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We prove in this paper that fifteen classes of rings coincide with 
the class of rings named in the t i t le. One of them is the class of rings 

2 
R such that X = X for each R-ideal X: we shall refer to rings with 
this property (and thus to the rings of the title) as fully idempotent 
r ings. The simple rings and the (von Neumann) regular rings are 
fully idempotent. Indeed, every finitely generated right or left 
ideal of a regular ring is generated by an idempotent [ l , p . 42], so 

2 
that X = X holds for every one-sided ideal X. Since the Jacobson 
radical of a regular ring is zero [ l , p . 42], Sasiada1 s simple radical 
ring [3] is an example of a fully idempotent ring which is not regular . 
We prove that S is a fully idempotent ring when S is the ring of 
n by n matr ices over a fully idempotent ring R, even when S is 
locally matr ix over R. Every ideal and, trivially, every epimorph 
of a fully idempotent ring is a fully idempotent ring. We prove that 
the direct sum of fully idempotent rings is a fully idempotent ring. 
Thus if R is a simple ring and S is Sasiada1 s simple radical ring 
R © S is neither a simple ring nor a regular ring and is fully 
idempotent. We do not know of an indecomposable example of this 
phenomenon. The results discussed so far appear in Sections 1 and 2. 

A result in Section 3 states that every ring R has an ideal W 
such that (1) each R-ideal not contained in W has a nonzero epimorph 
which is a fully idempotent ring; (2) the ring W has no nonzero epimorph 
which is a fully idempotent ring; and (3) the Levitzky radical [=maximal 
locally nilpotent ideal] JL. is contained in W. No nonzero epimorphs 
of R-ideals contained in L. are fully idempotent rings (for R-ideals 
contained in W this has not been proved or disproved). We note that 
in Sasiada1 s simple radical ring 0 = W = L. ^ J (the Jacobson radical), 
while in the ring of power series over a field, JL. is contained properly 
in W = J. In the examples considered we have not found an exception 
to the inclusion W c J . 

We prove in Section 4 that every ring R has an ideal V such 
that (1) no nonzero ideal of R/V is a fully idempotent ring and (2) 
an R-ideal is a fully idempotent ring if and only if it is contained in V. 
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1. C h a r a c t e r i z a t i o n s of the r i n g s which have only s e m i - p r i m e 

fac tor r i n g s . A r i n g i s ca l l ed s e m i - p r i m e if no n o n z e r o i d e a l is 

n i lpo ten t . 

*• * Nota t ion . Le t U and V be s u b s e t s of a se t S on which a 
m u l t i p l i c a t i o n is def ined. Then 

(U: V) = { s € S | v s € U for a l l v € V} . 

(U: V ) ! = { s € S | sv € U for a l l v € V} . 

1.2 T H E O R E M . F o r a r i n g R , not n e c e s s a r i l y hav ing an iden t i ty , 
the s ix t een s t a t e m e n t s (A) t h rough (P) a r e equ iva len t . (Convent ion: 
We denote r igh t i dea l s by T, left i dea l s by V, and i d e a l s by X, Y, 
or Z, and we adopt an a b b r e v i a t e d f o r m of s t a t e m e n t : by " T fl X E XT" 
we m e a n tha t T fl X c XT for a l l i d e a l s X and a l l r i gh t i d e a l s T of 

R . ) 

(A) E v e r y fac tor r i n g of R is a s e m i - p r i m e r i n g . 

(B) E v e r y fac to r r ing of the r ing X is a s e m i - p r i m e r i n g . 

(C) X fl Y = XY. 

(D) (Y: X) H X = X fl Y. 

(E) (Y: X)1 fl X = X fl Y. 

2 
(F) X = X. (Thus R is a fully i dempoten t r i n g . ) 

(G) If Z c X, then (Y : X) H Z = Y H z . 

(H) If Z £ X, then (Y : X) ! fl Z = Y (1 Z. 

(I) T D X E XT. 

(J) If T E X, then T Ç XT. 

(K) (T: X) fl X ç X fi T . 

(Ju) If T E X, then (T: X) H X E T. 

(M) v n x E vx. 
(N) If V E X, then V E VX. 

(o) (V: x)! n x E v n x. 
(P) If V E X, then (V: X)1 f) X E V. 

P roof . If (F) holds for R , it a l s o ho lds for e a c h e p i m o r p h i c 
i m a g e S of R , so tha t S h a s no n i lpo ten t n o n z e r o i d e a l s . Thus (F) 
i m p l i e s (A). If (F) i s f a l s e , h o w e v e r , and if X i s an i d e a l such tha t 

2 2 2 
X t X, then R / ( X ) h a s a n o n z e r o n i lpo ten t i d e a l . Thus R / ( X ) 
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i s not s e m i - p r i m e and (A) does not hold. The equiva lence of (A) and 
(F) ha s been p roved . 

It i s c l e a r tha t (B) i m p l i e s (A). We a s s u m e (A). Then , by (F) , 
2 

X = X for e a c h idea l X of R . Let K be an R - r i g h t , X-Ieft 
2 

submodule of the idea l X. Then (K + RK) = (K + RK) , so tha t 

2 2 2 
K + RK = K + KRK + RK + (RK) . 

The r igh t m e m b e r of the equa l i ty i s conta ined in K, s ince X con ta ins 
K, KR, RK, and RKR. We have RK £ K, and have p roved tha t e v e r y 
R - r i g h t , X-Ieft submodule of X i s an R - i d e a l . Now let J be an 
X - i d e a l , so tha t the R - r i g h t , X-Ieft submodu le , J + J R , of X is an 
R - i d e a l . Thus (J + JR) is equal to i t s squa re and we can p rove 
JR Ç J by s t eps s i m i l a r to these jus t used . Evident ly the R - r i g h t 

2 
module J is an R - i d e a l . By a s s u m p t i o n J = J , for e ach X - i d e a l J . 
C l e a r l y , the e p i m o r p h s X / J of X have no n o n z e r o ni lpotent i d e a l s , 
and a r e by defini t ion s e m i - p r i m e r i n g s . The equiva lence of (A) and (B) 
h a s b e e n p r o v e d . 

(i) The equiva lence of (A), (B), and (F) has been p roved . 

We p rove tha t (D) imp l i e s (C). If X and Y a r e i d e a l s , we m a y 
w r i t e , us ing (D) 

(Y n x) ç (XY: x) n x = n n x = XY, 

whence we can obtain (C): X H Y = XY for a l l i dea l s X and Y. 
If (C) holds and if X and Y a r e i d e a l s , we h a v e , s ince (Y: X) is 
an i d e a l , 

(Y: X) fl X = X(Y: X) E X D Y. 

The r e v e r s e inc lus ion is t r i v i a l , and (D) has been obtained f rom (C), 
comple t ing the proof of the equiva lence of (C) and (D). 

F r o m (C), (F) is obtained by se t t ing Y = X. If (F) is a s s u m e d 
and if X and Y a r e i d e a l s , then 

XY 2 (x n Y) = x n Y. 

Since X f] Y 2 XY, (C) is impl ied by (F) . Thus (C), (D) and (F) 
have been p roved equivalent and, cons ide r ing (i) F is equiva len t with 
each of (A) th rough (D). Cons ide r ing the s y m m e t r y of (E) and (D), we 
m a y s u m m a r i z e : 
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(ii) Statements (A) through (F) have been proved equivalent. 

(D) is obtained from (G) by setting Z = X. Conversely, if (D) 
holds and if X, Y and Z C X are ideals, then 

(Y: x) n z g z n (Y: x) n x = z n x n Y = Y n z. 

The reverse inclusion is t r ivial and (G) holds. Thus (D), (G), and (H) 
are equivalent ((G) and (H) are symmetric) . 

(iii) Statements (A) through (H) have been proved equivalent. 

(F) is obtained from (J) by setting T = X. Thus (J) implies 
statements (A) through (H). If the first eight statements hold, then by 
(D) we have for any ideal X and any right ideal T 

x n T E (XT: x) n x = XT n x = XT. 

Thus (I) holds. Since (I) clearly implies (J), we have 

(iv) Statements (A) through (J) have been proved equivalent. 

If (L) is assumed, then we have XT E X for any right ideal T 
and any ideal X containing T, so that 

T = T H X 9 (XT: X) fl X E XT . 

The inclusion obtained is (J). Thus each of (A) through (J) is implied 
by (L). Conversely, let the first ten statements hold. Then for any 
right ideal T and any ideal X, we have by (I) 

(T: X) fl X S X(T: X) E T H X. 

Thus (K) is implied by any of the ten preceding statements. Clearly, 
(K) implies (L.) and we have 

(v) Statements (A) through (L.) have been proved equivalent. 

Considering the symmetry of the pai rs ((I), (M)), ((J), (N)), 
((K), (O)), and ((L), (P)) the sixteen statements have been proved 
equivalent. 

Remark. From (C), (D), and (E) of Theorem 1.2, it is evident 
for ideals X and Y of a fully idempotent ring R that XY = YX 
and that (Y : X) fl X = (Y : X)1 (1 X. For each right ideal T, we 
have T E RT by statement (J) of the theorem. 
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2. F u r t h e r p r o p e r t i e s of fully idempoten t r i n g s . 

Nota t ion . If A and B a r e s u b s e t s of a r ing R and if x € R, 
AxB is the se t { 2 a xb la € A, b « B} . (A: R)* is the set 

i i i i 
{ t € R | R t R E A} . Ev iden t ly , (A:R)* is an R - i d e a l if A i s a s u b ­
group of the addi t ive group of R. 

2 . 1 PROPOSITION. If A is an idea l in a fully idempoten t r ing R, 
then RAR = A. 

2 . 2 PROPOSITION. If R is a fully idempoten t r ing and A is an 
R - i d e a l , then (A: R ) * = A. 

Proof . We need (A: R ) * E A. Le t Y denote the idea l (A: R ) * . 
By P r o p o s i t i o n 2 . 1 Y = RYR E A. 

2 . 3 PROPOSITION. If R is a fully idempoten t r ing and if t € R, 
then t € R tR . 

Proof . Let X = R tR . By P r o p o s i t i o n 2 . 2 X = { X: R ) * and, 
c l e a r l y , t € (X: R ) * . 

Nota t ion . R wil l denote the r ing of n by n m a t r i c e s over a 
n 

r ing R. F o r t € R, tE is the m a t r i x with t in pos i t ion (a, (3) 
op 

and z e r o s e l s e w h e r e . 

We quote f rom [2 , p . 40, P r o p o s i t i o n 1]: 

2 . 4 PROPOSITION. Let B be a r ing such that for e v e r y b € B 
we have b € B b B . Then the idea l s of the m a t r i x r ing B a r e of the 

2. n 

f o r m U w h e r e U is an idea l in B . 
n 

2 . 5 T H E O R E M . If R is a fully idempoten t r i ng , so i s S = R . 

Proof . Let Y be an idea l of S. By P r o p o s i t i o n s 2 . 3 and 2. 4 
2 

Y = U for some idea l U of R . To p rove Y = Y it i s sufficient 
2 

to show that tE € Y , 1 ^ a, 6 < n , for each t € U. Since R is 
cr(3 

fully idempoten t , t = S u . v . whe re the u. and v. belong to U. 
l i l i 

Thus tE = S ( u . E )(v.E ) be longs to Y , a s r e q u i r e d . 
aft î al î 1(3 

Defini t ion. A r i n g S i s local ly m a t r i x over a r ing R if, and 
only if, given any finite subse t T of S t h e r e i s a subr ing Sf of S 

4 2 1 
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conta in ing T, such tha t R and S* a r e i s o m o r p h i c for s o m e 
pos i t ive i n t e g e r n. 

2 . 6 T H E O R E M . If a r ing S i s loca l ly m a t r i x over a fully i d e m p o t e n t 
r i n g R, then S is a fully i dempo ten t r i n g . 

Proof . Le t Y be an i d e a l of S, and let y € Y. Le t V be a 
subr ing of S such tha t y € V and for some pos i t ive i n t e g e r n, 
V ^ R . Now y € H = V fi Y and H i s an i d e a l of V. By T h e o r e m 

n 2 2 2 
2 . 5 V is fully i dempo ten t so tha t H = H . We have y € H E Y . 

2 
Thus Y = Y for each R - i d e a l Y, comple t i ng the proof. 

2 . 7 T H E O R E M . Let R be the d i r e c t s u m Z R of r i n g s R i€ I i i 

e a c h of which i s fully i dempo ten t . Then R is a fully i dempo ten t r i n g . 

P roof . If Y is an i dea l of R, let y. be the i - t h componen t of 

an e l e m e n t y of Y. F o r any e l e m e n t x e R y R t h e r e i s an e l e m e n t 
i i i 

y ! € RyR whose i - th component is x and whose j - t h componen t for a l l 
j ^ i i s z e r o ; in p a r t i c u l a r we can take x = y . , using P r o p o s i t i o n 2. 3 . 

F o r a fixed i , t hen , the se t Y. of p r o j e c t i o n s on R. of the e l e m e n t s 

of Y i s conta ined in Y. It i s e a s y to see tha t Y. is an i dea l of R 
1 2 

and of R. and tha t Y = 2 . Y. . By h y p o t h e s i s Y. = Y for e a c h i € I. 
i i e l i ; ; i i 

Since Y i s the d i r e c t s u m of the R - i d e a l s Y. and s ince any e l e m e n t 
1 2 

w € Y h a s only f ini tely m a n y n o n z e r o c o m p o n e n t s , w € Y is e a s i l y 
2 2 

obtained f r o m w. € Y. . We have Y = Y for e a c h R - i d e a l Y ; R is 
i i 

a fully i dempo ten t r i n g . 
R e m a r k . In consequence of T h e o r e m 2 . 7 , we can obtain a non-

s imple fully i dempo ten t r ing Q = R © S, w h e r e R and S a r e 
s imp le r i n g s . S ince the r a d i c a l of a r e g u l a r r i n g i s z e r o [ 1 , p . 42] , 
Q is not r e g u l a r if one of the s u m m a n d s i s Sa s i ada 1 s s i m p l e r a d i c a l 
r i n g . 

3 . An idea l having no idempoten t e p i m o r p h s . 

3. 1 PROPOSITION. Le t R be any r ing and let W be an idea l of R 
c 

such tha t for e v e r y R - i d e a l Y f W W/Y fa i l s to be a fully i dempo ten t 
r i n g . Then W/Y fai ls to be fully i dempo ten t for e v e r y W - i d e a l Y. 
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Proof . Le t X ^ W be a left i dea l of W and a r igh t idea l of R 
and a s s u m e tha t W / X is a fully idempoten t r i n g . Then the r ing 
W/(RX + X) i s fully idempoten t and, by h y p o t h e s i s , W = RX + X. 

2 
Since X is a r igh t idea l of R and s ince X + W = W, we have 

(1) X + RX = X + (X + RX) = X + (RX)2 + R X 2 . 

2 
Since RX E W, RX E X and (RXR)X S X. F r o m (1), then 
X + RX = X; X is an R - i d e a l , so that W / X is not fully i dempo ten t . 
Thus we have p roved tha t W has no n o n z e r o fully idempoten t 
e p i m o r p h s W / X w h e r e X is a W- idea l and a r ight or left R - i d e a l . 

If the p ropos i t ion is f a l s e , W/Y is a fully idempoten t r ing for 
some W - i d e a l Y ^ W. Then the r ing e m i m o r p h W/(Y + RY) i s 
fully idempoten t and, by the conc lus ion of the p r eced ing p a r a g r a p h , 

Y + RY = W. F r o m Y + W = W we obtain 

(2) Y + RY = Y + (Y+ RY) = Y + YW + (RY)2 + R Y 2 . 

2 
Since YR E WR E W, R(YR)Y E RWY E Y. S i m i l a r l y , RY E WY E Y. 
F r o m (2), then , Y = Y + RY ; Y is a left R - i d e a l . The f i r s t p a r t of the 
proof c o n t r a d i c t s tha t W/Y is fully idempoten t . 

3 .2 PROPOSITION. Let the r ing R have i dea l s S and T % S 
such tha t S /T i s a fully idempoten t r i n g . Let X E S be an R - i d e a l 
such tha t for e ach R - i d e a l Y p r o p e r l y conta ined in X X/Y i s not 
a fully idempoten t r i n g . Then X C T. 

Proof . By (B) of P r o p o s i t i o n 1.2 (X + T ) / T is a fully idempoten t 
r i n g . Thus X/ (X f) T) is fully idempoten t , so tha t , by h y p o t h e s i s , 
(X H T) = X, a s r e q u i r e d . 

Defini t ion. An R - i d e a l Y i s loca l ly n i lpotent if e ach f ini tely 
g e n e r a t e d sub idea l of Y is n i lpotent . 

R e m a r k and defini t ion. E v e r y r ing R has a loca l ly n i lpotent 
i dea l L such tha t (1) L conta ins e a c h local ly ni lpotent i dea l of R 
and (2) R / L h a s no loca l ly n i lpotent idea l s [2 , p . 197, P r o p o s i t i o n s 
1 and 2 ] , L i s ca l led the Levi tzky r a d i c a l of R. 

3. 3 PROPOSITION. Let the r ing R have i dea l s >S and T f S 
such tha t S /T is a fully idempoten t r i n g , and such that the Levi tzky 
r a d i c a l L of R is conta ined in S. Then L E T . 
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Proof . If L is not conta ined in T, let y £ T be long to L 

and let Y be the R - i d e a l g e n e r a t e d by y. Since Y is f ini te ly 

g e n e r a t e d , Y is n i lpo ten t . But s ince S / T i s fully i d e m p o t e n t , we 

have the con t r ad i c t i on : T + (T + Y) = (T + Y ) n = T + Y n , 
n = 1, 2 , . . . , c o m p l e t i n g the proof. 

3 . 4 R e m a r k . If R i s any r i n g , we wi l l obta in an R - i d e a l W of R 
m a x i m a l with r e s p e c t to the following p r o p e r t y : if B f W is a W - i d e a l 
then W/B is not a fully i d e m p o t e n t r i n g . F o r any R - i d e a l U, let M(U) 
be the i n t e r s e c t i o n of a l l R - i d e a l s X conta ined in U such tha t U / X 
is a fully i d e m p o t e n t r i n g . If U con ta ins the Lev i t zky r a d i c a l L of R 
and con ta ins those R - i d e a l s H which have no non z e r o fully i d e m p o t e n t 
e p i m o r p h s H / Y , then by P r o p o s i t i o n s 3 .2 and 3. 3 M(U) con ta ins the 
specif ied i d e a l s . In p a r t i c u l a r R, M(R), M(M(R)) , . . . , con ta ins L 
and the R - i d e a l s having no n o n z e r o fully i dempo ten t e p i m o r p h s . 

Le t W, = R; for e a c h o r d i n a l a > 1, define W a s fo l lows: 
1 a 

C a s e I . a = 6 + 1 i s not a l imi t o r d i n a l . Define W = M(W ). 
a (3 

Case II. a is a l imi t o r d i n a l . Then W is the i n t e r s e c t i o n of the 
a 

i d e a l s W with (3 < a. 

F o r some o r d i n a l a we m u s t have W = W ; t h i s i s the R - i d e a l 
a a + 1 

W of the following t h e o r e m : 

3 .5 T H E O R E M . E v e r y r i ng R has an i dea l W such tha t 

(1) W/B fai ls to be a fully idempoten t r i ng if B ^ W is a W - i d e a l ; 
(2) i f H is an R - i d e a l which is not con ta ined in W, then , for some 
R - i d e a l Y p r o p e r l y conta ined in H, H/Y is a fully i dempo ten t r i ng ; 
(3) the Lev i t zky r a d i c a l L of R is conta ined in W. 

Proof . R e m a r k 3 . 4 a s s e r t s tha t W = W = W s a t i s f i e s (2) 
et a + 1 

and (3), and it is c l e a r that W/B i s not fully i dempo ten t if B ^ W is 
an R - i d e a l and even if B is a W - i d e a l by P r o p o s i t i o n 3 . 1. Q. E . D. 

C o m m e n t s c o n c e r n i n g the idea l W. 

(i) If (P) is the p r o p e r t y "no n o n z e r o e p i m o r p h i s fully i d e m p o t e n t " , 
then (P) holds for the R - i d e a l W and for the R - i d e a l s conta ined in the 
Lev i tzky r a d i c a l L by the a r g u m e n t in the proof of P r o p o s i t i o n 3 . 3 . 

(ii) If F is a field and R = F(x) i s the r i ng of f o r m a l power s e r i e s 
ove r F , then the only n o n z e r o i dea l s a r e the p r i n c i p a l i dea l s of 
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2 
1, x , x , . . . (for e ach n o n z e r o e l e m e n t r e R is such that for s o m e 

non-nega t ive i n t e g e r m x r be longs to R and is i n v e r t i b l e ) . 
C l e a r l y , W and the r a d i c a l of R coincide with the unique m a x i m a l 
idea l (x), while L = 0. In th is e x a m p l e p r o p e r t y (P) men t ioned in 
c o m m e n t (i) holds for the R - i d e a l s conta ined in W. We have no 
example w h e r e (P) i s fa lse for an R - i d e a l conta ined in W. 

(iii) If R is Sas i ada 1 s s imp le r a d i c a l r ing [3] , then W = L = 0 i s 
p r o p e r l y conta ined in the J a c o b s on r a d i c a l . 

4. The m a x i m u m fully idempoten t idea l of a r i n g . F o r an 
a r b i t r a r y r i n g R we obtain an idea l V such that e v e r y n o n z e r o 
idea l of R / V fai ls to be a fully idempoten t r ing and such that an 
R - i d e a l Y is a fully idempoten t r ing if and only if Y E V. We 
p r o c e e d by a s e r i e s of r e m a r k s . 

4. 1 R e m a r k . Le t { A. ) be an i n c r e a s i n g chain of R - i d e a l s such 

2 
that for each i e I T = T holds for e v e r y R - i d e a l T E A . . Then 

2 X 

T = T a l s o holds for R - i d e a l s T E A , w h e r e A is the union of the 
A . . Thus : let t e T w h e r e T E A is an R - i d e a l ; then for some 

2 2 
i € I, t € (T fl A.) = (T D A.) E T . 

l i 
2 

4 . 2 R e m a r k . Le t R - i d e a l s A and X 2 A be such that T = T 
2 

holds for e v e r y R - i d e a l T E A and T = A + T holds for e v e r y 
2 

R - i d e a l T wi th A E T E X . Then T = T holds for e v e r y R - i d e a l 
2 2 

T E X. F o r T = T + (T fl A) and T fl A = (T fl A) . (The f i r s t 
equal i ty c o m e s f rom the i s o m o r p h i s m (A + T ) / A = T / ( T fl A ) . ) 

2 
4. 3 R e m a r k . Le t A and B be R - i d e a l s such tha t T = T holds 
for e v e r y R - i d e a l conta ined in A or in B . Then A + B has th i s 
p r o p e r t y a l s o . F o r , if T is an R - i d e a l with A E T E A + B , then 

2 
T = A + S for s o m e R - i d e a l S E B , whence S = S and 

2 2 
T = A + S = A + S E A + T . Then R e m a r k 4 . 2 is app l icab le with 
X = A + B . 

4 . 4 T H E O R E M . E v e r y r ing R has an idea l V such tha t (1) e v e r y 
n o n z e r o idea l of R / V fai ls to be a fully idempoten t r ing and (2) an 
R - i d e a l Y is a fully idempoten t r ing if and only if Y i s conta ined in V. 
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Proof. By Remark 4. 1 and Zorn1 s lemma there is an R-ideal 
V which is maximal with respect to having each of its R-subideals 
equal to its square. By Remark 4 .2 , then, no nonzero ideal of R/V 
is a fully idempotent ring; (1) has been proved. 

2 
By Remark 4. 3 V contains each R-ideal Y such that T = T 

for each R-ideal T E Y, whence V contains each R-ideal Y which 
is a fully idempotent ring. Conversely, we show that V is fully 
idempotent, so that by (B) of Theorem 1.2 each V-ideal (and thus 
each R-ideal contained in V) is a fully idempotent ring. But V is 
fully idempotent if each V-ideal is an R-ideal and that was established, 
essentially, in the proof that (A) - equivalently (F) - of Theorem 1.2 
implies (B). 
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