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Holomorphic Variations of Minimal Disks
with Boundary on a Lagrangian Surface

Jingyi Chen and Ailana Fraser

Abstract. Let L be an oriented Lagrangian submanifold in an n-dimensional Kähler manifold M. Let

u : D → M be a minimal immersion from a disk D with u(∂D) ⊂ L such that u(D) meets L orthog-

onally along u(∂D). Then the real dimension of the space of admissible holomorphic variations is at

least n + µ(E, F), where µ(E, F) is a boundary Maslov index; the minimal disk is holomorphic if there

exist n admissible holomorphic variations that are linearly independent over R at some point p ∈ ∂D;

if M = CPn and u intersects L positively, then u is holomorphic if it is stable, and its Morse index is at

least n + µ(E, F) if u is unstable.

1 Introduction

Let L be a submanifold in a Riemannian manifold M ⊂ R
K and let Σ be a compact

Riemann surface with nonempty boundary ∂Σ. Consider the space Ω of maps u from

Σ to M with u(∂Σ) in L that are continuous on Σ and in the Sobolev space H1(Σ).

The first variation of the Dirichlet energy at u for an admissible variation field V ,

V ∈ H1(Σ, u∗(TM)) with V tangent to L along ∂Σ, is

δE(u)(V ) = −

∫

Σ

〈∆u − Au(du, du),V 〉 da +

∫

∂Σ

〈ν,V 〉 ds,

where ν is the outward pointing unit normal of ∂Σ along u and A is the second fun-

damental form of M in R
K . A critical point of the energy on Ω is a harmonic map u

such that u(Σ) meets L orthogonally along u(∂Σ); that is, satisfying the boundary

condition ν(z) ⊥ Tu(z)L, z ∈ ∂Σ. The Morse index of E at a critical point u is the

maximal dimension of a subspace of admissible variations X on which the second

variation of E is negative, i.e., δ2E(u)(X, X) < 0. A critical point is stable if its index

is zero. In the case where Σ = D, the unit disk in R
2, a critical point from the disk

is a conformal branched minimal immersion, and it is well known that the Morse

index of the energy E at a critical point u is equal to the Morse index of the area of

the minimal disk u(D).

An important free boundary problem that arises in complex and symplectic ge-

ometry is the problem of constructing holomorphic disks with boundary on a closed

Lagrangian submanifold L of C
n, or in a Kähler manifold M. Because of the ge-

ometry, such a disk is necessarily a minimizer for the free boundary problem. It is

natural to try to construct such disks by first constructing an area minimizing disk
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for the free boundary problem, and then using the second variation to show that the

disk is holomorphic. There are a few cases where stable minimal surfaces have been

shown to be holomorphic. Siu–Yau [7] proved that any stable minimal two-sphere in

a Kähler manifold with positive holomorphic bisectional curvature is holomorphic.

Micallef [4] proved that any stable minimal immersion of C into R
4 is holomor-

phic with respect to an orthogonal complex structure on R
4. Arezzo [1] has found a

sufficient condition under which orientable complete stable minimal surfaces into a

hyper-Kähler 4-manifold M are holomorphic with respect to some orthogonal com-

plex structure on M. All of these involve a complex formula for the second variation

of energy or area. This complex second variation formula is also very important in

obtaining index estimates for minimal surfaces. When the ambient space M is of di-

mension four with positive isotropic curvature (see [5], [6] for a background on this

curvature condition), any nontrivial minimal two-sphere in M has index at least two

[5], and any minimal two-disk that is a solution to the free boundary problem inside

a domain in M with two-convex boundary has index at least one [2]. These index

estimates are useful in studying the relationship between the curvature and topology

of manifolds.

A key step in applying the complex second variation formula is to produce holo-

morphic variation fields. In the case of minimal two-spheres, one can appeal to the

classical Riemann–Roch formula for existence of holomorphic variations. In the case

of the free boundary problem, it is necessary to construct holomorphic variations

satisfying appropriate boundary conditions. A natural setting for finding these vari-

ations, when the constraint submanifold L is Lagrangian in a Kähler manifold M, is

to consider a pair of vector bundles (E, F) over the immersed surface (Σ, ∂Σ), where

E is the holomorphic tangent bundle of M restricted to Σ and F is the subbundle of

E along ∂Σ determined by the tangent spaces of L. By the Riemann–Roch theorem

in [3], the real dimension of the space of admissible holomorphic variations is at least

n + µ(E, F), where µ(E, F) is the boundary Maslov index.

In this paper we prove the following.

Theorem 1.1 Let L be an oriented Lagrangian submanifold in an n-dimensional

Kähler manifold M. Let u : D → M be a minimal immersion from a disk D with

u(∂D) ⊂ L, and such that u(D) meets L orthogonally along u(∂D). Then

(1) if there exist n admissible holomorphic variations that are linearly independent over

R at some point p ∈ ∂D, then u is holomorphic.

(2) if M = CPn and u intersects L positively, then

(a) if u is stable, then u is holomorphic

(b) if u is unstable, then u has index at least n + µ(E, F).

Stable minimal disks that solve the free boundary problem, in general, need not

be holomorphic. The example below illustrates the importance of understanding

how minimal disks intersect the constraint Lagrangian submanifold. We say that a

minimal immersion u : D → M intersects a Lagrangian submanifold L positively if

for all z ∈ ∂D and X ∈ Tu(z)L,

〈∇XX, ν + JT〉 ≤ 0,
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where ν is the outward pointing unit normal of u(D) along u(∂D) and T is the pos-

itively oriented unit tangent vector along u(∂D). The quantity 〈∇XX, ν + JT〉 is the

second fundamental form of L in the normal direction determined by the disk. The

condition on positive intersection holds when L is a closed convex hypersurface and

the disk stays inside L.

In view of the second variation formula, there are at least two reasons why a sta-

ble disk may not be holomorphic: whether the disk intersects the constraint La-

grangian submanifold positively and whether the ambient Kähler manifold is pos-

itively curved. For example, the Clifford torus T
2 in CP2, given by [1 :eix :ei y] for

x, y ∈ R, in the homogeneous coordinates of CP2, is Lagrangian and minimal. The

complex line [1 :z :z], z ∈ C, intersects T
2 along a circle which bounds a holomorphic

disk D meeting T
2 orthogonally. Because T

2 is Lagrangian and by Stokes’ Formula,

D is area minimizing among all disks with boundary homotopic to the circle in T
2.

One can also check that [1 :z : z̄] meets T
2 orthogonally along a circle and that the

disk D ′ it bounds is area minimizing among all disks whose boundary is homotopic

to the circle in T
2, by noticing that any homotopy of D ′ results in a homotopy of D

by taking the complex conjugate in the last coordinate component and that the area

of D is the same as that of D ′. The stable disk D ′ is not holomorphic, and it does

not intersect T
2 positively. On the other hand, if one considers the similar example

in R
4, instead of in CP2, the two corresponding minimizing disks meet the constraint

Lagrangian torus positively, and so the failure to be holomorphic for one disk is due

to the ambient curvature.

We break the proof down as follows. In Section 2, we observe that the space of ad-

missible holomorphic variations has real dimension at least nχ(Σ) + µ(E, F), for an

immersed Riemann surface Σ in a Kähler manifold with boundary ∂Σ in an oriented

Lagrangian submanifold L. This follows from a Riemann–Roch Theorem in [3]. In

Section 3 we prove (1), which gives a criterion for a surface, whose boundary lies

on a Lagrangian submanifold, to be holomorphic, in terms of linear relations of the

admissible holomorphic variations at a single boundary point. In Section 4, we de-

rive a real formulation of the complex second variation formula and prove (2). The

existence of admissible holomorphic variations in Section 2 and the characterization

of holomorphicity via admissible variations in Section 3 are needed.

We would like to thank the referee for pointing out a mistake in Section 2 of the

earlier version of this paper.

2 Construction of Admissible Holomorphic Variations

Let Σ be a compact oriented Riemann surface with disjoint smooth boundary curves

c1, . . . , cl. Let L be an oriented submanifold in an n-dimensional Kähler manifold M

which is Lagrangian with respect to the Kähler form ω. Consider a smooth map

u : Σ → M

such that u(Σ) and L intersect along the smooth curves u(c1), . . . , u(cl) where the

outward normal derivative satisfies

∂u

∂ν
(z) ⊥ Tu(z)L, z ∈ c j .
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The holomorphic tangent bundle T1,0M of M pulls back to a smooth complex

vector bundle E = u∗(T1,0M) over Σ. The complex linear extension of the Riemann-

ian metric of M to TM ⊗ C pulls back to a complex bilinear form 〈 · , · 〉 on E. The

complex linear extension of the Levi–Civita connection of M to TM ⊗ C preserves

vectors of type (1, 0) and hence pulls back to a connection ∇ on E.

Let A
p,q(E) denote the space of (p, q)-forms on Σ with values in E. The connec-

tion ∇divides into two components:

∇
′

: A
0,0(E) → A

1,0(E) ∇
′ ′

: A
0,0(E) → A

0,1(E)

and it is well known that there exists a unique holomorphic structure on E with

respect to which ∇
′ ′

= ∂̄, the ∂̄-operator on E. With respect to this holomorphic

structure, a section V of E is holomorphic

⇔ ∇
′ ′

V = 0 ⇔ ∇∂
∂z̄

V = 0

where z = x + i y are local complex coordinates on Σ.

Definition 2.1 We call a section s = X − i JX of E an admissible holomorphic varia-

tion if
{

∂̄s = 0 on Σ

X(z) ∈ Tu(z)L for z ∈ ∂Σ.

Let F ⊂ E|∂Σ be the totally real subbundle whose fiber at the point z ∈ ∂Σ is

Fz = {X − i JX | X ∈ Tu(z)L}

Then the Riemann–Roch Theorem of [3, Theorem C.1.10] implies the following:

Theorem 2.2 Let L be an oriented Lagrangian submanifold in an n-dimensional

Kähler manifold M. Let Σ be a Riemann surface with boundary ∂Σ and let u : Σ → M

be an immersion with u(∂Σ) ⊂ L. Then the real dimension of the space of admissible

holomorphic variations

H = {V ∈ Γ(E) : ∂̄V = 0 on Σ, Re V (z) ∈ Tu(z)L on ∂Σ}

is at least nχ(Σ) + µ(E, F), where χ(Σ) is the Euler characteristic of Σ, and µ(E, F) is

the boundary Maslov index (see [3, Section C.3]). In particular, the dimension is at least

n + µ(E, F) if Σ is of disk type.

3 A Criterion for Being Holomorphic

As we have observed in Theorem 2.2, there are at least n+µ(E, F) independent admis-

sible holomorphic variations for a disk type surface with boundary in a Lagrangian

submanifold. In this section, we will prove in Theorem 3.2, without using the second

variation formula, that a disk type solution to the free boundary problem must be

holomorphic if there exist n admissible holomorphic variations V1, . . . ,Vn that are

linearly independent at some point on the boundary of the disk. Theorem 3.2 will be

used in the next section when we apply the second variation formula.
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Lemma 3.1 Let L be an oriented Lagrangian submanifold in an n-dimensional Kähler

manifold M. Let Σ be a Riemann surface with boundary ∂Σ and let u : Σ → M be an

immersion with u(∂Σ) ⊂ L. Assume that there exist admissible holomorphic varia-

tions V1, . . . ,Vn that are linearly independent over R at a point p ∈ ∂Σ. If W is an

admissible anti-holomorphic variation with a zero, then W (p) = 0.

Proof For j = 1, . . . , n the functions

F j = 〈V j ,W 〉

are holomorphic on Σ. In fact,

∂F j

∂z̄
= 〈∇∂

∂z̄
V j ,W 〉 + 〈V j ,∇∂

∂z
W 〉 = 0.

Since V j and W are admissible and L is Lagrangian, F j is real on ∂Σ. In fact, setting

V j = X j − i JX j and W = Y − i JY , then along ∂Σ

F j =
〈

X j − i JX j ,Y + i JY
〉

= 2
〈

X j ,Y
〉

.

Therefore F j , j = 1, . . . , n, are constant functions on Σ.

Since W has a zero by assumption, the functions F j are identically zero. But the

complex dimension of T
1,0
u(z)M is n and the n vectors V1(z), . . . ,Vn(z) are each orthog-

onal to W (z), therefore they must be linearly dependent over C whenever W (z) 6= 0.

Since V1, . . . ,Vn are linearly independent over R at a point p ∈ ∂Σ, it follows in par-

ticular that V1, . . . ,Vn are nonzero at p. Suppose W (p) 6= 0. Then V1(p), . . . ,Vn(p)

are linearly dependent over C,

n
∑

j=1

c jV j(p) = 0

for some c j = a j + ib j ∈ C, not all zero. Equivalently,

n
∑

j=1

(

a jX j(p) + b j JX j(p)
)

= 0.

Since V1, . . . ,Vn are admissible and L is Lagrangian, this implies that

n
∑

j=1

a jX j(p) = 0 and

n
∑

j=1

b j JX j(p) = 0.

But some a j or b j is nonzero, and this contradicts the fact that V1, . . . ,Vn are linearly

independent over R at p. Therefore we must have W (p) = 0.
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We now introduce some notation that will be used in the rest of the paper. Let x, y

be local isothermal coordinates on Σ. Define

∂̄ Ju =
1

2

( ∂u

∂x
+ J

∂u

∂y

)

and ∂ Ju =
1

2

( ∂u

∂x
− J

∂u

∂y

)

and define

∇J =
1

2
(∇∂

∂x
+ J∇ ∂

∂y
) and ∇J =

1

2
(∇∂

∂x
− J∇ ∂

∂y
).

Observe that V = X − i JX ∈ Γ(E) is holomorphic, i.e., ∇∂
∂z̄

V = 0, if and only if

∇JX = 0. Similarly, W = Y − i JY ∈ Γ(E) is anti-holomorphic, i.e., ∇∂
∂z

W = 0, if

and only if ∇JY = 0. Also, ∂̄ Ju = 0 is equivalent to u is holomorphic, i.e., satisfying

the Cauchy–Riemann equations.

Theorem 3.2 Let L be an oriented Lagrangian submanifold in an n-dimensional

Kähler manifold M. Let u : D → M be a minimal immersion from a disk D with

u(∂D) ⊂ L, and such that u(D) meets L orthogonally along u(∂D). If there exist admis-

sible holomorphic variations V1, . . . ,Vn that are linearly independent over R at some

point p ∈ ∂D, then u is holomorphic.

Proof We may assume that D is the unit disk in C. For z = x + i y ∈ D, let

X(z) = J(x − Jy)∂̄ Ju(z).

Then since u is harmonic,

∇∂
∂x

∂u

∂x
+ ∇ ∂

∂y

∂u

∂y
= 0,

and it is straightforward to check that ∇JX = 0. Also, observe that

2X = J
(

x
∂u

∂x
+ y

∂u

∂y

)

+ y
∂u

∂x
− x

∂u

∂y
= Jr

∂u

∂r
−

∂u

∂θ

where (r, θ) are the polar coordinates. Since u(D) meets L orthogonally along ∂D,

J ∂u
∂r

and ∂u
∂θ

are tangent to L along ∂D. Therefore,

W = X − i JX

is an admissible anti-holomorphic variation on D which has a zero at z = 0. Since

V1, . . . ,Vn are linearly independent over R at p ∈ ∂D, there is an arc C ⊂ ∂D

containing p such that V1, . . . ,Vn are linearly independent over R at each point in C .

Therefore, by Lemma 3.1, W = 0 on C . Next, we take a local anti-holomorphic frame

{σ1, . . . , σn} of u∗(T1,0M) on a neighborhood U in D containing a portion of C .

Then W = f 1σ1 + · · · + f nσn for some anti-holomorphic functions f 1, . . . , f n. But

f 1, . . . , f n must be zero, since they vanish along C . It follows that W = 0 on U hence

on D as W is anti-holomorphic. Therefore ∂̄ Ju = 0 on D and u is holomorphic.
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4 Second Variation Formula

The following second variation formula is a real formulation, considered by Y. G. Oh,

of the complex second variation formulas in [7] and [5].

Lemma 4.1 Let u : Σ → M with u(∂Σ) ⊂ L be a harmonic map, meeting L orthog-

onally along ∂Σ, i.e.,
∂u

∂ν
(z) ⊥ Tu(z)L

for all z ∈ ∂Σ. Then, the second variation of energy for any admissible real variation

X ∈ Γ
(

u∗(TM)
)

is given by

δ2E(X, X) = 2

∫

Σ

[

2|∇JX|
2 +

〈

R(X, ∂ Ju)X, ∂̄ Ju
〉

−
〈

R(X, J∂ Ju)X, J∂̄ Ju
〉

−
〈

R(∂̄ Ju, J∂̄ Ju) JX, X
〉]

dx dy

+

∫

∂Σ

〈∇XX, ν + JT〉 ds,

where ν is the outward pointing unit normal of ∂Σ along u, and T is the positively

oriented unit tangent vector along ∂Σ.

Proof Recall the standard formula for the second variation of energy of u for an

admissible real variation X, i.e., X ∈ Γ
(

u∗(TM)
)

, with X(z) ∈ Tu(z)L for all z ∈ ∂Σ:

δ2E(X, X) =

∫

Σ

[

|∇ ∂
∂x

X|2 + |∇ ∂
∂y

X|2 −
〈

R
(

X,
∂u

∂x

) ∂u

∂x
, X

〉

−
〈

R
(

X,
∂u

∂y

) ∂u

∂y
, X

〉]

dx dy +

∫

∂Σ

〈∇XX, ν〉 ds.

Now,

4|∇JX|
2
= |∇∂

∂x
X|2 + |∇ ∂

∂y
X|2 + 2

〈

∇∂
∂x

X, J∇ ∂
∂y

X
〉

and

2
〈

∇∂
∂x

X, J∇ ∂
∂y

X
〉

=
∂

∂x

〈

X, J∇ ∂
∂y

X
〉

−
〈

X, J∇∂
∂x
∇ ∂

∂y
X

〉

−
∂

∂y

〈

X, J∇∂
∂x

X
〉

+
〈

X, J∇ ∂
∂y
∇∂

∂x
X

〉

= −

〈

JR
( ∂u

∂x
,
∂u

∂y

)

X, X

〉

+
∂

∂x

〈

X, J∇ ∂
∂y

X
〉

−
∂

∂y

〈

X, J∇∂
∂x

X
〉

.

Therefore, we may rewrite the second variation formula as

δ2E(X, X) =

∫

Σ

[

4|∇JX|
2 −

〈

R
(

X,
∂u

∂x

) ∂u

∂x
, X

〉

−
〈

R
(

X,
∂u

∂y

) ∂u

∂y
, X

〉

+
〈

JR
( ∂u

∂x
,
∂u

∂y

)

X, X
〉]

dx dy

+

∫

∂Σ

[〈∇XX, ν〉 + 〈∇TX, JX〉] ds
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where T is the positively oriented unit tangent vector around ∂Σ. Since L is La-

grangian and X is an admissible variation, we have

〈∇TX, JX〉 = 〈∇XT, JX〉 = −〈T,∇X JX〉 = 〈 JT,∇XX〉 .

Also, substituting

∂u

∂x
= ∂ Ju + ∂̄ Ju,

∂u

∂y
= − J(∂̄ Ju − ∂ Ju)

and simplifying, the curvature terms can be rewritten as

〈

R
(

X,
∂u

∂x

) ∂u

∂x
, X

〉

−

〈

R
(

X,
∂u

∂y

) ∂u

∂y
, X

〉

+

〈

JR
( ∂u

∂x
,
∂u

∂y

)

X, X

〉

= 〈R(X, ∂ Ju)∂ Ju, X〉 +
〈

R(X, ∂̄ Ju)∂̄ Ju, X
〉

+ 2
〈

R(X, ∂ Ju)∂̄ J, X
〉

+
〈

R(X, J∂̄ Ju) J∂̄ Ju, X
〉

+ 〈R(X, J∂ Ju) J∂ Ju, X〉 − 2
〈

R(X, J∂̄ Ju) J∂ Ju, X
〉

+
〈

JR(∂̄ Ju, J∂̄ Ju)X, X
〉

− 〈 JR(∂ Ju, J∂ Ju)X, X〉

= 2
[

〈

R(X, ∂ Ju)∂̄ J, X
〉

−
〈

R(X, J∂̄ Ju) J∂ Ju, X
〉

+
〈

JR(∂̄ Ju, J∂̄ Ju)X, X
〉

]

where we have used

R( JV, JW ) = R(V,W ) for all V,W ∈ Γ
(

u∗(TM)
)

,

and in the last equality we have used the identity

〈R(V,W )W,V 〉 + 〈R(V, JW ) JW,V 〉 = 〈R(W, JW ) JV,V 〉

which follows from the symmetries of the curvature tensor. Therefore,

δ2E(X, X) = 2

∫

Σ

[

2|∇JX|
2 +

〈

R(X, ∂ Ju)X, ∂̄ Ju
〉

−
〈

R(X, J∂ Ju)X, J∂̄ Ju
〉

−
〈

R(∂̄ Ju, J∂̄ Ju) JX, X
〉]

dx dy

+

∫

∂Σ

〈∇XX, ν + JT〉 ds.

This completes the proof.

Theorem 4.2 Let L be an oriented Lagrangian submanifold in CPn with the Fubini–

Study metric. Let u : D → M be a harmonic map from a disk D with u(∂D) ⊂ L and

meeting L orthogonally along ∂D. If u intersects L positively, then

(1) if u stable, then u is holomorphic;

(2) if u is unstable, then u has index at least n + µ(E, F).
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Proof We prove (1) first. Let X = J(x + Jy)∂ Ju. Then, since u is harmonic and by

similar arguments to those in the proof of Theorem 3.2, ∇JX = 0 and X is an ad-

missible real variation, and so V = X − i JX is an admissible holomorphic variation.

Note that

2X = J
(

x
∂u

∂x
+ y

∂u

∂y

)

− y
∂u

∂x
+ x

∂u

∂y

= Jr
∂u

∂r
+

∂u

∂θ
,

and in particular, on ∂D,

2X = J
∂u

∂r
+

∂u

∂θ
.

Since u is stable, by the second variation formula in Lemma 4.1 we have

0 ≤ δ2E(X, X)

=

∫

D

[

4|∇JX|
2 +

〈

R(X, ∂ Ju)X, ∂̄ Ju
〉

−
〈

R(X, J∂ Ju)X, J∂̄ Ju
〉

−
〈

R(∂̄ Ju, J∂̄ Ju) JX, X
〉]

dx dy +

∫

∂D

〈

∇XX,
∂u

∂r
+ J

∂u

∂θ

〉

dθ

≤

∫

D

[〈

R(X, ∂ Ju)X, ∂̄ Ju
〉

−
〈

R(X, J∂ Ju)X, J∂̄ Ju
〉

−
〈

R(∂̄ Ju, J∂̄ Ju) JX, X
〉]

dx dy,

where the last inequality follows since ∇JX = 0 and u intersects L positively.

Using the curvature formula for the Fubini–Study metric on CPn,

R(X,W )Z = 〈W, Z〉X − 〈X, Z〉W + 〈 JW, Z〉 JX − 〈 JX, Z〉 JW + 2 〈X, JW 〉 JZ

we have

〈

R(X, ∂ Ju)X, ∂̄ Ju
〉

−
〈

R(X, J∂ Ju)X, J∂̄ Ju
〉

= 4
[

〈∂ Ju, X〉
〈

∂̄ Ju, X
〉

+ 〈 J∂ Ju, X〉
〈

∂̄ Ju, JX
〉

]

.

This expression is equal to zero, as observed by Y. G. Oh. In order to prove this, we

will show that
〈

∂̄ Ju, X
〉

= 0 and
〈

∂̄ Ju, JX
〉

= 0.

Define the function

F(z) =
〈

z J(∂̄ Ju + i J∂̄ Ju),V
〉

= 2
〈

z J(∂̄ Ju + i J∂̄ Ju), X
〉

.

By a straightforward calculation, we have

4∇∂
∂z̄

z J(∂̄ Ju + i J∂̄ Ju) =

(

∇∂
∂x

∂u

∂x
+ ∇ ∂

∂y

∂u

∂y

)

+ i J
(

∇∂
∂x

∂u

∂x
+ ∇ ∂

∂y

∂u

∂y

)

= 0,
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since u is harmonic. Since V is also holomorphic, F is a holomorphic function on

the disk. By expanding, we have

z J(∂̄ Ju + i J∂̄ Ju) = Y + i JY

where

2Y = J
(

x
∂u

∂x
+ y

∂u

∂y

)

+ y
∂u

∂x
− x

∂u

∂y

= Jr
∂u

∂r
−

∂u

∂θ
.

From this it follows that

Im F|∂D = Im 〈Y + i JY, X − i JX〉

= 2 〈 JY, X〉

= −

〈

∂u

∂r
+ J

∂u

∂θ
, X

〉

= 0,

since ∂u
∂r

and J ∂u
∂θ

are orthogonal to L, and X is tangent to L. Therefore, F is a holo-

morphic function on D that is real on the boundary, and so F must be a constant

on D. Hence F is identically 0 because F(0) = 0. Therefore the sum of the first two

terms in the integral is zero. The third term is the holomorphic bisectional curvature

of the planes ∂ Ju ∧ J∂ Ju and X ∧ JX, and so

〈

R(∂̄ Ju, J∂̄ Ju) JX, X
〉

≥ 0

and equality holds at a point z ∈ D if and only if V (z) = 0 or ∂̄ Ju(z) = 0. Since V is

holomorphic and not identically zero, V can only vanish at a discrete set K of points

on D. Then,

0 ≤ δ2E(X, X) =

∫

D\K

−
〈

R(∂̄ Ju, J∂̄ Ju) JX, X
〉

dx dy ≤ 0,

and it follows that ∂̄ Ju = 0 on D \ K, thus ∂̄ Ju = 0 everywhere on D since u is

smooth.

Now we prove (2). If u is not stable, then ∂̄ Ju is not identically 0. In fact, if u is

holomorphic and ut is a continuous family of maps from D to M with ut (∂D) ⊂ L

and u0 = u, then by the well-known formula (cf. [7])

E(ut ) =
1

2

∫

D

|∇ut |
2
= 2

∫

D

|∂̄ Jut |
2 +

∫

D

u∗
t ω
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and by Stokes’s theorem and the fact that L is Lagrangian

0 =

∫

S

0≤s≤t us(D)

dω

=

∫

D

u∗
t ω −

∫

D

u∗
0 ω +

∫

S

0≤s≤t us(∂D)

ω

=

∫

D

u∗
t ω −

∫

D

u∗
0 ω.

Hence,

E(ut ) = E(u0) + 2

∫

D

|∂̄ Jut |
2.

We see that u minimizes the energy among ut , therefore u must be minimizing.

Let m = n + µ(E, F). Theorem 2.2 asserts the existence of an m-dimensional

space H of admissible holomorphic variations. Let V = Y − i JY ∈ H. Away from

the zeros of Y , which is a discrete set of points in D, we have

〈

R(∂̄ Ju, J∂̄ Ju) JY,Y
〉

> 0.

Then by arguments as above, we have

δ2E(Y,Y ) <

∫

∂D

〈

∇Y Y,
∂u

∂r
+ J

∂u

∂θ

〉

dθ ≤ 0,

since u intersects L positively. Clearly, the space of all the real parts Y of all V =

Y − i JY ∈ H is a real m-dimensional space of real admissible variations. Thus the

Morse index of u is at least m = n + µ(E, F).

In the two-dimensional case, using Theorem 3.2, we obtain an index estimate

under a weaker intersection assumption.

Theorem 4.3 Let L be an oriented Lagrangian surface in CP2 with the Fubini–Study

metric. Let u : D → M be a harmonic map from a disk D with u(∂D) ⊂ L and meeting

L orthogonally along ∂D. Assume

〈∇ Jν+T( Jν + T), ν + JT〉 ≤ 0

along ∂D, and µ(E, F) ≥ 0. If u is unstable, then u has index at least 2 + µ(E, F).

Proof Let m = 2 + µ(E, F). By Theorem 2.2 there exists an m-dimensional space

H of admissible holomorphic variations. As above, the real parts form a real m-

dimensional space of real admissible variations on which we will show the index form

is negative definite. Let V = Y − i JY ∈ H. Since u is not stable, then as in the

previous proof, away from a discrete set of points on D, we have

〈

R(∂̄ Ju, J∂̄ Ju) JY,Y
〉

> 0,
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and hence

δ2E(Y,Y ) <

∫

∂D

〈

∇Y Y,
∂u

∂r
+ J

∂u

∂θ

〉

dθ.

Now consider the admissible holomorphic variation X − i JX with

X = J(x + Jy)∂ Ju,

used in the proof of Theorem 4.2 (1). Recall 2X = J ∂u
∂r

+ ∂u
∂θ

on ∂D. By Theorem 3.2,

if there exist two admissible holomorphic variations that are linearly independent

over R at some point p ∈ ∂D, then u is holomorphic. Since u is not holomorphic, V

and X − i JX must pointwise linearly dependent over R along ∂D. Therefore,

Y = f
(

J
∂u

∂r
+

∂u

∂θ

)

for some smooth real valued function f along ∂D, and

δ2E(Y,Y ) <

∫

∂D

f 2

〈

∇ J ∂u
∂r

+ ∂u
∂θ

J
∂u

∂r
+

∂u

∂θ
,
∂u

∂r
+ J

∂u

∂θ

〉

dθ ≤ 0,

by the assumption along ∂D. Thus the Morse index of u is at least 2 + µ(E, F).
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