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Navigational software often lacks official standardisation of the methods used and
their accuracy due to commercial confidentiality. The “black box solutions” used by
navigational systems are unknown, thus a logical and simple method to solve navigational
problems must be presented. This paper presents new meridian arc formulae by the least
squares method. As the traditional meridian arc formulae cannot be expressed as a
closed form, they are often truncated to the first few terms for practical use and in doing
so neglect the values not used. By forming an overdetermined system with known
components of the traditional meridian arc formula and actual length of the meridian arc,
the least squares method can be used to approximate the best fitting coefficients for the
traditional meridian arc formulae and forms the new compact formulae. The new formulae
are based on highly accurate values of the meridian arc for the WGS-84 ellipsoid datum,
and are perfect for the computational algorithms implemented in navigational software such
as Geographic Information Systems (GIS), Electronic Chart Display and Information
Systems (ECDIS) and other Electronic Chart Systems (ECS). Their accuracy is compared
with other methods and shows that the new proposed formulae are shorter and accurate with
negligible errors. The new formulae can be adapted to the accuracy needed and imply
different numbers of coefficients. This can also shorten the calculations in navigation such as
rhumb-line or great elliptic sailing on the ellipsoid because the meridian arc length is essential
for these calculations.
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1. INTRODUCTION. The least squares method was first used in the fields of
astronomy and geodesy as researchers and mathematicians solved the navigation
problems of crossing oceans. Celestial navigation was the key to enabling ships to
cross open oceans. Obtaining dependable celestial information was crucial, so the
prediction of stars, planets, and previous sightings of the celestial objects were used
together with the least squares method to produce accurate almanacs. Centuries later,
scientists in the field of errors and statistics found many different ways to utilise least
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squares, such as the regression analysis used for estimating the relationships among
variables in statistics.
The meridian arc length calculation is a fundamental element for many navi-

gational methods, especially for rhumb-line and great elliptic sailings on the earth
(presumed to be an ellipsoid). As traditional navigation is carried out on the
“navigational sphere” and because all modern navigational software, such as
Geographical Information Systems (GIS), Electronic Chart Display and
Information Systems (ECDIS) and other Electronic Chart Systems (ECS) use the
WGS-84 ellipsoid datum, this makes traditional mathematical navigation solutions
not accurate enough for modern navigational computerisation. With “black box”
navigational software methods unknown to the public and the lack of official
standardisations implied, this causes a need to review and investigate the
computerisation of current methods.
With least squares methods being widely used in other areas of science, it

has inspired us to re-approach its original use in geodesy. This paper presents the
research as follows: In Section 2, a simple revision of the current meridian arc
length formulae in sailing calculations is presented, including the general meridian
arc length formula, which can be numerated directly making it the same as the
formulae proposed in a number of textbooks. We then introduce the meridian
arc formulae presented by Pallikaris et al. (2009), which have two coefficients
with regard to geodetic latitude and sine functions. By further using their method,
we obtain new extended meridian arc formulae with different constraints for
comparison. In Section 3 we introduce overdetermined systems and their approxi-
mated solutions.
From an overdetermined system with known components of the traditional

meridian arc formula, as the coefficients of standard geodetic meridian arc
formulas are not “closed forms”, the least squares method can be used to approximate
the coefficients of a truncated traditional formula and in doing so, gives us the
new compact formulae. This is presented in Section 4. The main difference
between the new and traditional formulae is that the traditional formulae are
often truncated to the first few terms for practical use and in doing so neglect
the values not truncated, whereas the new formulae presented in this paper include
the non-truncated values and fit the formulae with the best fitting coefficients,
making the new formulae more accurate than the traditional method with the
same number of terms. With no official standard of how many terms the
meridian arc equation must take, the combinations of the terms are endless,
and are not discussed here. A comparison between the new formulae and existing
methods is presented in Section 5, where the maximum and minimum errors and
accuracy of the different formulae are shown. Finally, the work is concluded in
Section 6.

2. FORMULAE FOR MERIDIAN ARC LENGTH IN SAILING
CALCULATIONS

2.1. Revision of current meridian arc length formulae. In this section, an overview
of the most important geodetic formulae is given. The methods and formulae used to
calculate the meridian arc length for sailing calculations on the ellipsoid are included
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in navigational software and are important to the accuracy embedded within them.
The formulae for the meridian arc length on an ellipsoid presumed Earth originate
from integrating the curvature of the meridian, which is the curvature of an ellipse.
The integration of the curvature from the equator to a reduced latitude (β) is expressed
in Equation (1).

M(β) =
ðβ
0

(a2 sin2 β + b2 cos2 β)1/2dβ (1)

where, a=Major radius; b=Semi-Minor radius.
This integral (Equation (1)) is a famous integral called the “complete elliptic

integral of the second type”, an integral which cannot be expressed in closed forms
with terms of familiar calculus, except when e, the eccentricity of the spheroid equals
zero, then it transforms the ellipse into a circle. As geodetic latitude (φ) is the most
common latitude used in navigational systems and for practical use, there is a need
to transfer the relationship between geodetic latitude (φ) and reduced latitude (β).
Taking the relationship between geodetic latitude and reduced latitude (Equation (2),
Figure 1) gives the meridian arc length integral with respect to geodetic latitude (φ)
(Equation (3).

β = tan−1((1− e2)1/2 tan φ) (2)

Mφ
0 =

ðφ
0

a(1− e2)
(1− e2 sin2 φ)3/2 dφ (3)

As Equation (3) originates from an elliptic integral of the second type, it also cannot
be evaluated in a “closed” form. The calculation can be performed by the binomial
expansion of the denominator with integration by parts. In the binomial expansion of
Equation (3), since the powers of the denominator are not a positive integer (here it is
−3/2), the expansion would be infinite, and when expressed in a general formula form

φ

β
a

b

O D

P
OD=a cosβ
DP=b sinβ

'P

β

Figure 1. Meridian plane with reduced (β) and geodetic (ϕ) latitude of point P on the spheroid.

497NEW MERIDIAN ARC FORMULAENO. 3

https://doi.org/10.1017/S0373463313000817 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000817


yields Equation (4).

S(φ) = a(1− e2)
ðφ
0

X1
k=0

(−1)k − 3
2
k

0
@

1
A(e2 sin2 φ)k

2
4

3
5dφ (4)

Since the powers of e are very small, Equation (4) is a rapidly converging series,
so the number of terms retained depends on the accuracy required. By
rearranging Equation (4) with general terms of even powers of sine and further
integrating by parts gives the following general formula of the meridian arc length in
Equation (5):

S(φ) = a(1− e2) M0φ+
X1
i=1

M2i sin(2 · i · φ)
" #

(5)

where

M0 =
X1
k=0

(−1)k
22k

− 3
2

k

0
@

1
A 2k

k

� �
e2k and M2i =

X1
k=i

(−1)i+k

22ki
− 3
2

k

0
@

1
A 2k

k − i

� �
e2k.

The binomial series for half integer multiples is defined by:

− 3
2
k

0
@

1
A =

−3
2

� �
· −5

2

� �
· · · −3

2
−k + 1

� �
k · (k−1) · · · 1 ,

where k is the truncated term.
After expanding and collecting the coefficients of Equation (5) truncated at

order e20 and M20 with computer programs that do symbolic calculating, the
coefficients are shown below in Equation (6). This confirms the results of Equation (5)
to be accurate, as the coefficients up to M8 first given by Delambre (1799)
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Y=kX2+p

Figure 2. Best-fitting curve to a given set of data points. Here, one can find the best fitting curve of
equation Y=kX2+p with ten given data points with least squares method.
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are the same.

M0

M2

M4

M6

M8

M10

M12

M14

M16

M18

M20

2
666666666666666666666666666666666664

3
777777777777777777777777777777777775

=

1
3
4

45
64

175
256

11025
16384

43659
65536

693693
1048576

2760615
1073741824

0 −3
8

−15
32

− 525
1024

−2205
4096

− 72765
131072

−297297
524288

−19324305
33554432

0 0
15
256

105
1024

2205
16384

10395
65536

1486485
8388608

6441435
33554432

0 0 0 − 35
3072

− 105
4096

− 10395
262144

− 55055
1048576

− 2147145
335544332

0 0 0 0
315

131072
3465
524288

99099
8388608

585585
33554432

0 0 0 0 0 − 693
1310720

− 9009
5242880

− 117117
33554432

0 0 0 0 0 0
1001

8388608
15015

33554432

0 0 0 0 0 0 0 − 6435
234881024

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
666666666666666666666666666666666664

703956825
1073741824

2807136475
4294967296

44801898141
68719476736

− 78217425
134217728

−5052845655
8589934592

−20364499155
34359738368

109504395
536870912

459349605
2147483648

61093497465
274877906944

− 9954945
134217728

− 357271915
4294967296

− 1566499935
17179869184

49774725
2147483648

247342095
8589934592

4699499805
137438953472

− 765765
134217728

− 35334585
4294967296

− 939899961
85899345920

546975
536870912

3926065
2147483648

1566499935
549755813888

− 109395
939524096

− 35334585
120259084288

− 39491595
68719476736

109395
17179869184

2078505
68719476736

92147055
1099511627776

0 − 230945
154618822656

− 1616615
206158430208

0 0
969969

2748779069440

3
7777777777777777777777777777777777777777777775

1

e2

e4

e6

e8

e10

e12

e14

e16

e18

e20

2
6666666666666666666666666666666666666666666664

3
7777777777777777777777777777777777777777777775

(6)
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Further extension of the equation can give the direct calculation of the meridian arc
length between two geodetic latitudes φA and φB; this is shown in Equation (7).

S(φ)φAφB = a(1− e2) M0(φB − φA) +
X1
i=1

M2i(sin(2 · i · φB) − sin(2 · i · φA))
" #

(7)

Very accurate results are obtained by Equation (5) with M4 or M6 terms of up to
eight or ten powers of e (e8, e10). For sailing calculations on the ellipsoid, using M2

terms up to eight or ten powers of e will be sufficient, whereas in other areas of
application it will be determined on the degree of accuracy needed. The formulae
above are presented in textbooks such as the Admiralty Manual of Navigation
(1987), and Bowditch’s American Practical Navigator (1977) in non-general forms.
Equation (5) can be further manipulated and transformed into other forms, such
as Bessel’s formula and Helmert’s formula which require the introduction of new
terms of n n = (1− ffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ e2
√ )/1+ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1+ e2
√� �

. (Kawase, 2011; Deakin and Hunter,
2009; Krüger, 1912).

2.2. The Proposed Formulae by Pallikaris, Tsoulos and Paradissis. Since the
WGS-84 datum is used for electronic chart systems. Pallikaris et al. (2009) proposed
new formulae to calculate the meridian arc, by calculating Equation (5) with M0 and
M2 terms of up to the eighth powers of e then neglectingM4 and above terms in WGS-
84 standards. They give the following formula used to calculate the meridian arc:

MφB
φA

= 111132.952546922 · Δφ− 16038.508615363 sin
φB · π
90

� �
− sin

φA · π
90

� �� �
(8)

These coefficients are obtained by simply truncating the M0, M2 values up to
the eighth powers of e with the ellipsoid major radius in metres. Taking into
account that computer programs use radian units in trigonometry calculations, the
transformation of degree units into radians must be allowed for (1° equals π/180
radian units).
The main concept of Pallikaris, Tsoulos and Paradissis’s methods is to calculate

and only use the desired coefficient terms (M0, M2 and so on) up to certain powers
of e. This neglects the above coefficient terms which are not desired and truncates each
term to a certain value of e to the desired accuracy. The reason they do this is that in
the meridian arc general formula Equation (5), the powers of e are very small causing
the values of each coefficient term to approximate a certain value if the truncated
powers of e terms are enough, and in the binominal theorem which the meridian arc
formula uses for its coefficient terms, the denominator will greatly surpass its
numerator upon reaching certain high coefficient terms, causing the influences of
higher terms in the meridian arc formula to greatly decrease after a certain first few
terms.
By further expanding their method to M0, M2 and M4 terms of up to the eighth

powers of e, we can obtain new 3 coefficient formulas as below:

MφB
φA

=111132.952546922 · Δφ− 16038.508615363 sin
2 · φB · π

180

� �
− sin

2 · φA · π
180

� �� �

+ 16.832599651 sin
4 · φB · π

180

� �
− sin

4 · φA · π
180

� �� �
(9)
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Correspondingly, expanding their method up to M6 terms of up to the eighth powers
of e are shown below:

MφB
φA

=111132.952546922 · Δφ−16038.508615363 sin
2 · φB · π

180

� �
− sin

2 · φA · π
180

� �� �

+ 16.832599651 sin
4 · φB · π

180

� �
− sin

4 · φA · π
180

� �� �

− 0.021980996 sin
6 · φB · π

180

� �
− sin

6 · φA · π
180

� �� �
(10)

And whereas up to M8 terms and eighth powers of e is the equation below:

MφB
φA

=111132.952546922 · Δφ−16038.508615363 sin
2 · φB · π

180

� �
− sin

2 · φA · π
180

� �� �

+ 16.832599651 sin
4 · φB · π

180

� �
− sin

4 · φA · π
180

� �� �

− 0.021980996 sin
6 · φB · π

180

� �
− sin

6 · φA · π
180

� �� �

+ 0.000030579 sin
8 · φB · π

180

� �
− sin

8 · φA · π
180

� �� �
(11)

In the method presented (Pallikaris et al., 2009), terms up to the eighth power of e
are used. For accuracy comparisons, we further extend this method and present
Pallikaris, Tsoulos and Paradissis’s formula with up to 20 powers of ewithM0 andM2

terms to see how they affect the accuracy of the equation, the new two coefficient
meridian arc formula is presented as below:

MφB
φA

= 111132.9525479019 · Δφ− 16038.5086629759 sin
2 · φB · π

180

� �
− sin

2 · φA · π
180

� �� �
(12)

And in addition, the 3 coefficient Pallikaris, Tsoulos and Paradissis’s meridian arc
formula up to 20 powers of e with M0, M2 and M4 terms is:

MφB
φA

=111132.9525479019 · Δφ− 16038.5086629759 sin
2 · φB · π

180

� �
− sin

2 · φA · π
180

� �� �

+ 16.832613263 sin
4 · φB · π

180

� �
− sin

4 · φA · π
180

� �� �
(13)

These formulae are compared in Section 5 of this paper, and in addition we present
the errors and influences they have on the meridian arc formula. Where in the above
meridian arc length equations, the distances are calculated in metres, conversion to
nautical units is achieved by dividing the equation by 1852, as 1 nautical mile equals
1852 metres.

3. OVERDETERMINED SYSTEMS AND APPROXIMATE
SOLUTIONS FROM THE LEAST SQUARES METHOD. A system
of linear equations in mathematics is considered overdetermined if there are
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more equations than the unknown. The method of ordinary least squares can
be used to find an approximate solution for overdetermined systems with
the least errors, as for example in astronomy for predicting the orbits of celestial
objects.
“Least squares”means that the overall solution minimizes the sum of the squares of

the errors made in every single equation. To find the best-fitting curve to a given set
of points by minimizing the sum of the squares of the errors, the most important
application is the data fitting (Figure 2). The sum of the squares of the errors is used
instead of the error absolute values because it allows the offsets to be treated as a
continuous differentiable quantity.

4. THE NEW PROPOSED ARC LENGTH BY THE LEAST
SQUARES METHOD. As previously mentioned, the meridian arc length
formula can be presented in the form of Equation (5), and with modern navigational
and GPS systems implementing the WGS 84 datum, by taking a(1−e2) of WGS 84
parameters into Equation (5), we obtain a new general formula of the meridian arc
length as shown in Equation (14).

Mφ
0 = C0φ+

X1
i=1

Ci sin(2iφ) (14)

Now, finding the coefficients Ci, i=0,1,2,3. . .with the least squares method is the
aim here, Equation (14) with restricted n+1 numbers of coefficients are the proposed
new meridian arc formulas as shown below in Equation (15)

Mφ
0 = C0φ+

Xn
i=1

Ci sin(2iφ) (15)

with n+1 numbers of coefficients depending on the accuracy needed. The accuracy of
the first few terms is discussed in the following comparison paragraph.
To acquire the coefficients of the new formulae, we calculate the meridian

arc distance with standard geodetic methods (by Equation (5)). Then, by forming
an overdetermined system with the proposed new equations, the method of least
squares gives an approximate solution to the meridian arc length coefficients in a
matrix form.
To achieve the above, we take m (finite) φ values with the same intervals starting

from 0° to 90° into Equation (5) to calculate the accurate meridian arc values. For
accuracy reasons, we take up to M20 terms with 20 powers of e in Equation (5) to
represent the actual meridian arc distance; calculations were done with the WGS-84
datum to be compatible with modern electronic navigational systems. With this done,
we obtain m number of equations that represent the actual meridian arc with equal
intervals starting from 0° to 90° of latitude.
Next, depending on the accuracy desired, we form an overdetermined system by

setting n+1 number of coefficients wanted for the new equation; the more coefficients,
the more the new formula will resemble the original meridian arc formula. Now there
are m linear equations with n+1 unknown coefficients, to make this system
overdetermined, m must be more than n+1 (m > n+1). This overdetermined system
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can be written in matrix form as Ax=b, and shown below in Equation (16).

φ1
φ2
φ3
..
.

φm

0
BBBBB@

1
CCCCCA+

sin(2φ1) sin(4φ1) · · · sin(2 · (n− 1) · φ1)
sin(2φ2) sin(4φ2) · · · sin(2 · (n− 1) · φ2)
sin(2φ3) sin(4φ3) · · · sin(2 · (n− 1) · φ3)

..

.

sin(2φm)
..
.

sin(4φm)
. .
.

· · ·
..
.

sin(2 · (n− 1)φm)

0
BBBBB@

1
CCCCCA

2
666664

3
777775·

C0

C1

C2

..

.

Cn

2
666664

3
777775=

S(φ1)
S(φ2)
S(φ3)

..

.

S(φm)

2
666664

3
777775 (16)

where,

A =

φ1
φ2
φ3

..

.

φm

0
BBBBBBB@

1
CCCCCCCA

+

sin(2φ1) sin(4φ1) · · · sin(2 · (n− 1) · φ1)
sin(2φ2) sin(4φ2) · · · sin(2 · (n− 1) · φ2)
sin(2φ3) sin(4φ3) · · · sin(2 · (n− 1) · φ3)

..

.

sin(2φm)
..
.

sin(4φm)
. .
.

· · ·
..
.

sin(2 · (n− 1)φm)

0
BBBBBBB@

1
CCCCCCCA

2
66666664

3
77777775
, x =

C0

C1

C2

..

.

Cn

2
666664

3
777775

are the wanted coefficents.

b =

S(φ1)
S(φ2)
S(φ3)

..

.

S(φm)

2
666664

3
777775are the values of Equation (5) up to M20 terms and 20 powers of e.

φ1 = 0°
φ2 = 1°
φ3 = 2°

..

.

φm = 90°

2
666664

3
777775, degree intervals differ depending on how many intervals tom is decided.

Since latitudes range from 0° to 90°, it would be adequate to at least put less than
1° intervals from 0° to 90° latitude for the overdetermined system.
For the overdetermined system Ax=b, the least squares formula is obtained from

the problem min
x

Ax− b‖ ‖, provided that (ATA)−1 exists, the solution can be written
with the normal Equations (17):

x = ATA
� �−1·ATb (17)

where the T sign indicates a matrix transpose.
With this method, approximated solutions for the new meridian arc formula

coefficients are given. For example, for the new arc length formula (Equation (15))
with two coefficients equation, n=1, and if it also uses 1° intervals from 0° to 90°, then
m=91, this gives a 91-by-2 matrix A ([A]91×2), a 2-by1 matrix x ([x]2×1), and another
2-by-1 matrix b ([b]2×1), by taking in the least squares method solution, then this gives
the x matrix solution, and forms the new meridian arc formula with two corres-
ponding coefficients C0 and C1. Following the method above, the solved coefficients
for the new formulae with terms of up to n=5 with 1° intervals for m are shown in
Table 1, each row (n=1,2,. . .,5) is a new arc length formula with restricted n+1
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Table 1. Solved coefficients for the new formulas with terms of up to n=5, m=91 with 1° intervals, Mφ
0 is calculated in nautical miles for these coefficients.

n C0 C1 C2 C3 C4 C5

1 3432·96720473347
2 3438·1407278215 −8·6533434319972
3 3438·14747758683 −8·66009251194964 0·00908420652422137
4 3438·14748693221 −8·66010185638811 0·00908887732180119 −1·18661425858591*10−5

5 3438·14748694567 −8·66010186983726 0·00908888404217123 −1·18706224725429*10−5 1·68133738043252*10−08

6 3438·14748694569 −8·66010186986091 0·00908888405336938 −1·18706308569472*10−5 1·6819171833049*10−08 −2·56932253250852*10−11
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number of coefficients; put the values back into Equation (15) for the full
corresponding formulae.

5. COMPARISON OF FORMULA PERFORMANCE
5.1. Comparison. Comparison of the different formulae for calculating the

meridian arc distance are evaluated and shown below, the compared formulae are

1. The original formulae of Pallikaris et al. (2009) (Equation (8)).
2. The extended formulae of Pallikaris et al. (2009) with up to eighth powers of

e and M4 terms (Equation (9)).
3. The extended formulae of Pallikaris et al. (2009) with up to eighth powers of e

and M6 terms (Equation (10)).
4. The extended formulae of Pallikaris et al. (2009) with up to eighth powers of e

and M8 terms (Equation (11)).
5. The extended formulae of Pallikaris et al. (2009) with up to 20th powers of e and

M2 terms (Equation (12)).
6. The extended formulae of Pallikaris et al. (2009) with up to eighth powers of

e and M4 terms (Equation (13)).
7. The propsosed new formulae in this paper with n=0*5 (Equation (15),

n=0*5, m=91).

A comparison must always have a standard to be compared with to determine whether
the outcomes are good or bad. The comparison standard used here is Equation (5)
with up to M20 terms and 20 powers of e, as this formula provides micrometre
accuracies for the meridian arc length on an ellipsoid presumed Earth. The distances
calculated in this formula are compared with Vincenty’s formula (Vincenty, 1975),
which give accuracies within 0·5 mm on the ellipsoid, and are shown in Table 2. With
Vincenty’s formula being considered as one of the most precise methods with
millimetre accuracies on the WGS-84 ellipsoid, the results in Table 2 show that
Equation (5) with up to M20 terms and 20 powers of e should be sufficient as the
comparison standard used here.
The errors between the compared formulae with Equation (5) havingM20 terms and

up to 20 powers of e are shown in Table 3 expressed with the units of metres. These
comparisons are based on the calculations of 91 meridian arcs lengths contained from
the equator to parallel latitudes starting from 0° to 90° latitude with 1° increments.

Table 2. Comparison of Equation (5) with M20 terms up to 20 powers of e with Vincenty’s formula (1975).

Degrees
Equation (5) with M20 terms

up to 20 powers of e Vincenty’s formula

0 0 0
15 1658989·58940055 1658989·589
30 3320113·39794038 3320113·398
45 4984944·37797774 4984944·378
60 6654072·81949051 6654072·819
75 8326937·58728035 8326937·587
90 10001965·7293127 10001965·73

*above distances are calculated in metres.
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Table 3. The errors between the compared formulae and the standard arc length.

Degrees Equation 8 Equation 9 Equation 10 Equation 11 Equation 12 Equation 13
Equation 15,
n=0

Equation 15,
n=1

Equation 15,
n=2

Equation 15,
n=3

Equation 15,
n=4

Equation 15
n=5

0 0 0 0 0 0 0 0 0 0 0 0 0
5 5·746301 2·823167 2·826984 2·826979 5·746121 −0·01097 −1942·09 4·665024 −0·00951 1·79*10−5 −3·1*10−8 2·63*10−9

10 10·80115 5·043692 5·05121 5·0512 10·80079 −0·01901 −3800·24 8·704634 −0·01634 2·73*10−5 −4*10−8 4·21*10−9

15 14·55606 6·139205 6·150195 6·15018 14·55551 −0·02196 −5493·03 11·57438 −0·01858 2·35*10−5 −1·9*10−8 4·42*10−9

20 16·55858 5·738063 5·752192 5·752172 16·55786 −0·01903 −6943·9 12·8819 −0·01559 8·42*10−6 1·6*10−8 0
25 16·56679 3·671354 3·688193 3·688169 16·56589 −0·011 −8083·52 12·43956 −0·00819 −1·1*10−5 3·96*10−8 0
30 14·57854 −2·6*10−5 0·01901 0·018983 14·57744 −2·7*10−5 −8851·83 10·29208 0·001542 −2·5*10−5 3·54*10−8 0
35 10·83203 −4·98672 −4·96607 −4·9661 10·83076 0·010962 −9199·87 6·715724 0·010832 −2·7*10−5 0 0
40 5·777576 −10·8008 −10·7791 −10·7792 5·776112 0·019019 −9091·28 2·188782 0·017015 −1·6*10−5 −2·8*10−8 0
45 0·023638 −16·8106 −16·7886 −16·7887 0·021984 0·021984 −8503·47 −2·66311 0·018267 2·92*10−6 −4·1*10−8 0
50 −5·73619 −22·3149 −22·2933 −22·2933 −5·73803 0·019059 −7428·34 −7·14058 0·014154 2·01*10−5 −2·3*10−8 0
55 −10·8067 −26·6262 −26·6056 −26·6056 −10·8088 0·011023 −5872·61 −10·5542 0·005807 2·73*10−5 1·52*10−8 0
60 −14·5752 −29·1549 −29·1358 −29·1359 −14·5774 2·7*10−5 −3857·64 −12·3084 −0·00433 2·07*10−5 4·21*10−8 0
65 −16·5854 −29·4824 −29·4655 −29·4655 −16·5879 −0·01098 −1418·88 −11·9751 −0·01313 3·47*10−6 3·96*10−8 6·74*10−9

70 −16·5933 −27·4157 −27·4016 −27·4016 −16·5959 −0·01905 1395·188 −9·34797 −0·01755 −1·6*10−5 0 0
75 −14·5967 −23·0157 −23·0047 −23·0048 −14·5995 −0·02201 4524·509 −4·47191 −0·01549 −2·6*10−5 −2·7*10−8 0
80 −10·8358 −16·5959 −16·5884 −16·5884 −10·8389 −0·01907 7899·255 2·358479 −0·00636 −2*10−5 −3·2*10−8 0
85 −5·76489 −8·69098 −8·68716 −8·68717 −5·76811 −0·01101 11441·99 10·62908 0·008729 4·21*10−6 0 0
90 0·003413 8·97*10−5 8·97*10−5 8·97*10−5 0 0 15070·04 19·66307 0·027226 3·92*10−5 6·23*10−8 0

* For brevity, only intervals of 5° are shown, m=91 for Equation 13, units are in metres.

Table 4. Error averages, maximums and minimums and standard deviation.

Equation 8 Equation 9 Equation 10 Equation 11 Equation 12 Equation 13
Equation 15,

n=0
Equation 15,

n=1
Equation 15,

n=2
Equation 15,

n=3
Equation 15,

n=4
Equation 15,

n=5

Average 10·71109 13·38648 13·3797 13·37971 10·71187 0·013984 6357·183 8·424856 0·011963 1·77*10−5 2·6*10−8 9·75*10−10

max 16·83616 29·63338 29·61559 29·61562 16·8387 0·022011 15070·04 19·66307 0·027226 3·92*10−5 6·23*10−8 8·42*10−9

min 0·003413 2·65*10−5 8·97*10−5 8·97*10−5 0 0 228·1262 0·248632 0·000257 5·58*10−7 0 0
Standard
deviation-P

11·83612 12·95477 12·95197 12·95198 11·83689 0·014756 6672·051 9·175983 0·013136 1·95*10−5 2·97*10−8 1·95*10−9

* above units are calculated in metres.
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Table 3 is expressed in units of metres. These comparisons are based on the
calculations of 91 meridian arcs lengths contained from the equator to parallel
latitudes starting from 0° to 90° latitude with 1° increments. For a simple and clear
view on how the discrepancies compare to each another, they are also presented in
Figures 3 and 4, where Figure 3 shows the error differences of Equations (8) and (15),
(where n=0 and m=91) and Figure 4 shows the differences between Equations (8),
(9), (10), (11), (12), (13) and (15) (where n=1*5 and m=91), vertical axis of these
figures represent the errors when compared to Equation (5) with M20 terms and 20
powers of e, where the horizontal axis is the corresponding latitude of the compared
meridian arc length distances.
This paper also presents the maximum deviation, minimum deviation and standard

deviation of each new formula as shown in Table 4. It must be noted as we want the
error difference from the standard, this means when calculating the average,
maximum and minimum errors an absolute value is used instead of simply using
such positive and negative errors provided in Table 3, as this will give a non-
meaningful average, maximum and minimum errors. Note that the minimum
deviations do not include the initial values for latitude 0°. If included, all minimum
deviations shall be zero because at 0° latitude, the meridian arc length of all equations
equal zero.
As data fitting in overdetermined systems is essential for the accuracy of the

approximated solution, we compare whether more data inputs (m>91) influence the
accuracy of the formulae. Here, we compare the accuracy of the new two coefficients
formula (Equation (15), n=1), as this formula with its high accuracy and compactness
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in calculations would be used most in practical needs. We compare the accuracy of the
method whenm=91 with 1° increments to 90°, and whenm=181 with 0·5° increments
to 90°. The results are shown in Table 5, again, the minimum deviations do not include
the initial values for 0° latitude.

5.2. Discussion of comparison results. As shown in Tables 3 and 4, the new
formula Equation (15) with one coefficient (n=0) is not accurate enough for precise
sailing calculations.
The new formula (Equation (15)) with two coefficients (n=1) is sufficient for

practical sailing calculations with an average error of 8 m with a range of 20*0·2 m
errors. It is to be noted that when compared to the formulas presented by Pallikaris
et al. (2009) (Equation (8), 2009) and extended formula Equation (12) with near
identical values, although they all have the same coefficient terms (M0 and M2) and
have almost the same accuracy, our maximum error is larger (20 m vs 17m), this is
because the least squares method includes the non-truncated terms causing the values
to not be a sine curve as shown in Equation (8). This causes a continuing rise for
latitudes of about 70° and higher. But as one can see from Figure 4, Equation (15)
with two terms of coefficients (n=1) maintains a lower maximum error between
0*70° degrees, and as most shipping routes are between 70° latitude north and south,
the new formula (Equation (15) with two terms of coefficients can be considered an
acceptable alternative for Equation (8).
In Equations (9), (10), and (11), the extended formulae of Pallikaris, Tsoulos and

Paradissis’s method which are calculated up to eight powers of e and up to M4, M6

and M8 terms respectively have no significant difference between each other and also
can be considered appropriate for navigational sailing with maximum errors up to 30
metres. Yet, it is to be noted that these all have more than two coefficient terms, and
only at below approximately 35° latitude do these equations have a better accuracy
than those of the above two coefficient term formula.
The new formula (Equation (15)) with three coefficients (n=2) drastically lowers the

errors to millimetre range, which should be sufficient when needing very high accuracy
calculations. When compared to the extended formulae of Pallikaris et al. (2009) with
three coefficient terms (Equations (9) and (13)), only Equation (13) of up to 20 powers
of e will give repeatable millimetre level accuracy. It is to be noted that although our
new least square formula with three coefficient terms (Equation (15), n=2) and the
extended formulae of Pallikaris et al. (2009) with three coefficient terms up to 20
powers of e powers (Equation (13)) have near identical values and both are viable for
high accuracy calculations, the least square method is a slightly more accurate

Table 5. Comparisons between differing m.

Equation (10) n=1m=91 n=1m=181

C1 coefficient 3438·14072782150000 3438·14058271546000
C2 coefficient −8·65334343199720 −8·65319781489416
Average deviation 8·42486 1·94312
Maximum deviation 19·66307 20·08520
Minimum deviation 0·24863 0·17742
Standard deviation 9·17598 9·14102

*above units are calculated in metres.
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(approximately about 3*4mm). This is because our method takes account of the
non-truncated higher term values and as such demonstrates the use of the least square
method implied here.
The new formula (Equation (15)) with four and above coefficients (n=3 and above)

shows no significant difference between Equation (5) with M10 terms up to 20 powers
of e, and Vicenty’s formula (Vicenty, 1975), making this new formula with four
coefficients a suitable alternative to save computer resources when requiring such high
accuracies.
In the extended formulae of Pallikaris, Tsoulos and Paradissis’s method, it is to be

noted that when calculating up to eight powers of e, taking in more terms ofM4 toM8

does not improve its accuracy drastically. And when taking more powers of e (here, 20
powers of e), their formula with two terms of coefficient does not differ much to those
of eight powers of e, it is only when taking three terms and above with more powers of
e that the formula becomes drastically more accurate for high accuracy calculations.
There is no significant difference between m=91 and m=181, yet of course m=181

should be more accurate, as more information is given, then the data fitting should be
more accurate and a better curve line equation is fitted. It can also be seen that the
standard deviation ofm=181 is more compact than m=91, meaning the errors do not
diverge as far as the origin of zero when compared to m=91.

6. CONCLUSIONS. According to the calculation tests carried out above, the
proposed new formulae (Equation (15)) in this paper which use the least square
method have the benefits of:

. Better accuracy than simply truncating at a certain point for lower accuracy
needs.

. Depending on the accuracies required, how many coefficients the formula has is
chosen by the user. At least three coefficients (n=2) should be chosen for high
accuracy mapping such as GPS navigation on land, whereas for very rough
estimates, assuming the meridian arc length equals the latitude times 3432·9672 is
a quick and useful technique. For sailing applications, the two coefficient formula
would be sufficient as it only has a maximum error of 20 metres whereas seeking a
higher accuracy for sailing calculations does not have any practical value for
marine navigation and costs more resources than needed. This can be seen as an
evaluation of accuracy and calculation speeds deemed most efficient for the user.

. Since our new formula with two coefficients (n=1) uses the same computer
algorithm resources as those original formulae presented by Pallikaris et al.
(2009), and as their formulae have already be proven to be about twice as fast as
the other geodetic methods formulae of the same accuracy, we can also assume
that our new presented formulae shall also be faster than those compared in
Pallikaris et al. (2009).

We must note that directly calculating Equation (5) up to multiple terms and storing
the coefficients in a memory space for computer algorithms would take up a lot of
space. If one wants the most accurate values of the meridian arc, this would be the
correct way, but with the least squares method above, we could acquire near identical
accuracies with fewer terms, and in doing so, save computer memory space. In
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practical use, such high accuracies are often not needed and only cost unnecessary
resources, thus making the efficient formulae presented in this paper well suited for
practical use. Although modern computers perform at very high speed, and can
handle more complex geodetic formulas, saving computing resources is an important
aspect in the design of navigational systems. Navigational systems are becoming even
more compact, and the saved computer resources can be readily used for other
functions such as more user friendly and customized interfaces, 3-D presentations and
more information-packed integrated maps and charts.
The new proposed formulae in this paper are diverse and adaptable to many

different conditions of accuracy, ranging from road maps that require sub-metre
accuracies, to simple estimates of long distances. These new formulae can be used
for the development of new algorithms without diminishing the accuracies required
for the situation. The least squares method can be expanded to other fields of
science for future studies.

ACKNOWLEDGEMENT

This work was supported in part by the National Science Council of Taiwan, Republic of
China, under grant NSC 98-2410-H-019-019-, NSC 99-2410-H-019-023-, NSC 100-2410-H-
019-018-, and NSC 101-2410-H-019-025-.

REFERENCES

Admiralty Manual of Navigation. (1987). Vol. 1. The Stationery Office, ISBN:0117728802,
97801177288061987.

Bomford, G. (1980). GEODESY, Oxford University Press.
Bowditch, N. (1977).American Practical Navigator, Vol. I, DefenseMapping Agency Hydrographic Center.
Deakin, R.E, and Hunter, M.N. (2009). Geodesics On An Ellipsoid – Bessel’s Method. School of
Mathematical & Geospatial Sciences, RMIT University Melbourne, Australia.

Delambre, J.B.J. (1799). Méthodes Analytiques pour la Détermination d’un Arc du Méridien; précédées d’un
mémoire sur le même sujet par A. M. Legendre, De L’Imprimerie de Crapelet, Paris, 72–73.

Earle, M.A. (2005). Vector Solutions for Great Circle Navigation, The Journal of Navigation, 58, 451–457.
Earle, M.A. (2006). Sphere to Spheroid Comparisons. The Journal of Navigation, 59, 491–496.
Kawase, K. (2011). A General Formula for Calculating Meridian Arc Length and its Application to
Coordinate Conversion in the Gauss-Krüger Projection, Bulletin of the Geospatial Information Authority
of Japan, 59, 1–13.

Krüger, L. (1912). Konforme Abbildung des Erdellipsoids in der Ebene, Veröffentlichung Königlich
Preuszischen geodätischen Institutes, Neue Folge, 52, Druck und Verlag von B.G. Teubner, Potsdam, 12,
doi: 10.2312/GFZ.b103-krueger28.

Movable Type Scripts. (2013). Vincenty formula for distance between two Latitude/Longitude points. http://
www.movable-type.co.uk/scripts/latlong-vincenty.html. Accessed 04 April 2013.

Movable Type Scripts. (2013). Calculate distance, bearing and more between Latitude/Longitude points.
http://www.movable-type.co.uk/scripts/latlong.html. Accessed 04 February 2013.

Pallikaris, A., Tsoulos, L. and Paradissis, D. (2009) NewMeridian Arc Sailing Formulas for Calculations in
GIS. International Hydrographic Review, May 2009, 24–34.

Vincenty, T. 1975. Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application of Nested
Equations. Survey Review, XXII no 176, 88–93. Directorate of Overseas Surveys. Ministry of Overseas
Development. Tolworth, Surrey [UK].

Wolfram MathWorld. (2013). Least Squares Fitting, http://mathworld.wolfram.com/LeastSquaresFitting.
html. Accessed 18 January 2013.

510 WEI-KUO TSENG AND OTHERS VOL. 67

https://doi.org/10.1017/S0373463313000817 Published online by Cambridge University Press

http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://www.movable-type.co.uk/scripts/latlong.html
http://www.movable-type.co.uk/scripts/latlong.html
http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFitting.html
http://mathworld.wolfram.com/LeastSquaresFitting.html
https://doi.org/10.1017/S0373463313000817

