that ¥ = Spec R is a spectrum
of a complete Noetherian local ring with hypersurface singularities. Then M is a direct sum of
copies of M; and Ox. Thus, it suffices to verify the lemma for M;, as clearly L' f*Oy = 0.
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As R'f,Ox ~ 0, applying Rf. to sequence (30) gives an exact sequence
0— 0y — fuiM; — f.Op, — 0.
It implies an exact sequence
0— L'f" f.M; — L' f* .Op, — O%.
By Lemma 3.2, the sheaf L' f* f,Op, is zero, hence the result. O

LEMMA 3.5. Let f: X — Y satisfy assumption (p) and let Y have hypersurface singularities.
Let N be a locally projective object in °Per(X/Y). Then f*f,. N is torsion-free and sequence

0= f*fiN =N = Q—0, (32)
is exact for the sheaf Q = Hg((Lf*L?N), which is locally projective in /.

Proof. First, we show that f*f,\ is torsion-free. This can be done locally, i.e. we may assume
that Y is a spectrum of a complete Noetherian local ring. By [VdB04, Lemma 3.5.2] sheaf A is
a direct sum of copies of Ox and N, where N; are vector bundles dual to M;.

By [VdBO04, Lemma 3.1.2], the sheaf R!f.N; is zero. By applying f. to sequence (31), we
obtain an exact sequence on Y

0— fiN; — Oy — f.Op, — 0. (33)
As f.Op, is a torsion sheaf, f,N; is non-zero. By applying f* to sequence (33), we obtain
0— L'f*f.0p, — f*f.N; — O%.

It implies that the torsion of f*f.\; is L' f*f.Op,, which is zero by Lemma 3.2. Hence, sheaf
f* [N is torsion free and the counit morphism exr: f* fuN; — N is an embedding (epr is non-
zero as under the f* - f, adjunction it corresponds to the identity endomorphism of f.\}).
The cokernel of the morphism f* f,N' — N is, by the definition of Ly, isomorphic to HS (L;ZN ),
hence Q is an object in &/;. Now let E be any object in <7;. Then E, considered as an object
in D°(X), lies in Per(X/Y), hence Ext} (N, E) ~ 0. Moreover, f* I- f, adjunction implies that
Homx (f*f«N, E) ~ 0. Thus, by applying higher derived functors of Homy(—, F) to sequence
(32), we obtain Ext (Q, E) ~ 0, which proves that Q € & is indeed a projective object. O

Remark 3.6. In the complete local case, P in formula (12) is isomorphic to Q of Lemma 3.5.
Indeed, applying ¢} to sequences (30) and (31) and using the fact that :}(Ox) ~ 0, we obtain

an isomorphism H())((L’}/\/'i) ~ H;(l(L?ODi) ~ ’H;(l(f}/\/li).

The t-structure on D°(X) with heart ~'Per(X/Y’) is obtained from the standard ¢-structure
by a tilt in the torsion pair (7_;,F_1) as in (10) and (11), see [VdB04, Lemma 3.1.2]. Hence,
for any F € D°(X), sequence

0 — Foa(Hy (F)] = Horpe,(F) = Ta(Hx (F)) = 0 (34)

is exact in Coh(X), where by 7_1(G) and F_1(G) we denote the torsion and torsion-free part,
respectively, of a coherent sheaf G with respect to the torsion pair (7_1, F_1).

PROPOSITION 3.7. Let f: X — Y satisfy assumption (p) and assume that Y has hypersurface
singularities. Let M be a projective object in ~'Per(X/Y). Then

Ho iy (Lf* foM) = f* foM.
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Proof. Lemma 3.8 implies that f*f.M is an object in Coh(X)N ~!'Per(X/Y), hence
T 1(f*fuM) = f*fuM. Moreover, L'f*fM =0 by Lemma 3.4. We conclude by
sequence (34). O

LEMMA 3.8. Let f: X — Y satisfy assumption (d) and let E be a coherent sheaf on Y. Then
f*E is an object in PPer(X/Y'), for p = —1,0. If, moreover, E is locally free and Y is affine, then
[*E is an object in &), for p = —1,0.
Proof. We have Coh(X) N%Per(X/Y) = 7Ty and Coh(X) N ~!Per(X/Y) = 7_1, for categories 7y
and 7_; defined in (8) and (10), respectively.

Let E be a coherent sheaf on Y. By Lemma 2.9, sheaf R f,f*E is zero, hence f*F is an
object in “Per(X/Y). From adjunction

Homy (f*E, Ay) ~ Homy (E, fi.Af) =~ 0,

it follows that f*F lies also in ~!Per(X/Y).
Now we assume further that E is locally free and Y is affine. Let E’ be any object in
PPer(X/Y), for p = —1,0. Then

Exty (f*E,E') ~ Ext% (Lf*E, E') ~ Exty (E, Rf.E').

Because Rf, is exact for the perverse t-structures on DP(X), object Rf,E' is a coherent sheaf on
Y. As E is locally free and Y is affine, Exti.(E, Rf.E') ~ 0, i.e. f*E is projective in PPer(X/Y).
O

Remark 3.9. For any locally free sheaf € on Y, we also have an isomorphism
Hglper(x/y)(Lf*S) = f*€. Indeed, Lf*E is isomorphic to f*E and the latter is an object in
~IPer(X/Y), by Lemma 3.8.

3.3 The equivalence of reflexive sheaves under flopping contractions
Recall that a sheaf F' is normal when, for any open sets U C V such that codimension of V' \ U
in V is greater than one, the restriction morphism F (V) — F(U) is an isomorphism.

LEMMA 3.10 [Har80, Proposition 1.6]. Let X be a normal, integral Noetherian scheme. A sheaf
F on X is reflexive if and only if it is torsion-free and normal.

For a scheme X, denote by Ref (X)) the category of reflexive sheaves.
LEMMA 3.11 (Cf. [VdB04, Lemma 4.2.1]). Let f: X — Y be a projective birational morphism,

X,Y normal Noetherian and the exceptional locus of f have codimension > 1 in X. Then the
following functors are mutually inverse equivalences:

fe: Ref(X) — Ref(Y), (f*(—))"": Ref(Y) — Ref(X).

Proof. For a torsion-free sheaf I’ on X, its push-forward f,F is also torsion-free. Thus, f,F will
be reflexive if we check that it is normal.

Let G be a torsion-free sheaf on Y which is not normal. There exist open sets j: U — V
with the complement of U in codimension greater than one in V' such that canonical morphism
G — 7.7"G is not an isomorphism. Then we have a non-trivial extension

0—-G—j4.j°G—Q— 0.

The question is local, so we can assume Y to be affine. Sheaf () is supported in codimension
greater than one, hence there exists a closed subscheme Z C Y of codimension greater than one
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such that sequence
00— K — O?k —-Q—0

is exact. As G is torsion-free, Hom(K, G) is zero. Hence, vanishing of Exti-(Oz, G) implies that
Exti (Q, G) is also zero. Thus, in order to show that a torsion-free sheaf G is normal it suffices
to check that Extl (Oz, G) vanishes, for any closed Z C Y of codimension greater than one.

Group Exty- (O, f. F) is zero if and only if morphism Hom(Oy, f.F) — Hom(Iy, f.F) given
by short exact sequence

0—I7;— 0y —0z—0

is an isomorphism. By adjunction, Homy (Iz, f.F') is isomorphic to Homx (f*Iz, F'). Exceptional
locus of f has codimension greater than one, hence f*I7 is isomorphic to Ox in codimension
one. As F is reflexive, this implies Homx (f*Iz, F)) = Homx (Ox, F).

Thus, functor f. maps reflexive sheaves on X to reflexive sheaves on Y. Clearly, the same is
true about (f*(—))VV.

Now let F' be an object in Ref (X). Adjunction implies a morphism a: (f*f.F)VV — FVV ~
F'. Both sheaves are reflexive and « is an isomorphism outside exceptional locus of f, which has
codimension greater than one. Therefore, « is an isomorphism.

For G € Ref (Y), reflexification f*G — (f*G)"Y together with adjunction G — f.f*G give
B: G — f((f*G)VY). Again, morphism £ is an isomorphism in codimension one between reflexive
sheaves, hence an isomorphism.

Finally, a morphism between reflexive sheaves is determined by its restriction to any open
set with the complement of codimension greater than one. Thus, functors f, and (f*(—))VV give
isomorphisms on the groups of morphisms between objects in Ref (X) and Ref (Y). O

Let f: X — Y satisfy assumption (a). For M an object in &_1, put
NT = (fT M)V, (35)
By Lemma 3.11, sheaf N'* belongs to Ref (X ).

PROPOSITION 3.12. Let f: X — Y satisfy assumption (a) and f*: XT —Y its flop. Then
functor

(f 7 f(=))": Ref(X) — Ref(X ™)
restricts to equivalences &_4 = @J and P = e@fl.
Proof. By [VdB04, Proposition 3.2.6], categories &_1 and &, are subcategories of Ref (X).
By [VdB04, Proposition 4.3.1], subcategories fiZ_; and f;" 2] of Ref(Y) are equivalent. By
Lemma 3.11, the subcategory (f* f. Z_1)"V of Ref (X ) corresponds to £2_1 under equivalences
Ref (X) ~ Ref (V) ~ Ref (X ), hence ;" ~ (f** f. 2_1)"V.
Exchanging the roles of f and f+, we get equivalence of ZT, with 2. O

3.4 A divisorial embedding into a smooth scheme and cohomology
We assume that Y is affine and fix a closed embedding i: Y — ) of Y as the zero locus of a
regular function on a smooth affine ). Denote g =i o f, i.e. consider the following commutative

diagram.
X
g
1IN
i
Y

4>y
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We describe objects Lg*g.M and Lg* f, N, for any M € 2_1, N € P,. First, we prove that
the sheaves g.M, g./N have short locally free resolutions.
Recall that a morphism f: X — Y is crepant if Lf*(wy) ~ wy.

LEmMA 3.13. A proper morphism f: X — Y of Gorenstein varieties is crepant if and only if
f!(Oy) ~ Ox.

Proof. As X and Y are Gorenstein, wy and wy- are, up to shift, line bundles. In particular, wy,
is a perfect complex, hence, by Lemma A.1, f!(wi/) ~ f(Oy) ® Lf*(wy ). Isomorphism wy, ~
f(wy) =~ fH(Oy) @ Lf*(wy) implies f'(Oy) ~ wy ® (Lf*(w;))~'. Hence, Lf*(wy) ~ wy if and
only f'(Oy) ~ OX. O

LEMMA 3.14. Let X, Y be Gorenstein and f: X — Y a crepant morphism satisfying assump-
tion (d). Assume Y is affine and i: Y — Y an embedding of Y as a Cartier divisor into a smooth
Y. Denote g =1io f: X — ). Then g.M and g.N, for M € Z_1, N € Py, admit locally free
resolutions of length two.

Proof. Let M be an object in &_1. As ) is affine, the length of the locally free resolution for g, M
is [ 4+ 1, for the maximal [ such that Extly(g*/\/l, Oy) is non-zero. Thus, the question is local on Y
and, by restricting to a smaller affine open subset, we can assume that wj, ~ Oy[n + 1] and wy ~
Oy [n]. Then wy ~ Ox|[n], because f is crepant. Let N' = RHomx (M, Ox) = Homx (M, Ox).
It is an object in Py, see [VAB04, Proposition 3.2.6]. As A is an object in “Per(X/Y), we have
Rg.N ~ g.N. Then we have, by Grothendieck duality (A.1),

RHomy(g:M, Oy) ~ RHomy(Rg:M,wy)[—1] ~ Rg.RHomx (M,wx)[—1] ~ g.N[-1].

Hence, ¢g,M is of projective dimension one. Analogously, for N € &, its dual M =
RHomx (N, Ox) lies in &Z_1 and RHom(g.N, Oy) ~ g.M[-1]. O

PROPOSITION 3.15. Let f: X — Y be as in Lemma 3.14. Let further p € {—1,0} and R € &,
be a projective object in PPer(X/Y’). Then the object Lg*Rg.R has cohomology

R, if 1= —1,
Hi(Lg*RgsR) = f*f.R, ifi=0,
0, otherwise.

The same cohomology is for the t-structure with heart PPer(X/Y).

Proof. As R'g,R =0, the zero cohomology of Lg*Rg.R is the sheaf ¢g*¢,R. The adjunction
counit for i: Y — Y gives an isomorphism g*g. — f*f., hence H} (Lg*Rg.R) = f*f.R.
As g, R admits a locally free resolution (see Lemma 3.14):

0—&41—& — gsR —0,

the sheaves H (Lg* Rg.R) are zero, for i < —2. Moreover, L'g*g.R is reflexive, as the kernel of
a morphism of locally free sheaves [Har80, Proposition 1.1].
Applying Lf* to exact triangle f,R[l] — Li*¢.R — f«R — f.R[2] (given by Theorem 3.1
for Y C )) implies the exact sequence
Lgf*f*R — [T iR — ng*g*'R - Llf*f*R-

As f is an isomorphism in codimension one, the sheaves L?f*f,R and L!'f*f,R have the
support of codimension at least two. As the universal map f*f,R — (f*f.R)"" is also an iso-
morphism in codimension one, the induced map (f*f.R)""Y — L'g*g.R is an isomorphism in
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codimension one. Hence, it is an isomorphism, see Lemma 3.10. It follows that L'¢*g.R ~
(f*f+R)VV. As R is locally free [VdB04, Proposition 3.2.6], (f*f.R)"Y ~ R by Lemma 3.11.
By Lemma 3.8, f*f,R is an object of PPer(X/Y). As the same holds for R € &, C
PPer(X/Y), the exact triangle R[1] — Lg*g.R — f*f«R is also the decomposition of Lg*g,R in
the t-structure with heart PPer(X/Y). O

Proposition 3.15 implies that triangle
M(1] = Lg*gM — f* M — M(2] (36)
is exact. By Lemma 3.14, object Lg*g«M is quasi-isomorphic to a complex f*F_1 — f*Fp, for
some locally free sheaves F_1, Fg on Y. Hence, sequence
0—-M— f*F 11— f"Fo— [ffiM—0 (37)
is a projective resolution for f*f,M in ~'Per(X/Y), see Lemma 3.8.
Note that short exact sequence (15) and Lemma 3.8 imply that
0— f"fiM—->M—-P[1]] -0 (38)

is a short exact sequence in ~!'Per(X/Y).

3.5 2-periodicity

PROPOSITION 3.16. Let f: X — Y satisfy assumption (d) and assume that Y C ) is a principal
divisor in a smooth affine ). Then there exists a morphism Lf* — Lf*[2] of functors Dg.(Y) —
Dye(X), which, for any E in D*(Y), is an isomorphism on almost all cohomology sheaves of

Lf*(E).

Proof. By applying Lf* to functorial exact triangle (27), we obtain a morphism Lf*FE — L f*FE|2]
with cone Lf*Li*i,E[1]. As ) is smooth, D°()) coincides with the category of perfect complexes
on Y. It follows that the functor L f*Li*i, takes D?(Y) to D?(X) (even to Perf(X)), hence, for
any E € DY), there exists | € Z such that H!(Lf*Li*i,FE) =0, for i <l. Then H'Lf*E ~
H2Lf*E, for any i < [. g

Now let f: X — Y be a crepant morphism of Gorenstein varieties satisfying assumption (p)
and assume that Y C ) is a principal divisor in a smooth ). Then 7y ~ Oy, hence composing
functorial exact triangle (27) with Lf* and precomposing with Rf, gives a functorial exact
triangle

Lf*Rf.[l] — Lg"Rg. — Lf*Rf. — Lf*Rf.[2]. (39)

Object Lg*g«M has only two non-zero cohomology sheaves described by Proposition 3.15,
for any M € &2_;. Then the long exact sequence of cohomology sheaves for triangle (39) applied
to M implies short exact sequence

0— L2f*f M — f*f M - M — 0
and isomorphisms L' f* f, M ~ L*2f* f, M, for | > 1. Hence, we have 2-periodicity

P, foreven | > 2,
0, for odd I.

Remark 3.17. From Propositions 3.16 and 3.15 it follows that
Q, forodd I >1,

0, foreven [ > 2.
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Remark 3.18. Let f: X — Y be a crepant morphism of Gorenstein varieties satisfying assump-
tion (d) such that Y C ) is a principal divisor in a smooth affine ). Using Proposition 3.15 we
construct a projective resolution

0—=N— €1 — & —ffAiN—-0 (41)

of f*f.N in "Per(X/Y). Here, £ 1 and & are locally free sheaves on Y such that Li*g. N\ is
quasi-isomorphic to £_1 — &y (see Lemma 3.14).

ProprosITION 3.19 (Cf. [DW16, Proposition 5.6]). Let f: X — Y satisfy assumption (a), M be
in #_1 and N in &,. Then there exist locally free sheaves F_1, Fo, £_1, &y on Y such that

0—-M— f*F 14— fFo—>M—=Ppm[l] =0
0N — ff61— & —N—Py—0

are projective resolutions of Papq[1] = Hy' Gy M[1] and Py = H%L}N respectively in ~1Per(X/Y)
and "Per(X/Y).

Proof. Composing resolution (37) with sequence (38) gives the projective resolution for Paq[1]
Similarly, resolution (41) and sequence (32) give projective resolution for Pys. O

4. The flop functor and Van den Bergh’s functor

Now let X, X+ and Y be quasi-projective Gorenstein varieties of dimension n such that X and
X are related by a flop over Y. We assume that Y has canonical hypersurface singularities
of multiplicity two. Note that this condition is satisfied if ¥ has dimension three and terminal
Gorenstein singularities. We assume that fibers of f have dimension bounded by one and the
exceptional locus of f has codimension greater than one in X. Then morphism fT satisfies the
same conditions.

Van den Bergh in [VdBO04] proved an equivalence of DY(X) with D’(XT) under these
assumptions.

We consider a diagram

X Xy X+
N
X Xt (42)
\ %
Y
and the flop functor
F = RpiLp*: Dge(X) — Dge(XT). (43)

In this section we give an alternative description of the flop functor and the functor X
considered in [VdBO04] under an extra assumption that Y is affine. We show that these are
inverse to each other. Keeping the assumption that Y is affine we also provide an alternative
description of the flop—flop functor

F*F = Rp, Lp** Rp: Lp*: Dge(X) — Dge(X). (44)
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We construct a functorial exact triangle relating 3, F' and the derived push-forward to a
smooth scheme ). We conclude that the flop functor induces an equivalence D°(X) — D*(X+)
and, following [Che02], show that F is an equivalence also in the case when Y is not affine.

LEMMA 4.1. Let g: X — Z be a proper surjective morphism with connected fibers. If Z is
normal, then g.Ox ~ Q.

Proof. For Stein decomposition g: X — Specy, g.Ox %7 , morphism ¢ is finite and has con-
nected fibers, hence it is birational. As a finite birational morphism onto a normal variety is an
isomorphism, ¢ is an isomorphism. It follows that ¢.Ox ~ Oz. U

Remark 4.2. We assume that X and X' are normal varieties. As morphism p is proper, sur-
jective and with connected fibers, Lemma 4.1 implies that p.Ox, x+ =~ Ox. Moreover, by
Proposition 2.11, the sheaf R'p,O xxyx+ vanishes. It follows that p satisfies assumption (d).

4.1 An alternative description of Van den Bergh’s functor
LEMMA 4.3. Let f: X — Y satisfy assumption (d), Y affine and My, My objects in &, for
p = —1 or 0. Then Ext% (M, M3) =0, fori > 1.

Proof. By [VdB04, Proposition 3.2.6], objects in 27, are vector bundles on X. Hence,
Ext' (M1, M3) ~ 0, for i > 0. As morphism f has fibers of dimension bounded by one, the local-
to-global spectral sequence implies that Ext’(My, My) ~ HO(Y, R f,Hom (M3, M3)) vanishes,
for i > 1. Group Ext (M, M) is isomorphic to Extéper(x/y) (M7, M3), hence also zero, as
M is an object of &),. O

Let &2 C B be a full subcategory of an abelian category closed under extensions. Denote by
Hotg’b(,@) the homotopy category of bounded above complexes of objects in & with bounded
cohomology in B. We use the notation Hot_’b(@) when the category B is clear from the context.
Denote by Hot_’b(ﬁ?’)gl the full subcategory of complexes with non-zero cohomology in degree
up to [. Denote by Hot™ () the category of bounded above complexes of objects in & without
any constraint on cohomology. Finally, denote by Hotb(@) the full subcategory of bounded
complexes in Hot™?(Z?). Categories Hot *(#), Hot™ () and Hot?(Z) are triangulated by
[Nee90]. If &7 is the category of projective objects in PPer(X/Y’), for p = —1,0, then we use the
above notation for the embedding &7, C Coh(X).

Assume that morphism f: X — Y satisfies assumption (a). As PPer(X/Y’) has enough pro-
jective objects, for p= —1 or 0, category D’(PPer(X/Y)) is equivalent to Hot™*(Z,), see
[GMO03, Theorem II1.5.21].

PROPOSITION 4.4. Let f: X — Y satisfy assumption (d) and Y affine. Then categories D°(X)
and D°(PPer(X/Y)) are equivalent, for p= —1 or 0.

Proof. As objects in &2, are coherent sheaves on X, we have a functor ©: Hot~*(2,) — D(X).
There exists Ny such that Ext% (P,C) =0, for any P € &2, and C € PPer(X/Y) and ¢ > No.
Indeed, C' has non-zero cohomology sheaves in degrees —1 and 0 only, and objects in &7,
are locally free sheaves on X (see [VdB04, Proposition 3.2.6]). Then Proposition E.4 implies
that cohomology groups of complex [] j—i—p Homx (A%, B7) are isomorphic to Homy (A", B"), for
any A", B € Hot *(2,) (see Lemma 4.3). Hence, Hom (A", B") ~ Homyyoi -5, (A", B), Le.
© is fully faithful. It is essentially surjective, because PPer(X/Y) is the heart of a bounded
t-structure. U
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By Proposition 3.12, functor
o= (f7 L (=D P = 25 (45)
is fully faithful. Denote by
¥: Hot™(2_1) — Hot™ () (46)

the functor obtained by applying ¥, term-wise to complexes of objects of &_;.

THEOREM 4.5. Let f: X — Y satisfy assumption (a) and f*: X+ — Y be the flop of f. Then
functor ¥ induces an equivalence between D°(X) and D°(X ™).

Proof. Lemma 3.11 implies that functor

T = (ffE N 2 — 2
is the inverse of X,. Let us extend it term-wise to a functor

T: Hot™*(#) — Hot™ (2_,).

Proposition 3.12 implies that Y. and T are inverse equivalences between &_; and @J . Hence,
they are also inverse equivalences between Hot™(Z7_1) and Hot™ (). By Proposition 4.4, we
have D¥(X) ~ Hot™*(#_1) and D°(X*) ~ Hot (). Thus, it suffices to show that ¥ takes
Hot ~%(#_1) to Hot~*(2) and T takes Hot~*(Z;") to Hot~*(Z_1).

Let E be in Hot™*(#_1) and assume that X(FE) has unbounded cohomology. If cohomology
of 3(F) is unbounded with respect to the standard t-structure it is also unbounded with respect
to the t-structure with heart “Per(X*/Y), because these two t-structures are related by a tilt.
Let Nt be the projective generator of “Per(X*/Y). Then dimy Hom'y, (N, X(E)) is infinite.
By adjunction of inverse functors, we have that dimy Hom'y (T'(N'"), F) is infinite. As T,(N") is
in &_1, it contradicts the boundedness of the cohomology of E with respect to the t-structure
with heart ~'Per(X/Y’). Analogously, T takes Hot™*(2;) to Hot ~*(Z_y). O

Let us show that Theorem 4.5 may be considered as a write-up of Van den Bergh’s theorem.

Let f: X — Y satisfy assumption (a). As f has fibers of dimension bounded by one, [VdB04,
Lemma 3.2.2] implies that for an f-ample line bundle £ both £ ® Ox and Ox & L~! are compact
generators of Dyc(X). It follows that both the projective generator M = @ M, of ~'Per(X/Y)
(defined as in Remark 2.7) and N = Hom(M, Ox) of “Per(X/Y) (see Remark 2.6) are com-
pact generators of the category Dqc(X). Analogous result holds for projective generators for
“1Per(X+/Y) and "Per(XF/Y).

As (fT* fo(=))VV restricts to an equivalence &_; — 2", Proposition 3.12, N'" (as in (35))
is a projective generator for “Per(X*/Y) and the endomorphisms algebras of M and N'T are
isomorphic.

Moreover, by Lemma 4.3, both M and N* have no higher self Ext groups. Hence, by the
result of Keller [Kel06] both Dy (X) and Dqc(X ) are equivalent to the derived category of DG
modules over the algebra A = Homx (M, M), cf. [BVABO03]. Denote by

Zact Dae(X) = Dge(XT)
the resulting equivalence.

PROPOSITION 4.6. Let f: X — Y satisfy assumption (a). Functor Xqc|ps(x : Db(X) — D(XT)
is an equivalence that takes ~'Per(X/Y) to Per(X*/Y), and it coincides with Van den Bergh’s
equivalence in [VdBO04, Theorem 4.4.2].
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Proof. Category Hotf’b(ﬁz_l) is a subcategory of the homotopy category of complexes of pro-
jective A-modules; it consists of bounded above complexes. As ¥, as in (45) maps projective
generator for ~'Per(X/Y) to the projective generator for “Per(X*/Y), we have Sq|s , =
3. We conclude that > = EqC’HOt—,b(gzil) is the equivalence defined by Van den Bergh in
[VdBO04, Theorem 4.4.2]. O

Categories &y and le are also equivalent. We can thus analogously construct an
equivalence Y : DP(X) — DP(X ) that takes “Per(X/Y) to ~*Per(XT/Y).

4.2 An alternative description of the flop functor
Consider diagram (42). The counit of f* 4 f, adjunction

f*f* —Id

gives a morphism
P =D

Isomorphism p* f* ~ p** f™* and p*™™* - pJ adjunction lead to a base-change morphism

Note that the morphism € is, by definition, the composition
e f¥ e — i e — plp” (48)

Analogous argument gives a derived base change
€ Lf™Rf. — Rp] Lp*. (49)
LEMMA 4.7. Let f satisfy assumption (a) and M be an object in _1. Then epq: f* fuM —
pip* M is an isomorphism.

Proof. As M is locally free [VdB04, Propostion 3.2.6], applying p* to sequence (15) we obtain
an exact sequence

0—pP—=p f fiM—p"M—0
on X xy X7T. Sheaf P is in o7, hence Proposition 2.11 implies an isomorphism
pip*f* foM = plp M.

As diagram (42) is commutative, pfp*f*fuM ~pfp™* fT* fuM. Isomorphism f**f M ~
fH*fFNT (see Proposition 3.12) together with Lemma 3.5 implies that f** f, M is torsion-free.
Moreover, by Remark 4.2, RpfOx, x+ = Ox+. Thus, conditions of Lemma 2.8 are satisfied

and we have an isomorphism f*f,M = pfp™*fT* f, M. Hence, erq is a composite of two
isomorphisms in (48). O

PROPOSITION 4.8. Let f satisfy assumption (a). Then the flop functor RpJ Lp* on &_; is
isomorphic to the non-derived flop functor p}p*.

Proof. Every object in &_; locally free, [VdB04, Propostion 3.2.6], hence Lp*|»_, ~p*|4_,.
Moreover, because R'f.Z_ 1 ~0, [VdB04, Lemma 3.1.2] Proposition 2.11 implies that
'pip* Py ~0. 0
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We define functor
fH* fo: Hot=%(2_1) — Hot™ (f Y f,. 2_1)

term-wise. We use the same notation for the composite of the above functor with the canonical
functor Hot™ (f** f. Z_1) — D~ (X ™). Also term-wise, we define a functor

pip*: Hot™%(2_)) - D~ (X).

LEMMA 4.9. Let f satisfy assumption (a). Then the functor f**f, maps Hot™%(Z_1) to
DP(X ). The functor f*f, maps Hot~?(Z_1) to D*(X).

Proof. The i* H i, adjunction counit induces an isomorphism ¢™*g, — f**f.. Hence, it is enough
to show that the term-wise extension of g**g, maps Hot™*(Z_1) to D*(X™).

Functor Rg, preserves the bounded derived category of coherent sheaves, because g is
proper, and so does Lgt*, because ) is smooth. Hence, for P* in Hot™*(Z_;) ~ D’(X) (see
Proposition 4.4), Lgt*Rg.(P°) is an object in D*(X*+). For P € &1, we denote by Pt =
(fT*f.P)"V the corresponding object in & (see Proposition 3.12). As fPT = f.P and
g PT = g,P, Proposition 3.15 for ¢g*, f and P" instead of g, f and R, implies that the first
sheet of the spectral sequence EY'? = H%, (Lg™*g.P?) = H?;er(Lng*Rg*P') has two non-zero
rOwWS:

ByY = frfipte = gtrgiPte = gtrg. P, By = PR

By Theorem 4.5, the complex P** is in Hotf’b(@gr ), hence cohomology of the -1st row is
bounded: Eév e 0, for N < Np. The spectral sequence implies that, for sufficiently negative
N, HY (g7 g.P*) = EY* = B = MY (Lgt*g.P*) = 0, i.e. gT*g.(P*) € DY(X ).

The proof of the boundedness for f*f.(P®) = g*g.(P®) is similar with the use of
Proposition 3.15 for M instead of N'T. O

PROPOSITION 4.10. Let f satisfy assumption (a). Then functors f+* f, and p}p* are isomorphic
on the category Hot™*(_1). They are also isomorphic to the flop functor restricted to D°(X)
under the equivalence D?(X) ~ Hot™*(%_,).

Proof. Proposition 4.8 implies that the canonical morphism pp*|%_, — Rpip*|»_, is an iso-
morphism. All objects in &_; are locally free [VdB04, Propostion 3.2.6], hence canonical
morphism Rp; Lp*|%_, — Rpip*|#_, is also an isomorphism. This implies isomorphism of
pip*|»_, and RpfLp*|s._,.

Lemma 4.7 assures that the base change exq: f7* fuM — pf p* M is an isomorphism, for all
Me P_;4.

Thus, all three functors are isomorphic on &?_;. Induction on triangles shows that the
isomorphism extends to Hotb(,@_l). By Lemmas 4.9 and 4.11, they are also isomorphic on
HOt_’b(gfl). O

In the proof of Proposition 4.10 we use the fact that in order to check that a natural trans-
formation gives an isomorphism of two functors defined on Hot ~°(%2_,), it suffices to check that
it gives an isomorphism of the functors restricted to Hot?(42_1), which we prove now.

LEMMA 4.11. Let A, B be abelian categories, & C B a full subcategory closed under extensions
and F,G: Hotg’b(e@) — D~ (A) exact functors. Assume there exists ng such that both F and

G map Hotg’b(ﬁ)@ to D~(A)S™ and that the image of either F' or G is contained in D°(A).
Let k: F\Hot%(y) — G|H3t%(y) be an isomorphism of functors. Then k admits an extension to a
functorial isomorphism k: F — G.
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Proof. Let E be an object in Hotf’b(@). We denote by o>, F the ‘stupid’ truncation:

E', ifi>k,
0, otherwise.

oxk(E) = {

~

Morphism o3 F — E induces isomorphisms 75, F(0xE) = TomF(E), T>mG(oxE) —
T>mG(E), for any m € Z, and | < m — ng. We have
T}mF(E) ~ T}mF(O—QlE) ~ T>mG(0'>lE) ~ T>mG(E), (50)

for any [ < m — ng. Let us assume that F(E) is an object in D(A). There exists N such that
morphism F(E) — 75, F(E) is an isomorphism, for any m < N. Thus, isomorphisms (50) imply
that G(F) is also an object in D?(.A). We define % as the composite of isomorphisms

T)m”ﬂU}lE

F(E) = tomF(E) = TomF (05 E) ————— momG(03E) — 75,,G(E) — G(E),

for any m < N and [ <m —ng. As k is a natural transformation, 7>mko., B ~ To>mko. , E, for
any [,I' < m — ng. Hence, 5 does not depend on the choice of m < N and I < m — ny. O

4.3 A functorial exact triangle of functors Dgc(X) — Dge(XT)
Assume that f: X — Y satisfies assumption (a), i.e. there exists a closed embedding i: Y — Y,
for a smooth Y of dimension n + 1. Then, X Xy Xt ~ X x5 X, ie. diagram

X XyX+

PR
X Xt
\ %
Yy
is fibered.

Recall, that we denote by F = Rp; Lp* the flop functor and by ¥: Hot™*(#_;) — DV(X)
the term-wise extension of ¥, = (f* fu(=))VV: Z_1 — 2.

(51)

LEMMA 4.12. Let f: X — Y satisfy assumption (a). Functors Rf}Y, Rf.: Hot™*(2_;) —
Db(Y) are isomorphic.

Proof. Consider morphism «: fi|o_, — fi¥,|2_, defined as the composite

fo Mo g g, UL (g (W) = fS,

for the unit n of f™* - f;F adjunction and the reflexification 3: (=) — (—)vV. Lemma 3.11 implies
that « is an isomorphism of functors (see Lemma 4.11).

Morphism « yields morphism o~ : f; — (fX) of the term-wise extension of functors
felz_, and fF¥,|»_, to the category Hot™°(Z_;). As « is an isomorphism, the same is true
about .

Now let E be an object in D?(X). It is isomorphic to a complex P. in Hot*(#_;). The first
layer of spectral sequence

E,,=RPf.Py= RPTIf.E
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has only one non-zero row. Hence, complex f,P. is isomorphic to Rf,E. Analogously, because
Yo(P_1) = P, complex fF¥(P.) is isomorphic to Rf;}FY E. Thus, o~ induces an isomorphism
of Rf, and Rf}Y. O

PROPOSITION 4.13. Let f: X — Y satisfy assumption (a) and let ¥, be as in Proposition 4.6.
The derived base change € induces a functorial exact triangle of functors Dqc(X) — Dge(X T):

Seell] = LgT Rge S F — See[2]-

Proof. We have already seen in §4.1 that there exists a choice of compact generators M and
N of Dye(X) and Dy (X 1), respectively, such that Dge(X) ~ D(Mod-A) ~ D (X ), for an
algebra A = Homx (M, M) (see Lemma 4.3). Under these equivalences, functor ¥ is given by
algebra A considered as an A°P? ® A bimodule.

Appendix C, allows us to lift the base change Lg**Rg., — Rp}Lp* to a l-morphism in
Bimod. It induces a functorial exact triangle

Y — Lg™Rg. — Rpf Lp* — Y/[1]. (52)

Let us show that functors ¥'|»_, and ¥,[1]|»_, are isomorphic. To this end, we consider
an object M in Z_;. By Proposition 3.12, object N7 := (fT* f.(M))VV lies in 2. Thus,
Proposition 3.15 yields an exact triangle

NT[1] = Lg™ RgINT — fTfINT — NT[2]. (53)

By Lemma 3.11, we have ffN™* ~ f, M, hence gf N ' ~ g.M. Proposition 4.10 assures that
[ fiM ~ F(M), hence triangle (53) reads

So(M)[1] = Lg™* RgM — F(M) — Eo(M)[2]. (54)

There exists a morphism from triangle (54) to triangle (52) applied to M which is equal to the
identity morphism on Lg™*g, M and on F(M) = Rp} Lp* M. Indeed, the map Lg*t*Rg.M —
F(M) in (54) is the composite

Lg**Rg.M Z% £ .M S plp M S Rpf Lp* M

of the truncation 7>, which in this case is taking the zeroth cohomology, followed by the base-
change isomorphism (see Proposition 4.10) and then by the isomorphism p; p*M ~ Rp} Lp* M
(see Proposition 4.8). Note that, under the isomorphism f* f, ~ g™*g, of functors Coh(X) —
Coh(X™), induced by the i* i, adjunction counit, the base change f1*f. — pfp* corre-
sponds to the base change g**g. — p/p*. On the other hand, the map Lg**Rg, — Rp} Lp*
in (52) is the (derived) base change. For the degree reason (as Rpj Lp*M is a sheaf by
Proposition 4.8), the derived base change for M factors via H°(Lg**Rg,M). The existence
of the desired morphism of triangles follows from the fact that the restriction of the derived base
change to zeroth cohomology is the non-derived base change. Thus, for any M in &?_q, there
exists an isomorphism apg: Xo(M)[1] — X' (M). It is unique, as Homy+(X,(M)[1],
F(M)[-1]) = Ext 2 (W, fH*fFNT) = 0 (for degree reasons). Morphism ay when composed
with /(M) — Lg*t*Rg.«(M) is equal to B4, for a morphism 3 = n¥,: X,[1] — Lg™*Rg.. Here,
n: 1d[1] — g™ Rg}[1] ~ L¢g™*Rg} is the adjunction unit (we use Rgf ¥, ~ Rg. which
follows from Lemma 4.12).
For any M, M € &#_1 and ¢: M — My, both compositions

¥ (p)
—_—

S (M)[1] = 5 (M) 1] 2 S(My),  S(M)[1] 24 5 (M) (M)
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fit into the following commuting diagram.
FMy)[-1] —— ¥(My1) —— Lg**Rg.(My)
F(e)[-1] T T T Lg™* Ry« ()
FM)[-1] — Zo(M)[1] —— Lg*"*Rg.(M)

As both Hom y+ (3, (M)[1], F(M1)) and Homx+ (X,(M)[1], F(M;7)][—1]) vanish (also for degree
reasons), we have X/(¢)oar = apr, 0 Xo(p)[1], i.e. a extends to a morphism of functors
a: Yo[1]|e_, — ¥'|2_,. Moreover, any ¢ in Hom x+(X,(M)[1], X,(M1)[1]) ~ Homyx (M, M)
uniquely determines ¢: X/(M) — X/(M;). Similarly, as Homy(X'(M), F(M;)) =0 =
Homy+ (X' (M), F(M;)[-1]), any 7 € Homy+(X'(M),¥'(M;)) determines 7: X,(M)[1] —
¥o(M1)[1]. Thus, morphism «: Homy+ (X,(M)[1], o(M1)[1]) — Homx+ (X' (M), %/ (My)) is
a bijection. It follows that « is an isomorphism of functors a: %,[1]| 5, — X'| 5., .

Lemma 4.3 implies that Dy.(X) ~ D(Mod-A), for an algebra A. Furthermore, by definition,
functor ¥ is isomorphic to the bimodule functor ®4, for A considered as A°? @ A bimodule.
By construction (via an exact triangle), ¥ is also a bimodule functor. Thus, assumptions of

Lemma C.12 are satisfied and we conclude that ¥'[—1] ~ X.. Hence, functorial exact triangle
(52) reads

Yqe[l] = LgT* Ry, — F — Sc[2). O
COROLLARY 4.14. Let f: X — Y satisfy assumption (p). The flop functor F takes D*(X) to
Db(XT).

Proof. The statement is local in Y, therefore we can assume that morphism f satisfies assump-
tion (a). As both Lg**Rg. and ¥ take D’(X) to D’(X*) (see Theorem 4.5), the functorial
exact triangle of Proposition 4.13 implies that the flop functor F' takes D°(X) to DY(XT). O

4.4 An alternative description of the flop—flop functor
We show that F*F on category Hot™?(2_1) is isomorphic to f*f,. First, we show vanishing of
higher inverse images of projective objects in .7y and then extend Proposition 4.8 to the sheaf

RN

LEMMA 4.15. Let f: X — Y satisfy assumption (a) and P be projective in «/;. Then L'p*P = 0,
for j = 2.

Proof. The statement is local in X, in particular in Y. Therefore, we can assume that f satisfies
assumption (c) and P is a direct sum of copies of P; as in (19).
Consider the counit Lg*g.M; — M; of the Lg* 4 Rg, adjunction. It gives an exact triangle

Lg* g M; — M; — SMz — Lg*g*/\/{i[l]. (55)
Applying functor Lp* to it yields an exact triangle on X xy X*:
L(p*g")gM;i — p"M;i — Lp*Sp, — L(p"g") g Mi[1].

Lemma 3.14 implies that L7 (p*g*)g.M; = 0, for j > 2. Thus, L/p*Sy, = 0, for j > 2.
Proposition 3.15, the long exact sequence of cohomology associated to triangle (55) and
sequence (15) imply that Sy, has two non-zero cohomology sheaves:

M;[2] = Sy, = Pill] — M;[3].
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By applying Lp* and looking at the cohomology sheaves of the obtained triangle, we obtain an
isomorphism Lip*P; ~ LIH1p*Sy,. ~ 0, for j > 3, and an exact sequence

0 — L*p*P; — p*M; — L?p*Sn, — L'p*P; — 0.
Sheaf L?p*P; is supported on the exceptional divisor of p, hence it is torsion. As p*M; is locally
free, L?p*P; = 0. O

LEMMA 4.16. Let f: X — Y satisfy assumption (a). Then, for any N € &, the pullbacks of
N and Mt = (fT* fLN)VV fit into the short exact sequence

0—pt*" MY = p"N — Lipt*(fHfim*) =0 (56)
on X xy XT.
Proof. By Proposition 3.15, we have an exact triangle
N1 = Lg*gN — f LN — N2 (57)
By applying Lp* to (57), we obtain an exact triangle
Ly N1] — L(p*g*)g:N — Lp*(f* fuN) — Lp*N2). (58)

As g.N has a locally free resolution of length two (see Lemma 3.14), L%(p*g*)g.N = 0. The long
exact sequence of cohomology for triangle (58) implies the exact sequence

0— L*p*(f*fiN) = p*N — L' (p*g*)gN — L'p*(f* fN) — 0. (59)

As N is locally free, L>%p*N = 0. Hence, by applying Lp* to sequence (32), we obtain iso-
morphisms L3p*Q ~ L?p*(f*f.N) and L?p*Q ~ L'p*(f*f.N), where Q = H%(Lf*L}J\/) is a
projective object in 7. In view of Lemma 4.15, sequence (59) is reduced to an isomorphism
PN = LN p*g*)g.N.

Let M* = (f**f.N)VV be an object in £7,. Proposition 3.12 implies that ff M* ~ f. N,
hence g M™ ~ g, N. As diagram (51) commutes, we have

PN ~ L' (p*g*)g.N ~ L' (p**g ™) gf M*. (60)

By applying Lp*™* to sequence (36), we obtain an exact sequence
0 — Lp™*(fTfIMF) = P MF — L pTg™)gt MT — Lip™(ffIMT) — 0. (61)
Now consider sequence (15) with f*, M™ and Pt instead of f, M and P. Apply functor Lp**

to it. Then Lemma 4.15 for f*, p* and P instead of f,p and P, implies that L2p™*(fT* fF M™)
~ 0. Hence, sequence (61) can be rewritten as

0 — p™MF = LY pTg™)giMT — Lip™ (F7 fFMT) — 0. (62)
Sequence (62) together with isomorphism (60) imply that (56) is exact. O

PROPOSITION 4.17. Let f satisfy assumption (a). Then flop functor Rp}Lp* on category
f*f« Py is isomorphic to the non-derived flop functor pp*.

Proof. In view of Lemma 4.15, Lip*Q ~ 0, for any Q projective in o/ and any j > 2. As any
object N in & is locally free [VdB04, Proposition 3.2.6], by applying Lp* to sequence (32),
we obtain an isomorphism Lp* f* f, N ~ p* f* fLN. As diagram (42) commutes, the latter sheaf
is isomorphic to p™* f** f, /. Lemma 2.8 implies that R'p}p™*(E) ~ 0, for any sheaf F on X .
Thus, Rpfp™ f** fN = plp™* f fN = pfp* f* fN. O
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Base change € given by (47) and an analogous et : f*f.r — p,p*™ together with the adjunction
unit /7 Id — ffT* give €1 f*f. — p.pT*pip* which is the composite

A0 )e

- * f+ » N —+*

g pr e T pepr e g S gt e g BT ity (63)
PROPOSITION 4.18. Let f satisfy assumption (a). Morphism € is an isomorphism on the category
Hot=*(2_,).

Proof. We check that, for any M € &_1, the map €, is a composition of three isomorphisms.
Take N := (ft* fu M)V asin (35). In view of Lemma 3.11, fu M ~ fFN*. Then Lemma 2.9
implies that morphism n}c:M : feM — fF fT* f. M is an isomorphism, hence so is f*n/ * fron M.

Natural transformation et is the composite of the adjunction unit n? and the counit &/ " as
n (48). We check that both maps

f

n° +
* * P feM * px *
P IR M ———= pp" [* [T [T fM,

4k ptk ot ptx p*p+*€;i*f*/\/l sk pak

p«p f d ST IM ————— pp T [T M
are isomorphisms. As f*frft* f,M ~ f*f, M, morphism n?*f*er*f M
and only if 17?* FuM is also an isomorphism. Object N * satisfies R'fF Nt =0, hence, by
Proposition 2.11, Rlp,pT™*N*t = 0. As, by Lemma 2.8, Rip,p*M = 0, for i > 1, applying Rp. to
sequence (56) with the roles of f and f* exchanged gives R'p,L'p*(f* fiM) ~ Rlp,pT* N+t = 0.
Then, short exact sequence (20), for £ = f* f, M and p instead of f, implies that the adjunction
unit n?*f*/\/l: f*foM = pop*(f* fM) is an isomorphism.

+

is an isomorphism if

By the definition of the adjunction, morphism el fits into the following commutative

[ fuM
triangle.
L TRETEM
AR Y
[ fM [ fM
We have already seen that n}ch is an isomorphism, hence the same is true about f**n}ch. As,

clearly, Id g+« ¢, o4 is an isomorphism, so is the third morphism in the triangle aﬁ* M

Finally, by Lemma 4.7, exq: fT foM — pfp* M is an isomorphism, hence so is p.p™*epq.

Thus, for any M € Z_1, we have an isomorphism f* f, M — p.p™*p] p* M. By induction on
triangles, the isomorphism extends to Hotb(@_l). Lemmas 4.9 and 4.11 imply that base change
€ is an isomorphism on Hot™%(22_;). O

PROPOSITION 4.19. Let f: X — Y satisfy assumption (a). The flop—flop functor F' F restricted

to DY(X) is isomorphic to term-wise functor f*f, on the category Hot™?(7_,) under the
equivalence Hot™*(2_,) ~ Db(X).

Proof. In view of Proposition 4.18, it suffices to check that functors p.p™*pSp* and
Rp.Lp**Rp} Lp* are isomorphic on Hot™?(#_;). By Proposition 4.8, we have an isomorphism
RpfLp* M ~ pfp* M, for any M € &_,. Proposition 4.10 implies that p]p*M ~ f*f M,
hence Rp,Lp™*pp* M ~ p,p™*plp* M by Proposition 4.8. By induction on triangles, we have
an isomorphism on Hot’(#_;). We conclude by Lemma 4.11. O
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4.5 The flop functor as the inverse of Van den Bergh’s functor

We show that the flop functor F*: D(X*) — D’(X) and functor ¥ are inverse to each other.
In view of Theorem 4.5, this statement is equivalent to the flop functor F'™ being isomorphic to
the term-wise functor 7' = (f*f;F(—))VV.

PROPOSITION 4.20. Let f: X — Y satisfy assumption (a). The flop functor is isomorphic to
(fT*f(=))VV as a functor Py — P7|.

Proof. Let N be an object in &y and M™ = (f+* fLN)VV its image under the equivalences of
Lemma 3.11. Lemma 2.9 and Proposition 4.18 give isomorphisms

pip I ME = ptp Tt pt pp MY = plptpp M = fH M

Thus, sequence (20) implies that Rpf (L'p™* f+* ff MT) ~ 0. Moreover, we have Rpf p™* MT ~
M. Hence, by applying Rp; to sequence (56), we obtain

Rpp*N ~ Rpfp™* M* ~ M*.

Hence, the flop functor takes A" to M.

Let enr: fT*fu N — pfp* N =~ M™ be the base change. As fuN ~ frM™ we have ft* f,N ~
fHfEMT. The kernel of reflexification f*frM™ — (fr*fFMT)VY ~ M* is torsion and
pT*p N =~ MT is torsion-free, hence, by applying functor Homx+(—, p™*p./') to sequence (15)
with f and M replaced by f* and M™, we obtain an isomorphism Homy+(M™, pT*p, N) ~
Homy+ (fT* fF M p™*p, N). Tt follows that ey factors uniquely via a morphism epr: M ~
(fT* fLN)YY — pfp* N which is easily checked to be functorial. Thus, there exists a morphism
& (fT f(=)VY — pfp*(—) of functors.

Objects of &y and 27, are reflexive on X and X, hence any morphism N7 — N (and
./\/lir — ./\/l; ) is determined by its restrictions to any open set with the complement of codimen-
sion greater than one. In particular, by its restriction to the complement U C X of the exceptional
set of f (and f%). Flop functor is RpJ Lp* and the other functor is (f™* f.(—))"". Then, tak-
ing into account that maps f, fT, p and p' are isomorphisms outside the exceptional sets
and (ff)"'o f=ptop~! on U, the morphism Homy (N7, Na) — Homy+(M], MF) induced
by the flop functor F' coincides with the morphism given by (f*f.(—))"V. It follows that € is
an isomorphism of functors. ([l

THEOREM 4.21. Let f: X — Y satisfy assumption (a). The flop functor F takes “Per(X/Y) to
~'Per(X*/Y). It is isomorphic to ¥/ in the category of bimodule functors Dgc(X) — Dgc(XT).

Proof. The same argument as in the proof of Proposition 4.6 shows that Eacl is the term-wise
extension of (f*f.(=))"V to the category Hot™*(Z). Proposition 4.20 implies that F|gz, ~
Eacl‘y()'

Categories Dgc(X) and Dy (XT) have compact generators N € Py and MT =
(fT*fN)VY € P27, For algebras Ax = Homx (N, N) and Ax+ = Homy+(MT, MT), we have
equivalences Dqc(X) ~ D(Mod-Ax), Dye(X ) ~ D(Mod-Ax+). By construction, functor Egcl is
isomorphic to a bimodule functor ®,y,, for some A ® Ay+ DG bimodule M, see Appendix C.
Similarly, the flop functor F' is isomorphic to ®,s, for some DG bimodule M;. More-
over, from the construction of E;CI, it follows that H’(M;) =0, for i # 0 (see the discussion
before Proposition 4.6). By Lemma C.12, isomorphism F| gz, ~ E(;Cl\ 2, implies an isomorphism
F~ Eacl. O

As an immediate consequence of Theorems 4.5 and 4.21 we obtain the following corollary.
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COROLLARY 4.22. Let f: X — Y satisfy assumption (a). Then the flop functor F induces an
equivalence of D°(X) with D°(X ™).

In view of Proposition 4.13 and Theorem 4.21 we have a functorial exact triangle of functors
Dge(X) = Dge(XT)
(FH)"'[1] = Lg™Rg, — F — (F*)7'[2]. (64)

Moreover, it restricts to a functorial exact triangle of functors D°(X) — D(X ).

COROLLARY 4.23. Let f: X — Y satisfy assumption (a). The flop functor F': D*(X) — D°(X™)
is t-exact when D?(X) is endowed with the t-structure with heart PPer(X/Y) and D?(X*) with
the t-structure with heart P~ *Per(X " /Y'). Moreover, F induces an equivalence of oy with </y+ [1].

Proof. As Rf;} o F ~ Rf. and, by Theorem 4.21, functor F takes "Per(X/Y) to ~'Per(X*/Y),
the flop F' induces an equivalence of &y C "Per(X/Y) with &+ [1] C ~'Per(X*/Y).

Category PPer(X/Y) is defined by two conditions; we require that Rf.FE is a pure sheaf, for
any E € PPer(X/Y), and that @/f[—p|] C PPer(X/Y). It follows from the properties of F' that
F(PPer(X/Y)) C P~'Per(X*+/Y). As F is an equivalence, both categories are hearts of bounded
t-structures on DP(X ). It follows that F(PPer(X/Y)) =P~ Per(X*/Y). O

COROLLARY 4.24. Let morphism f: X — Y satisfy assumption (a). Then categories D*(X) and
Db(PPer(X/Y)) are equivalent, for p € Z.

Proof. Corollary 4.23 implies that, for any p € Z, category PPer(X/Y) is equivalent either
to "Per(X/Y) or to ~'Per(X/Y). Hence, D’(PPer(X/Y)) ~ D*(?Per(X/Y)), for q € {—1,0},
¢ = p mod 2. By Proposition 4.4, the latter category is equivalent to D’(X), which finishes
the proof. O

Let f: X — Y satisfy assumption (a). Proposition 2.11 implies that Rp.Ox, x+ =
Ox. Thus, commutativity of diagram (42) yields isomorphisms FT o Lf™ ~ Rp,Lp™ Lf** ~
Rp.Lp*Lf* ~ Lf*. Hence, also F" o Lg™™* ~ Lg*. Composing triangle (64) with F'* leads to a
functorial exact triangle of functors Dyc(X) — Dye(X):

Idp,.(x)[1] = Lg"Rg. — F'F — Idp, (x)[2]. (65)

4.6 Reduction to the affine case

We have shown with Corollary 4.22 that, if a morphism f: X — Y satisfies assumption (a), then

the flop functor F' is an equivalence of D°(X) with D’(X ). Now, following [Che02], we show

that the flop functor is also an equivalence, provided morphism f satisfies assumption (p).
Note that the condition on Y to have hypersurface singularities means that completions of

the local rings at all closed points of Y are defined by one equation in regular complete local

rings.

LEMMA 4.25. Let Y be an irreducible variety of dimension n with hypersurface singularities.
Then it has a finite open covering by affine subvarieties Y; such that every Y; admits a closed
embedding as a principal divisor into a smooth affine ).

For the reader’s convenience, we give the proof of this statement.

Proof. Let y € Y be a closed point. As Zariski topology is quasi-compact, it is enough to show the
existence of an affine open neighbourhood of y which admits a closed embedding into a smooth
affine ) of dimension n + 1. As the statement is local, we can assume that Y is affine. Then Y
is realised as a closed subscheme in A". We can assume that m > n + 1, because otherwise the
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proof is obvious. Let A™ C P™ be the compactification to a projective space and Y C P™ the
closure of Y in P™.

As Y has hypersurface singularities, the Zariski tangent space at point y € Y has dimension
< n + 1. Tt follows that we can choose a point z in P™ \ Y such that the line (2y) C P™ does not
contain any point of Y except for y and is not tangent to Y at y.

Denote by Y7 the image of Y under the projection p:P™ — P™~! with centre in z. By
the choice of z, the morphism Y — Y] is an isomorphism for some Zariski neighbourhoods of y
and p(y). We can keep projecting in the same manner, if necessary, by replacing Y C P™ with
Y; € P™~1, until we come to the projective space of dimension n + 1 and a closed irreducible
subvariety Y in it of dimension n together with a morphism 7 : ¥ — Y which is an isomorphism
in neighbourhoods of y and 7(y).

We can find an affine open neighbourhood ) € P"**! of 7(y) such that 7 gives an isomorphism
of Y/ N'Y with a neighbourhood of y € Y. By choosing a smaller affine ), if necessary, we can
assume that Y/ N ) C Y is cut out by a single equation. Then Y’ N Y is affine and embedded as
a principal divisor in ), so we are done. ]

We consider f: X — Y which satisfies assumption (p). Lemma 4.25 implies the existence
of a finite affine covering Y = |JY; such that, for every i, space Y; admits an embedding as a
principal Cartier divisor to a smooth affine ).

For every i, we pull back the whole diagram to Y; as follows.

+ X )(+

7

X; X
Y;

Y
Note that, for any ¢, morphism f; satisfies assumption (a).

PROPOSITION 4.26. Let f: X — Y and f;: X; — Y; be as above. Assume that flop functors
F;: DY(X;) — Db(X;") are equivalences, for every i. Then the flop functor F': D*(X) — DP(X™)
is an equivalence.

Proof. As X is Gorenstein, category DP(X) has a spanning class Q = {0, }, where z runs over
all closed points in X (see [HLAS07, Lemma 1.26]). With such a choice of a spanning class the
same argument as in [Che02, Proposition 3.2] proves that F' is an equivalence if all F; are. [

5. Spherical pairs

With the notation of (42), we consider the category DP(X xy XT) and its quotient by the
intersection K’ of kernels of Rp, and Rp}. We prove that Db(,sz/f) is equivalent to the full
subcategory of D?(X xy XT)/Kb defined as the kernel of Rpf. We show that D’(X xy
XT)/KP admits SODs (D°(a), D’(XT)) = (D*(X), D’(/)) and similarly for «/+. We con-
clude that (P°(X), D*(XT)) and (D°(«/;), D*(«}+)) are spherical pairs, which yields a geometric
incarnation of the schober [KS14] related to the flop.

5.1 Category D(<) as a full subcategory of Dgc(X Xy XT)
LEMMA 5.1. Let f: X — Y satisfy assumption (a) and let P be a projective object in 2/y. Then
p«p*P ~ P, Rp,L'p*P = 0 and Rp.p*P ~ P.
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Proof. By Corollary 4.23, the flop functor F* induces an equivalence of <7;+ and 7 [1]. Hence,
there exists projective PT € y+ such that P[1] ~ Rp.Lpt*P*t. As Lipt*P+t =0, for i > 1, by
Lemma 4.15, and Rp,p™*P* = 0, by Corollary 2.12, we have P ~ p,L'p™*P*. Then, according
to Lemma 2.9, we have p,p*P ~ P and Rp.L'p*P =0. As Rp,Lp*P ~ P, it follows that
Rp.p*P ~P. d
LEMMA 5.2. Let f: X — Y satisfy assumption (a) and let M be a projective object in
“1Per(X/Y). There exists an exact triangle

PP — Ly (fT fuM) — Lp"M — p*P[1], (66)
for P := H;(l(L?M) projective in /.
Proof. By Lemma 4.15, we have L/p*P = 0, for j > 1 and any projective object P in /. Thus,
applying Lp* to sequence (15) and using the fact that M is locally free, we get an isomorphism
Lip*P ~ Lip*(f* fuM), for j > 0. Further, as Lp*M ~ p*M, ie. L'p*M =0, for i > 1, the

sequence
0—=pP—=p f fiM—pM—0 (67)
obtained by applying p* to sequence (15) is short exact. We also have
P M LT (fT fINT) = Lp™ (F7 fu M), (68)
for Nt ¢ @J given by (35). Indeed, commutativity of diagram (42) implies that p* f* fu M ~
pT* fT* f, M. Further, Lemma 3.11 yields fy M ~ fXN*. Finally, P+ = H%(U}J\/*) is a projec-
tive object in &+, according to Lemma 3.5, hence Lipt*P+t =0, for j > 1 (by Lemma 4.15).
Thus, applying p** to sequence (32) on X yields Lipt*(f T ffNT) =0, for j > 0.

It follows that the triangle given by short exact sequence (67) is isomorphic to a triangle of
the form (66). O

PROPOSITION 5.3. Let f: X — Y satisfy assumption (a) and let M be a projective
object in “Per(X/Y). Then p*P € Perf(X xy X1), Homy ., x+(p*P,p*P) ~ Homx (P, P) and
Ext'y,, x+(@*P,p"P) =0, for i > 0, where P = H}I(L}M) is projective in <.
Proof. Sheaf M is locally free on X, hence Lp* M € Perf(X xy XT). Sequence (41) implies that
FHfINT € Perf(X ), hence Lpt* f+* f. N is also a perfect complex on X xy X . Triangle (66)
implies that p*P € Perf(X xy X7T).

By adjunction and Lemma 5.1, we have Homy ., x+(p*P,p*P) ~ Homx (P, P). Thus, it
suffices to check that Ext'y . (p*P,p*P) =0, for i > 0. Applying Hom(—, p*P) to triangle
(66) yields, for any ¢ € Z, an isomorphism

Ex‘c?xlyx+ (Lp*M,p*P) ~ Extf"XXYXJr (p*P,p*P),
because E}(‘cg(XYXJr (Lpt™*(f* fu M), p*P) =~ Extg(+ (fT* f«M, RpFp*P) = 0 (see Corollary 2.12).

Sheaf M is projective in ~!Per(X/Y) and P[1] € ~'Per(X/Y). Thus, by Lemma 5.1 again, we
conclude that

Exti;;YX+<Lp*M, p*P) ~ Exti (M, Rp.p*P) =~ Extly (M, P[1]) = 0,

for ¢ # 0, which finishes the proof. 0
Now let M be a projective generator of ~'Per(X/Y) and P = H}l(a}/\/l). Denote by
Ap = Homy, x+(p*P,p*P)
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the endomorphism algebra of p*P. Functor Homy ., x+(p*P, —): QCoh(X xy X*) — Mod-Ap
has left adjoint (—) ®4, p*P: Mod-Ap — QCoh(X xy XT), [Pop73, Theorem 3.6.3]. We denote
by p*: D(@/f) — Dge(X xy XT) its derived functor.

As P is a projective generator of @7, categories D(o/y) and D(Mod-Ap) are equivalent. We
also have D(Mod-Ap) ~ [SF-Ap], for the category SF-Ap C DGMod—-Ap of semi-free Ap DG
modules, i.e. DG modules that admit a filtration with direct sums of shifts of representable DG
modules as the graded factors of the filtration [Dri04].

PROPOSITION 5.4. Functor p*: D(#s) — Dge(X xy XT) is fully faithful.

Proof. By [Kel94, Lemma 4.2], in order to prove that functor D(Mod-Ap) — Dye(X xy
X7T) is fully faithful, it suffices to show that it induces a bijection Homp4,)(P,P[n]) —
Homy ., x+(p*P,p*P[n]), for any n € Z and that p*P € Dg.(X xy XT) is compact. Both
statements follow from Proposition 5.3. O

Functor p* restricts to a fully faithful functor D°(#7;) — D~ (X xy XT). We show that
D(a7;) is, in fact, a subquotient of D(X xy XT). Following an idea of Kapranov, we show
that the flop—flop functor is a spherical cotwist arising from a spherical pair.

5.2 Spherical pairs (D%(X), D?(X ™)), (D(f), DP(Hp+))
For a morphism f: X — Y satisfying (a) and its flop f*: X+ — Y, we consider

K={Ee€D (X xy X7)|Rp«(E) =0, Rpf (E) =0} (69)

and quotient category D~ (X xy X1)/K. In the above, as in diagram (42), morphisms p and p™
denote the projections for X xy X ™. As both p and p™ have fibers of dimension bounded by one,
category K inherits the standard t-structure from D~ (X xy X 1) (Lemma 2.2). In particular,
K € K if and only if H(K) € K, for all i € Z.

Let Morxg C D~ (X xy X7) denote the category with objects as in D~ (X Xy X 1) and mor-
phisms f: E'— F such that the cone of f lies in K (see [Ver77, NeeO1]). The quotient category
D~ (X xy XT)/K has the same objects as D~ (X xy XT). For any pair of objects E, F', mor-

phisms £ — F in D~ (X xy X1)/K are equivalence classes of triples (f, Z, g), where Z L Eisa
morphism in Morx and Z % F is a morphism in D~ (X xy XT). We have (f,Z,9) ~ (f.Z', ¢
if there exists a triple (f”, Z",¢") and 2" % Z, Z" % Z' for which diagram

A
N
E <{"— 7" —¢"= F (70)
N
Z/

commutes, cf. [NeeO1].
We denote by K? the intersection K NDP(X xy XT). The embedding D?(X xy XT) —
D~ (X xy X7T) induces a functor

x: DY(X xy XT)/KP - D™ (X xy X1)/K. (71)

LEMMA 5.5. Functor x is fully faithful.
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Proof. 1t is clear from the above definitions that y is well-defined. Let us check that y is faithful.
To this end, we assume that (f, Z,g), (f,Z’,¢') are morphisms E; — Fy in D*(X xy X1)/K?
which are equivalent as morphisms in D~ (X xy XT)/K. Let (f”,2",¢") with Z" € D™ (X xy
X7) be the triple defining the equivalence as in (70). Choose [ € Z such that Ey, F2, Z and Z'
belong to D*(X xy XT)2?!. Then

H(Cone(f")), fori>1-1,

: (72)
0, fori <l —1,

H'(Cone(rsf")) = {
implies that all cohomology sheaves of Cone(7>;f”) belong to K, i.e. Cone(7; ") is an object in
KCb. The truncation 7>, of diagram (70) is isomorphic to the original diagram on the boundary
diamond, whereas the middle line (7s;f”, 712", 7519") defines a morphism in D°(X xy X1)/KP.
Hence, (f,Z,g) ~ (f',Z',¢’) holds in D*(X xy X*)/KP.

Finally, let (f,Z,g) be a morphism E; — Es in D™ (X xy X)/K and assume there exists
| € Z such that both H'(E1) and H*(E2) vanish, for ¢ < [. Then (72) implies that 7, f € Mor.
Hence, (71 f, 7>1Z,7>19) is a morphism E; — Ej in D(X xy X1)/Kb which functor y takes to
a morphism equivalent to (f, Z, g). Thus, functor y is also full. O

In view of Lemma 5.5, we can regard D°(X xy XT)/K? as a full subcategory of D~ (X xy
XT)/K.

PROPOSITION 5.6. The composite of Lp*: D*(X) — D~ (X xy XT) with the quotient functor
Q: D (X xy X*) = D7 (X xy X1)/K takes D°(X) to the essential image of .

Proof. Let E € D°(X)?!. As p has fibers of dimension bounded by one and Rp.Lp*(E) ~ E, we
have Rp,H’(Lp*E) =0, for j <1 — 1.

As ~'Per(X/Y) is obtained from Coh(X) by means of the tilt in a torsion pair, sequence
(34) implies that ijlper(X/Y) (E) =0, for j <. By Corollary 4.23, object Rp; Lp*(E) lies in
Db(XJF)O?lier(Xﬂy). Category Coh(X™) is obtained from °Per(X*/Y) by the tilt in a torsion
pair, hence Rpf Lp*E € D*(X +)§l+_ ! Finally, the dimension of fibers of p™ being bounded by
one implies that RpH’(Lp*E) =0, for j <l —2. Thus, 7q_3Lp*E lies in K, i.e. morphism
Lp*E — 73;_2Lp*E is an isomorphism in D~ (X xy XT)/K. O

We denote by

Lp*: D*(X) — D(X xy XT)/K?
the functor invoked by Lemma 5.5 and Proposition 5.6.

In order to show existence of a right adjoint to Ep*, we first prove the following general
statement.

LEMMA 5.7. Let D be a triangulated category and K a thick triangulated subcategory. Let
further E € D be such that Homp(E, K) = 0, for any K € K. Then, for any F' € D, we have an
isomorphism

Homp(E, F) = Homp . (E, F).
Proof. We have the map
a: Homp(E, F') — Homp i (E, F), «a:hw (id, E,h).

Now let (f,Z, g) be any element in Homp /x(E, F). By definition, f is a morphism in Morg. In
other words we have an exact triangle

zL B K- 7)1,

1160

https://doi.org/10.1112/S0010437X22007497 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007497

FLOPS AND SPHERICAL FUNCTORS

with K € K. As both Homp(F, K) and Homp(E, K[—1]) vanish, object Z is uniquely decom-
posed as Z ~ K[-1]® FE and f = (0,id) is the projection to E. Accordingly, we have a
decomposition g = (gx, gr). Diagram

K[-1|eFE
(0,id) A (9K ,9E)
/ @0 \
id ‘ 9E
E E F

commutes, i.e. (f,Z,g) ~ (id, E, gg). Thus, map « is surjective.
Now let (id, E, g) ~ (id, E, ¢') in D/K. For the triple (", Z", ¢") giving the equivalence (see
diagram (70)), we have, as above, the decomposition Z” = K"[—1] @ E. Commutativity of

E
b (Oﬁd) !
E =——0,id)— K"[-1] ® E(dk.95)—= F

(0,id)
id ¢ g’
E
yields g = ¢ = ¢/, i.e. a is also a monomorphism. O

ProrosiTiON 5.8. Functor Zp* is fully faithful and has the right adjoint Rp.: D°(X xy
X*)/Kb — Db(X).

Proof. First, note that functor Rp,: D*(X xy X)/K? — DP(X) is well-defined, because K’ C
KerRp..
For any E € DP*(X) and F € D™ (X xy XT), we have an isomorphism Homy, x+(Lp*E,
F) ~Homx (E, Rp.F). As functor x is fully faithful (Lemma 5.5), in order to prove that Rp, is
right adjoint to Lp*, it suffices to show that, for any F € D~ (X xy X7T), we have
Homy ., x+(Lp*E, F) ~ Homp- (x x, x+)/x(Lp"E, F). (73)

By adjunction, Homy ., x+(Lp*E, K) = 0, for any K € I, thus (73) follows from Lemma 5.7.
As functor Lp*: Db(X) — D~ (X xy X*) is fully faithful, isomorphism (73), for F =
Lp*(E"), implies that functor Lp* is fully faithful too. O

As Rp.Lp* ~ Idpe(xy, we have a SOD [Bon89, Lemma 3.1]
D'(X xy XT)/K" = (C, Lp*D"(X)), (74)

with C = {E € D"(X xy X*)/K| Rp.E = 0}. We aim at showing that C ~ Db(a/}+).

By Proposition 5.3, we know that, for a projective object M € “1Per(X/Y) and P =
H;(l 1y M, the endomorphisms algebras of p*P and P are isomorphic. Next, we show that they
remain the same when we pass to the quotient category D~ (X xy XT)/K.

LEMMA 5.9. Let P be as above. Then, for any E € D™ (X xy X 1),
Homx ., x+(p*P, E) ~ Homp- x x, x+)/x (0" P, E).

Proof. By Lemma 5.7, it suffices to check that Homy,, x+(p*P,K) =0, for any K € K. It
immediately follows from applying Hom(—, K) to triangle (66). O
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Consider the composite functor

lﬁ*‘pb(df)

7 Db(eH) D(X xy X)L D (X xy XT)/K,

where () denotes the quotient functor and p* is as in Proposition 5.4. Recall that we assume
Y = Spec R to be affine and Noetherian. Endomorphism algebra Ap of P is finite over R, hence
Noetherian. Thus, the category mod—Ap of finitely generated right Ap modules is abelian. As
P is a projective generator of <7, Db(ssz) is equivalent to D?(mod-Ap). Using this equivalence
and taking into account Proposition 5.3, we can define p,, right adjoint to p*, as

Pi: D'(X xy XT) — D’(mod-Ap), pu: E+ RHomy,, x+(p*P, E). (75)

Finally, let &7 be the category of projective objects in o7y of the form H;(l(b}/\/l), for M e &_;.
As there is no non-trivial extension of objects in &, it is an exact subcategory of .«7;. Moreover,
for any F € oy, there exists M € &_1 and ¢: M — E[1], surjective in ~'Per(X/Y). As functor
Lpst p[1] — “1Per(X/Y) is t-exact, its left adjoint L} is right exact, i.e. morphism H)_(l(L?M) —
Hx' (E[1]) ~ E is surjective in 7. This implies that
D’ (o) ~ Hot ().

The last equivalence allows us to view p* as a functor

P Hot~%(2) — D™ (X xy XT)/K. (76)

It is the term-wise extension of the functor p*: & — D~ (X xy XT)/K.
Lemma 5.1 implies that the adjunction unit Id — p,p* is an isomorphism on P. By
Lemma 4.11 we have an isomorphism

Idps (o) = P<D” (77)

of functors D¥(a7}) — Db().
The embedding &7 — “Per(X/Y) is an exact functor of abelian categories. Hence, it induces
the functor

D(szf) — Dye(X).
LEMMA 5.10. There exists an isomorphism Rp,p* — U\ po(ery) of functors Hot™(#) — DV(X).

Proof. Lemma 5.1 implies that the adjunction unit gives an isomorphism ¥|4 = p«p*| 2 of
functors & — Coh(X). As functor W|ps(,) takes Hot™%(Z) to D’(X), Lemma 4.11 implies

that the term-wise extension of p,p* to the category Hot *(#) is isomorphic to U pb(ary)-

Now let P. be a complex in Hot ~*(#) and F = p*P.. Lemma 5.1 implies that the first layer
of spectral sequence

EP" = Rip,p*P, = R "p,F.

has one non-zero row only. Hence, Rp,F' is quasi-isomorphic to p,p*P., which finishes the proof.
O

PROPOSITION 5.11. There exists a fully faithful functor

p*: DV(ety) — D(X xy XT)/KP.
Proof. Proposition 5.4 implies that p Db(,gz%f) — D~ (X Xy X7T) is fully faithful. In order
to show that the composite D(e7;) Lo D~ (X xy X+) = D™ (X xy XT)/K is fully faithful,
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we check that, for any E € D?(</}) and F € D~ (X xy XT), we have
Homy ., x+(p"E, F) ~ Homp- (xxy x+)/x (0" E, F).

By Lemma 5.7, it suffices to check that Hom(p*E, K) = 0, for any E € D°(</}) and any K € K.
By induction on triangles, Lemma 5.9 implies that, for any i € Z, Hom(o>;p*E, K) = 0. As, for
any P € &, the space Hom(p* P, K) vanishes, we have Ext’((p*E)?, K) = 0, for any i and j. Tt
then follows from Lemma E.2 that Hom(p*E, K) = 0.

Thus, it suffices to show that functor p* takes D°(#) to the image of D?(X xy XT)/K? in
D~ (X xy X1)/K, see (71). Consider E € D°(Ay). We shall show that p*E is quasi-isomorphic
in D7 (X xy XT)/K to a complex with bounded cohomology. To this end, we shall find N such
that 7y p*F is an object in K.

First, we note that Rpf (p*P;) =0, for any i € Z (Corollary 2.12). Thus, the term-wise
definition of p* (76) implies that Rpf (p*F) =0 and, as p™ has fibers of dimension bounded
by one, RpfH!(p*E) = 0, for any i € Z (see Lemma 2.2).

By Lemma 5.10, we have Rp.p*E ~ U(E) € D*(X)?*, for some k € Z. As p has fibers of
dimension bounded by one, it follows that Rp,H‘(p*E) = 0, for i < k — 1. Thus, 7<,_1p*E lies
in IC. (|

LEMMA 5.12. Let M be a projective generator of ~'Per(X/Y) and put P = H;(l(L;ZM). Further,
let C € D~ (X xy XT) be such that Rp}C = 0 and RHomy ., x+(p*P,C) = 0. Then Rp,C = 0.

Proof. Applying RHomy, x+(—,C) to triangle (66) yields RHomy,. x+(Lp*M,C) ~
RHomy (M, Rp,C) =0. As M is a compact generator of Dy.(X), cf. [VdB04, Lemma 3.2.2]
and the proof of Proposition 4.6, it follows that Rp.C = 0. (|

PROPOSITION 5.13. Category D*(X xy X1)/K? admits a SOD
DX xy XT) /Kb = ("D (), LpT* DO (X ).

Proof. As p* is defined term-wise, Corollary 2.12 implies that Rp; o p* = 0. In view of SOD (74)
and Proposition 5.11, it suffices to show that any E € D’(X xy X+)/K® such that Rpf E =0
is isomorphic to p*F, for some F' € D°(7}).

Consider triangle

P'p(E) = E— Cp — p'p.(E)[1] (78)

in D7(X xy XT). As Rpf E =0 and Rp/p*(F) =0, for any F € D°(</), by applying Rp; to
triangle (78) we obtain RpfCg = 0. In view of isomorphism (77), by applying p. to triangle
(78), we obtain p,Cp = 0. By formula (75), R Hom(p*P,Cg) = 0. By Lemma 5.12, Rp,.Cg = 0,
i.e. Cp € K. Hence, p*p.FE — E is an isomorphism in D*(X xy X+)/KP. O

The following corollary gives a geometric description for the category Db(ssz).
COROLLARY 5.14. We have an equivalence of categories
D' (ety) = {E € D"(X xy XT)| Rpf (E) = 0}/K".

Proposition 5.13 implies the existence of pr: D°(X xy X)/K® — Db(o7}), left adjoint to p*,
which is defined by the functorial exact triangle

Lp**Rp} —1d — p*p — Lp™* Rp/ 1] (79)

associated to a SOD. By exchanging the role of X and X' we also obtain 17,_+: DY(X xy
XH)/Kb — Db(df+).
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LEMMA 5.15. The composite pp™*p, p*: D°(/;) — D°(&y) is isomorphic to IdDb(ﬂf)M].

Proof. First, we check that ﬁfrﬁ* restricts to a functor & — 2%, By Lemma 5.10, Rp,p* ~ V.
Hence, for P € @/ projective, triangle (79), with p and p™ interchanged, applied to p*P = p*P
yields an exact triangle

Lp*P — p*P — pTpp*P — Lp* P[1].

By Lemma 4.15 object Lp*P has two non-zero cohomology sheaves, p*P and L'p*P. It fol-
lows that ﬁ**ﬁ!‘"ﬁ*P ~ L'p*P[2]. Hence, in view of Lemma 5.10, \I/ﬁﬁ[f‘P ~ Rpjﬁ**ﬁfﬁ*P ~
RpfL'p*P[2]. As Rp Lp* restricts to an equivalence oy = s+ (1], Corollary 4.23, object
Rp}f L'p* P = Pt is projective in “p+. Hence ﬁfp*P[—Q] = PT is projective in A p+.

As 'pv!Jr’ﬁ*[—2] maps objects of & to objects of &+, it maps acyclic complexes in & to acyclic
complexes. Hence, the class &2 is adapted to ﬁfrﬁk [—2], i.e. the functor can be calculated term-
wise using the equivalence D’(«7;) ~ Hot™*(#). The same is true for the functor pip+*[—2] in
the opposite direction. Moreover, because ﬁfrﬁ* [—2] maps complexes of objects of & to complexes
of objects of Z* also the composite ﬁﬁ”ﬁﬁﬁ*[—éﬂ can be calculated term-wise. Therefore, it
suffices to check that pip™p, p*[—4]|» ~ ldw.

Precomposing triangle (79), with p and p* interchanged, with p*, composing with p; and
using the isomorphism pip* ~ Id, we arrive at an exact triangle

PiLp*Rp.p*P — P — pip"*p p*P — piLp* Rp.p P[1]. (80)

First, we calculate the image of ;E;Ep*Rp*p*P ~ ﬁ;f/p*\I'P ~ ﬁfp*P under ¥ = Rp,p* using
triangle (79) composed with Rp, and applied to Lp*P:

Rp.Lp™* Rp} Lp* P — Rp,Lp*P — U Lp* P — Rp,Lp**Rp} Lp*P[1].

By Lemma 5.1 we have Rp*f/p*P ~ P. As Rg.P =0, triangle (65) implies that
Rp.Lp™Rp} Lp* P ~ P[2]. 1t follows that W Lp* P has non-zero cohomology in degrees 0 and
—3 only, both isomorphic to P. The map ]]Ep*Rp*p*P — P in (80) is the composition of two
adjunction counits INJp*Rp* — Id and pip* — Id. The first when applied to p* P is the truncation

at the zero cohomology, the second is an isomorphism. Hence, ﬁgﬁ**ﬁﬁﬁ*P ~ P[4]. ]
PROPOSITION 5.16. Category D(X xy X1)/K? admits a SOD
D'(X xy X7)/K" = (Lp"D"(X), 5 D" ())). (81)

Proof. Functor p.(—) ~ RHomps(x ., x+/x0 (p*P, —) is right adjoint to the fully faithful functor
p* of Proposition 5.11. B

First, we check that p, Lp*(E) = 0, for any E € D(X). It follows from Lemma 5.9 that the
above statement is equivalent to

HomXXyX+ (p*Pa Lp*E) = Oa

for any E € Db(X).
By applying Homy . x+(—, Lp*E) to triangle (66), we learn that Homy ., x+(p*P, Lp*E)
is a cone of a morphism

Op: Homy,, x+(Lp* M, Lp*E) — Homy,, x+(Lp™*(fT* fuM), Lp*E).
As Rp.Ox ., x+ ~ Ox, we have

Homy ., x+(Lp*M, Lp*E) ~ Homx (M, E). (82)
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Moreover, in view of Proposition 4.10, we have
Homy ., x+ (Lp™ f** fuM, Lp* E) =~ Hom + (F(M), F(E)). (83)

We check that under isomorphisms (82) and (83) morphism g coincides with the morphism vg
induced by functor F':

vg: Homx (M, E) — Homy+(F (M), F(E)).

By (67) and (68), morphism ¢: Lp™ f*t* f, M — Lp*M in triangle (66) is the composite of the
isomorphism r: Lpt* f* f,M = pt* fH* fL M = p* f* fu M with the (non-derived) pull-back p*
of the f* 4 f. adjunction counit epr: f*fuM — M. We use isomorphism (82) to identify « €
Homx (M, E) with Lp*(«) € Hom(Lp*(M), Lp*(E)). Under isomorphism (83), the composition
Lp*(a) o ¢ reads as Rp Lp*(a) o Rpf (p*(earm) o k) o nay, for the Lp™ - Rp adjunction unit

+ K
v: fT*fiM — RpFLp™ f ™ fuM. The composite f+*f. M Im, Rpf Lpt* f+* f,M fpe (x)

M)Rp:—p*/\/l is the base change (49). It follows that Rp}Lp*(«a)o

+
Rpip* f* f. M =
Rpf (p*(em) o k) o is the image of F(a) = Rp Lp*(a) € Hom(F (M), F(E)) under the
isomorphism Hom(F (M), F(F)) ~ Hom(f* f,M, F(E)) given by Proposition 4.10.

As the flop functor is an equivalence of categories (see Corollary 4.22), v is an isomorphism,
i.e. Homy ., x+(p*P, Lp*E) ~ Cone(fg) ~ 0.

In order to prove the SOD (81) it suffices to show that, for any £ € DY(X xy X+)/KP such
that p.(E) ~ 0, we have F ~ Lp*(E'), for some E' € D*(X).

Now let E € D*(X xy X1)/KP satisfy p. E ~ 0. Consider an exact triangle

Lp*Rp.E — E — C — Lp*Rp,E[1]. (84)

We have Rp*é’E = 0. Moreover, because ﬁ*Zp*Rp*E =0, it follows that p.Cg = 0. Now, we
proceed as in the proof of Lemma 5.12 to show that RpCg ~0.
Applying RHomy ., x+(—, CEg) to triangle (66) yields

RHomy ., x+(Lp™*(f** f.M), Ci) ~ RHomyx+(f** f. M, Rpf Cp) = 0.

By Proposition 4.10, the sheaf f™* f,M is isomorphic to the flop F(M). As the flop functor F is
an equivalence (see Corollary 4.22), F(M) is a compact generator of D?(X*). Thus, vanishing
of RHomy+ (F(M), Rp; Cg) implies that Rp}Cpg ~ 0.

Hence, in triangle (84) sheaf Cj is an object of K?. Therefore, E ~ Lp*Rp,E in D(X xy
Xt)/Kb. O

THEOREM 5.17. Category DP(X xy X1)/K? admits 4-periodical SODs
DYX xy XY/ = (5D (ap), It DX H)) = (Ept*DP(XH), 5DV (/0 )
= ("D (p+), Lp* D' (X)) = (Lp*D"(X), 5" D* (7).
In particular, (p*D°(/y), p™*D(#;+)) and (Lp*DP(X), Lp*D¥(X 1)) are spherical pairs.

Proof. Propositions 5.13 and 5.16 for X and Xt imply the 4-periodical SODs. Proposition B.3
claims that (p*D*(Zf), p™*D’(;+)) and (Lp*DP(X), Lp*DP(XT)) are spherical pairs. O

COROLLARY 5.18. Functor W: Db(«/;) — D(X) is spherical. The unit and counit for the U*
U adjunction fit into functorial exact triangles:

UV — Tdpb () — ldpy(p[4] = Y[1],  FTF — Idpyx) — 9O — FYF[1]. (85)
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Proof. By Proposition B.3 and Theorem 5.17 (ﬁ*Db(Jz/f),ﬁJr*Db(ﬂfer)) is a spherical pair. By
Proposition B.2 the corresponding spherical functor is Rp.p*. By Lemma 5.10 the latter is
isomorphic to .

By Proposition B.2 the cone of the counit ¥*¥ — Idps( o) is isomorphic to p ﬁ”ﬁfﬁ* and the

cone of the unit Idps(yy — WU* is Rp,Lp™*Rp} Lp* ~ Rp.Lp**Rp} Lp* = F*F. We conclude

by the isomorphism ﬁ'ﬁ“*ﬁf'pv* ~ IdDb(Wf)[Zl], Lemma 5.15. O

6. Contraction algebra as the endomorphism algebra of a projective generator

In [DW16] Donovan and Wemyss considered a morphism f: X — Y between Gorenstein vari-
eties of dimension three that contracts a rational irreducible curve C to a point. If Y is a
spectrum of a complete local Noetherian ring, the category ~!Per(X/Y') has projective genera-
tor. In [DW16] a contraction algebra Acop is defined as the quotient of the endomorphism algebra
of the projective generator for ~'Per(X/Y) by morphisms which factor through Ox. Algebra
Acon is shown to govern non-commutative deformations of Oc(—1). If Nx/c ~ Oc © Oc(-2),
algebra A.on is commutative and was first considered in terms of deformation theory by Toda
in [Tod07].

We prove in our, more general, set-up that Aco, is isomorphic to the endomorphism algebra
of a projective generator for .o7;.

Category “Per(X/Y) has a projective generator A" and Q = Hg((b’}./\/' ) is a projective gen-
erator for 7, Lemma 3.5. Endomorphisms algebras Ag = Endx(Q) and Ay = Endx(/N) are
Noetherian, and we have equivalences D(Mod-Aqg) ~ D(4f), D(Mod-Ax) ~ Dyc(X).

Projective generator Q for &/ is an object in “Per(X/Y). It follows that Q :=
RHomyx (N, Q) is an Azzp ®r Ax module and, under the above equivalences, functor ¥ is
isomorphic to

U ~ & : D(Mod-Ag) — D(Mod-Ax).

Proposition 3.19 yields a finite projective resolution of Q in *Per(X/Y). Hence, Q' is a perfect Ay
DG module and by Proposition C.6 the right adjoint ¥' exists and is isomorphic to a bimodule
functor.

PROPOSITION 6.1. Let f satisfy assumption (a), let M; be as in (17) and let P; be as in (19).
Then W' (M;) ~ UP;[-2].

Proof. Considering the right adjoint to the functorial exact triangles of Corollary 5.18 yields an
exact triangle:

T (M;) = M; — (FTF)"HM;) — 00 (M;)[1]. (86)

Put K;=(F*F)"'(M;). As Rf.F'F=Rf., we have Rg.K;~ Rg.M;. Hence, by
Proposition 3.15, HS (Lg*Rg.K;) = f* f M, H}l(Lg*Rg*ICZ-) = M; and the remaining coho-
mology sheaves vanish. Considering long exact sequence of cohomology sheaves of the exact
triangle obtained by applying functorial exact triangle (65) to KC;:

we get that HY(K;) ~ M; and H'(K;) ~ P; (as P; is the kernel of the surjective morphism
f*fxM; — M;). The long exact sequence of cohomology sheaves of (86) yields an isomorphism
VU (M;) = Pi[-2] =~ UP;[-2]. O
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THEOREM 6.2. Let f satisfy assumption (c), let M; be as in (17) and let P; be as in (19). The
endomorphism algebra

n n
Ap = Homm/f <@Pza@7pl>
=1 i=1

is isomorphic to the quotient of Homyx (. ; M;, @;_, M;) by the subspace of morphisms that
factor via direct sums of copies of the structure sheaf.

Proof. By Proposition 6.1 U¥'(M,) ~ UP;[-2]. As Wy, is fully faithful, we have TH(M;) ~
P;[—2]. Thus, functor ¥' gives a homomorphism of algebras
¢: Homx(M, M) — Ap = Home(Mf)(\I/!M, U' M) ~ Homy (9T M, M),

where M = @, M;. The triangle of functors right adjoint to the second triangle of (85) implies
that the morphism ¢ fits into an exact sequence

Homx ((F*F) "M, M) % Homy (M, M) % Homyx (00" M, M)
— Homx ((FTF) ' M[~1], M).
By Corollary 4.22,
Homy (F~'F+ 1 (M)[=1], M) ~ Exth, (F* ' (M), F(M)).

Theorem 4.21 implies that F* ' (M) ~ Nt is a projective object in “Per(X*/Y). On the other
hand, F(M) ~ f**f,M by Proposition 4.19. By Lemma 3.11, f**fiM ~ fT* fFNT. Then,
Lemma 2.9 implies that R'fS(ft*fiM) =0, i.e. fT*f.M is an object in Per(X+/Y) (see
Remark 2.3 and formula (8) therein). Thus,

Homy ((F"F) ™' M([=1], M) = Ext’e (NF, f5* fu M) = Extopex/y+) N [T f M) = 0,

i.e. morphism ¢ is surjective.
Let us now describe the image of 1. Triangle (64) with roles of X and X interchanged,
when applied to N'*, gives an exact triangle

M[=2] = (F*F)"'M — Lg*Rg.M[-1] — M[-1],
in view of (FTF)™'M ~ F~YN7), Rgi Nt ~ Rg. M, and FH(NT) ~ M. As Ext{ (M, M) =
0 = Ext% (M, M), we have isomorphisms Hom y (M, (FTF)~' M) ~ Homx (M, Lg* Rg.M[—1])
and Homy ((FTF)™*M, M) ~ Homx (Lg*Rg.M[—1], M). Thus, a morphism M — M is
decomposed as M — (F*F)~! M — M if an only if it is decomposed as M — Lg*Rg.M[—1] —
M. By Lemma 3.14, object Lg*Rg.M is quasi-isomorphic to a complex {O% — O%}, for some
S € Z4. Thus, ‘stupid’ truncation gives an exact triangle
O3[-2] — 0% — Lg*Rg.M[-1] — O%[-1].

As Extyi (0%, M) = 0 = Ext% (0%, M), we have Homx (M, Lg* Rg.M[~1]) ~ Homx (M, O%)
and Homy (Lg*Rg«M[—1], M) ~ Homx (O3, M). Hence, a morphism M — M factors via
Lg*Rg.M[—1] if and only if it factors via OF..

Therefore, the image of 1 is contained in the space of morphisms M — M that factor via
(’)_*?(. Conversely, for a projective generator P of <7,

RHomgp () (V' M, U'Ox) ~ RHompy () (P, ¥'Ox[2]) ~ RHomy (¥P, Ox[2])
~ RHomy (¥P, f'Oy[2]) ~ RHomy (Rf,¥P,Oy[2]) =0,
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which implies that the space of morphisms M — M that factor via direct sums of copies of Ox
is annihilated by W', i.e. it is contained in the kernel of ¢. g
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Appendix A. Grothendieck duality and the twisted inverse image functor

Let f: X — Y be a proper morphism of Noetherian schemes. The direct image functor Rf,,
considered as a functor Dye(X) — Dge(Y), admits the right adjoint denoted by f'. Functor f'
maps DJ.(Y) to D.(X) and, for any E* € Dye(X) and F* € D.(Y), the sheafified Grothendieck
duality

Rf.RHomx (E", f'(F")) = RHomy (Rf,(E"), F"), (A1)

is satisfied, see [LH09, Corollary 4.2.2].
We construct a morphism a: Lf*(—) ® f'(Oy) — f'(—). In view of adjunction

Homy (Lf*(F) @ f(Oy), f(F")) =~ Homy (Rf.(Lf*(F") @ ['(Oy)), F"),

constructing ap- is equivalent to finding a morphism Rf,(Lf*(F") ® f'(Oy)) — F". By projec-
tion formula, we have

Rf(Lf*(F)® f'(Oy)) = F" @ Rf.f(Oy).
Let e: Rf.f'(Oy) — Oy be the counit of adjunction. Then morphism
dp- ®e: F'QRf.f(Oy) = F @ Oy ~ F
gives a morphism
ap: LI (F) @ f{(Oy) — f{(F). (A.2)

LEmMA A.1. Let f: X — Y be a proper morphism. Then ap- is an isomorphism for F" €
Perf(Y').

Proof. Morphism ap, is clearly an isomorphism. By Deligne’s appendix to [Har66], functor f
is defined locally on Y, hence « is also an isomorphism for any complex F" which is locally
quasi-isomorphic to a complex of locally free sheaves, i.e. for F* € Perf(Y). O

By [LHO09, §4.7], morphism Lf*(F")® f'(Oy) — f'(F’) is an isomorphism for all F" in
Dqyc(Y) if and only if f is proper and of finite Tor dimension.
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Appendix B. Functorial exact triangles, spherical functors and pairs

Let C and D be triangulated categories. The category of exact functors C — D is not triangulated,
thus we cannot speak about exact triangles of functors. Instead, we work with a weaker notion
of a functorial exact triangle by which we mean a triple of exact functors C — D and natural
transformations between them

Fi(=) = Fa(=) — F3(=) — Fi(—)[1] (B.1)

such that when applied to any object C' € C they give an exact triangle in D. Note that (B.1) is
not an exact triangle in any triangulated category.
A basic example of a functorial exact triangle is given by an SOD

D = (A,B).

Denote by i4: A — D the embedding functor and by 7% its left adjoint. Similarly, let ig: B — D
be the embedding and 2'113 its right adjoint. Then the % -7 4 adjunction unit n and the z'!B —ip
adjunction counit ¢ fit into a functorial exact triangle [Bon89]:

igiy = Idp L iai% — igig[l]. (B.2)

Consider a general adjoint pair F 4 F' of exact functors with F: C — D. If the adjunction
counit ¢ fits into a functorial exact triangle

FF' 5 1dp — T — FF'[1]
we refer to T as a twist functor. If the adjunction unit 7 fits into a functorial exact triangle
C —1Ide L F'F — C[1]

we refer to C' as a cotwist functor.

Constructions and uniqueness of twist and cotwist functors are discussed in details in §C.4
in the framework of 2-categories. Let us briefly say that twist and cotwist are well-defined if F’
is a functor D(A) — D(B), for some DG algebras A and B, given by the tensor product with an
A°P ® B DG bimodule and both of his adjoints are of this form too. If F' satisfies this condition,
we say that it is an A and B perfect bimodule functor. Indeed, in this case the bimodule defining
F is perfect as an A and B module, cf. Proposition C.6. Once the bimodule corresponding to F
is fixed, the twist T and the cotwist C are defined uniquely up to isomorphisms.

Consider an A and B perfect bimodule functor F: D(A) — D(B). Here F is spherical [AL17]
if it admits both adjoints F* 4 F 4 F' and the twist T and the cotwist C' are both equivalences.
If this is the case we refer to T as a spherical twist and to C as a spherical cotwist.

By [AL17], a functor F' is spherical if and only if the dual twist 7" and the dual cotwist C”
are equivalences, where 77 and C” are functors which fit into functorial exact triangles

FF S 1de — O — F*F[l], T —1dp L FF* - T'[1],

for the F* 4 F adjunction unit " and counit &’.

Spherical functors can be constructed via spherical pairs. We recall the definition following
[KS14]. Let £ be a triangulated category and £;,E_ C £ a pair of admissible subcategories
[Bon89]. Let it: £+ — & be the inclusions. They admit left i, and right 4y adjoint functors
£ — &4. By ji: &4 — & we denote the inclusions of the left orthogonal complements and by
ji: £ — L&, their right adjoints. We assume that all these functors are induced by appropriate
DG functors.
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DEFINITION B.1 [KS14, Definition 3.4]. The pair (£4,€_) of admissible subcategories is a
spherical pair if

(i) the composites i i_: E_ — &y, i% iy &4 — E_ are equivalences;
(ii) the composites j\j_: +&_ — L&, jLj: 2& — LE_ are equivalences.

ProprosITION B.2 [KS14, Propositions 3.6, 3.7]. Let (£4+,E_) C £ be a spherical pair. Then
functor U := j' i, : &, — L&_ is spherical. The unit and the counit for the ¥* 4 ¥ adjunction
fit into functorial exact triangles:

U S Ide, —itioitiy — U, §gghs - Idee SOt - gl [1). (B.3)

The functorial exact triangles (B.3) are deduced from functorial exact triangles (B.2) for the
SODs related to (admissible subcategories) £ and £_. Therefore, in the presence of spherical
pairs, one can define spherical functors purely in the realm of triangulated categories.

With the following proposition we describe spherical pairs associated to 4-periodical SODs

T = (A,B) = (B,C) = (C,D) = (D, A. (B.4)

PROPOSITION B.3. Let T be a triangulated category with 4-periodical SODs (B.4). Then pairs
(A,C), (B, D) of subcategories of T are spherical.

Proof. We prove that (A,C) is a spherical pair. Let i4: A — 7 denote the inclusion functor and
i% its left adjoint, similarly for C C 7. The composite i5i4: A — C is the right mutation over B,
hence it is an equivalence [BK89, Lemma 1.9]. Similarly, the right mutation i*jic over D is an
equivalence, (i), the first condition of Definition B.1 is satisfied.

Now let i5: B — 7 denote the inclusion functor and i!B: T — B its right adjoint, similarly
for D C 7. The composites i!Bz'p, respectively i!DiB, are the left mutations over C, respectively
A, hence they are equivalences. It follows that (A, C) is a spherical pair in 7. The proof for the
pair (B, D) is analogous. O

Remark B.4. In [HS16, Theorem 3.11], Halpern-Leistner and Shipman proved that any spherical
functor F': C — D is given by 4-periodical SODs.

Appendix C. Lifting to the bicategory Bimod

Let k be a field. For a k-linear DG category &, we denote by [£] the homotopy category of &,
i.e. the category with the same objects as in £ and morphisms the zeroth cohomology of the DG
complexes of morphisms in £ (see [BK90]). It is an ordinary k-linear category.

By a DG enhancement of a triangulated category C we mean a choice of a pre-triangulated
DG category £ together with an equivalence C ~ [£] which is compatible with the induced trian-
gulated structure on [£] (see [BK90]). A choice of suitable DG enhancements for our categories
prompts a convenient replacement for the category of functors, as well as a lift of adjunction
(co)units to morphisms in this replacement. This allows us to get an interpretation for ‘cones’
of morphisms of functors that we need in the main body of the text.

For the sake of simplicity, we take as DG enhancements of our categories only suitable
categories of DG modules over DG algebras. The category of functors is replaced by the derived
category of bimodules, and natural transformations by morphisms in the latter category. As a
result we arrive at the bicategory Bimod whose objects are DG algebras and 1-morphisms are
objects of the derived categories of DG bimodules. There is (after a suitable choice of universe)
a bifunctor ® : Bimod — Cat to the 2-category of categories. We are interested in lifting of
adjoint pairs of functors in Cat along the functor ®.
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In the general framework of 2-categories (or bicategories), we have the uniqueness of the
2-categorical adjunction for a given 1-morphism. In addition, we show that 2-adjunctions can
be transported over equivalences of objects in 2-categories, which implies an invariance of
2-categorical adjunctions in Bimod under the choice of DG enhancements.

By fixing a lift of a functor to a l-morphism in Bimod, we get an essentially unique
2-categorical adjunction. This allows us to define a unique twist and cotwist of 2-categorical
adjunctions as 1-morphisms in Bimod, thus interpreting constructions of Anno and Logvinenko
[AL17]. In particular, we have the notion of spherical twists for spherical functors and, slightly
more generally, for spherical couples.

Further we show how the 2-adjunction theory can be applied to functors between derived
categories of (quasi-)coherent sheaves. Here another suitable 2-category is the category FM
whose objects are schemes and 1-morphisms are objects of the derived category of the product
of two schemes. By the results of Lunts and Schniirer [LS16] the 2-categorical adjunctions, twists
and cotwists are readily transferred to this context. We discuss uniqueness of the functorial exact
triangles associated to an FM functor and its adjoints. We also construct a 2-categorical lift to
Bimod of the base-change morphism.

Finally, we provide a criterion for isomorphism of functors in terms of the restriction to one
(generating) object.

C.1 Abstract 2-categorical adjunctions and spherical couples

Let C be a (strict) 2-category. A quadruple (s,7,m,e) of l-morphisms s € Hom¢(A4, B),
r € Home¢(B, A) and 2-morphisms 7n: Idg —rs, ¢: sr —1Idp is a 2-categorical (A, B)-
adjunction if

sn €s nr re
§—>8rs—S, T =TS —T (C.1)

are equal to the identity morphisms of s and r, respectively. In this case, r is said to be a right
2-categorical adjoint of s, s a left 2-categorical adjoint of r and n and € the unit and counit
of the adjunction. We write s - r if there exist n and e such that (s,r,n,¢) is a 2-categorical
adjunction. The choice of such 7 and ¢ is not unique.

The proof of the following fact is standard.

LeMmMA C.1 (Cf. [Bén65, TV15]). Let s be a 1-morphism. If s has a right 2-categorical adjoint,
then the 2-categorical adjunction (s,r,n,e) is unique up to a canonical 2-isomorphism. More

/

precisely, for any other adjunction (s,r’,n/,€'), the composite a: r —— 'sr *5 ' is a unique
2-isomorphism commuting with the units and counits. Conversely, any 2-isomorphism «: r — 1/
yields a 2-categorical adjunction (s,r’, ason,eo0sa™t).

An (A, B)-equivalence in C is a quadruple (f,g,v, ) of 1-morphisms f € Hom¢(A, B), g €
Home (B, A) and 2-isomorphisms v: Idg — gf, u: fg — Idpg. It is an adjoint (A, B)-equivalence
if (f,g,v, ) is, in addition, a 2-categorical (A, B)-adjunction.

Let C; and Co be 2-categories. A pseudo-functor 6: C; — Cy consists of a map 0: Ob(Cy) —
Ob(Cy), functors ¢ ¢ : Home, (C,C") — Home, (6(C),0(C")), for any pair (C,C") of objects of
C1, and 2-isomorphisms u: 0(Id¢) — Idg(c), for any object C' € C1, and a: 0(go f) — 0(g) o O(f),
for any pair (f,g) of composable 1-morphisms in C;. These need to satisfy coherence conditions:
for any triple (h, g, f) of composable 1-morphisms in C;, the two possible 2-morphisms #(h o g o
f) — 0(h) 0 6(g) o 0(f) induced by a are equal, and so are the 2-morphisms 0(f) — 6(f) o 0(Id),
9(g) — 6(1d) o 6(g) induced by a and w1
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We say that a pseudo-functor 8: C; — Ca is a pseudo-equivalence if Oc, ¢, is an equivalence for
all (01, CQ) € (.

Let a: e — f, o': ¢ — f’ be 2-morphisms in a 2-category C. We say that a and o are
isomorphic, and depict it by a ~ ¢/, if there exist isomorphisms 7.: e — €/, Tr: f =5 ' such
that Troa =/ o 7.

LEmMA C.2. Let 0: C; — Cy be a pseudo-functor and (s,r,n,e) a 2-categorical (A, B)-
adjunction in Cy. Then 6(s) fits into a 2-categorical (6(A),8(B))-adjunction (0(s),0(r),n', &)

/

such that 04 a(n) =1, 0pp(e) ~¢&'.
Proof. A standard diagram chasing shows that for ’ and &’ defined as the composites

7' 1dgca) 2 0(1da) 2 0(rs) % 0(r)6(s),

€' 0(s)0(r) > 0(sr) 22 0(1dp) 2 Tdg(p
equalities (C.1) hold, i.e. (6(s),0(r),n’,") is a 2-categorical (8(A), #(B))-adjunction.
By definition of " and &', diagrams

/

n e
Idgay —— 0(r)0(s) 0(s)0(r) — ldg(

T 04,4(n) T T 05,5(¢) T
0(Idy) — 0(rs) O(sr) —— 0(1dp)
commute, which proves isomorphisms 04 4(n) ~ 7' and 0p p(e) ~ €' O

PROPOSITION C.3. Let C be a 2-category, (fa,ga,va,pna) an (A, A')-equivalence and
(fB,9B,vB,pB) a (B,B')-equivalence in C. Denote by Cap, respectively Cu ps, the full
2-subcategories of C with two objects A and B, respectively A" and B’. The four functors

0s7(—) = fro(—)ogs: Home(S,T) — Home (S, 1),

defined for pairs (S,T) € {(A, A), (A, B), (B, A), (B, B)} of objects of C4 p and the corresponding
pair (S8',T") of objects of Car g/, can be extended to a pseudo-equivalence 0: Cap — Car pr.

Proof. By changing the 2-isomorphism v4, pa, vp, and pup if necessary, one can assume that
(fa,94,va,a) and (fB,98,vB, uB) are adjoint equivalences [Mac71].

Functor fgr is an equivalence with quasi-inverse g7 o (—) o fg. We need to define morphisms
u and a from the definition of pseudo-functors. The 2-isomorphisms u are defined as p4 and pp:

9A7A(IdA):fAOgAu—A>IdA/, GB,B(IdB):fB OgB —M—B—>IdB/.

For a pair (f,g) of 1-morphisms such that B is the target of f and the source of g, the
2-isomorphism a:

fryog0vmofogs,
fr,og90fogs, ———— fr,og0 fpogpofoygs,

where Sy, T, € {A, B} are the source of f and the target of g, respectively. Similarly, we use v4
if A is the target of f and the source of g.

Equalities (C.1) for 2-adjunctions (fa,ga,va,pa) and (fp, 95, vs, pp) imply that v and a
defined in this way satisfy the required coherence conditions. O
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We say that a 2-category C is I-triangulated if, for any pair (B,C) of objects of C, the
category Home (B, C) is triangulated and, for any ¢ 4 € Hom¢ (A, B), ¢p € Home(C, D), functors
(=) opa: Home(B,C) — Home(A,C), ¢p o (—): Home(B,C) — Home (B, D) are exact.

A 2-categorical (A, B)-adjunction (s,7,m,¢) in a l-triangulated 2-category C induces
l-endomorphisms cg, ts defined via exact triangles:

cs — Idy Lrs—>cs[1], sr = Idg — t, — sr[l]. (C.2)
We say that ¢ is the twist and ¢, the cotwist for the 2-categorical adjunction (s,r,n,¢).

PRrROPOSITION C.4. Let (s,r,m,e) be a 2-categorical (A,B) adjunction in a I-triangulated
2-category C. Consider a pair of (A, A’)- and (B, B')-equivalences and the induced pseudo-
equivalence 0: Co g — Car p. Then the twist ty() is isomorphic to O(ts) and the cotwist Co(s)
is isomorphic to 0(cs).

Proof. By Proposition C.3 (A, A’)- and (B, B’)-equivalences induce a pseudo-equivalence
§: Ca,p — Car,p Lemma C.2 implies that (6(s),0(r),n,€’) is an (A’, B')-adjunction and 6(n) ~
7', 6(g) ~ ¢’. The isomorphism of cones follows. O

We say that a 2-categorical (A, B)-adjunction (s,r,1n,¢) is a spherical couple if the twist ts,

and respectively the cotwist cs, defined in (C.2), is a (B, B)-, respectively (A, A)-equivalence.
Under the above assumption, octahedron

scg[l] —= 0 —— tgs

T

0 S s

-]

8Cg ——= § ——> STS§

implies an isomorphism

tss ~ scg2]. (C.3)

A 1-morphism s: A — B is said to be spherical [AL17] if it has the 2-categorical left and
right adjoints and (s, 7,7, ¢) is a spherical couple. It is convenient to think of twist and cotwist
as being assigned to a spherical couple, because their definition needs only one adjoint, not two
as in the definition of the spherical functor.

C.2 The bicategory Bimod

Let k be a field. We fix a universe &/ and consider the bicategory Bimod whose objects are
unital DG k-algebras, 1-morphisms A — B are objects in the derived category Dy (AP ®j B) of
A°® @ B DG U-modules and 2-morphisms are morphisms in Dy (A ®j B). Often, we drop
the universe U from the notation. The derived tensor product of bimodules M ®é N, for
M € D(A®? @ B) and N € D(B°? @y, C), defines the composition of 1-morphisms in Bimod.
The derived tensor product is unique up to a canonical isomorphism, i.e. a pair of bimod-
ule isomorphisms M = M’, N = N’ in the derived categories induces a unique isomorphism
M ®% N = M’ ®% N'. Various choices involved in the definition of the derived tensor product
are controlled by these isomorphisms. In particular, they allow to construct the associators and
unitors in the bicategory Bimod. We write formulas as if the composition of 1-morphisms in
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Bimod was strictly associative and the identity morphisms were strict. If necessary, all mor-
phisms of associativity and unitors can readily find their places in formulas. Equally, one can
refer to the fact that every bicategory is biequivalent to a 2-category [MP85].

The tensor product is an exact functor, hence the 2-category Bimod is 1-triangulated.

Let V be a universe such that Dy (AP ®j B) is an essentially V-small category, for any pair
A, B of unital DG k-algebras, cf. [Mac71]. Let further Caty denote the 2-category of V-small
categories, functors and natural transformations. Consider the 2-functor

¢: Bimod — Caty, ®(A)=D(A). (C4)
For M € D(A°® ®; B), ®pr: D(A) — D(B) is the functor
Qpr(—) =(—) ®ﬁ M.
Finally, morphism a: M — M’ induces a natural transformation ®,: ®; — @ .

In particular, as ® is a 2-functor, the tensor product of bimodules corresponds to the
composition of tensor functors:

(I)Ml o (I)MQ >~ <I>M2®LM1.

We note that the 2-functor @ is, in general, neither full nor faithful.

Note that by [Toé07, Corollary 7.6], any DG enhanceable (i.e. admitting a lift to a functor of
suitable DG enhancements) commuting with direct sums functor D(A) — D(B) is of the form
®,y, for some bimodule M. We refer to functors of the form ®p; as bimodule functors.

An exact triangle of bimodules in the category D(A°? ® B):

My — My — M3 — Ml[l]
induces via the functor ® a functorial exact triangle
Par, (=) = Pary (=) = Pas (=) — gy () [1). (C.5)
LEmMmA C.5. Functor @ is conservative on the categories of 1-morphisms in Bimod.

Proof. Let A and B be unital DG algebras and f: M; — Ms a morphism in D(A°? ® B) such

that ®¢: ®p;, — ®py, is an isomorphism. Morphism f fits into an exact triangle M EN My —
®

Ms — M, [1]. For any E € D(A), complex @y, (E) —5 @y, (E) — ®pp, (E) — O, (E)[1] is an

exact triangle. As ®¢ is an isomorphism, ® s (£) ~ 0. In particular, M3 ~ ®z, (A) ~ 0, which

implies that f is an isomorphism. ]

C.3 The bicategory FM
Let k be a field. Consider the bicategory FIM whose objects are quasi-compact, quasi-separated
k-schemes. The category of morphisms X — Y is the derived category Hompm (X, Y) = Dyc(X X
Y') of U-quasi-coherent sheaves on X x Y and the composition is given by the convolution: for
schemes X, Y, Z, K € Dyo(X xY) and L € Dyc(Y x Z) their composition is
LxK:= WXZ*(W;(/ZL X W;(YK),

where mxy: X XY X Z > X XY, 1yz: X XY XZ->Y XZ, nxy: X XY XZ — X X Z are
the projections.

The identity in FM is given by the structure sheaf of the diagonal A C X x X. For K in
Dyc(X x Y'), the unitor is given by the flat base change and projection formula isomorphisms:

T34 (M35 K ® m{504) = T3, (753K © m5A,0x) = miz. (w33 K @ (A x 1dy ).77 Ox)
= 7T13*(A X Idy)*((A X Idy)*ﬂ';?)K & WTOX) ~ IdX*(Id} K) & OXXy) ~ K,
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where 712, w13 and a3 are projections from X x X x Y to the corresponding factors, similarly,
m1 and mo are projections from X x X. We denote by A: X — X x X the diagonal embedding
and by AxIdy: X XY — X x X xY the map induced by A and the identity on Y. The
second unitor is defined analogously.

The associator in FM is defined analogously, using the projection formula and the flat base
change isomorphism for the projections from W x X x Y x Z to the triple and double products.

Similarly to Bimod, we consider FM as a 1-triangulated bicategory.

Consider the bifunctor

E: FM — Caty, ZE(X) =Dq(X)
which assigns to a 1-morphism K € Dgyo(X X Y') the Fourier-Mukat functor with kernel K:
Ex (=) = Rpy.(Lpx(-) ® K),

where px: X xY — X, py: X x Y — Y are the projections. A 2-morphism «a: K — K’ induces

a natural transformation =,: Zg — ZEg.
The isomorphism Idp,_ (x) — Z(Oa) is induced by the projection formula

(—) = Ox ® (=) = ldx.(Ox ® 1d% () = m, AL (Ox @ A{(—)) = M2, (AOx ® i (-)),

where 71, m: X x X — X are the projections to the corresponding factors.
For K € Dyo(X xY), L € Dy(Y x Z), the composition coherence isomorphism Z(L) ®

~

E(K) — Z(L *x K) is again given by the flat base change and projection formula:
E(L) 0 E(K)(=) = qz:(L ® g5y (K @ 7% (<)) = qz.(L © Ty z.7xy (K @ 7% (-)))
= qz.7y 2. (y 7L @ Ty K © mxy 1% (<)) = pz,7x 24 (73 2L @ Ty K © w20 (<))
= p2.(7x2.(13 2L © Ty K) @ pi(—)) = E(L* K)(-),
where mxy, mxz and myyz are the projections from X x Y x Z to the corresponding products
XxY, XxZ and Y x Z. We denote by rx,ry the projections from X x Y, by px,pz the

projections from X x Z and by gy, ¢z the projections from Y x Z.
An exact triangle in the category Dq.(X x Y)

& — & — & — &[]
induces via the functor = a functorial exact triangle of FM functors:
Eg, — Eg, — Egy — Eg[1]. (C.6)

C.4 2-adjunctions, spherical couples and spherical 1-morphisms in Bimod
Any 2-functor preserves 2-adjunctions, in particular the 2-functor ® maps a 2-categorical adjunc-
tion (M, R,n,e) in Bimod to a pair of adjoint functors ®,; 4 ®r between the corresponding
derived categories.

Let A and B be unital DG algebras. We discuss when a pair of adjoint functors between

D(A) and D(B) can be lifted to a 2-categorical adjunction in Bimod. For M € (A°? ®; B),
define its A and B duals M4, MPB € D(B? @ A) (see [AL21]):

M# = RHomy (M, A), MP := RHomp(M,B).
We have several (derived) evaluation and action morphisms [AL21]:
ep: MP @4 M — B, e Mok MA — A,
nr: A— M5 MB, 5 B— MAe% M.
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Note that np is defined if M is B-perfect, i.e. if its image in D(B) lies in the full subcategory of
compact objects. Respectively, ny, is defined if M is A-perfect.

The following proposition allows us to lift suitable pairs of adjoint functors between
triangulated categories to 2-categorical adjunctions in Bimod.

PROPOSITION C.6. Let M be in D(A°P ®y B).

(i) Then M is A-perfect if and only if the left adjoint ®}, to ® s exists. Under these assumptions
functor ®}, is isomorphic to ®,,4 and the evaluation and action maps yield a 2-categorical
adjunction (M*A, M,ny,,e1) in the bicategory Bimod.

(ii) Then M is B-perfect if and only if ®); maps compact objects to compact ones if and only
if the right adjoint <I>!M is isomorphic to ® ;5. Under these assumptions the evaluation and
action maps yield a 2-categorical adjunction (M, M? ng,eg).

Proof. This is basically the statement of [AL21, Propositions 4.2 and 4.7]. In [AL21] object
M is lifted to M in a suitable (weak, in the sense of Drinfeld [Dri04]) DG enhancement for
D(A° @y B). The A and B duals of M are defined, which lift M“ and MP?. Also, the evaluation
and action maps are constructed on the DG level. With [AL21, Proposition 4.7] the authors check
that the composites in (C.1) are identities of objects in the derived categories of bimodules. [

Consider B-perfect M € D(A°° ®; B). The 2-categorical adjunction (M, M ng,eg) in
Bimod (Proposition C.6(ii)) allows us to consider the twist 75 and the cotwist C4, defined
with triangles (C.2). Lemma C.1 implies that T5 and C4 are unique up to isomorphisms. Apply-
ing functor ® as in (C.4) we obtain endo-functors Q4 s and O ps of D(A), respectively D(B).
They fit into functorial exact triangles:

Qam — Ildpa) I8, Y@ — Qar[l],
D@y =5 Idp(p) — Opu — P'[1].

Uniqueness of T4 and Cp implies that Q4 ys = ®¢, and Op yy = P, are defined uniquely by
M up to a (non-unique) functorial isomorphism. Note that we do not claim that the cotwist
functor 24 s and twist functor ©p s are uniquely defined by the functor ®j;.

Assume now that M is A-perfect. According to Proposition C.6(i), we can consider the twist
T, and the cotwist Cp for the 2-categorical adjunction (M#, M, np,er). By applying functor
® as in (C.4), we obtain endo-functors Qp py = o, and O 4y = Pr,. Those fit into functorial
exact triangles:

Qp.v — ldpp) I &0 @, — Qpoar[l],
We say that @, is a spherical functor if M is a spherical 1-morphism in Bimod.

THEOREM C.7 [AL17, 5.1 and 5.2]. Let M be an A and B-perfect bimodule. Functor ®,s is
spherical if any two of the following hold:

(S1) OB, is an equivalence;

(S2) Qar is an equivalence;

(S3) composite ®%,05 y1[—1] — ®3,Py P, — &', is an isomorphism of functors;
(S1) composite @y, — @4, ®pP%, — Qa P4, [1] is an isomorphism of functors.

Then also Qg pr and © 4 3y are also equivalences of categories, quasi-inverse to © gy and 24 s,
respectively.
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C.5 Lifting push-forwards, pull-backs and the base change to Bimod
We fix a DG enhancement [BK90] for the category Dqc(X), for example, by h-injective complexes
[Spa88, KS06]. Let P € Dyc(X) be a compact generator (see [BVdAB03]) and A the DG endomor-
phism algebra of its lift to the DG enhancement. Then D(A) =~ Dy (X) by [Kel94], which paves
the way to performing the necessary constructions in the category Bimod. With Proposition C.9
we check that the constructed functorial exact triangles are independent of the choice of P.

Assume that X and Y are Noetherian separated schemes such that any perfect complex
on both X and Y is isomorphic to a bounded complex of locally free sheaves. Choose compact
generators in Dqc(X) and in Dy (Y') and fix lifts of the generators to DG enhancements of both
categories. Denote by Ax and Ay their DG endomorphism algebras.

By [LS16] there exists a choice of equivalences Yx: Dyo(X) — D(Ax), YTy : Dy (Y) —
D(Ay) and YTxy: Dge(X xY) =~ D(AY @ Ay) which map FM functors Dge(X) — Dge(Y) to
bimodule functors D(Ax) — D(Ay). More precisely, for any £ € Dy.(X x Y) the diagram

CI’TX,Y(E)
D(Ax) D(Ay)
- N (C.8)
Tx T ~ i Ty T o~
ch(X) - DqC(Y)

commutes up to a functorial isomorphism.

Commutativity of (C.8) implies that having fixed compact generators for Dy (X) and Dgc(Y),
we can view FM functors Dye(X) — Dy (Y') as bimodule functors and vice versa.

Fix compact generators for Dy.(X) and Dy (Y) and consider € € Dyc(X x Y). In view of
(C.8), for

M="xy(£),
functors Ty =¢ and ® ;T x are isomorphic.

LeMmMA C.8. If Z¢ has left adjoint =%, then =% ET L (MAX) is an FM functor. If =¢ maps
compact objects to compact objects, then the right adjomt exists and it is an FM functor,
= > = Byt L (MAY):

Proof. If Zf exists then TX:;}T_l is left adjoint to CIJM Proposition C.6(z) implies that
TxEETy ~ &4, . Commutativity of (C.8) implies Zj ~ _T L (MAX):

If Z¢ maps compact objects to compact objects then so does P :TyEgT;(l. By
Proposition C.6(ii), @, ~ ®,,4, . Moreove}“, YT '®,,4, Ty is right adjoint to Zg, ie. =i ~
T;(I)MAY Ty. As above we conclude that =g ~ ET;IX(MAy). O

The 2-categorical adjunctions (MAX, M, n, 1), (M, MAY ,ng, eg) in Bimod define the twist
and the cotwist by triangles (C.2). In view of the isomorphism Z¢ ~ ®,; and the uniqueness of
adjoint functors (see Lemma C.1), the functorial exact triangles read

5255 — Iquc(X) — @X7g — 5255[1],
Qye — Idp vy — ZeZc — Qyell], ©9)
EeZe — Idp, (v) — Ove — ZeZe[l],

Qxe — Idp(x) — EéEg — Qx e[1].
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Note that we construct the triangles via the category Bimod. We do not check that (C.9) are
induced by morphisms between the convolutions of £ with FM kernels of the adjoint functors
and the structure sheaf of the diagonal.

PRroOPOSITION C.9. Consider £ € Dyo(X x Y'). Then, up to an isomorphism, the functorial exact
triangles of FM functors (C.9) do not depend on the choice of compact generators for Dgyc(X)
and Dy (Y).

Proof. Another choice of generators for Dy (X) and Dyc(Y) gives equivalences T8 : Dyc(X) —
D(Bx), YB: Dy(Y) = D(By), for some DG algebras Bx, By. The composite Tf}oT;{l,
respectively Tg 0Ty, is DG enhanceable and commutes with direct sums, hence it
admits a lift to a bimodule functor, cf. [Toé07]. Functor T oT)_(l, respectively T oT{,l,
together with its quasi-inverse yields (Ax, Bx)-equivalence, respectively (Ay, By )-equivalence,
in Bimod. By Proposition C.4, the induced pseudo-equivalence 6: Bimod 4, 4, — Bimodpg, B,
preserves the twist and the cotwist of the adjunction. The image of 6 under functor ® yields the
required isomorphism of functorial triangles induced by Y and YT5. O

Let f: X — Y be a proper morphism. The FM kernel of the functor Rf: Dye(X) — Dgc(Y)
is the structure sheaf of the graph of f. As functor L f*, left adjoint to R f, exists, the functorial
exact triangles of endo-functors of Dyc(X) and Dyc(Y') are

Lf*Rf. — ldp (x) — Ox s — Lf*Rf[1],
Qy7f — Iquc(Y) — Rf*Lf* — Qy7f[1].

Assume further that f is of finite Tor dimension. Then Rf,: Dqc(X) — Dqc(Y) maps compact
objects to compact objects and we have functorial exact triangles:

Rf.f' = Idp, vy — Oy, — RES(1],
Qx5 — ldp,(x) — f'Rf. — Qx ;1.

Without the assumption on the Tor-dimension of f the pair Rf, - f' admits a lift to DG functors
of the categories of ind-coherent sheaves [GR17].

In the following we discuss compatibility of liftings of push-forward functors to Bimod with
the composition of 1-morphisms.

Let X be a quasi-compact quasi-separated scheme over a field k. Let % (X) denote the
category of complexes of sheaves of Ox-modules with quasi-coherent cohomology and .7 (X)
its full subcategory of h-injective objects. The category #(X) is a DG enhancement for
Dye(X). By [Sch18, Corollary 2.3] there exists a DG functor tx: € (X) — .#(X) together with a
natural transformation ay: Idg(x) — tx whose evaluation at every object of ¢'(X) is a quasi-
isomorphism. In fact, functor ¢x is defined in [Sch18] on the bigger category of complexes of
Ox-modules, here we denote by the same letter its restriction to €(X).

Let f: X — Y be a morphism of quasi-compact quasi-separated schemes. The composite

oo (X)) I ey) X #(y)

defines a DG functor such that the induced functor on homotopy categories is isomorphic to
Rf.. For g: Y — Z, the natural transformation ay : Idgy) — ty yields a morphism

/6: ./g?* = LZg*f* - LZQ*LYf* = ﬁ*}; (ClO)

which induces an isomorphism of the induced functors of homotopy categories.
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Let Ex € .#(X) be an object whose image in the homotopy category is a compact generator.
Denote by Ax its DG endomorphism algebra. Then

Hom 4 (x)(Ex,—): -#(X) — DGMody-Ax
induces an equivalence

Cxt DqC(X) i D(Ax)

Analogously, a lift to #(Y") of a compact generator for Dgy.(Y) to F(Y) yields an equivalence
(v : Dge(Y) — D(Ay). Consider an A ® Ay-bimodule:

Mf = Homj(y)(Ey,ﬁEx). (C.ll)

Then
Ppr; 0Cx =y o Rfs. (C.12)

ProposiTioN C.10. Consider morphisms X EN Y L Z of quasi-compact separated schemes and
denote by Az the DG endomorphism algebra of a lift E; of a compact generator for Dqy.(Z) to
S (Z). Then there exists a canonical isomorphism in D(AY ® Az):

My ®%, My — My; (C.13)

Proof. Morphism 3 (C.10) applied to Ex is a quasi-isomorphism of h-injective complexes, hence
it has a homotopy inverse. It follows that morphism of DG bimodules

— Bo(— o~
6: Mgy = Hom gz (Ez,9f . Ex) 0, Hom y(z)(Ez, g« f+Ex) =t Nys

has a homotopy inverse, i.e. the induced morphism ¢ in D(AY ® Az) is an isomorphism. In
particular, for equivalence (z: Dyc(Z) — D(Az) induced by Ez, formula (C.12) with f replaced
by gf, ¢y by ¢z, and My by M, implies 7z o R(gf)« ~ ®n,, o (x-

Functor g, together with the composition of morphisms in .#(Z) defines a morphism of
bimodules

v: My ®a, My = Hom s (yv)(Ey, f.Ex) ®4, Hom sz (Ez, §.Ey)
— Hom y(5)(Ez, §u feEx) =: Ny

Let 7 be the induced morphism in D(AY @ Az).
Formula (C.12) and its analogue for g: Y — Z yields isomorphisms (z o (Rg. o Rfy) =~
Py, 0Cy o Rf = Ppp, 0 Ppyp 0 (x = (pr®f;YMg o (x. Therefore, ®y, , and (DMf@f,YMg corre-

spond via (x and (z to R(gf). and Rg. o Rf.. As these functors are isomorphic, we conclude
that applying ® to 7 yields an isomorphism of functors. As, by Lemma C.5, ® is conservative, 5
is an isomorphism. Then 5o 7 is the sought isomorphism (C.13). U

Note that as functor @y, : D(Ax) — D(Ay) has left adjoint, Proposition C.6(i7) implies a
2-categorical adjunction (MfX, M¢,np,er) in the category Bimod.
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Consider the following commutative diagram of morphisms of quasi-compact quasi-separated

schemes.
Z
AN
X w
\< 7
Y

We search for a 1-morphism in Bimod whose image under the functor ® as in (C.4) is the base
change Lg*Rf. — Rq.Lp*.

Choose Ex € S(X), By € #(Y), E;z € #(Z) and Ew € (W) whose images in the homo-
topy categories are compact generators. Denote by Ax, Ay, Az and Ay their DG endomorphism
algebras. Let My, M,, M, and M, be DG bimodules as in (C.11).

In view of Proposition C.10 equality f o p = g o ¢ implies an isomorphism v: M, ®ﬁx My —

(C.14)

M, ®flw M. Consider the composite
w: My @5 MW — MA2 @5 M, o5 M; @5 MW

- M[;AZ ®ﬁz Mq ®£W Mg ®£y M;W - M;Z ®1L42 Mq (015)
where the first map is induced by the lift of the Lp* 4 Rp, adjunction unit to the unit Ax —
M;Z ®ﬁz M, of the 2-categorical (Ax, Az)-adjunction, the second by v and the third by the
lift of the Lg* 4 Rg. adjunction counit to the counit M, ®ﬁy M;‘W — Aw of the (Ay, Aw)-
adjunction. Then w is a lift of the ‘base change’ Lg*Rf. — Rq.Lp* to a 1-morphism in Bimod.
The base-change morphism w (C.15) is the composite of appropriate adjunction units and

counits. Hence, Proposition C.9 implies that w yields a unique up to isomorphism morphism
Lg*Rf. — Rq.Lp* of FM functors.

C.6 Isomorphisms of functors via the restriction to one object

Throughout the paper we repeatedly use the fact that, for algebras A, B and functors
F,G: D(A) — D(B) defined by pure modules, an isomorphism of F' and G on generators yields
an isomorphism F = G.

LEMMA C.11. Let A, B be algebras and let M be a complex of A — B bimodules such that
Hi(M) =0, for i # j, for a fixed j € Z. Let also & C D(A) be the full subcategory with one

object A. Then the quasi-isomorphism class of M is determined by the isomorphism class of the
restriction functor ®yrle: € — D(B).
Proof. By definition, M ~ ®;;(A) as a right B module. Functor ®,/|¢ gives a map A ~

Hom 4 (A, A) 5, Hompg(M, M). By assumption on M, we have a quasi-isomorphism M ~ H7(M),
hence Homp (M, M) ~ Homp(H’(M), H’(M)). Then morphism 3 recovers the left A module
structure of H7(M), hence the quasi-isomorphism class of M as an A — B bimodule. O

As an easy corollary, we obtain the following lemma.

LEmMA C.12. Let A, B be algebras and let My, My be complexes of A — B bimodules such
that H'(M,) = 0, for i # j, for a fixed j € Z. Let £ C D(A) denote the full subcategory with one
object A. Then functors @y, and @y, are isomorphic if and only if @y, |e and Py, |e are.

1180

https://doi.org/10.1112/S0010437X22007497 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X22007497

FLOPS AND SPHERICAL FUNCTORS

Proof. As @y, (A) ~ My and Py, (A) ~ My, isomorphism of functors @y, |e ~ Pay,|e implies a
quasi-isomorphism of M; and My as complexes of right B modules. Therefore, H(Ms) = 0, for
i # j. We conclude by Lemma C.11. g

Appendix D. The structure of the reduced fiber

Let f: X — Y be a proper morphism with fibers of dimension bounded by one such that
Rf.(Ox) = Oy. Let C denote the reduced fiber of f over a closed point of Y.
Applying functor Rf, to the short exact sequence

0—-Ic—>0x ->0c—0
of sheaves on X, we obtain a surjective morphism R!f,Ox — R'f,O¢, which implies
HY(O¢) =0.

Moreover, by [Har77, Corollary 11.11.3], C' is connected, i.e. H°(O¢) = k.

Let C =|JC; be a reduced curve such that all of its irreducible components C; are smooth.
An incidence graph is a bipartite graph whose vertices correspond to irreducible components
and singular points of C'. An edge connects a vertex corresponding to an irreducible component
C; with a vertex corresponding to a singular point ¢ € Sing(C) if and only if ¢ € C;. Note that
the incidence graph can be simply connected even though the dual intersection graph might be
not, as the example of three curves meeting in one point shows: the incidence graph is a tree, a
point connected with three other points, whereas the dual graph is a triangle.

We say that a reduced curve has normal crossing singularities if all components of the curve
are smooth and the Zariski tangent space at every singular point is the direct sum of tangent
subspaces corresponding to components that meet at this point.

THEOREM D.1. Let C be a reduced proper algebraic curve over field k. Then H'(O¢) = 0 if
and only if the following conditions are satisfied:

(i) every irreducible component C; of C' is a smooth rational curve;
(ii) the incidence graph of C' has no cycles;
(iii) the curve has normal crossing singularities.

Proof. Assume that H'(O¢g) = 0. Let C; be an irreducible component of C. The restriction
morphism O¢ — O, gives a surjection on cohomology H'(O¢) — HY(Oc,), hence H'(O¢,) = 0.
Let

TG /C\Y; - Cl
denote the normalisation of C;. Consider a short exact sequence of sheaves on Cj:
0—0Oc¢, = 105 — F — 0.

As F is supported at singular points of C;, the group H!(F) vanishes, hence H 1((’)5) =0. As

6’; is smooth, it is isomorphic to IP’}C.
Sequence
0— HO((’)Ci) — HO(Oa) — HO(}") — 0

is exact and the first morphism is an isomorphism. It follows that HY(F) = 0, i.e. sheaf F is
trivial. This proves that C; is isomorphic to its normalisation C;, which is a smooth rational
curve. This proves condition (i).
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Assume that the incidence graph of C has a cycle. Let C’ C C be the corresponding (minimal)
cycle of smooth rational curves, a subscheme in C' with irreducible components C1, . .., C;. Again,
we know that H'(O¢) = 0. Then we have a short exact sequence

l l
0— Ocr — @Oci — @Oq — 0,
i=1 i=1
where cy,..., ¢ are singular points of C’. From long exact sequence of cohomology groups it
follows that H'(O¢r) = k. This contradiction proves condition (ii).
Note that, for curves C satisfying conditions (i) and (ii), there exists a universal curve C' and
morphism

7:C—C,

with the property that C has normal crossing singularities and, for every curve D with normal
crossing singularities and a map D — C, there is a unique lifting map D — C.

The construction of the curve C is simple. Consider an affine neighbourhood U C C of every
point of the curve which does not contain more than one singular point. Assume there is one.
The irreducible components that meet at the singular point give some affine subschemes in U.
As the category of affine schemes is opposite to the category of unital commutative algebras,
we can define the open chart U of the universal curve over U as a colimit over the diagram of
embedding of the singular point into all these affine subschemes (by taking the spectrum of the
limit over the diagram of the corresponding commutative algebras). It has one normal crossing
singularity.

If U has no singular points, then we put U = U. We can glue U over C into a curve, C, with
normal crossing singularities. Conditions (i) and (ii) guarantee that C' has the required universal
property. As we do not need this for our purpose, we skip the proof.

Clearly, 7 is a set-theoretic isomorphism. We again have a short exact sequence with sheaf
F supported at singular points of C":

0—0c — 7m0 —F —0,

whose long exact sequence of cohomology shows that F is trivial sheaf. This implies that the
schematic structure of C and C coincide, which proves condition (iii).

Conversely, assume that C' is a reduced curve satisfying conditions (i), (i) and (iii). We
can assume that the curve is connected. We proceed by induction on the number of irreducible
components of C. The base of induction, the case of a single component, is obvious. As the
incidence graph is a tree, then we can choose an irreducible component C; which has only one
singular point, ¢. The curve C’, the union of the other components, satisfies the same assumptions
as C. Hence, H'(O¢) = 0 by induction hypothesis. As the point c is a normal crossing singularity,
then the kernel of the restriction morphism O¢ — O¢r is easily seen to be O¢, (—1). Then looking
at the cohomology sequence for the short exact sequence

0— Oc(—1) = Oc — Ocr — 0,
we see that H'(O¢) = 0. O

Appendix E. Calculation of Ext groups for bounded above complexes

Let A be an abelian category and A" a bounded above complex over A. Its ‘stupid’ truncations
0>;A define direct system 0»;A° — 0>;_1A". Given a complex B°, we are interested in the group
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Hom™(A', B") in terms of the stupid truncations of both complexes. There is a spectral sequence
with E;-layer:

B = P Ext!(A’, BY). (E.1)

j—i=p

If both complexes A°, B* have finite number of non-trivial components, then it is well-known that
spectral sequence (E.1) converges. If complex B is infinite then we need to put some conditions
on A’ in order to guarantee the spectral sequence is converging to Hom (A", B*). We show that
if, in addition, both complexes are bounded above and Ext?(A?, B7) = 0, for ¢ > 0 and i, j € 7Z,
then we have a graded complex with terms

C? = [] Hom(4',B7) (E.2)
j—i=p
whose cohomology calculate Ext?(A", B'). Here the differentials are the limits of the relevant
differentials in the sequence (E.1) when we allow the truncations of A" and B’ to go to infinity.
Recall the following fact about cohomology of limits. Let (M;);cz be an inverse system of
abelian groups and M = lin M;. We say that system (M;);cz satisfies () if morphism M; — M;_1
is surjective, for any 1.

LEMMA E.1 [Spa88, Lemma 0.11]. Let (A4; LN B; % ¢ B, D;)icz be an inverse system of com-
plexes of abelian groups such that systems (A;), (B;), (C;), (D;) satisfy (%) for all i. Denote
by (A LpLol D) the limit complex. Let A}, B], C! and D) be kernels of A; — A;_1,
B; — B;_1, C; — C;_1 and D; — D;_1, respectively. Assume there is j € 7Z such that sequence
Al — B — C! — D! is exact for all i > j. Then the natural homomorphism Kerg/Imf —
Kerg;/Imf; is an isomorphism.

LEMMA E.2. Let A" and B" be complexes over A, A" bounded above. Assume | € Z such that
ExtJDb(A)(Ai, B) =0, for j <1 and all i. Then the canonical morphism

Ext/ (A", B") — liLnExtj(UgiA', B)
is an isomorphism for any j € 7Z. Here 0>;A" is the ‘stupid’ truncation of A’.

Proof. Fix I', an h-injective resolution of B" (see [Spa88]). The direct system o>;41 4" — oA
induces an inverse system «a;: Homeom(0>;A", ") — Homcom (0>i+1A4°, I"). Morphism «; is sur-
jective, i.e. property (x) is satisfied, and its kernel is complex Homcom (A¥[—i],I"). Cohomology
of this complex is H (Homgom (A [—i],I")) ~ Extg;zA)(Ai, B).

Our assumption implies that, for any j, there exists IN; € Z such that, for ¢ < N;, complex
Homgem (A?[—i], I") is exact at degree j. By Lemma E.1, we conclude that

HY (lim Homcom (0347, 1)) ~ HI (Homeom (0547, 17)) ~ Ext], (4", BY). (E.3)

In particular, the inverse system Ext%b ( A)(021A', B'? — Ext%b ( A)(
the right-hand side of (E.3) is isomorphic to anExt%b A) (0x:A°, B"), for i sufficiently negative.

0>it+14°, 1) stabilises, hence

Moreover, we have lim Homcoom (034", I") ~ Homcom (A, I7). Hence, isomorphism (E.3) yields

Ext]y, 4 (A", B') & H/ (Homcom (4", 1) = lim Ext]y, , (054", B). -

For the reader’s convenience, we also give a proof of the following well-known fact.

LEMMA E.3. Let A" and B* be complexes over A such that A" is finite and B’ is bounded above
and with bounded cohomology. Assume there exists N € Z such that Ext),(A’, A) =0, for all
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j> N,i€Z and A € A. Then, there exists a spectral sequence
EPT = B ExtP(A", B¥9) = Extp, (A" B). (E.4)
k

Proof. For any n € Z, injective resolutions I of B’ give an injective resolution .J; of o>n B’
such that complex J; admits a filtration with graded factors I*". The filtered complex J;, yields
a spectral sequence

nEqu — @ Eti(Ak, Bk’-i-q) = Hombb(A) (A-7 U?nB')- (E5)
{k | k+q>n}

It follows from our assumptions that "EP? is stationary for fixed p, ¢ and n — —oo. Moreover,
the term "E*" is zero, for any p ¢ [0, N] or for any sufficiently positive g. This confirms existence
of the spectral sequence (E.4) and also implies that the Ith layer "EP? is stationary for fixed
p, g and n — —oo and | — oo.

As B’ has bounded cohomology, for n sufficiently negative, we have 7>,110>,B" ~ B" and
T<nOsn B >~ H" (0>, B")[—n]. Then triangle 7<,0>,B" — 0>, B’ — T>p1105, B reads

H"(0>pnB")[—n] — 0>nB" — B" — H"(0>,B")[—n + 1].

As A’ is finite, the assumptions on A‘i imply that there exists N such that Hom(A4", C[k]) =
0, for k> N and all C € A. Thus, Ext’ (A", H" (0>, B")[—n|) ~ Hom(A", H" (o>, B")[j — n]) =
0, for n <j— N. Then, for n <j— N, we have from the above triangle an isomorphism

ExtgbzA)(A', 0snB) ~ ExtgbzA)(A', B).

This shows that the spectral sequence in (E.4) converges to Homy,, A)(A', B). O

ProproSITION E.4. Let A", B' be bounded above complexes of objects in A with bounded coho-
mology. Assume that there exists N € Z such that Ext/(A*, A) =0, for all j > N, i€ Z and
A € A. Assume further that Ext? (A, B¥) = 0, for j > 0 and all i,k € Z. Then, Ext]Db(A) (A", B")
is isomorphic to the jth cohomology group of complex (E.2).
Proof. Lemma E.3 applied to o0»;A" and B, for any ¢ € Z, implies that the spec-
tral sequence (E.4) reduces to a single row. Hence, we have Ext’ (0iA",B") ~
HI (®p~; Hom(A¥, B+k)). The direct system 03;11A4" — 0>;A" induces an inverse system of
complexes @), Hom(A¥F, B%) — @, _ ., Hom(A*, B*%) satisfying condition (x). The kernel
of @,.; Hom(A* B™F) — @, .., Hom(A*, B*) is a complex Hom(A*, B*)[i]. By Lemma E.3,
we have H7(Hom(A?, B')[i]) ~ Ext/™*(A?, B"), thus, for a fixed j and any sufficiently negative 1,
complex Hom(A?, B*)[4] is exact at degree j. Lemma E.1 implies that, for such i, we have

Hi<HHom<Ak,B'+k)> ~ H (@Hom(Ak,B'+k)> ~ Ext’ (054", B’).
k

k>i

Thus, Ext?(05;A", B") is stationary, and HY([], Hom(A¥, B+*)) ~ @Extj(o*}iA',B'). As B
has bounded cohomology, the assumptions of Lemma E.2 are satisfied. It follows that the latter
space is isomorphic to Ext’ (A", B"). O
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