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Summary

Although the expected relationship or proportion of genome shared by pairs of relatives can be
obtained from their pedigrees, the actual quantities deviate as a consequence of Mendelian sampling
and depend on the number of chromosomes and map length. Formulae have been published
previously for the variance of actual relationship for a number of specific types of relatives but no
general formula for non-inbred individuals is available. We provide here a unified framework that
enables the variances for distant relatives to be easily computed, showing, for example, how the
variance of sharing for great grandparent–great grandchild, great uncle–great nephew, half
uncle–nephew and first cousins differ, even though they have the same expected relationship.
Results are extended in order to include differences in map length between sexes, no recombination
in males and sex linkage. We derive the magnitude of skew in the proportion shared, showing the
skew becomes increasingly large the more distant the relationship. The results obtained for variation
in actual relationship apply directly to the variation in actual inbreeding as both are functions
of genomic coancestry, and we show how to partition the variation in actual inbreeding between
and within families. Although the variance of actual relationship falls as individuals become
more distant, its coefficient of variation rises, and so, exacerbated by the skewness, it becomes
increasingly difficult to distinguish different pedigree relationships from the actual fraction of the
genome shared.

1. Introduction

Characterizing the relationship between pairs of in-
dividuals continues to be of importance in many areas
of population and quantitative genetics. Variation in
genome sharing identical by descent (ibd) over the
genome depends both on the pedigree and the extent
to which alleles at different loci are jointly ibd. The
degree of relationship might be inferred from pedigree
information or it can be estimated from genetic
information (Weir et al., 2006; Visscher et al., 2006;
Yu et al., 2006), but in either case there is variation in
relationship measures. A recent development has been
to utilize this variability in the actual relationship to
estimate the components of variance for quantitative

traits from the variation in resemblance among full
sibs, i.e. family members who have the same pedigree
relationship (Visscher et al., 2006).

By making assumptions about the mapping
function, the variation in the proportion of genome-
shared ibd, or actual relationship, can be computed
for different pedigrees. Formulae have been published
for autosomal loci of lineal descendants (Stam &
Zeven, 1981; Hill, 1993a), sibs (Hill, 1993b) and other
relatives, including cousins (Guo, 1995). Formulae
have also been given for the variation of identity of
full sibs for both alleles at each site (Visscher et al.,
2006) and for sex-linked loci (Visscher, 2009).

These analyses are solely concerned with the vari-
ances of the distributions of sharing. The distribution
itself or other functions of it have also been obtained.
In particular, Donnelly (1983) computed the prob-
ability that the proportion shared with an ancestor
exceeded zero. Bickeboller & Thompson (1996a, b)
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obtained approximations for the distribution of the
proportion shared between half-sibs and between
offspring and parent. The full distribution has been
obtained by Stefanov and colleagues for lineal des-
cendants (Stefanov, 2000, 2004) and for half sibs (Ball
& Stevanov, 2005). Their results generally take the
form of a set of equations and computer routines for
numerical evaluation.

With the advent of dense genome mapping, it has
become possible to estimate the actual proportion of
the genome shared for pairs of relatives and to com-
pare the observed with expected values. This has been
done for full sibs by Visscher et al. (2006, 2007), and
there was generally good agreement between observed
and expected sharing.

Mapping with multiple markers enables relatives
to be identified among samples from the population.
The ability to correctly assign relationship, to dis-
tinguish between second and third cousins, for ex-
ample, depends on the sampling variance of the actual
proportion of genome shared and the additional
sampling due to the use of a limitednumberofmarkers.
Such data arise in genome-wide association studies,
for example, where up to millions of single nucleo-
tide polymorphism (SNP) markers are genotyped
on thousands of individuals, and the relationship
structure of the data is an important component in
determining the reliability of conclusions on trait gene
identification. Genetic variances of quantitative traits
can be estimated by taking advantage of the variation
in genome sharing to account for phenotypic simi-
larity both within families of full sibs (including
dizygotic twins) (Visscher et al., 2006, 2007) and be-
tween families utilizing information on distant re-
latives not available from known relationships (Yang
et al., 2010). Quantifying the degree of relationship is
also an important aspect of genotype data cleaning in
genome-wide association studies (Laurie et al., 2010),
for guarding against incorrect annotation of family
membership or for modifying tests of marker trait
association (Choi et al., 2009). Genomic selection,
which utilizes dense mapping for identifying sharing
of genes among relatives, depends on there being
variability in genome sharing of relatives that have the
same pedigree relationship (Meuwissen et al., 2001),
and which has major application, mainly so far in
plant and animal breeding. It may be based directly
on the actual genomic relationship matrix or with
weighting dependent on the variance in the trait as-
sociated with particular genomic regions (Goddard,
2009). These activities require an appreciation of the
extent of the variation in genome sharing by identity
and have motivated this study.

Our objective in this paper is to consider moments
of the distribution of allele sharing, and to obtain
formulae that can be applied simply to any kind and
degree of relationship, including direct descendants

and those of half- and of full sibs. The distributions
can be highly skewed, particularly when the relation-
ship is low, and hence we also obtain formulae for
the magnitude of skew of relationship. Although we
restrict the analysis to the relationship among non-
inbred individuals, the results apply directly to the
variation in actual inbreeding of offspring of con-
sanguineous matings and we show how to apply them.

2. General formulae for variance of genome sharing

of non-inbred individuals

(i) Background theory

At any locus individuals may share zero, one or two
pairs of alleles ibd with probabilities k0, k1 or k2. The
actual ibd status can be indicated by �kkm, m=0, 1, 2,
where �kkm=1 if the individuals share exactly m pairs of
alleles ibd and �kkm=0 otherwise. The probabilities km
depend on the pedigree structure and are the expected
values of the �kkm. As exactly one of the �kkm is equal to 1
at any locus and as squaring an indicator does not
change its value, their variances and covariances are

m2(
�kkm)=Var(�kkm)=km(1xkm), m=0, 1, 2,

Cov(�kkm, �kkmk)=xkmkmk, mlmk:

Less detailed measures of relationship are the co-
ancestry or kinship coefficient, h=1

2
k2+1

4
k1, the

probability that an allele drawn at random from
one individual is ibd to a random allele from the other,
and the relationship R=2h=k2+1

2
k1. This equals

Wright’s (1922) relationship for non-inbred individ-
uals and is also called the ‘numerator relationship’.
We shall primarily use R here as we are considering an
analysis of genome sharing, for R is the probability
that a random allele identified in one individual is
present ibd in the other. We have previously con-
sidered variation in actual coancestry (Cockerham &
Weir, 1983; Weir et al., 2005) and thus in relationship.
The actual relationship is �RR=�kk2+1

2
�kk1 and this has

variance

m2(
�RR)=Var( �RR)=k2+1

4
k1x k2+1

2
k1

� �2=k2+1
4
k1xR2:

(1)

The quantity 1
4
k2+ 1

16
k1 was written as D by

Cockerham & Weir (1983) and is the probability that
two pairs of alleles at the same locus are ibd.

The inbreeding coefficient F is the probability that
the two alleles carried by an individual are ibd. We
have discussed the variation in actual inbreeding
(Weir et al., 1980; Cockerham &Weir, 1983), with the
variation in the two-allele measures h and F expressed
as a function of the ibd probability of a set of two,
three or four alleles. We shall also discuss coefficients
of variation of actual identity. For example,

CV( �RR)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var( �RR)

q
=E( �RR)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var( �RR)

q
=R:
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In Table 1, we list values for the ks, R and their single-
locus variances and covariances for some common
relationships. We now consider the variances and
covariances of the actual identities when that they are
averaged over the genome, assuming that they have
the same expected values at all loci. The results for
single loci also apply if the loci are completely linked
and are therefore a limiting case of the genome-
average results.

When we consider the variation in sharing of re-
latives over the genome, we require the average over
pairs of loci i, j of the covariances of the actual shar-
ing indicators �kki, �kkj for 0, 1 or 2 pairs of alleles. For a

set of r loci �kk= 1
r
gr

i=1
�kki and

E(�kk2)=
1

r2
E g

i

�kk2
i+ g

ilj

�kki �kkj

 !
:

Combining the two terms in this sum and subtracting
the square of the mean gives

Var(�kk)=
1

r2
E g

i

g
j

�kki �kkj

 !
xk2

and similar arguments apply to higher moments dis-
cussed later.

(ii) Lineal descendants

If g generations separate two individuals, one being a
lineal descendant of the other, k2=0 and k1=(1

2
)gx1.

For a parent and offspring pair (g=1, e.g. A and D

in Fig. 1), �kk1=k1=1 and Var(�kk1)=0. For linked ga-
metic loci i, j the only way both values can be equal to
one in subsequent generations (e.g.G, J) is if there has
been no recombination in the descent from ancestor
to descendant. The expected value of their product is
therefore

E(�kk1i
�kk1j)= 1

2
(1xcij)

� �gx1
,

where cij is the recombination fraction between loci.
For convenience, we will drop the ij subscript on cij.
The covariance of these two variables is

Cov( �kk1i, �kk1j)= 1
2
(1xc)
� �gx1x 1

4

� �gx1
: (2)

Note that this covariance is zero if the loci are un-
linked and c=0.5, or if one individual is the offspring

Table 1. Expectations and variances for actual identity at individual loci

Relationship R h k0 k1 k2 Var( �kk1) SD( �RR) CV( �RR)

Parent–offspring 0.5 0.25 0 1 0 0 0 0
Full sibs 0.5 0.25 0.25 0.5 0.25 0.25 0.3536 0.707
Grandparent–grandoffspring 0.25 0.125 0.5 0.5 0.0 0.25 0.2500 1.000
Half sibs 0.25 0.125 0.5 0.5 0.0 0.25 0.2500 1.000
Uncle–nephew 0.25 0.125 0.5 0.5 0.0 0.25 0.2500 1.000
Double first cousins 0.25 0.125 0.5625 0.375 0.0625 0.2344 0.3062 1.225
Greatgrandparent–greatgrandoffspring 0.125 0.0625 0.75 0.25 0.0 0.1875 0.2165 1.732
Half uncle–nephew 0.125 0.0625 0.75 0.25 0.0 0.1875 0.2165 1.732
First cousins 0.125 0.0625 0.75 0.25 0.0 0.1875 0.2165 1.732
Great uncle–great nephew 0.125 0.0625 0.75 0.25 0.0 0.1875 0.2165 1.732
Half cousins 0.0625 0.0313 0.875 0.125 0.0 0.1094 0.1654 2.645
Cousins once removed 0.0625 0.0313 0.875 0.125 0.0 0.1094 0.1654 2.645
Second cousins 0.0313 0.0156 0.9375 0.0625 0.0 0.0586 0.1210 3.872

Fig. 1. Examples of relationship

Relationship Example R Relationship Example R

Lineal relatives Full sibs and their
descendants

Parent–offspring AD 1
2

Full sibs EF 1
2

Grandparent–
grandoffspring

AG 1
4

Uncle–nephew EI 1
4

Greatgrandparent–
ggoffspring

AJ 1
8

Great uncle–gt
nephew

EL 1
8

Half-sibs and their
descendants

(First) cousins HI 1
8

Half-sibs DE 1
4

Cousins once
removed

HL 1
16

Half-uncle–nephew DH 1
8

Second cousins KL 1
32

Half-cousins GH 1
16

Double first
cousins*

HI 1
4

*If M and N are also full sibs.
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of the other and g=1. Setting c=0 gives the variance
k1i(1xk1i) as the two loci are then transmitted as a unit.

For allele sharing over the whole genome, suppose
there are infinitely many loci along a chromosome of
length l and further suppose Haldane’s (1919) map-
ping function holds so that (1xc)=1

2
(1+ex2d), where

d is the map length between loci i, j. Therefore, from
eqn (2),

Cov( �kk1i, �kk1j)= 1
4

� �gx1
(1+ex2d)gx1x1
� �

:

The variance of allele sharing over the whole chro-
mosome is the average of all the covariances and this
can be calculated as an integral by letting x, y be the
positions of pairs of loci :

VarLin, g (�kk1)=

2

l2
1

4

� �gx1Z l

x=0

Z x

y=0
(1+ex2(xxy))gx1x1
� �

dy dx
(3)

(Stam & Zeven, 1981; Hill, 1993a).
As we use this function repeatedly and more gen-

erally subsequently, we define

wn(l)=
2

l2
1

4

� �n Z l

x=0

Z x

y=0
(1+ex2(xxy))nx1
� �

dy dx

(4a)

=
1

2l2
1

4

� �n

g
n

r=1

n

r

� �
2rlx1+ex2rl

r2

� 	
, no1,

0, n=0:

8<
: (4b)

(Hill, 1993a). At the limits, for l ! 0, wn(l) ! (1
2
)n

r[1x(1
2
)n] and for l!‘, wn(l)! 0. The variance of

the chromosome-sharing variable �kk1 for lineal re-
latives g generations apart can then be expressed
as VarLin, g (�kk1, l)=wgx1 lð Þ. Also VarLin, g ( �RR, l)=
1
4
VarLin, g(�kk1, l) and VarLin, g (�hh, l)= 1

16
VarLin, g (�kk1, l). The

coefficient of variation (CV) of �kk1 is given by

CVLin, g (�kk1, l)=2gx1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wgx1 lð Þ

q

=
1

l

1

2
g
gx1

r=1

gx1

r

� �
2rlx1+ex2rl

r2

� 	
 �1=2

, go2

(Visscher, 2009) and is the same for �RR and �hh. For a
whole genome comprising K chromosomes of lengths
l1, l2, …, lK and total map length L=gK

i=1li, the vari-
ance is

VarLin, g (�kk1)=
1

L2
g
K

i=1
l2iwgx1 lið Þ: (5)

We now evaluate the variance of genome sharing
or relationship among collateral relatives and their
descendants using eqns (3) and (4). Results are sum-
marized in Box 1.

(iii) Half-sibs and their descendants

(a) General formulation

Just as for lineal relatives, half-sibs (e.g. D and E

in Fig. 1) and their descendants can have only one or
zero pairs of ibd alleles at a locus. Formulae for var-
iances of sharing ibd for half-sibs were given by Hill
(1993b) and Guo (1995), but we generalize these here
in order to include subsequent generations.

The probability that half-sibs share one pair of
alleles is E(�kk1)=k1=1

2
and the probability that they

share zero pairs is k0=1
2
, so Var(�kk1)=1

4
. Half-sibs

share one pair of alleles at each of loci i, j only if they
both receive the same non-recombinant or the same
recombinant haplotype from their common parent.
Therefore,

E(�kk1i
�kk1j)=1

2
1xcð Þ2+1

2
c2 (6)

and the covariance of the allele-sharing indicators is

Cov( �kk1i, �kk1j)=1
2
(1xc)2+1

2
c2x1

4
=1

4
(1x2c)2 (7)

showing that the covariance of �kks for unlinked loci is
zero.

When we consider relationships across generations,
for example, half-uncle nephew, the probability that
these share haplotypes is proportional to 1

2
(1xc) of

the probability that the half-sibs share haplotypes.
For half-sibs and other relatives who are not lineal
descendents, the probability of sharing is not simply
proportional to powers of (1xc) but involve others
such as c2 as shown in eqn (6). In order to generalize
formulae across generations, we find it convenient to
express all powers of c in terms of b=1

2
(1xc) as

cn= 1x2
1

2
(1xc)

� �� 	n
= g

n

i=0

n
i

� �
x2bð Þi: (8)

Therefore, from eqn (6), for half-sibs

E(�kk1i
�kk1j)=4b2x2b+1

2
:

This is a specific example of expressions which appear
in all succeeding analyses, and so we consider the
general form

E(�kk1i
�kk1j)=g

n

anb
n: (9)

For unlinked loci, b=1
4
, the �kks are independent and

(9) gives the product of the expected values of �kkli and
�kklj, so

Cov( �kk1i, �kk1j)=g
n

an bnx 1
4

� �n� 

:

Expressed in terms of map positions x, y for these loci,
b=1

4
(1+ex2(xxy)) and

Cov( �kk1i, �kk1j)=g
n

an
1
4

� �n
1+ex2(xxy)
� �n

x1
� 


:
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Using eqns (3) and (4), we obtain

Var(�kk1, l)=g
n

anwn(l): (10)

Applying this methodology to half-sibs,

VarHS(�kk1, l)=4w2(l)x2w1(l)+
1
2
w0(l)=4w2(l)x2w1(l),

because w0(l)=0. Also

VarHS ( �RR, l)=w2 lð Þx1
2
w1 lð Þ: (11)

(b) Half-uncle nephew and descendants

The probability that half-uncle and nephew (e.g.
D and H in Fig. 1; or, implicit here and subsequently,

Box 1. Summary of formulae for variances of genome sharing. R= 1
2

� �g
A. Unilineal relatives (k2=0 and Var( �RR, l)=1

4
Var(�kk1, l))

Lineal descendants

VarLin, g (�kk1, l)=wgx1(l):

Examples : g=1 for parent–offspring (when VarLin,g(�kk1, l)=0), g=2 for grandparent–grandoffspring.

Half-sibs and their descendants

VarHS, g (�kk1, l)=4wg(l)x2wgx1(l)+
1
2
wgx2(l):

Examples : g=2 for half sibs, g=3 for half uncle-nephew, g=4 for half cousins.

Descendants of full sibs

Uncle–nephew and nephew’s descendants

VarUN, g (�kk1, l)=8wg+1(l)x4wg(l)+
1
2
wgx1(l)+

1
4
wgx2(l):

Examples : g=2 for uncle-nephew, g=3 for great uncle-great nephew.

Cousins and descendants

VarC, g (�kk1, l)=8wg+1(l)x4wg(l)+
3
2
wgx1(l)x

1
2
wgx2(l)+

1
8
wgx3(l):

Examples : g=3 for (first) cousins, g=5 for second cousins or cousins twice removed.

B. Bilineal relatives (k2l0)

Full sibs

VarFS ( �RR, l)=2w2 lð Þxw1 lð Þ:

VarFS (�kk2, l)=VarFS (�kk0, l)=16w4(l)x16w3(l)+8w2(l)x2w1(l),

VarFS (�kk1, l)=4VarFS (�kk2, l)x4VarFS ( �RR, l),

CovFS (�kk2, �kk1, l)=CovFS (�kk1, �kk0, l)=x2VarFS (�kk2, l)+2VarFS ( �RR, l),

CovFS (�kk2, �kk0, l)=VarFS (�kk2, l)x2VarFS ( �RR, l):

Double first cousins

VarDFC ( �RR, l)=4w4 lð Þx2w3 lð Þ+3
4
w2 lð Þx1

4
w1 lð Þ,

VarDFC (�kk2, l)=64w8(l)x64w7(l)+40w6(l)x20w5(l)+
33
4
w4(l)x

5
2
w3(l)+

5
8
w2(l)x

1
8
w1(l),

VarDFC (�kk1, l)=4VarDFC (�kk2, l),

VarDFC (�kk0, l)=VarDFC (�kk2, l)+2VarDFC ( �RR, l),

CovDFC (�kk2, �kk1, l)=x2VarDFC (�kk2, l)+VarDFC ( �RR, l),

Cov( �kk2, �kk0, l)=VarDFC (�kk2, l)xVarDFC ( �RR, l),

Cov( �kk1, �kk0, l)=x2VarDFC (�kk2, l)xVarDFC ( �RR, l):
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half-aunt and nephew or niece, etc.) share one pair
of alleles ibd is k1=1

4
. They share a pair of alleles

ibd at loci i and j only if H receives from its parent
E the non-recombinant haplotype that carries
alleles from B, the common parent of D and E.
Therefore

E(�kk1i
�kk1j)=1

2
(1xc) 1

2
(1xc)2+1

2
c2

� �
=4b3x2b2+1

2
b

and immediately, by using (9) and (10),

VarHUN (�kk1, l)=4w3 lð Þx2w2 lð Þ+1
2
w1 lð Þ:

We generalize the formulae with reference to pairs
of relatives that are g generations apart, i.e. their
pedigree relationship is (1

2
)g. Thus, g=2 for half sibs

(and grandparent–grandoffspring, as above), g=3 for
half-uncle nephew and g=4 for half-cousins (G andH

in Fig. 1) and for half-great uncle nephew (D and K).
The one-locus allele sharing indicator has expectation
E(�kk1)=(0.5)gx1 and those for two loci reduce by a
proportion 1

2
(1xc) each generation as the g meioses

are independent. Hence

VarHS, g (�kk1, l)=4wg lð Þx2wgx1 lð Þ+1
2
wgx2 lð Þ:

Setting g=2 and noting that w0(l)=0 provide the half-
sib result. Note also that the variances are the same
for any collateral and lineal offspring of half-sibs that
have the same relationship, e.g. half-cousins and half
great uncle–great nephew.

(iv) Lineal descendants of full-sibs

We now discuss the relationships between full sibs
and their lineal descendants and among these des-
cendants, where it is still the case that only one or zero
pairs of alleles might be ibd, i.e. k2=0. We defer to the
next section a treatment of full sibs and of bilineal
relatives in general where k2>0. Note, however, that
since the maternal and paternal transmissions are in-
dependent,

VarFS ( �RR, l)=2w2 lð Þxw1 lð Þ,

i.e. twice that for half-sibs (eqn (11)) (Hill, 1993b ;
Guo, 1995).

(a) Uncle–nephew

In Fig. 1, E and F are full sibs and I is the offspring of
F and a nephew of E. At any locus, they can share one
or zero pairs of alleles with probabilities k1=k0=1

2
.

They can share a pair of alleles ibd at loci i and j in
two ways: either I receives a non-recombinant hap-
lotype from F, and E, F both carry copies of that
haplotype which might themselves be both recombi-
nant or non-recombinant from one of their parents ;
or I receives a recombinant haplotype from F, and

E, F receive ibd alleles at i from one parent and ibd
alleles at j from the other. So

E(�kk1i
�kk1j)=(1xc) 1

2
(1xc)2+1

2
c2

� �
+1

4
c

=8b3x4b2+1
2
b+1

4
:

(12)

Integrating over a chromosome of length l and using
(9) and (10)

VarUN (�kk1, l)=8w3 lð Þx4w2 lð Þ+1
2
w1 lð Þ,

VarUN ( �RR, l)=2w3 lð Þxw2 lð Þ+1
8
w1 lð Þ:

These results are not the same as those for half-sibs,
even though the single-locus probabilities k0, k1 are
the same nor are they twice the value for half-uncle
nephew.

(b) Uncle and descendants of a nephew

For great-uncle nephew (e.g. E and L in Fig. 1) and
further descendents of the nephew, results are ob-
tained immediately from (12) as the expressions are
multiplied by further coefficients b. Hence, if they are
g generations apart

VarUN, g ( �RR, l)=2wg+1 lð Þxwg lð Þ+1
8
wgx1 lð Þ+ 1

16
wgx2 (l):

This reduces to the uncle–nephew case (where R=1
4
)

for g=2 and to full sibs for g=1 (provided we set
wn(l)=0, nf0).

(c) Cousins

In Fig. 1, E and F are full sibs, and so their respective
offspring H and I are (first or full) cousins. They may
share one or zero pairs of alleles ibd with probabilities
k1=1

4
and k0=3

4
. The haplotypes that they receive

from their sibling parents may each be non-
recombinant, with probability (1xc)2, in which case
they carry ibd alleles at each locus with probability
[1
4
(1xc)2+1

4
c2]. Alternatively, the haplotypes that they

receive from their sibling parents may each be re-
combinant, with probability c2, in which case they
carry ibd alleles at each locus with probability 1

8
.

Therefore,

Pr(�kk1i
�kk1j)=1

2
(1xc)2[1

2
(1xc)2+1

2
c2]+1

8
c2

=8b4x4b3+3
2
b2x1

2
b+1

8

(13)

and hence

VarFC (�kk1, l)=8w4 lð Þx4w3 lð Þ+3
2
w2 lð Þx1

2
w1 lð Þ,

VarFC ( �RR, l)=2w4 lð Þxw3 lð Þ+3
8
w2 lð Þx1

8
w1 lð Þ:

(14)

Note that the variances differ from those for great
uncle–great nephew, although they have the same re-
lationship parameters k1 and R.
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(d) Descendants of cousins

In Fig. 1, H and L are cousins once removed. An in-
dividual shares a haplotype with the offspring of a
cousin only if the cousin transmits it without recom-
bination. Hence, the joint probability of sharing is b
times that for cousins. Setting g=3 for cousins (R=1

8
),

so g=4 for cousins once removed, g=5 for second
cousins and for cousins twice removed and g=6 for
third cousins, The variances are

VarC, g (�kk1, l)=8wg+1 lð Þx4wg lð Þ+3
2
wgx1 lð Þ

x1
2
wgx2 lð Þ+1

8
wgx3 lð Þ,

VarC, g ( �RR, l)=2wg+1 lð Þxwg lð Þ+3
8
wgx1 lð Þ

x1
8
wgx2 lð Þ+ 1

32
wgx3 lð Þ,

and also VarC,1 ( �RR, l)=VarFS ( �RR, l).

(v) Bilineal relatives

(a) General methodology

Bilineal relatives can receive identical alleles from
each of the two different pedigrees. Full sibs have two
parents in common and each may transmit identical
alleles to the sibs. Double first cousins have two pairs
of grandparents in common, and each pair may trans-
mit identical alleles to the cousins. It is convenient
to refer to the two pedigrees as ‘maternal ’ and
‘paternal ’, although this may not be the case for
double first cousins. In Fig. 1, E and F are full sibs and
can receive identical alleles from each of their parents
B and C. If M and N are also full sibs, then H and I

are double first cousins who may receive ibd alleles
from both sets of grandparents, namely B, C and the
parents of M, N.

Using superscripts m, p for maternal and paternal
events in order to extend the previous definitions of
actual identity indicators, the required indicators can
be partitioned as

�kk2=�kk m
1

�kk p
1 ,

�kk1=�kk m
1 (1x�kk p

1 )+(1x�kk m
1 )�kk p

1 ,

�kk0=(1x�kk m
1 )(1x�kk p

1 ):

As we assume no inbreeding, �kk m
1 and �kk p

1 are inde-
pendent and have expected values denoted am=k1

m

and ap=k1
p. Therefore, k2=amap, k1=am(1xap)+

(1xam)ap and k0=(1xam)(1xap). For full sibs, for
example, am=ap=1

2
, k2=k0=1

4
and k1=1

2
.

Hence, the variance of the actual relationship,
�RR=1

2
�kk m
1 +�kk p

1

� �
, can be written in an alternative form

to eqn (1) as

Var( �RR)=1
4
[am(1xam)+ap(1xap)]: (15)

The sharing of either or both maternal and paternal
alleles can extend to each of the two loci, i and j, and
we introduce the expected products

bm=E(�kk m
li

�kk m
lj ), bp=E(�kk p

li
�kk p
lj ):

For full sibs, these values are each the same as
for sharing of alleles transmitted from their com-
mon parent to half-sibs (eqn (6)), bm=bp=
1
2
[(1xc)2+c2].
As maternal and paternal alleles are inherited in-

dependently,

E(�kk m
1i

�kk p
1i )=E(�kk m

1i
�kk p
1j )=E(�kk m

1j
�kk p
1i )=(�kk m

1j
�kk p
1j )=amap:

The expected product of sharing two pairs of alleles at
two loci for bilineal relatives is

E(�kk2i
�kk2j)=E(�kk m

1i
�kk p
1i
�kk m
1j

�kk p
1j )

=E(�kk m
1i

�kk m
1j ) E(

�kk p
1i
�kk p
1j )=bmbp

and the covariance of the double-sharing indicators is

Cov( �kk2i, �kk2j)=E(�kk2ik̂2j)xE(�kk2i)E(�kk2j)=bmbpx(amap)2:

For the other covariances, we note that terms such
as [E(�kk m

i
�kk p
j )xE(�kk m

i )E(�kk p
j )] contribute zero, whereas

terms such as [E(�kk m
i

�kk m
j )xE(�kk m

i )E(�kk m
j )] contribute

(bij
mxai

maj
m). The remaining covariances are ob-

tained similarly. The covariance Cov( �kkli, �kklj) com-
prises four terms: from sharing of both paternal
alleles but neither maternal allele and vice versa, and
from sharing of paternal but not maternal alleles at
the first locus and of maternal but not paternal alleles
at the second locus and vice versa. It is convenient to
define vm=bmx(am)2 and vp=bpx(ap)2.

We obtain

Cov( �kk2i, �kk2j)=(am)2vp+(ap)2vm+vmvp

and also

Cov( �kk1i, �kk1j)=(1x2am)2vp+(1x2ap)2vm+4vmvp,

Cov( �kk0i, �kk0j)=(1xam)2vp+(1xap)2vm+vmvp,

Cov( �kk2i, �kk1j)+Cov( �kk1i, �kk2j)=2am(1x2am)vp

+2ap(1x2ap)vmx4vmvp,

Cov( �kk2i, �kk0j)+Cov( �kk0i, �kk2j)=x2am(1xam)vp

x2ap(1xap)vm+2vmvp,

Cov( �kk1i, �kk0j)+Cov( �kk0i, �kk1j)=x2(1xam)(1x2am)vp

x2(1xap)(1x2ap)vmx4vmvp:

(16)

Note that these six expressions sum to zero, as
�kk0+�kk1+�kk2=1 at each locus. For unlinked loci,
bm=(am)2 and bp=(ap)2, all these expressions (16) are
zero. For completely linked loci, bm=am and bp=ap,
the covariances reduce to the variances and covar-
iances of the single-locus indicators.
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Averaging over just two loci, i, j :

�RR=1
2
(�kk2i+�kk2j)+1

4
(�kk1i+�kk1j):

Using one-locus results and the two-locus covariances
in this case

Var( �RR)=1
8
[vm+vp+am(1xam)+ap(1xap)]:

As expected, this does not involve the product vmvp

(or, equivalently, bm bp) because the maternal and
paternal alleles are transmitted independently. For
unlinked loci, the variance is half the single-locus
value shown in eqn (15).

(b) Full sibs

For full sibs, am=ap=a=1
2, bm=bp=1

2
[(1xc)2

+c2]=4b2x2b+1
2
. Therefore bmbp=16b4x16b3+

8b2x2b+1
4
, which equals 1/16 when c=1

2
. Using

Cov( �kk2i, �kk2j)=bmbpx(amap)2 from eqns (16) and in-
tegrating over a chromosome of length l :

VarFS (�kk2, l)=VarFS (�kk0, l)=16w4(l)x16w3(l)

+8w2(l)x2w1(l),

VarFS (�kk1, l)=64w4(l)x64w3(l)+24w2(l)x4w1(l),

CovFS (�kk2, �kk1, l)=CovFS (�kk1, �kk0, l)=x32w4(l)

+32w3(l)x12w2(l)+2w1(l),

CovFS (�kk2, �kk0, l)=16w4(l)x16w3(l)+4w2(l):

An alternative summary of these expressions is given
in Box 1. The variance of the actual relationship for
full sibs can be obtained from these results, and is
VarFS ( �RR, l)=2w2 lð Þxw1 lð Þ, i.e. twice that for half-
sibs, as noted previously. The variance of �kk2 was
derived by Visscher et al. (2006), who also pointed
out that CovFS ( �RR, �kk2, l)=VarFS ( �RR, l). The regression
of �kk2 on �RR is therefore 1.0. The genetic covariance
of phenotypes of quantitative traits of relatives (ig-
noring epistasis) is given by RVA+k2VD, where VA

and VD are the additive and dominance variances
(Falconer &Mackay, 1996) and traditionally pedigree
relationships are used. Estimates of the additive gen-
etic and dominance variances free of environmental
covariances for quantitative traits can be obtained by
regressing the resemblance of trait values of full sibs
to their actual genome shared, �RRVA+�kk2VD, if dense
markers are available. The estimates of VA and VD

are therefore highly correlated, however (Visscher
et al., 2006).

(c) Double first cousins

For double first cousins am=ap=1
4
and, utilizing the

results for descendants of first cousins (eqn (13)),

E(�kk1i
�kk1j)=8b4x4b3+3

2
b2x1

2
b+1

8
, it follows that

VarDFC (�kk2, l)=64w8(l)x64w7(l)+40w6(l)x20w5(l)

+33
4
w4(l)x

5
2
w3(l)+

5
8
w2(l)x

1
8
w1(l):

The other variances and covariances can be expressed
simply (Box 1) in terms of VarDFC (�kk2, l) and
VarFC (�kk1, l)=8w4 lð Þx4w3 lð Þ+3

2
w2 lð Þx1

2
w1 lð Þ.

The variance of the actual relationship is double
that of first cousins:

VarDFC ( �RR, l)=2VarFC( �RR, l)=4w4 lð Þx2w3 lð Þ
+3

4
w2 lð Þx1

4
w1 lð Þ:

Also CovDFC ( �RR, �kk2, l)=1
2
VarFC ( �RR, l), and so the re-

gression of �kk2 on �RR2 is one-half.

(d) Mothers full sibs, fathers first cousins

The method that we have established allows for
asymmetry in the two pedigrees that lead to sets of
identical alleles for a pair of relatives. If, for example,
the mothers are full sibs and the fathers are first
cousins am=1

2
, ap=1

4
, bm=4b2x2b+1

2
and

bp=8b4x4b3+3
2
b2x1

2
b+1

8
. The results then follow.

(vi) Sex-related phenomena

(a) Differences in map length between sexes

In the analysis we have assumed that the map distance
is the same in both sexes. Typically, however, the
sexes differ in map length, i.e. in the rate of recombi-
nation per unit of physical length of the genome. For
humans, the autosomal map length in females is 44 M
approximately and in males 28 M (Kong et al., 2004),
with the male/female ratio ranging among autosomes
from 57 to 85%, typically differing more for the
longer chromosomes. We quantify the impact on the
variation in genome sharing on the sex through which
transmission occurs.

It would be possible to restructure the analysis and
specify a ratio of map to physical length for each
chromosome and integrate an extension to eqn (4)
over physical rather than map length. For maintain-
ing the same notation as previously, however, we
simply assume that the sex-averaged map length for
a particular chromosome is l, but the map length
in females is given by l(1+l) and in males by l(1xl).
Initially we take a more general approach, and as-
sume that the map length for transmissions at gener-
ation i is given by lai and that recombination fractions
between any pair of sites are functions of lai. Thus, for
a pair of loci d M apart on the sex-averaged linkage
map and assuming Haldane’s mapping function, their
recombination fraction is 1

2
(1xex2dai ), 0<d<l, at

generation i. We consider lineal relationships.
Equations (4a) and (4b) for wn(l) can now be gen-

eralized:
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If ai=1 for all i, eqns (17a) reduce to (4a) and (17b)
to (4b).

Although (17b) can be used directly, we now sim-
plify for the case where there are just two values of ai,
namely 1¡l. Assume that m of the n transmissions
are through males, with nxm correspondingly
through females, and extend the definition of wn(l)
accordingly as w*n,m(l, l). The sequence in which male
or female transmissions occur does not matter. The
expansion of the summations in (17b) involves terms
with r=gn

i=1di terms in the sum gn

i=1aidi and of these
r there are, say, s transmissions through males, where
max(0, rxn+m)fsfmin(m, r). Hence gn

i=1aidi=
r+(rx2s)l=r, say, and

w*n,m(l, l)=
1

2l2
1

4

� �n

g
n

r=1
g

min (m, r)

s=max (0, rxn+m)

m

s

� �
nxm

rxs

� �

r 2rx
1

r2
+

ex2lr

r2

� 	
, (18)

i.e. r replaces r in (4) and hypergeometric coefficients
in s are introduced. The n generations here do not
include that of the initial transmission from parent to
offspring, but those starting with the subsequent
transmission to grandoffspring, so

VarLin, g,m (�kk1, l, l)=w*gx1,m l, lð Þ:

For collateral relatives and their offspring, the general
formulation can be extended. For example, for a pair
of paternal half-sibs

VarHS ( �RR, l, l)=w2 l(1xl)ð Þx1
2
w1 l(1xl)ð Þ

=w*2, 2(l, l)x1
2
w*1, 1(l, l)

and for a pair of half-cousins, whose mothers were
paternal half-sibs,

VarHC ( �RR, l, l)=w*4, 2(l, l)x1
2
w*3, 1(l, l)+1

8
w*2, 0(l, l):

As both sexes of parents contribute to resemblance
among full sibs, the differences in map length have
much impact only in later generations.

For humans, l averages approximately 0.25,
and we illustrate the calculations for a chromosome
with l=1 M. For n=2, i.e. great grandparent–great

grandoffspring (with the sex of the great grand-
parent irrelevant), w2,0* (1, 0.25)=w2(1.25)=0.0833,
w2,1* (1, 0.25)=0.0954 and w2,2* (1, 0.25)=w2(0.75)=
0.1088. The corresponding standard deviations (SDs)
of k1 are 0.289, 0.309 and 0.330, describing sub-
sequent transmissions twice through females, once
through each sex, and twice through males, respect-
ively. For n=4, m=0, 1, …, 4, wn,m* (1, 0.25)=0.0197,
0.0214, 0.0231, 0.0251 and 0.0272, respectively.

It is straightforward to evaluate eqn (18) directly.
These examples illustrate, however, that linear inter-
polations can provide good approximations. One
alternative is to interpolate on w using (1xm/n)wn

r(l(1+l))+(m/n)wn(l(1xl)), which for the example
above for n=4 and m=1, 2 and 3 gives 0.0214, 0.0235
and 0.0253, respectively. Another is to interpolate on
l using wn(l(1+(1x2m/n)l)), for which corresponding
values are 0.0212, 0.0229 and 0.0249.

(b) Sex limited recombination

For species such as Drosophila melanogaster there is
no recombination in males, so autosomes are trans-
mitted intact to the offspring and the variance in
sharing with and among their descendants is in-
creased. The probability that a parental pair of genes
is transmitted to an offspring is 1

2
(1xc) through a

female and 1
2
through a male. If m of the n=gx1

transmissions to descendants after the first generation
(as the sex of the ancestor is not relevant) are through
a male,

cov(�kk1i, �kk1j)=(1
2
)m[1

2
(1xc)]nxmx(1

4
)n

=(1
2
)m{[1

2
(1xc)]nxmx(1

4
)nxm}+(1

4
)nxm[(1

2
)mx(1

4
)m]:

Hence,

VarLin(SL) g,m (�kk1, l)=(1
2
)m{wgx1xm(l)

+(1
4
)gx1xm[1x(1

2
)m]}:

To take another example: for full sibs, the probabi-
lity of sharing is 1

2
for genes from their father and

1
2
[(1xc)2+c2] from their mother. Therefore, by sum-
ming components for maternal and paternal half-
sibs, VarFS(SL)( �RR, l)=w2(l)x

1
2
w1(l)+

1
16
.

w�
n(l;a1, . . . , an)=

2

l2
1

4

� �n Z l

x=0

Z x

y=0

Yn
i=1

(1+ex2(xxy)ai )x1

" #
dy dx

=
2

l2
1

4

� �n Z l

x=0

Z x

y=0
g
1

d1=0

g
1

d2=0

� � � g
1

dn=0

ex2(xxy)gn

i=1 aidi

" #
dy dx, g

n

i=1
dil0,

(17a)

=
1

2l2
1

4

� �n

g
1

d1=0

g
1

d2=0

� � � g
1

dn=0

2l

gn

i=1aidi

x
1

(gn

i=1aidi
)2
+

ex2lgn

i=1 aidi

(gn

i=1aidi
)2

 !" #
, g

n

i=1
dil0, (17b)
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(c) Sex chromosomes

Previous formulae apply for the autosomes and
we now consider the sex chromosomes (assuming
mammalian X, Y sex determination and ignoring the
pseudo-autosomal region). For the Y chromosome,
father and son share a genome exactly and there is no
variation in sharing. Father and son do not share an
X chromosome, and so for lineal descendants any
male–male transmission in the pathway results in no
sharing of descendant with the ancestor. A daughter
receives a copy of her father’s X chromosome without
sampling, and so any male to female transmission re-
duces by one the number of generations of sampling
in eqn (2). Son and daughter receive an X from their
mother with recombination as for the autosomes.
We consider only the case of full sibs in detail, but
sampling variances for genome sharing on the
X chromosome can be deduced for any relationship.
Visscher (2009) gives further discussion for sex-linked
chromosomes.

We retain the k1
m, k1

p notation for the ibd of
maternal or paternal alleles, adding a subscript to in-
dicate X-linkage. For two full brothers, k1X

p is not
defined and km1X=

1
2
, the same as k1 for half-sibs;

�kk2X=0, �kk1X=�kk1X
m and �kk0X=1x�kk1X

m . Integrating over
the X chromosome of length lX gives VarBB (�kk1X)=
4w2(lX)x2w1(lX), using the autosomal result for half-
sibs (11). For a sister and brother, k1X

p is still
not defined and k1X

m is as for half-sibs with a value
of 1

2
. Hence, VarBS (�kk1X)=VarBB (�kk1X). For two sisters,

�kk1X
p =1 and �kk1X

m is as for half-sibs. From the previous
results, �kk2X=�kk1X

m , �kk1X=1x�kk1X
m and �kk0X=0; there-

fore, VarSS (�kk2X)=VarSS (�kk1X)=xCovSS (�kk2X, �kk1X)=
4w2(lX)x2w1(lX).

(vii) Examples

Examples of the SDs of actual proportion of genome
shared (�kk2+1

2
�kk1) as a function of map length for single

chromosomes are given in Fig. 2a for descendants of
full sibs. It is noticeable that there remains a sub-
stantial variation even for the longest chromosomes
illustrated (4 Morgans), i.e. longer than most chro-
mosomes in most species. Although the SD becomes
smaller as the individuals become less related, the CV
becomes larger (Fig. 2b) (Visscher, 2009). Indeed the
CV exceeds unity for all but close relationships, even
for chromosomes of map length 2 M.

Comparisons between lineal descendants and
those of half- and full sibs are given in Fig. 3 for
two examples of relationship. With complete linkage
the variance depends only on relationship (Table 1).
Although the differences are quite small, with in-
creasing map length the variance declines less rapidly
with increased chromosome length for lineal descen-
dants than for those involving half sibs, which in turn

show a faster decline than descendants of full sibs
(Fig. 3). This is presumably because the latter can be
ibd at a pair of loci on a pair of recombinant chro-
mosomes: terms in c2 appearing in eqns (6) and (13),
for example, but not in (2). Great uncle–nephew and
first cousins, which have the same relationship, differ
in the variance of sharing, but not very much (Fig. 3).

For a mammalian or avian genome with multiple
chromosomes, the variation and skew are reduced.
Taking data for human autosomes from Kong et al.
(2004), we assumed that the 22 chromosomes could be
grouped into six classes each of 2–8 chromosomes,
each member of which was of similar map and gen-
ome length, as follows: (1–2) 2.75 M, (3–6) 2.10 M,
(7–12) 1.75 M, (13–20) 1.25 M, (21–22) 0.75 M.
Results are given in Table 2 for a wide range of re-
lationships. The results are, however, little different
from what would be expected from the same number

(a)

(b)

Fig. 2. (a) SD and (b) CV of actual relationship
(proportion of genome shared, �RR=�kk2+1

2
�kk1), for a single

chromosome as a function of map length and relationship
for full sibs (FS) and their descendants : uncle nephew
(UN), cousins (C), cousins once removed (C1R), second
cousins (2C), second cousins once removed (2C1R) and
third cousins (3C).
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of chromosomes each of the average map length, as
shown by an example in the last column of Table 2
and as pointed out previously (Hill, 1993a ; Visscher,
2009). The average chromosomal length is about
1.6 Morgans, so with 22 chromosomes, the SD, CV
and skew of sharing are approximately 20% of those
for individual chromosomes.

3. Skew of the distribution of genome sharing

(i) Methods

The methods that we have used for evaluating the
variance of actual identity can be extended for dealing

with higher moments, although the algebra becomes
increasingly prohibitive. Here, we consider the mag-
nitude of skew, initially giving formulae for individual
genes.

The third central moment of an allele sharing indi-
cator variable �kkm, m=0, 1, 2, is

E[(�kkmxkm)
3]=E(�kk3

m)x3kmVar(�kkm)xk3
m

=km(1xkm)(1x2km)

and the corresponding skew coefficient is

c1(
�kkm)=

m3(
�kkm)

[m2(
�kkm)]

3=2
=

(1x2km)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km(1xkm)

p :

The �kkms are symmetrically distributed if they are
equal 0.5 and positively skewed if less than 0.5. The
third central moment of the actual relationship can be
shown to be

m3(
�RR)=E[( �RRxR)3]=(1x2R)[R(1xR)x3

8
k1]

For lineal descendants, i.e. k2=0, c1( �RR)=c1(�kk) and
the distribution of actual relationship or co-ancestry
is symmetric if k1=0.5, e.g. grandparent–grand off-
spring, half–sibs and uncle–nephew. The distribution
of R is also symmetric for full sibs.

For evaluating the skew in genome sharing, we ex-
tend the methods used in order to compute the vari-
ance in actual relationship, but in view of the
complexity of the analysis, restrict it to the case of
lineal descendants (i.e. k2=0 at all loci). Thus, we
evaluate E(�kk1

3) as an average over r loci, where r be-
comes infinitely large:

E(�kk3
1)=

1

r3
E g

h

g
i

g
j

�kk1h
�kk1i

�kk1j

 !

Table 2. SD of actual relationship ( �RR=�kk2+1
2
�kk1) for a model human genome for different pedigree relationships

(R=2h)

R

Lineal descendants Half sibs’ descendants Full sibs’ descendants

Relationshipa SD( �RR)b Relationship SD( �RR)b Relationship SD( �RR)b SD( �RR)c

0.5 P–O 0.0 FS 0.0392 0.0384
0.25 GP–GO 0.0362 HS 0.0277 UN 0.0256 0.0251
0.125 GUGN 0.0247 0.0241
0.125 GGP–GGO 0.0291 HUN 0.0256 C 0.0218 0.0214
0.0625 G3P–G3O 0.0206 HC 0.0188 C1R 0.0170 0.0166
0.0312 G4P–G4O 0.0139 HC1R 0.0130 2C 0.0120 0.0117
0.0156 G5P–G5O 0.0093 HSC 0.0087 2C1R 0.0082 0.0080
0.0078 G6P–G6O 0.0062 HSC1R 0.0058 3C 0.0055 0.0054

a P–O, parent–offspring; GnP–GnO, great(n)grandparent – great(n)grandoffspring; H, half ; UN, uncle–nephew; GUGN,
great uncle–great nephew; C, 2C, 3C first, second, third cousin; 1R, once removed.
bc SD( �RR) computed assuming 22 chromosomes: bwith differing map lengths, total 35.9 M (see text), ceach of length S35.9/
22=1.63 M.

Fig. 3. SD of actual relationship (proportion of genome
shared, �RR=�kk2+1

2
�kk1), for a single chromosome as a function

of map length and relationship for three different pedigrees
for two different pedigree relationships: R=0.125:
great grandparent–great grandoffspring (GGPGGO),
half-uncle–nephew (HUN), great uncle–great nephew
(GUGN), cousins (C); and R=0.03125: greatgreatgreat
grandparent–GGGGoffspring (G4PG4O), half–cousins
once removed (HC1R) and second cousins (2C).
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Consider the expected value of allele sharing
E(�kk1h

�kk1i�kk1j) at three loci h, i, j so ordered along a
chromosome. A three-locus haplotype is transmitted
intact from parent to offspring with probability
1
2
(1xc1)(1xc2), where c1 and c2 are the recombination
fractions between loci h, i and i, j, respectively. The
probability is 1

8
if the loci are unlinked. The prob-

ability of allele sharing for three-linked loci between
two individuals, one of which is a g-generation lineal
descendent of the other, is therefore

E(�kk1h
�kk1i

�kk1j)= 1
2

� �gx1
(1xc1)

gx1(1xc2)
gx1: (19)

This equation extends the two-locus result in eqn (2)
and can be evaluated over each chromosome by in-
voking Haldane’s mapping function to write recom-
bination fractions in terms of map lengths and
integrating:

E(�kk1h
�kk1i

�kk1j)xk3
1=

6

l3
1

2

� �3(gx1)Z l

0

Z x

0

Z y

0
[(1+ex2(xxy))gx1

r(1+ex2(yxz))gx1x1] dz dy dx:

(20)

As the analysis has also to deal with descendants of
collateral relatives, we generalize the integration, il-
lustrating the process for half-sibs. The probability
that a pair of half-sibs share an allele ibd at each of the
three loci is

E(�kk1h
�kk1i

�kk1j)=1
2
{[1xc1)(1xc2)]

2+[(1xc1)c2]
2

+[c1(1xc2)]
2+[c1c2]

2}:

In order to evaluate this expression, we expand it in
terms of (1xc1) and (1xc2) :

E(�kk1h
�kk1i

�kk1j)=1
2
[4(1xc1)

2(1xc2)
2x4(1xc1)

2(1xc2)
1

x4(1xc1)
1(1xc2)

2+4(1xc1)
1(1xc2)

1

+2(1xc1)
2(1xc2)

0+2(1xc1)
0(1xc2)

2

x2(1xc1)
1(1xc2)

0x2(1xc1)
0(1xc2)

1+1]:

(21)

As some terms have different exponents for (1xc1)
and (1xc2), we redefine the integral more generally
than shown in eqn (20), and the exponents are not gen-
eration numbers per se. We express (1xc1)

m(1xc2)
n in

terms of map distances and define

Wm, n(l)=
6

l3
1

2

� �m+n Z l

0

Z x

0

Z y

0
[(1+ex2(xxy))m

r(1+ex2(yxz))nx1] dz dy dx

=
1

2

� �m+n

1+ g
m

i=1

m
i

� �
2i2l2x2il+1xex2il

8i3




+ g
n

j=1

n
j

� �
2j2l2x2jl+1xex2jl

8j3

+ g
min (m, n)

i=1

m
i

� �
n
i

� �
(ilx1)(1xex2il)

4i3

+ g
m

i=1
g
n

j=1, ilj

m
i

� �
n
j

� �

r
2ijlxixj+(i2ex2jlxj2ex2il)=(ixj)

8i2j2

�
,

(22)

where the summation terms are included only when
the upper limits exceed zero. Note that Wm,n(l)=
Wn,m(l). Despite its complex appearance, eqn (22) is
quick and easy to compute.

For lineal descendants that are g generations apart,
the increase in the joint allele sharing probability over
that for unlinked loci is therefore

E(�kk1h
�kk1i

�kk1j)xk3
1=(1

2
)gx1 Wgx1, gx1(l)

and for half-sibs, from eqn (19), it is

E(�kk1h
�kk1i

�kk1j)xk3
1=

1
2
[4W2,2(l)x4W2,1(l)x4W1,2(l)

+4W1,1(l)+2W2,0(l)+2W0,2(l)

x2W1,0(l)x2W0,1(l)+W0,0(l)]

=1
2
[4W2,2(l)x8W2,1(l)+4W1,1(l)

+4W2,0(l)x4W1,0(l)+W0,0(l)]

For subsequent generations, e.g. half-cousins, the
formulae can be simply extended by methods similar
to those used previously for pairs of loci and therefore
have the same basic form. These and other results,
including those for full sibs and their descendants, are
given in Box 2.

For multiple chromosomes that have the same
genome content and map length, the skew and var-
iances would be the same for each, and the skewness
for whole-genome actual allele sharing would de-
crease with the square root of the number of chro-
mosomes.

(ii) Examples

The magnitude of skew, expressed as the skew coef-
ficient, is illustrated for single chromosomes in Fig. 4
for a wide range of descendants of full sibs and for
alternative ancestry, respectively. The magnitude of
the skew rises as relationships become smaller, as ex-
pected since it is (1x2k)/d[k(1xk)] for single or
completely linked loci. Thus, for second cousins, for
example, the skew coefficient exceeds 2 even for long
chromosomes.
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4. Variation in actual inbreeding

If an individual’s parents are related, it is inbred. At
a locus i, the actual inbreeding �FFi takes values of 0
(alleles not ibd) or 1 (alleles ibd). It has expectation
E( �FFi)=F, where F is the pedigree inbreeding, which in
turn equals the co-ancestry, h=1

2
R, of its parents. The

variance of �FFi in a population of similarly inbred but
independent individuals is F(1xF). Slate et al. (2004)
analyse the correlation between multi-locus hetero-
zygosity, a function of actual inbreeding, and the
pedigree inbreeding, and show how weak this corre-
lation is. Their analysis does not incorporate linkage,
however.

For the genome as a whole, the actual inbreeding �FF
of an individual is the proportion of its genome which
is ibd, with E( �FF)=F. Linkage affects variation in the
actual relationship of individuals with the same pedi-
gree relationship and also therefore increases variation
in the actual inbreeding of their offspring. We use
an example to show how it can be computed. Individ-
uals E and F in Fig. 1 are full sibs, and so if they had
mated for producing an offspring X, the expected in-
breeding coefficient of X would be 0.25. If B is a male,
thenM is a paternal half sib of X, N is a maternal half

sib of X, and their offspring H and I are cousins. The
gametes transmitted by E toH and to X have the same
random distribution as do those transmitted by F to I

and X. Hence, the distribution of �FF of X is identical to
the distribution of �kk1 of H and I, who are cousins in
this example. From eqn (14) or Box 1 (descendants
of full sibs with g=3), VarFS ( �FF, l)=VarFC (�kk1, l)=
8w4 lð Þx4w3 lð Þ+3

2
w2 lð Þx1

2
w1 lð Þ, which also equals

4VarFC ( �RR, l) and 16VarFC (�hh, l). Skew coefficients
for the actual inbreeding can be obtained similarly.

The arguments do not depend (although the
detailed results do) on the relationship among the
parents, and can be regarded as a consequence of
extending the co-ancestry concept to identity at mul-
tiple loci. We are using a quantity, the ‘genomic
coancestry ’, which for a pair of individuals Y and Z

is the proportion of the genome-shared ibd between a
random gamete from Y and a random gamete from Z.
Thus, genomic coancestry describes genomes trans-
mitted from individuals, whereas genome sharing (k)
describes genomes that are in individuals. Actual in-
breeding depends on the genomic coancestry of the
two gametes one individual receives; genome sharing
and actual relationship depend on the genomic
coancestry of the gametes two different individuals

Box 2. Summary of formulae for skew of genome sharing

Lineal descendants, where g=2 is grandparent–grandoffspring (k2=0)

E(�kk1h
�kk1i

�kk1j)xk3
1=(1

2
)gx1Wgx1, gx1(l):

Half-sibs and their descendants, where g=2 for half-sibs (k2=0)

E(�kk1h
�kk1i

�kk1j)xk3
1=(1

2
)gx1[4Wg, g, (l)x8Wg, gx1(l)+4Wgx1, gx1(l)+4Wg, gx2(l)x4Wgx1, gx2(l)+Wgx2, gx2 (l)]:

Full sibs and their descendants

The actual relationship �RR and also �kk1 for full sibs are symmetrically distributed (Table 1) although the non-
central moments are non-zero. The third moment of �kk2 and of �kk0 for full sibs is

E(�kk2h
�kk2i

�kk2j)xk3
2=E(�kk0h

�kk0i
�kk0j)xk3

0=
1
4
[16W4, 4(l)x64W4,3(l)+64W4,2(l)

+64W3,3(l)x32W4,1(l)x128W3,2(l)+8W4,0(l)+64W3,1(l)+64W2,2(l)

x16W3,0(l)x64W2,1(l)+16W2,0(l)+16W1,1(l)x8W1,0(l)+W0,0(l)]:

Uncle–nephew (g=2) and descendants (k2=0)

E(�kk1h
�kk1i

�kk1j)xk3
1=(1

2
)g[16Wg+1, g+1(l)x48Wg+1, g(l)+24Wg+1, gx1(l)+40Wg, g(l)

+4Wg, gx2(l)x44Wg, gx1(l)+13Wgx1, gx1(l)x4Wgx1, gx2(l)+Wgx2, gx2(l)]:

Cousins (g=3) and descendants (k2=0)

E(�kk1h
�kk1i

�kk1j)xk3
1=

1
2

� �g
[8Wg+1, g+1(l)x48Wg+1, g(l)+56Wg+1, gx1(l)+72Wg, g(l)x32Wg+1, gx2(l)

x160Wg, gx1(l)+8Wg+1, gx3(l)+80Wg, gx2(l)+87Wgx1, gx1(l)x16Wg, gx3(l)

x84Wgx1, gx2(l)+16Wgx1, gx3(l)+20Wgx2, gx2(l)x8Wgx2, gx3(l)+Wgx3, gx3(l)] :
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receive. For example, the variation of �FF of offspring of
cousin matings is the same as that of �kk1 of second
cousins, as both are the variance in the genomic
coancestry of cousins.

The results for variances, SD, CV and skew of actual
relationship given in the Figures and Tables can there-
fore also be applied directly to actual inbreeding. For
example, from Table 2 the SD of �FF of offspring of full
sibmatings inhumans is 2r0.0218=0.0436 (from item
C) and 0.0240 (from item 2C) for offspring of cousins,
with the CV of the latter being 0.0240/0.0625=0.384.

The above result applies to the variation in actual
inbreeding among a group of unrelated individuals
whose parents all have the same pedigree, e.g. are full
sibs. In any population there is variation in pedigree
inbreeding which also contributes to the total vari-
ance in actual inbreeding. The expected variation and
distribution of shared segments in any population
therefore depend on the population size and mating

system, and relevant results for closed populations
have been published (Bennett, 1954; Franklin, 1977;
Stam, 1980; Weir et al., 1980).

The variation in actual inbreeding can be partitioned
into two components, that between families, i.e. the
covariance in actual inbreeding of (e.g. full sib) family
members, and the variation in actual inbreeding
among (e.g. full sib) family members. When we con-
sider just pedigree inbreeding the variance between
families is the variance of the co-ancestry from pedi-
gree of the parents, which equals one-quarter of the
pedigree relationship of the parents, and there is no
variation in pedigree inbreeding within families.

Hence, for full sib matings, for example,
VarBFS (�II, l)=1

4
VarFS( �RR, l). The variance within fam-

ilies can be obtained by difference, and so from the
above results for full sib matings,

VarWFS (�II, l)=VarFS (�II, l)xVarBFS (�II, l)

=4VarC ( �RR, l)x1
4
VarFS ( �RR, l):

This can also be regarded as the variance in genomic
coancestry of full sibs less the variance in genomic co-
ancestry between their parents.

As an example, using results from Table 2 for the
human genome as a whole, VarFS (�II, L)=4(0.0218)2=
0.00191, VarBFS (�II, L)=(0.0392)2/4=0.00038 and
VarWFS (�II, L)=0.00152, with corresponding SD
equal to 0.0436, 0.0196 and 0.0390, respectively. In
Table 3, we list relevant relationships and results.
It is seen that the variation is substantial and is pri-
marily within families (exclusively within families
for selfing and parent–offspringmatings of non-inbred
individuals). For example, for cousin matings of hu-
mans, the mean F is 0.0625 and the SD within families
is predicted to be 0.0214.

Estimation of inbreeding depression is usually un-
dertaken by regression of phenotype on pedigree in-
breeding. The method can be enhanced by using dense
marker data in order to infer the proportion of the
offspring genotype that is ibd from the parents and
hence actual inbreeding �FF (Slate et al., 2004). By
undertaking the analysis within families, confounding
environmental effects can be eliminated, with the
method being analogous to that of Visscher et al.
(2006) for estimating heritability within families, but
focused on means rather than variances. The design is
likely to be most useful for species such as pigs that
have large families. Christensen et al. (1996) under-
took such an analysis, but had only 21 markers
available for estimating actual inbreeding (which they
refer to as ‘realized inbreeding’).

5. Discussion

We have shown how to compute the variation and
skew in the proportion of genomes shared for diverse

(a)

(b)

Fig. 4. Skewness of actual relationship (proportion of
genome shared) for a single chromosome as a function of
map length and relationship for (a) descendants of full sibs
(as Fig. 2), and (b) for different pedigrees for two different
degrees of relationships (as Fig. 3). For full sibs and
uncle–nephew there is no skew.
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kinds of relatives. As theoretical papers have shown
previously (Hill, 1993a, b ; Guo, 1995; Visscher,
2009), and anticipated by analyses of junctions and
the distribution as a whole, the variance can be high,
illustrated most clearly by the coefficient of variation
(Fig. 2b) and skew (Fig. 4) for increasingly distant
relatives.

As the CV is large for single chromosomes each of
the average length of those of humans (c. 1.6 M)
(Fig. 2b), exceeding two for second cousins or
more distant relatives (Fig. 2b), there is substantial
overlap in the amount of sharing of quite different
pedigree relationship classes. Further, there is sub-
stantial positive skew in the distribution over the
whole genome for these and more distant relatives,
such that individuals with low-pedigree relationship
may share much more genome than expected.

In identifying distant relatives in a sample of in-
dividuals on which dense SNP data are available, in-
formation on potential relationship is available both
from estimates of the mean proportion shared and
from the variation among chromosomes. That this
variation is substantially illustrated by the CVs of
actual relationship (Fig. 2b), which can greatly exceed
unity. Distant relatives are expected to share little or
none of the genome of a common ancestor ibd for
some chromosomes and a non-negligible amount for
others. Indeed, our results for variance in sharing of
single chromosomes among pairs of individuals also
apply to the variation in sharing among chromosomes
of the same length between the same individuals. How
best to use such an information has not, in so far as we
know, been investigated.

The problem of inferring pedigree relationship from
actual relationship (as measured by genome shared) is
illustrated in Fig. 5 using the human model genome
example. Information on, for example, the distribution
of the lengths of shared segments, which will tend to

be shorter for distant relatives, also needs to be taken
into account, following, for example, the work of
Fisher (1954 and earlier), Bennett (1953), Stam (1980)
and Thompson (2008) which is based, inter alia, on
analysis of junctions. Although the distribution of
lengths of shared genome that include the end of the
chromosome can be computed, there is no general
approach that is simple to apply. While it is quite clear
that developing methodology using the distributions
of chromosome lengths and the numbers of chromo-
somes for which there is no sharing would be of some
interest and potential practical value in establishing
pedigree relationship, for example, in forensic situa-
tions, such an analysis is beyond the scope of this
paper.

Table 3. SD of actual inbreeding �FF for a model human genomea for matings of relatives

Relationship of mates Pedigree F Relationship-equivalent offspringb

Var( �FF)r104 SD( �FF)

Betw Within Total Betw Within Total

Selfing 0.5 Half sibs 0 30.8 30.8 0 0.0555 0.0555
0 94.3c 94.3c 0 0.0971c 0.0971c

Offspring–parent 0.25 Half uncle–nephew 0 26.2 26.2 0 0.0512 0.0512
Full sibs 0.25 Cousins 3.84 15.2 19.1 0.0196 0.0390 0.0436
Half sibs 0.125 Half cousins 1.92 12.2 14.1 0.0135 0.0350 0.0376
Uncle–niece 0.125 Cousins once removed 1.64 9.92 11.6 0.0128 0.0315 0.0340
Half uncle–niece 0.0625 Half cousins once removed 1.64 5.13 6.76 0.0128 0.0226 0.0260
Cousins 0.0625 Second cousins 1.19 4.57 5.76 0.0109 0.0214 0.0240
Cousins once removed 0.03125 Second cousins once removed 0.72 1.97 2.69 0.0085 0.0140 0.0164

a Differing map lengths as in Table 2, except as c.
b Relationship of non-inbred offspring with the same genomic coancestry as the inbred offspring.
c For a model maize genome of 10 chromosomes each of 1 M.
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Fig. 5. Distribution of actual genome sharing (�kk1) for
samples of ‘human’ genomes for different degrees of
pedigree relationship of descendants of full sibs (as Fig. 2)
(10 000 replicates each).
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Inferring the presence of genes of large effect under
selection from shared segments of the genome or for
mapping disease genes by comparing allele sharing
proportions between affected and unaffected in-
dividuals has potential importance, but our results do
not give much ground for optimism in its use because
the sampling error is so high.

Estimates using dense markers of the variance in
actual genome sharing of human full sibs were ob-
tained by Visscher et al. (2006, 2007), and, in general,
there was good agreement: for example, the observed
mean and SD of the proportion of the autosomal
genome shared (�kk2+1

2
�kk1), were 0.498¡0.036 com-

pared with expectation 0.5¡0.039, and the corre-
sponding figures for �kk2 were 0.248¡0.040 observed
and 0.25¡0.044 expected. The discrepancy was ex-
plained by the fact that identical sections could be
missed as a limited number of microsatellite markers
were used in these studies, averaging 400–600 per in-
dividual for the whole genome (Visscher et al., 2006,
2007). We offer further illustration in Fig. 6, using
data kindly supplied by Dr M. Marazita. Coefficients
of ibd were estimated using SNP data obtained for a
whole-genome association analysis of dental caries.
Relationship classes were inferred from pedigree in-
formation with software developed by Dr Cecelia
Laurie and the methods of this paper were used for

calculating the SDs of �kk0 and �kk1. For each pair of re-
lated individuals in the study (pedigree R>1/32), the
estimated IBD coefficients (k̂0 and k̂1) were plotted,
along with predicted ‘error bars’ of two SDs each side
of the expected values. For display purposes, these
bars were offset from the line k0+k1=1 in the cases
for which k2=0. We did not perform any statistical
tests for inferred relationships; the error bars reflect
only Mendelian sampling and linkage, and the effects
of using sample allele frequencies on variation in es-
timated ibd coefficients will be discussed elsewhere.

The main objective of this paper was to provide
general formulae for computing the variance of
shared sites. Obviously there are many other avenues
to pursue, but these require different techniques.

We are grateful to Peter Visscher for many helpful
comments on previous drafts and to Jinliang Wang for
a useful suggestion. This work was supported in part
by NIH grants R01 GM075091 and HGU0044446, and by
the USS. David Crosslin, University of Washington, plotted
the figures. Mary L. Marazita, University of Pittsburgh,
consented to inclusion of Fig. 6 that displays results from
her study of Dental Caries (supported by NIH grants U01-
DE018904 and R01-DE014899, and NIH contract
HHSN268200782096C to the Center for Inherited Disease
Research for genotyping) as part of the GENEVA project
(Cornelis et al., 2010). The paper is dedicated to the memory
of Piet Stam for his pioneering work in multi-locus ibd.

k 1

k0

Fig. 6. Estimated ibd coefficients, k̂0 and k̂1, from SNP data for individuals with known pedigree relationship (PO denotes
parent-offspring, DFC double first cousins, other symbols as Figs 2 and 3), together with predicted ‘error bars’ of two SD
about expectation. Bars are offset from k0+k1=1 if k2=0.
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