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TOWARDS A CALCULUS OF ALGORITHMS

M. BULMER, D. FEARNLEY-SANDER AND T. STOKES

We develop a generalised polynomial formalism which captures the concept of an
algebra of piece-wise defined polynomials. The formalism is based on the Boolean
power construction of universal algebra. A generalisation of the theory of sub-
stitution homomorphisms is developed. The abstract operation of composition
of generalised polynomials in one variable is defined and shown to correspond to
function composition.

On one level, a polynomial may be viewed as an algorithm, giving a sequence of
operations to be performed on a finite set of elements of an algebra. We consider an
extension of this notion which also captures the important algorithmic notion of branch-
ing. The emphasis is entirely algebraic, and the role of substitution is as significant as
for standard polynomials. We refer the reader to Lausch and Nobauer [1] for the back-
ground theory of generalised polynomials for single sorted universal algebras. We build
on the many sorted case, although the basic concepts are essentially the same. The
notion of a many-sorted algebra is a natural generalisation of the notion of a universal
algebra, in which more than one carrier set is permitted.

A signature E is a pair consisting of a set 5 whose elements are called sorts, and
a family of sets T,w^a indexed by w £ S* (the set of strings over 5) and a G S. We
usually write f : w —>.b instead of / 6 Et»i<T.

A many sorted algebra A of signature E is a map that associates with each a G S
a set Aa, and with each / : o-\o~i • • • <rn —* o" £ E^,^ a function fA : Aai x Aa2 x • • • x
Aan —* Aa. The image eA of the empty string is required to be a 1-element set. We
say that the Ao are the carriers of A and the fA are the operations on A.

A variety of many-sorted algebras of signature S is a class of algebras closed
under the formation of homomorphic images, subalgebras and products, where each of
these notions is the natural analog of the corresponding notion from universal algebra.
Alternatively, a variety consists of all the algebras of signature S satisfying a collection
of identities.
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1. BOOLEAN AFFINE COMBINATIONS

Let R be a Boolean ring, that is, a ring with additive identity 0 and multiplicative
identity 1 in which every x £ R satisfies x2 — x. Let addition be denoted by + and
multiplication by juxtaposition. The finite subset {a i ,a2 , . . . ,a*} of R is a partition
of unity if

1. £ > , = l ;and

2. a,at — 0, for all s ^ t.

By the Stone Representation Theorem, every Boolean ring R may be interpreted

as a ring of subsets of some set 5 , whence a partition of unity may be viewed as a

collection of mutually disjoint subsets of S whose union is all of S.

Let T be a set and R a Boolean ring. Let (M(T, R),®,-) be the free .R-module

with basis T, elements expressed in the form £} att with all but finitely many a« zero.
t€T

Define TR, the set of Boolean affine combinations over R of elements of T, to be the

set of elements X) at* °f M(T, R) such that {at : t £ T} is a partition of unity. The
16T

set T may be viewed as being embedded in TR by identifying each t £ T with the
element 1 • t £ TR. Interpreting R as a ring of subsets of the set 5 leads readily to the
interpretation of TR as the collection of functions / : S —> T with finite image such
that the inverse image of each t £ Im(f) is in R.

m

PROPOSITION 1 . 1 . Let p= £ a^j £ M(T,R), with <1, t2 , .- . ,tm not neces-
« = 1

m

sarily distinct elements of T. If £] an = 1 and aid, = 0 for all i ^ j , then p £ T .

PROOF: Collecting like U terms does not affect the sum of the coefficients and

pairwise products will still be zero because of distributivity. U

There is an important combinatorial rule for making new Boolean affine combina-

tions from old ones.

P R O P O S I T I O N 1 . 2 . Let Pl,P2,... ,pk £ M(T,R). If Pl,p2,... ,pk e TR, and
{ a i , CL2,... , a*} C R is a partition of unity, then ^ ctipi £ TR .

X

PROOF: Let p< = "EPijUj for each i. Then
j

with X] aiPii = y l a ' Y] Pii = y] a« "1 ~
i,} * 3 i

and "nftiii «ij A2« = (<*ii «»*)(&!*&»») =
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providing either ij ^ i2 or j i ^ j 2 . Hence by Proposition 1.1, X)Q>P« € TR. U
i

We call this process taking the affine combination of the pi with respect to the aj.
With the above interpretation of TR as functions S —* T, the affine combination of the
Pi with respect to the an is the function S —> T obtained by defining a new function
piecewise in terms of the pi — on the domain subset â  of 5 , the function agrees with
Pi. The above proposition shows that if each of the component functions pi is in TR,
then so is their affine combination with respect to the partition of unity given by the

2. BOOLEAN POWERS

Let A be a many sorted algebra of signature £ with sorts 5, lying in the variety
V. Let AR denote the collection of sets of Boolean affine combinations {AR : a 6 5}.
For n > 0, each operation r : Aai x Aa2 x • • • x Aan —* Aa on A can be extended to an
operation AR

X x AR
3 x • • • x AR

n —* AR
Q on AR by setting, for each a.j = J2 <*ijaij € AR.,

i
where j = 1,2,. . . ,n (without loss of generality),

,...,»„

If n — 0, so that r is a nullary operation on A which chooses a distinguished
oo £ Aao, let r induce the nullary operation on AR determined by the distinguished
element a0 £ AR

Q .

If R is interpreted as a ring of sets on 5, then AR may be viewed as being a
subalgebra of the many sorted algebra of all many sorted functions / = {fa)a^s w^h
fa : S —> Aa for each carrier Aa of A under the pointwise operations. Hence AR is
a many sorted algebra of signature S in the variety V having carriers the AR and
operations as described above.

We note that if A is simply a semigroup, then A is a particular subsemigroup
of the multiplicative semigroup of the semigroup ring R[A], so the construction of AR

for general A may be viewed as a generalisation of a construction based on semigroup
rings over Boolean rings.

The extension of A to AR thus defined is nothing but the Boolean Power of A by
R. Boolean powers are an important tool in universal algebra. See for example Pinus
[2], where the Boolean power AR is defined to be the algebra of continuous functions
with pointwise operations from the Stone space of the Boolean ring (strictly, Boolean
algebra) R, and taking values in the algebra A endowed with the discrete topology, in
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the one-sorted case a definition abstractly equivalent to the purely algebraic one given
here, as is in essence pointed out in Pinus [2]. The extension to the many sorted case
is a straightforward process.

3. VARIABLES

AR may be viewed as an abstract algebra of "step functions", or piecewise defined
constant functions. However, the more general notion of a piecewise defined algebraic
function may be captured by linking the structures of A and R. We do this by letting
A be an algebra of polynomials in a set of variables X and letting R be a Boolean ring
consisting of predicates in the variables X.

Let A be an algebra of signature S in a variety V. Let A[X] be the algebra in V
freely generated by A and the generators Xa = {xj, z£, . . . , x^ } associated with each
carrier Aa of A, and let X = {X,j : a G S}. The carrier j4ff[X] in A[X] corresponds
to Aa in A for each a G S. Let N = {ma : a G 5} and denote EtT€SAcr[X]m<' by
A[X]N; similarly denote HaesA?° by AN.

Let f{x) = f(xl,x%, ..., x^a : a G 5) denote a typical element of j4«r[Jf]. Each
such f(x) induces a function i4[X]" —» ^.^[X] defined by substitution, namely, for
q = («f, IS, . . . , 9 ^ : <r 6 5) 6 A[X]N define / ( , ) = /(tf, tf, . . . , q^ : <r G 5) G
Aao [X]. There is an obvious restriction of / : AN —> Aa.

We note that essentially all of the definitions and constructions in what follows
may just as well be made in terms of the important subalgebra of •Af.X'], iVf-X ]̂, the
free algebra in V on the many sorted variable set X. A[X] may be viewed as a
generalisation of the ring of polynomials in several variables over a field, in which each
monomial may be multiplied by a field element and each polynomial has a constant
term: the structure of A is built into J4[X), whereas -Fyf-X'] simply reflects the nature
of the variety V. In viewing / G Aa [X] as a function AN —• Aa, greater generality is
obtained by considering A[X] rather than Fv[X], although it is easy to see that the
arguments to follow concerning A[X] apply to the smaller algebra Fv[X] also.

Let P be a collection of function symbols of type X, that is, expressions of the form
p(x) = p{x\,x%,... JS ĴO- : o" G •?) . Then the set of algebraic predicates, Pr, consists of
all expressions of the form ij) (gf, q%,... , q^ : a £ S) for some tp G P and qj G Aa [X].
Such an algebraic predicate is itself an expression in the z j and will be denoted by r(x).
Denote by r(x)|j.H-.g, or r(q) as convenient, the result of the substitution by each qf
in q = (qf) G A[X]N for each xf occurring in r(x) G Pr. Clearly if r(x) G Pr, then
r(q) G Pr also.

Let B(Pr) denote the free Boolean ring generated by the elements of Pr. Then
A[X, P] = A[X]B(Pr) is the algebra of potential piecewise polynomials (the PPP-algebra)

of type X associated with A and P.
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For f(x) = Eai{x)fi(x) G Aa[X}B^ and q G A[X]N, define f(q) = £ «<(
Note that if a £ -4", /(a) "will generally not be an element of A; for that to be the
case we need a functional interpretation of the elements of P.

Let P' be a collection of functions AN —* Z2 such that there is a bijection * :
P —> P'. We call * an instance of P. We may extend * to all of Pr as follows: for
any 0{x) = p(f) G Pr, where p G P and / G A[X]N, define 0*(z) = V>*(/) by setting

r{K,fZ,-.. ,&. • * e 5)(a) =^(/f(a),/2»,... , /*>) : a G 5)

for all g G AN. Notation: i>*(f)(a) = 4>*(f(a)). Let Pr ' be the collection of all such

e*.
Let B(Pr') denote the ring of functions AN —> Z2 generated by Pr' under the

pointwise operations of addition and multiplication; then B(Pr') is a Boolean ring. Be-
cause B(Pr) is free, there is a unique homomorphism $ : B(Pr) —* B(Pr') determined
by the bijection * : Pr -* Pr'; let a* = $(a) for all a G B(Pr).

The functional view may be taken one step further. Given an instance * of P (and
hence of Pr), elements of A[X]B^Pr^ may be associated with functions AN —> Aj for
each j as follows. For 6(x) = X)ai(x)Pi(z) G A,[X]B(Pr>, and a = (a;) G AN, define
6*(x) = Yla*i(x)Pi(x) G Aj[X}B(Pr'), a carrier of A[X]B(Pr'). Define 5* : AN -» 4 ,
by setting £*(a) = £ a£(a)pi(a), which may be viewed as an element of Aj 2 , that is,
essentially an element of Aj and hence of A.

The reason for the name "potential piecewise polynomial" is now clearer: given an
instance * of P and a potential polynomial 6{x) G A[X]B^Pr^, the function S*(x) is
evaluated at each point by evaluating a multivariate polynomial. The term "potential"
signifies the fact that an instance of p must be chosen before S(x) becomes an abstract
piecewise polynomial.

Let / , = {r(x) G B(Pr) : r*(a) = 0 for all a G AN}. It is easily seen that
/* < B(Pr), that is, /* is a ring ideal of B(Pr).

PROPOSITION 3 . 1 . /» is closed under replacements.

PROOF: For any i G I , , i*(a) = 0 for all a G AN; hence if q G A[X]N then
i(q)*(a) = i*(q{a)) = 0 since q(a) G AN, whence i(q) G / . . •

We observe that I , = Ker($), so B(Pr') =* B(Pr)/I. . Let

7 : A[X}B(Pr>) -> AiXfW1'

be the induced canonical isomorphism, with inverse T .

More generally, let I be any ideal of B(Pr) which is closed under replacements.
Let R = B(Pr)/I. We note that A[X]R is a homomorphic image of A [ X ] B ( P r ) , via the
mapping taking EajOj G A[X]B^Pr^ to E(a,- + I)a{ G A[X] R ; this is a basic property
of Boolean powers. (See Pinus [2] for the single sorted case.)
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THEOREM 3 . 2 . Let q G A[X].

Define g* : R -* R by setting g*(r{x) + I) = r(q) + I for all r(x) G B(Pr). Then
gq is well defined and is an endomorphiszn.

Define h[ : A[X)R -> A[X)R by setting fc((E(r< + /)(*)«(*)) = E(r* + !)(«)«(«)
for aii 5Zr«(z)P«(a;) e -A[X]B(Pr). Tien hq is well defined and is an endomorphism.

PROOF: We begin by showing g*q is well defined. Let r(x) G B(Pr). Let ri(x) G
B(Pr) be an element of the coset r(x) + I with ri(x) ^r(x). We must show that ri(q)
is in the coset r(q) + I. Suppose ri(x) =T(X)+S(X), for some a(x) G / . Then ri(q) —
r(g)+s(g). But by assumption, s(q) G / and so ri(q) G r(q)+I. Thus </̂  is well defined.
Now <7s

J(Mz) + /) + (r2(*) + /)) - ^ ( M z ) + r2(x)) + J) = (nC^x)) + ra(9(*))) +
7 = (ri(g(sc)) + J) + (ra(9(a:)) + J) - g^{ri{x) + I) + g^{r2(x) +1), and similarly
^ ( M a O + -0(r2(s:) + -0) = gfr^x) + I)g*(r2(x) + I). Hence ^ is an endomor-
phism.

Next we show that the mapping h*q : A[X]R -» i4.[-X"]fi denned by
/i£(S(ri + J)(a;)pi(a;)) - S(ri + I){q)pi{q) is well defined. Let T,Si{x)pi{x) be an
element of the congruence class E(ri(s) + I)pi(x). As before, we must show that
%Si(q)pi(q) is in the congruence class £(fi + I)(q)pi(q). Suppose Esj(z)p,(x) =
H(n(x) + U{x))pi{x), for some i< € / . Then E«J(«)K(4) = V(ri{q) + U(q))Pi{q). But
by assumption, each U(q) G / and so ^Si(q)pi(q) G S(r,-(g) + /)pt(?)- Thus h* is well
defined.

Finally, we show that hz
q is an endomorphism. Let p : Aai x Aa2 x • • • x Aak —> 4̂CT0

be a fc-ary operation on 4̂ and let Ylrij{x)Pij(x) ^ •̂ •o-J-X'] f°r each i. Then

= ^ . . . . . ^ ( r j ^ C z ) + / ) - . . (rB l i n(z) + I)p(Pl<h{x),... ,pn,jn{x))

= SJI jn(r1>h (q) + / ) • • • (rn , j n ( g) + I)p{pi,h {q),... ,Pn,in(?)),

since substitution is an endomorphism of R as shown above. u

Let / = {0} in the above theorem; then we may refer to the substitution in any
f(x) G A[X]B(-Pr) of a tuple q of elements of A[X), and we denote such a substitution
by f(q).

COROLLARY 3 . 3 . For q e A[X}N, define Bq : A[X,P] -y A[X,P] by setting
0q{f(x)) = /(?)- Then 9q is an endomorphism.
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COROLLARY 3 . 4 . Let * be an instance of P. For f*(x) G A[X]8(Pr') and

q G A[X]N, sq : A[X]B(Pr') -+ A[X]B(Pr>) given by sq(f*(x)) = f*(q(x)) is an

endomorphism.

PROOF: Let f*(x) = Ylai(x)Pi(x)- Then, with 7 and T denned after the proof
>

of Proposition 3.1 and 6q as in Corollary 3.3, we have

so sg = T o 0q o 7, which is therefore an endomorphism of A [X] I r /. D

In particular, if a e AN and /(z) € Aai[X,P] then /*(a) G ^ , and the restric-
tion mapping sa : A[X] —* Aai is a homomorphism, the Evaluation Homomorphism
associated with a, a generalisation of the corresponding idea from the theory of poly-
nomials over a field.

4. COMPOSITION

Here we focus on the one variable, single sorted case because the formulation is
rather clearer. There is a fairly obvious extension of the ideas discussed here to many
variable many sorted situations, although the notion of composition of functions (which
we are modelling) is most natural in the single sorted case.

Suppose A is a single sorted (or universal) algebra. Let X — {x}. We adopt the

notation A[x] for A[JT]. Elements of A[x] \ r ) may be viewed as operators on A.

For f(x) = £ «*(*)**(*) a n d S(z) = Eft(*)*(«) in A{x]B(Pr\ define
i i

(9 o /)(«) -

We call (g o f)(x) the composition of f(x) and g(x), for the following reason:
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PROPOSITION 4 . 1 . Let * be an instance of P, with f(x),g(x) 6 A
Then (g o f)*(a) = g*(f*{a)) for all a £ A.

PROOF: Let f(x) = Y,ai(x)pi(x) and g(x) = £0i(x)qi(x). The a^x) are a
i i

partition of unity, so ai(x)aj(x) = 0 and Ylai{x) = 1 > so for a £ A, there is a
t

unique j such that OL*J{O) — 1, with a*k(a) — % for all k ^ i. Hence f*(a) = Pj(o),
so g*(f*(a)) = g*(pj(a)). Repeating the argument for f(x), there is a unique k such

tha t P*k{Pj{a)) = 1, with /3;(P j (a)) = 0 for all i ^ k. Hence g*{f*{a)) = qk{Pj{a)).

On the other hand, (g o f)(x) = Y,ai{x)l3i{Pi(x))9i{Pi{x)). So

(gof)*(a) =

= y£a*j(a)/3!(Pj(a))qi(pj(a))

D
The analogous formula for compositions of functions applies to elements of

A[x]B(Pr>).

COROLLARY 4 . 2 . Let f*{x),g*(x) G A[x]B(Pr'). Define g* o f* = ( so / )* .
Tien (g*of*)(a)=g*(f*(a)).

PROOF: We show that g* o f* = (g o /)* is well defined on A[x]B(Pr'). Let
/ i ,5 i G j4[a;]B(Pr) be such that ft = f* and g{ = g*. Then, for all a £ A,

(9 o ma) = 9*(f*(a)) = g^Kia)) = (9l o A)*(a)

by Proposition 4.1, so (g o / ) * = (gi o fi)* and so g* ° f* = (g ° / )* is well defined,
and

(«/*°r)(a) = (<7° /Ha) = </*(/»)

by Proposition 4.1. D

Much of the motivation for the work of this paper hes in the authors' desire to
extend the notion of polynomial so that it can better capture the kinds of functions
which are in practice computable. The next obvious extension of the polynomial idea
would permit the definition of recursively defined functions.
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