
Canad. J. Math. Vol. 64 (4), 2012 pp. 924–934
http://dx.doi.org/10.4153/CJM-2011-080-6
c©Canadian Mathematical Society 2011

Rectifiability of Optimal Transportation
Plans

Robert J. McCann, Brendan Pass, and Micah Warren

Abstract. The regularity of solutions to optimal transportation problems has become a hot topic in

current research. It is well known by now that the optimal measure may not be concentrated on the

graph of a continuous mapping unless both the transportation cost and the masses transported satisfy

very restrictive hypotheses (including sign conditions on the mixed fourth-order derivatives of the cost

function). The purpose of this note is to show that in spite of this, the optimal measure is supported

on a Lipschitz manifold, provided only that the cost is C2 with non-singular mixed second derivative.

We use this result to provide a simple proof that solutions to Monge’s optimal transportation problem

satisfy a change of variables equation almost everywhere.

1 Introduction

Given Borel probability measures µ+ and µ− on smooth n-dimensional manifolds

M+ and M− respectively and a continuous cost function c : M+ × M− → R, the

Kantorovich problem is to pair the two measures as efficiently as possible relative to

c. A precise formulation requires some notation. For a measure γ on M+ × M−, we

define the marginals of γ to be its push forwards under the canonical projections π+

and π−; put another way, the marginals are measures on M+ and M− respectively

given by the formulae π+
# γ(A) = γ(A×M−) and π

−
# γ(B) = γ(M+ ×B) for all Borel

sets A ⊂ M+,B ⊂ M−. The Kantorovich problem is then to minimize the functional

∫

M+×M−

c(x, y)dγ(x, y)

among all measures γ on M+ × M− whose marginals are π+
# γ = µ+ and π

−
# γ = µ−.

Under fairly weak conditions, it is straightforward to show that a solution to this

problem exists. A twist condition on c (which will be defined subsequently), together

with appropriate regularity conditions on the marginals, suffices to ensure that this

solution is concentrated on the graph of a function over the first marginal, called the

optimal map [20, 26]. Questions about the regularity of the optimal map represent

a very active and exciting area of current research. Perhaps surprisingly, it turns out

that this map is often not smooth: strong fourth-order conditions on c are required to

guarantee even the continuity of maps between smooth positive densities [19,29,31].
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In this paper, we study what can be said about the structure of the solutions without

any restrictions on the marginals, imposing only a generic (differential) topological

non-degeneracy condition on the cost function. This condition was originally intro-

duced in an economic context by McAfee and McMillan [30] and later rediscovered

by Ma, Trudinger, and Wang [31]. In the work of the latter authors, it plays a role

complementary to the twist condition they call (A1), and hence is known as condi-

tion (A2).

In what follows, D2
xyc(x0, y0) will denote the n-by-n matrix of mixed second order

partial derivatives of the function c at the point (x0, y0) ∈ M+ × M−; its (i, j)-th

entry is d2c
dxi dy j (x0, y0).

Definition 1.1 Assume c ∈ C2(M+ × M−). We say that c is non-degenerate at a

point (x0, y0) ∈ M+ × M− if D2
xyc(x0, y0) is nonsingular, i.e., det(D2

xyc(x0, y0)) 6= 0.

For a probability measure γ on M+ × M− we will denote by spt(γ) the support

of γ, that is, the smallest closed set S ⊆ M+ × M− such that γ(S) = 1.

Our main result is the following theorem.

Theorem 1.2 Suppose c ∈ C2(M+ × M−) and µ+ and µ− are compactly supported;

let γ be a solution of the Kantorovich problem. Suppose (x0, y0) ∈ spt(γ) and c is

non-degenerate at (x0, y0). Then there is a neighbourhood N of (x0, y0) such that N ∩
spt(γ) is contained in an n-dimensional Lipschitz submanifold. In particular, if D2

xyc is

nonsingular everywhere, spt γ is contained in an n-dimensional Lipschitz submanifold.

The non-degeneracy condition can be viewed as a linearized version of the twist

condition, which asserts that the mapping y ∈ M− 7→ Dxc(x, y) is injective. Un-

der suitable regularity conditions on the marginals, Levin [26] showed that the twist

condition ensures that the solution to the Kantorovich problem is concentrated on

the graph of a function and is therefore unique; see also Gangbo [20]. For the past

two decades, the regularity of these maps has been an active area of investigation.

Regularity results were proven for the quadratic cost function by Caffarelli [10–12],

Delanoë [15,16], and Urbas [40] and for another special cost function by Wang [42].

These were then generalized by Ma, Trudinger, and Wang [31], who discovered a

fourth-order sign condition on derivatives of the cost function that ensures the op-

timal map is smooth, provided the marginals are sufficiently regular [31, 39]. Our

results assert that something can be said about the smoothness of the support even

without these strong conditions on the cost and the marginals, provided that one is

willing to view the support as a submanifold rather than a graph.

In one dimension, non-degeneracy implies twistedness, as was noted by many

authors, including Spence [38] and Mirrlees [36], in the economics literature; see

also [34]. In higher dimensions, this is no longer true; the non-degeneracy condition

will imply that the map y ∈ M− 7→ Dxc(x, y) is locally injective but not necessarily

globally. Non-degeneracy was a hypothesis in the smoothness proof in [31], but does

not seem to have received much attention in higher dimensions before then. While

our result demonstrates that the non-degeneracy condition is enough to ensure that

solutions still have certain regularity properties, we will show by example that the
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uniqueness result that follows from twistedness can fail for non-degenerate costs that

are not twisted. The twist condition is asymmetric in x and y; that is, there are cost

functions for which the map y ∈ M− 7→ Dxc(x, y) is injective but x ∈ M+ 7→
Dyc(x, y) is not. However, since (D2

xyc)T
= D2

yxc, the non-degeneracy condition is

certainly symmetric in x and y. In view of this, it is not surprising that the twist

condition can only be used to show that solutions are concentrated on the graphs of

functions of y over x whereas the non-degeneracy condition implies that solution are

concentrated on n-dimensional submanifolds, a result that does not distinguish one

variable from the other.

Smooth optimal maps solve certain Monge–Ampère type equations. Typically, an

optimal map will be differentiable almost everywhere, but may not be smooth. It

has proven useful to know when non-smooth optimal maps solve the corresponding

equations almost everywhere. Formally, the link between optimal transportation and

these equations was observed by Brenier [9], then Gangbo and McCann [21], and

they were studied in detail by Ma, Trudinger, and Wang [31]. An important step in

showing that an optimal map solves a Monge–Ampère type equation is first showing

that it solves the Jacobian—or change of variables—equation. An injective Lipschitz

function satisfies the change of variables formula almost everywhere, so some sort of

Lipschitz rectifiability for the graphs of optimal maps is a useful tool in resolving this

question. As an application of Theorem 1.2, we provide a simple proof that optimal

maps satisfy the change of variables formula almost everywhere.

This work is related to another interesting line of research. A measure γ on the

product M+ × M− is called simplicial if it is extremal among the convex set of all

measures that share its marginals. There are a number of results describing simplicial

measures and their supports [3, 8, 17, 24, 27]. One consequence is that the support of

simplicial measures are in some sense small; in particular, the support of a simplicial

measure on [0, 1]×[0, 1] must have two-dimensional Lebesgue measure zero [24,27].

However, any measure supported on the graph of a function is simplicial, and it is

known that there exist functions whose graphs have Hausdorff measure 2−ǫ, for any

ǫ > 0 [1]. For any cost, the Kantorovich functional is linear and hence minimized

by some simplicial measure. Conversely, any simplicial measure is the solution to

a Kantorovich problem for some continuous cost function, and so by the remarks

above there are continuous cost functions whose optimizers are supported on sets of

Hausdorff dimension 2 − ǫ. On the other hand, an immediate consequence of our

result is that the support of optimizers of Kantorovich problems with non-degenerate

C2 costs have Hausdorff dimension at most n.

The result of Ma, Trudinger, and Wang proving smoothness of the optimal map

under certain conditions immediately implies that the support of the optimizer has

Hausdorff dimension n; however, the proof of this result requires that the marginals

be C2 smooth. Under the same assumptions on the cost functions but weaker regular-

ity conditions on the marginals, Loeper [29], Liu [28], and Figalli, Kim, and McCann

[19] have demonstrated that the optimal map is Hölder continuous for some Hölder

constant 0 < α < 1. It is worth noting that there are examples of functions on Rn

[1] that are Hölder continuous with exponent α but whose graphs have Hausdorff

dimension n + 1−α, so the latter results do not imply that the Hausdorff dimension

of the optimizer must be n.
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For an application of Theorem 1.2, see a recent paper by the first and third au-

thor, together with Young-Heon Kim [25], in which a certain pseudo-Riemannian

metric on M+ × M− is shown to calibrate spt(γ), a notion naturally requiring the

rectifiability we prove. Further related developments are discussed in [23].

In Section 2 we prove Theorem 1.2; the proof is based on an idea of Minty [35],

which was also used by Alberti and Ambrosio to show that the graph of any mono-

tone function T : Rn → Rn is contained in a Lipschitz graph over the diagonal

∆ = {u =
x+y√

2
: (x, y) ∈ Rn × Rn} [4]. Section 3 is devoted to discussion and

examples, while in the final section, we use Theorem 1.2 to provide a simple proof

that optimal maps satisfy a prescribed Jacobian equation almost everywhere.

2 Lipschitz Rectifiability of Optimal Transportation Plans

We now prove Theorem 1.2. Note that γ minimizes the Kantorovich functional if and

only if it maximizes the corresponding functional for b(x, y) = −c(x, y). To simplify

the computation, we consider γ that maximizes b.

Our proof relies on the b-monotonicity of the supports of optimal measures.

Definition 2.1 A subset S of M+ × M− is b-monotone if all (x0, y0), (x1, y1) ∈ S

satisfy b(x0, y0) + b(x1, y1) ≥ b(x0, y1) + b(x1, y0).

It is well known that the support of any optimizer is b-monotone [37], provided

that the cost is continuous and the marginals are compactly supported. The reason

for this is intuitively clear; if b(x0, y0)+b(x1, y1) < b(x0, y1)+b(x1, y0), then we could

move some mass from (x0, y0) and (x1, y1) to (x0, y1) and (x1, y0) without changing

the marginals of γ and thus increase the integral of b.

The strategy of our proof is to change coordinates so that locally b(x, y) = x · y,

modulo a small perturbation. We then switch to diagonal coordinates u = x + y, v =

x − y and show that the monotonicity condition becomes a Lipschitz condition for

v as a function of u. This trick dates back to Minty who used it to study monotone

operators on Hilbert spaces [35]; more recently, Alberti and Ambrosio used it to

investigate the fine properties of monotone functions on Rn [4].

We are now ready to prove Theorem 1.2.

Proof Choose (x0, y0) in the support of γ. Changing coordinates in a neighbour-

hood of y0 yields D2
xyb(x0, y0) = I without loss of generality. We then have b(x, y) =

x·y+G(x, y), where D2
xyG → 0 as (x, y) → (x0, y0). Set u

√
2 = x+y and v

√
2 = y−x.

Given ǫ > 0, choose a convex neighbourhood N of (x0, y0) such that ‖D2
xyG‖ ≤ ǫ on

N. We will show that γ∩N is contained in a Lipschitz graph of v over u; hence, u and

v serve as local coordinates for our submanifold. Take (x, y) and (x ′, y ′) ∈ N ∩ spt γ.

Then, by b-monotonicity, we have b(x, y) + b(x ′, y ′) ≥ b(x, y ′) + b(x ′, y), hence

x · y + G(x, y) + x ′ · y ′ + G(x ′
, y ′) ≥ x · y ′ + G(x, y ′) + x ′ · y + G(x ′

, y).

Setting ∆x = x ′ − x, ∆y = y ′ − y, ∆u = u ′ − u, ∆v = v ′ − v, and rewriting yields

(∆x) · (∆y) + (∆x) ·
∫ 1

0

∫ 1

0

D2
xyG[x + s∆x, y + t∆y](∆y)dsdt ≥ 0,
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which simplifies to ∆x ·∆y ≥ −ǫ|∆x||∆y|.
Observe that ∆y

√
2 = ∆u + ∆v and ∆x

√
2 = ∆u −∆v. Now,

|∆u|2 − |∆v|2 = 2(∆x) · (∆y) ≥ −2ǫ|∆x||∆y|

= −ǫ|∆u −∆v||∆u + ∆v| ≥ −ǫ
[

|∆u|2 + |∆v|2
]

The last inequality follows by squaring the absolute values of each side and expanding

the first term. Rearranging yields (1 + ǫ)|∆u|2 ≥ (1 − ǫ)|∆v|2, the desired result.

Note that v may not be everywhere defined; that is, for certain values of u there

may be no corresponding v in spt(γ). However, the function v(u) can be extended

by Kirzbraun’s theorem, and hence we can conclude that spt(γ) is contained in the

graph of a Lipschitz function of v over u.

Remark 2.2 Note that the only property of optimal transportation plans used in

the proof is b-monotonicity, so we have actually proven that any b-monotone subset

of M+ × M− is contained in an n-dimensional Lipschitz submanifold, provided b is

non-degenerate.

Remark 2.3 Our proof uses compactness of the supports of µ+ and µ− only to

guarantee the b-monotonicity of spt(γ). More generally, spt(γ) is b-monotone pro-

vided
∫

M+×M− c(x, y)dγ(x, y) < ∞, and so our result holds in that context as well

[7, 41].

3 Discussion and Examples

For twisted costs, one can show that spt(γ) is concentrated on the graph of a function,

provided the marginal µ+ does not charge sets whose dimension is less than or equal

to n− 1 ([3,20,21,26,31,32]);1 however, this can fail if µ+ charges small sets. On the

other hand, notice that our proof did not require any regularity hypotheses on the

marginals.

In the example below, we exhibit a non-degenerate cost that is not twisted. We

use this example to illustrate how, in this setting, solutions may be supported on

submanifolds that are are not necessarily graphs. In addition, we show that these

solutions may not be unique. We can view this example as expressing an optimal

transportation problem on a right circular cylinder via its universal cover, which is

R2. The non-twistedness of the cost and non-uniqueness of the solution arise because

different points in the universal cover correspond to the same point in the cylinder

and are therefore indistinguishable by our cost function. In fact, if we expressed

the problem on the cylinder, we would have a twisted cost function and therefore a

unique solution.

Example 3.1 Let M±
= R2 and c(x, y) = ex1+y1 cos(x2 − y2) + e2x1

2
+ e2y1

2
. Then

Dxc(x, y) =
(

ex1+y1 cos(x2− y2)+e2x1 ,−ex1+y1 sin(x2− y2)
)

, so y ∈ M− 7→ Dxc(x, y)

1In fact, this condition on the regularity of µ+ has recently been sharpened [22].
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is not injective and c is not twisted. However, note that

D2
xyc(x, y) =

[

ex1+y1 cos(x2 − y2) ex1+y1 sin(x2 − y2)

−ex1+y1 sin(x2 − y2) ex1+y1 cos(x2 − y2)

]

.

Therefore, det D2
xyc(x, y) = e2(x1+y1) > 0 for all (x, y), so c is non-degenerate. Op-

timal measures for c, then, must be supported on 2-dimensional Lipschitz submani-

folds, but we will now exhibit an optimal measure whose support is not contained in

the graph of a function.

Now let M be the union of the three graphs:

G1 : y1 = x1, y2 = x2 +π G2 : y1 = x1, y2 = x2 +3π G3 : y1 = x1, y2 = x2 +5π

Clearly, M is a smooth 2-d submanifold but not a graph. However,

c(x, y) ≥ −ex1+y1 +
e2x1

2
+

e2y1

2
=

(ex1 − ey1 )2

2
,

and we have equality on M. Therefore, any probability measure whose support is

concentrated on M is optimal for its marginals.

We now show that optimal measures supported on M may not be unique. Let

S = {((x1, x2), (y1, y2))|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 4π}. Note that

M ∩ S = (G1 ∩ S) ∪ (G2 ∩ S) ∪ (G3 ∩ S).

consists of three flat 2-d regions. Let γ be uniform measure on these regions. Now,

let γ1 be uniform measure on the the first half of G1 ∩ S, that is, on

G1 ∩ {((x1, x2), (y1, y2))|0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 2π}.

Let γ3 be uniform measure on the the second half of G3 ∩ S, or

G3 ∩ {((x1, x2), (y1, y2))|0 ≤ x1 ≤ 1, 2π ≤ x2 ≤ 4π}.

Take γ2 to be twice uniform measure on G2 ∩ S and set γ = γ1+γ2+γ3. Then γ and γ

share the same marginals and are both optimal measures. Furthermore, any convex

combination tγ + (1 − t)γ will also share the same marginals and will be optimal as

well.

The next example is similar in that the cost function is non-degenerate but not

twisted. However, this cost would be twisted if we exchanged the roles of x and y.

This demonstrates that, unlike non-degeneracy, the twist condition is not symmetric

in x and y. For this cost function, solutions will be unique as long as the second

marginal does not charge small sets.

https://doi.org/10.4153/CJM-2011-080-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-080-6


930 R. J. McCann, B. Pass, and M. Warren

Example 3.2 Let M±
= R2 and

c(x, y) = −
(

x1 cos(y1) + x2 sin(y1)
)

ey2 +
e2y2

2
+

x2
1 + x2

2

2
.

Note that det D2
xyc(x, y) = −e2y2 < 0, so c is non-degenerate. However, Dxc(x, y) =

(−cos(y1)ey2 + x1,−sin(y1)ey2 + x2), so y ∈ M− 7→ Dxc(x, y) is not injective and c is

not twisted. On the other hand,

Dyc(x, y) =
(

(x1 sin(y1) + x2 cos(y1)
)

ey2 ,−(x1 cos(y1) + x2 sin(y1))ey2 + e2y2 )

and so x ∈ M+ 7→ Dyc(x, y) is injective. This implies that solutions are supported

on graphs of x over y but that these graphs are not necessarily invertible. In fact,

c(x, y) ≥ ((x2
1 + x2

2)
1
2 − ey2 )2

2
≥ 0,

where equality holds if and only if

cos(y1) =
x1

(x2
1 + x2

2)
1
2

, sin(y1) =
x2

(x2
1 + x2

2)
1
2

, and (x2
1 + x2

2)
1
2 = ey2 .

This set of equality is a non-invertible graph of x over y; any measure whose support

is contained in this graph is optimal for its marginals. Note that as any minimizer for

this problem must be supported on this graph, the solution is unique [3].

Remark 3.3 For twisted costs with regular marginals, any solution is concentrated

on the graph of a particular function [31]. It is not hard to show that at most one

measure with prescribed marginals can be supported on such a graph; hence, unique-

ness of the optimizer follows immediately.

While our result asserts that for non-degenerate costs the solution concentrates

on some n-dimensional Lipschitz submanifold, the proof says little more about the

submanifold itself. In contrast to the twisted setting, then, our result cannot be used

to deduce a uniqueness argument. Furthermore, as the example above shows, even

if we do know the support of the optimizer explicitly, solutions may not be unique if

this support is not concentrated on the graph of a function.

Theorem 1.2 also says something about problems where D2
xyc is allowed to be sin-

gular, but where the gradient of its determinant is non-zero at the singular points.

In this case, the implicit function theorem implies that the set where D2
xyc is singular

has Hausdorff dimension 2n − 1. Theorem 1.2 is valid wherever D2
xyc is nonsingular,

so that the optimal measure is concentrated on the union of a smooth 2n− 1 dimen-

sional set and an n dimensional Lipschitz submanifold. For example, when n = 1,

this shows that the support of the optimal measure is 1 dimensional.
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4 A Jacobian Equation

We now provide a simple proof that an optimal map satisfies a prescribed Jacobian

equation almost everywhere. This result was originally proven for the quadratic

cost in Rn by McCann [33], and for the quadratic cost on a Riemannian manifold

by Cordero-Erausquin, McCann, and Schmuckenschläger [14]. Cordero-Erausquin

generalized this approach to deal with strictly convex costs on Rn [13]; see also [2].

It was observed by Ambrosio, Gigli, and Savare that this can be deduced from results

in [5, 6] when the optimal map is approximately differentiable, which is true even

for some non-smooth costs. Our method works only when the cost is C2 and non-

degenerate, but has the advantage of a simpler proof, relying only on the area/coarea

formula for Lipschitz functions.

For a Jacobian equation to make sense, the solution must be concentrated on the

graph of a function, and that function must be differentiable in some sense, at least

almost everywhere. A twisted cost suffices to ensure the first condition. The sec-

ond follows from the smoothness and non-degeneracy of c. Recall that for a twisted

cost the optimal map has the form T(x) = c-expx(Du(x)); as c-expx(·) is the in-

verse of y 7−→ Dxc(x, y), its differentabiliy follows from the non-degeneracy of c

and the inverse function theorem. The almost everywhere differentiability of Du(x)

(or, equivalently, the almost everywhere twice differentiability of u) follows from C2

smoothness of c; u takes the form u(x) =infy(c(x, y) − v(y)) for some function v(y)

and is hence semi-concave, assuming, as in Theorem 1.2, that µ± are compactly sup-

ported [21].2 In the present context, we need only the weaker condition that the

optimal map is continuous almost everywhere; its differentiability will follow from

Theorem 1.2.

Proposition 4.1 Assume that the cost is non-degenerate and that an optimizer γ is

supported on the graph of some function T : dom(T) → M−, which is injective and

continuous and whose domain is a set dom(T) ⊆ M+ of full µ+ measure. Suppose that

the marginals are absolutely continuous with respect to volume; set dµ+
= f +(x)dx and

dµ−
= f −(y)dy. Then, for almost every x, f +(x) = | det DT(x)| f −(T(x)).

Proof Choose a point x where T is continuous and a neighbourhood U− of T(x)

such that for U +
= T−1(U−), the part of the optimal graph contained in U + × U−

lies in a Lipschitz graph v = G(u) over the diagonal

∆ =

{

u =
x + y√

2
: (x, y) ∈ U + ×U−

}

,

after a change of coordinates. Now x =
u−v√

2
and y =

u+v√
2

, so the optimal measure is

supported on the graph of the Lipschitz function

(x, y) =
(

F+(u), F−(u)
)

:=
( u − G(u)√

2
,

u + G(u)√
2

)

.

2In fact, the compact support hypothesis on µ± can be weakened considerably and u will still be
semi-concave [18, 21]. Under suitable growth conditions on µ±, Theorem 1.2 continues to hold (see
Remark 2.3), and so Proposition 4.1 will as well.
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Using the map (x, y) ∈ U + ×U− 7→ x+y√
2
∈ ∆ to project γ|U +×U− onto the diagonal,

we obtain a measure ν on ∆ that pushes forward to µ±|U± under the Lipschitz maps

F± : ∆ → U±. Now, as F+ is Lipschitz, the image of any zero volume set must also

have zero volume; as µ+|U + is absolutely continuous with respect to Lebesgue, ν must

be as well; we will write ν = h(u)du. Now, for almost every x ∈ U + there is a unique

y = T(x) such that (x, y) ∈ spt(γ) and hence a unique u =
x+y√

2
on the diagonal

such that x = F+(u). It follows that the map F+ is one-to-one almost everywhere,

and so for every set A ⊆ ∆ we have
∫

A
h(u)du =

∫

F+(A)
f +(x)dx. But the right-

hand side is
∫

A
f +(F+(u))| det DF+(u)|du by the area formula; as A was arbitrary,

this means h(u) = f +(F+(u))| det DF+(u)| almost everywhere. Similarly, h(u) =

f −(F−(u))| det DF−(u)| almost everywhere, hence

f +(F+(u))| det DF+(u)| = f −(F−(u))| det DF−(u)|

almost everywhere. As the image under F+ of a negligible set must itself be negligible,

we have

(4.1) f +(x)
∣

∣det DF+((F+)−1(x))
∣

∣ = f −(F−((F+)−1(x)))
∣

∣det DF−((F+)−1(x))
∣

∣

for almost all x. Note that as F+ is one to one almost everywhere and F+({u ∈ ∆ :

det DF+(u) = 0}) has measure zero by the area formula, (F+)−1 is differentiable

almost everywhere. As T ◦ F+
= F−, it follows that T is differentiable almost every-

where and

det DT(F+(u)) det DF+(u) = det DF−(u)

whenever F+ and F− are differentiable at u and T is differentiable at F+(u). Hence,

(4.2) det DT(x) det DF+((F+)−1(x)) = det DF−((F+)−1(x))

for all x such that T is differentiable at x and F+ and F− are differentiable at

(F+)−1(x). T is differentiable for almost every x , F+ and F− are differentiable for

almost every u and F+ is Lipschitz; it follows that the above holds almost everywhere.

Now, combining (4.1) and (4.2) we obtain f +(x) = | det DT(x)| f −(T(x)) for almost

every x.

Remark 4.2 Note that the preceding proposition does not require that continuity

of T extends outside dom(T). Thus it applies to T = Du, for example, where u is an

arbitrary convex function and dom(T) is its domain of differentiability.
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[7] L. Ambrosio A. and Pratelli, Existence and stability results in the L1 theory of optimal transportation.
In: Optimal transportation and applications (Martina Franca, 2001), Lecture notes in
Mathematics, 1813, Springer, Berlin, 2003, pp. 123–160.
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inequality à la Borell, Brascamp and Lieb. Invent. Math. 146(2001), no. 2, 219–257.
http://dx.doi.org/10.1007/s002220100160
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