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Abstract

The main aim of the paper is to give a simple and conceptual account for the correspondence

(originally described by Bodini, Gardy, and Jacquot) between α-equivalence classes of closed

linear lambda terms and isomorphism classes of rooted trivalent maps on compact-oriented

surfaces without boundary, as an instance of a more general correspondence between linear

lambda terms with a context of free variables and rooted trivalent maps with a boundary of

free edges. We begin by recalling a familiar diagrammatic representation for linear lambda

terms, while at the same time explaining how such diagrams may be read formally as a notation

for endomorphisms of a reflexive object in a symmetric monoidal closed (bi)category. From

there, the “easy” direction of the correspondence is a simple forgetful operation which erases

annotations on the diagram of a linear lambda term to produce a rooted trivalent map. The

other direction views linear lambda terms as complete invariants of their underlying rooted

trivalent maps, reconstructing the missing information through a Tutte-style topological

recurrence on maps with free edges. As an application in combinatorics, we use this analysis

to enumerate bridgeless rooted trivalent maps as linear lambda terms containing no closed

proper subterms, and conclude by giving a natural reformulation of the Four Color Theorem

as a statement about typing in lambda calculus.

1 Introduction

This paper follows recent work on the combinatorics of linear lambda terms, which

has uncovered various connections to the theory of graphs on surfaces (or “maps”).

It is currently known that there exist size-preserving correspondences between all of

the following pairs of families of objects, some with explicit bijections but all at least

at the level of generating functions (Bodini et al., 2013; Zeilberger and Giorgetti,

2015; Zeilberger, 2015b):

Family of rooted maps Family of lambda terms OEIS entry

rooted trivalent maps linear lambda terms A062980

rooted planar maps normal planar lambda terms A000168

rooted maps normal linear lambda terms / ∼ A000698

(Here “OEIS” is short for The On-Line Encyclopedia of Integer Sequences (OEIS,

2016).) Although the existence of such connections is intriguing, it is not yet obvious
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2 N. Zeilberger

to what extent they have a deeper “meaning”. My aim in this paper, therefore, is

to revisit the basic situation of rooted trivalent maps and propose a slightly more

general and conceptual account of the bijection originally given by Bodini, Gardy,

and Jacquot – an account which hopefully suggests some clear directions for further

exploration. The main insights I hope to convey are as follows:

1. Bodini et al.’s bijection between closed linear lambda terms and rooted trivalent

maps on compact-oriented surfaces without boundary is really an instance of a

more general bijection that relates linear lambda terms with free variables to

rooted trivalent maps with a marked boundary of free edges.

2. If we represent linear lambda terms using a natural diagrammatic syntax, then

the corresponding rooted trivalent maps are obtained simply by erasing some

information stored locally at the nodes of the diagram. Moreover, through a

little bit of category theory, this way of representing linear lambda terms (which

is folklore) can be understood within the wider context of string diagrams, as

a notation for endomorphisms of a reflexive object in a symmetric monoidal

closed (smc) (bi)category.

3. Conversely, by considering connectivity properties of the underlying graph,

it is possible to invert this forgetful transformation through a recursive

decomposition of rooted trivalent maps with free edges (similar in spirit to

Tutte’s seminal analysis of rooted planar maps (Tutte, 1968)). In effect, a linear

lambda term can be seen as a topological invariant of a rooted trivalent map

(analogous to, say, the chromatic polynomial of a graph), which is moreover a

complete invariant in the sense that it characterizes the rooted trivalent map

up to isomorphism.

One immediate application of this analysis will be a simple characterization of

rooted trivalent maps without bridges, as linear lambda terms with no closed

proper subterms. I will then show how to combine this characterization with a link

between typing and graph-coloring, to yield a surprising yet natural lambda calculus

reformulation of the Four Color Theorem (in its equivalent form as the statement

that every bridgeless trivalent planar map is edge 3-colorable).

The rest of the paper is structured as follows. Sections 2 and 3 provide some

elementary background on maps and lambda calculus, while Section 4 explains how

to represent linear lambda terms graphically and how to interpret these diagrams

categorically. The bijection between linear lambda terms with free variables and

rooted trivalent maps with free edges (which extends the bijection of Bodini et al.

(2013) on closed terms) is presented in Sections 5 and 6. Finally, Section 7 discusses

the characterization of bridgeless rooted trivalent maps, and the reformulation of

the Four Color Theorem.

2 Classical definitions for rooted trivalent maps

This section recalls some standard definitions from the theory of maps (for further

background on the subject, see Lando and Zvonkin (2004)). In topological terms, a

map can be defined as a 2-cell embedding i : G ↪→ X of an undirected graph G (loops
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Fig. 1. A planar map represented by permutations.

and multiple edges allowed) into a surface X: that is, a representation of the vertices

v ∈ G by points i(v) ∈ X and the edges v1
e↔ v2 ∈ G by arcs i(v1)

i(e)
� i(v2) ∈ X, such

that no two arcs cross, and such that the complement of the graph inside the surface

X \ i(G) is a disjoint union of simply connected regions (called faces; note that this

last condition implies that if the underlying surface X is connected, then G must

be a connected graph). Two maps G
i
↪→ X and G′

i′

↪→ X ′ are said to be isomorphic

if there is a homeomorphism between the underlying surfaces h : X → X ′ whose

restriction h|i(G) witnesses an isomorphism of graphs G→ G′.

One of the beautiful aspects of the theory is that in many situations, maps also

admit a purely algebraic description as a collection of permutations satisfying a few

properties. For example, a 2-cell embedding of a graph into any compact-oriented

surface without boundary (Jones and Singerman, 1978) may be represented as a pair

of permutations v and e on a set M such that

1. e is a fixed point-free involution, and

2. the group 〈v, e〉 generated by the permutations acts transitively on M (i.e.,

for any pair of elements x, y ∈ M, it is possible to go from x to y by some

sequence of applications of v and e).

This kind of representation is sometimes called a combinatorial map. The idea is that

the elements of the set M stand for “darts” or “half-edges”, so that the involution

e describes the gluing of pairs of darts to form an edge, while the permutation

v encodes the cyclic (say, counterclockwise) ordering of darts around each vertex.

Figure 1 gives an example of a planar map (i.e., an embedding of a graph into

the sphere X = S2) represented by such permutations. In addition to the vertex

permutation v and the edge permutation e, to any combinatorial map, one may

associate a face permutation f by the equation f = (ev)−1 = v−1e, representing the

cyclic ordering of darts around each face of the corresponding embedded graph.

Two combinatorial maps (M, v, e) and (M ′, v′, e′) are considered as isomorphic if

there is a bijection between the underlying sets h : M → M ′ which is compatible

with the action of the permutations, hv = v′h, he = e′h. The following definition

rephrases all of this a bit more efficiently:

Definition 2.1

Let C be the group C def
=

〈
v, e | e2 = 1

〉
. A (combinatorial) map (on a compact-

oriented surface without boundary) is a transitive C-set on which the generator e

acts without fixed points.

One nice feature of combinatorial maps is that it is easy to compute their genus.
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Definition 2.2

Let M be a combinatorial map. The genus g of M is defined by the Euler–Poincaré

formula c(v) − c(e) + c(f) = 2 − 2g, where v, e, and f are respectively the vertex,

edge, and face permutations associated to M, and c(π) counts the number of cycles

in the cycle decomposition of π. (For example, for the genus g = 0 map of Figure 1,

we have c(v)− c(e) + c(f) = 6− 9 + 5 = 2.)

In the rest of the paper, we will be focused on trivalent maps (also called cubic

maps), which can be defined by the algebraic condition that the vertex permutation

is fixed point-free and of order three.

Definition 2.3

Let T be the group T def
=

〈
v, e | v3 = e2 = 1

〉
. A trivalent map is a transitive T-set

on which the generators v and e act without fixed points.

Moreover, we will always be speaking about so-called “rooted” maps.

Definition 2.4

A rooted (trivalent) map is a (trivalent) map M with a distinguished element

r ∈ M called the root. An isomorphism of rooted maps f : (M, r) → (M ′, r′) is an

isomorphism of maps f : M →M ′ which preserves the root f(r) = r′.

Topologically, a rooting of a map can be described as the choice of an edge, vertex,

and face all mutually incident, or equivalently as the choice of an edge together

with an orientation of that edge. The original motivation for the study of rooted

maps in combinatorics was that they are rigid objects (meaning that they have no

automorphisms other than the identity) and hence are easier to count than unrooted

maps,1 but it is also worth remarking that there is a general correspondence

pointed transitive G-sets ↔ subgroups of G

which sends any transitive G-set M equipped with a distinguished point r ∈ M to

the stabilizer subgroup Gr = { g ∈ G | g ∗ r = r }, and any subgroup H ⊆ G to the

action of G on cosets G/H together with the distinguished coset H . In particular,

every rooted trivalent map uniquely determines a subgroup of the modular group

T ∼= PSL(2,�), while an unrooted map only determines one up to conjugacy (Jones

and Singerman, 1994; Vidal, 2010).

Finally, it is fairly common (cf. Jones and Singerman, 1994; Vidal, 2010) to relax

the conditions of fixed point-freeness in the definition of a general map and/or of

a trivalent map. Intuitively, fixed points of e represent “dangling” edges, while fixed

points of v represent univalent vertices. Precise formulations differ, however, and

in Section 5, we will introduce a generalization of the classical definition of rooted

trivalent maps which is motivated by the correspondence with linear lambda terms.

1 For a historical account, see Ch. 10 of Tutte’s Graph Theory as I Have Known it (1998, Oxford).

https://doi.org/10.1017/S095679681600023X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681600023X


Theoretical pearls 5

3 Basic definitions for linear lambda terms

Here, we cover the small amount of background on lambda calculus that we will

need in order to talk about linear lambda terms (for a more general introduction,

see Barendregt (1984)). The terms of pure lambda calculus are constructed from

variables (x, y, . . . ) using only the two basic operations of application t(u) and

abstraction λx[t]. Within a given term, one distinguishes free variables from bound

variables. An abstraction λx[t] is said to bind the occurrences of x within the

subterm t, and any variable which is not bound by an abstraction is said to be free.

Two lambda terms are considered equivalent (α-equivalent) if, roughly speaking,

they differ only by renaming of bound variables.

A term is said to be linear if every variable (free or bound) has exactly one

occurrence: For example, the terms λx[x(λy[y])], λx[λy[x(y)]], and λx[λy[y(x)]] are

linear, but the terms λx[x(x)], λx[λy[x]], and λx[λy[y]] are non-linear. To make this

definition more precise, it is natural to consider linear lambda terms as indexed

explicitly by lists of free variables, called contexts, which also affects the definition

of α-equivalence.

Definition 3.1

A context is an ordered list of distinct variables Γ = (x1, . . . , xk). We write (Γ,Δ) for

the concatenation of two contexts Γ and Δ, with the implicit condition that they

contain disjoint sets of variables. Let Γ � t be the relation between contexts and

lambda terms defined inductively by the following rules:

x � x
Γ � t Δ � u
Γ,Δ � t(u)

Γ, x � t

Γ � λx[t]

Γ, y, x,Δ � t

Γ, x, y,Δ � t (1)

Then, a linear lambda term is a pair (Γ, t) of a context and a term such that

Γ � t. Two linear lambda terms (Γ, t) and (Γ′, t′) are said to be α-equivalent if they

only differ by a series of changes of free or bound variables, defined as follows.

Supposing that Γ = (Γ1, x,Γ2) and Γ′ = (Γ1, y,Γ2), then (Γ, t) and (Γ′, t′) differ by a

single change of free variable if t′ = t{y/x}, where t{y/x} denotes the substitution

of y for x in t. Similarly, (Γ, t) and (Γ′, t′) differ by a single change of bound variable

if t′ arises from t by replacing some subterm λx[u] by λy[u{y/x}].

For combinatorists, it might be helpful to see the two-variable generating function

counting α-equivalence classes of linear lambda terms of a given size in a given

context. Let tn,k stand for the number of α-equivalence classes of linear lambda

terms with n total applications and abstractions and with k free variables. Then,

the generating function L(z, x) =
∑

n,k tn,k
xkzn

k!
satisfies the following functional-

differential equation:

L(z, x) = x + zL(z, x)2 + z
∂

∂x
L(z, x) (2)

The three summands in Equation (2) correspond to the three rules on the left side

of Equation (1),

x � x
Γ � t Δ � u
Γ,Δ � t(u)

Γ, x � t

Γ � λx[t]
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while the rule on the right side of Equation (1)

Γ, y, x,Δ � t

Γ, x, y,Δ � t

explains why the generating function L(z, x) is of exponential type in the parameter x:

If (Γ, t) is a linear lambda term, then so is (Γ′, t) for any permutation Γ′ of Γ. Finally,

note that instantiating L(z, 0) gives the ordinary generating function counting closed

linear lambda terms by total number of applications and abstractions,

L(z, 0) = z + 5z3 + 60z5 + 1105z7 + 27120z9 + · · ·

and which also counts rooted trivalent maps (OEIS A062980; cf. vidal, 2010; Bodini

et al., 2013). Besides the notion of α-equivalence itself, the real interest of lambda

calculus is that one can calculate with it using the rules of β-reduction and/or

η-expansion:

(λx[t])(u)
β
→ t{u/x} t

η
→ λx[t(x)]

Since β-reduction and η-expansion preserve linearity, the fragment of lambda

calculus consisting of the linear lambda terms can be seen as a proper subsystem

with various special properties (for example, computing the β-normal form of a

linear lambda term is PTIME-complete (Mairson, 2004), whereas for non-linear

terms, it is undecidable whether a normal form even exists). Although it is sufficient

to consider α-equivalence for the purpose of presenting the bijection between linear

lambda terms and rooted trivalent maps (which we will describe in Sections 5 and 6),

we should nonetheless be aware that β-reduction and η-expansion are lurking in

the background (and as mentioned in the introduction, there are some known

connections between enumeration of β-normal terms and enumeration of rooted

maps (Zeilberger and Giorgetti, 2015; Zeilberger, 2015b)).

4 String diagrams for reflexive objects

A natural way of visualizing a lambda term is to begin by drawing a tree representing

the underlying structure of applications and abstractions, and then add extra edges

connecting each bound variable occurrence to its corresponding abstraction. For

example, for the term λx[λy[x(λz[y(z)])]] we begin with the tree on the left, adding

links to obtain the diagram on the right:

λ

λ

@

λ

@

�

λ

λ

@

λ

@

(3)
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This approach is especially natural for linear lambda terms, since each λ-abstraction

binds exactly one variable occurrence. Mairson (2002) refers to these kinds of

diagrams as proof-nets (probably because they are essentially equivalent to Girard’s

proof-nets for the implicative fragment of linear logic), while Bodini et al. (2013)

speak of them as “syntactic trees”. I do not know just how far back the idea goes,

but I’ve even seen such a diagram used to display a (linear) lambda term in an old

essay by Knuth (1970), who called it a particular kind of information structure.

In Sections 5 and 6, we will use these types of diagrams to help explain the bijection

between linear lambda terms and rooted trivalent maps. The aim of this section is

to briefly present a rational reconstruction of the diagrams for the interested reader,

using the framework of Joyal and Street (1991) to read these “string diagrams” as

a notation for endomorphisms of a reflexive object. I will assume that the reader

already has some background in category theory – for others, this section can

be safely skipped, since the rest of the paper will only make use of the informal

description of the diagrams, and not their categorical characterization.2

An important insight of Dana Scott was that the equational theory of pure

lambda calculus can be modeled using a reflexive object in a cartesian closed

category, in the sense of an object U equipped with a retraction to its space of

internal endomorphisms UU (Scott, 1980; Hyland, 2013). To capture linear lambda

calculus rather than classical lambda calculus, it suffices to rephrase Scott’s original

definition in the setting of smc categories, replacing the exponential object UU by

the internal hom object U �U (Jacobs, 1993). Moreover, one can model the theory

of (βη-) rewriting rather than the theory of equality by working with bicategories

rather than categories (Seely, 1987). Consider then the following definition:

Definition 4.1

A reflexive object in an smc bicategoryK is an object U equipped with an adjunction

to its space of internal endomorphisms U �U.3

A reflexive object in this sense consists of a pair of 1-cells

U

@
��

λ

�� V

where the object V = U �U comes with an equivalence of categoriesK(X⊗U,U) ∼=
K(X,V ) natural in X, together with a pair of 2-cells

U
�� ��
�� η

@
���

��
��

��
��

� U

V

λ

������������

�� ��
�� β

U

@

���
��

��
��

��
�

V

λ

������������
V

2 The analysis given here follows Zeilberger and Giorgetti (2015, Section 3.1) but is considerably
simplified; otherwise, the observation that the framework of string diagrams can be used to link
lambda calculus proof-nets to reflexive objects is original as far as I know.

3 This definition of reflexive object can be seen as a common generalization of two definitions introduced
by Seely (1987) and by Jacobs (1993), who considered, respectively, how to generalize Scott’s definition
to the setting of (cartesian closed) bicategories and of smc (1-) categories.
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8 N. Zeilberger

satisfying the zig-zag identities (λβ) ◦ (ηλ) = 1λ and (β@) ◦ (@η) = 1@. Such data

provides a model of linear lambda calculus in the following sense:

Claim 4.2 (Soundness)

Let U be a reflexive object in a smc bicategory K. Any linear lambda term (Γ, t)

can be interpreted as a 1-cell �t� : U⊗k → U in K, where Γ = x1, . . . , xk and U⊗k is

the k-fold tensor product of U. Moreover, this interpretation respects α-equivalence,

β-reduction, and η-expansion.

To make the connection between reflexive objects and the “proof-nets” for lambda

terms, let’s begin by observing that a special kind of smc bicategory is a compact

closed bicategory (Stay, 2013), where the internal hom can be defined in terms

of the tensor and dualization: U �U ∼= U ⊗ U∗. There is a fairly standard set

of conventions for drawing morphisms of compact closed (bi)categories as string

diagrams (Selinger, 2011; Stay, 2013), typically using orientations on the “wires” to

distinguish between an object A and its dual A∗. Applying these conventions to the

data of a reflexive object in a compact closed bicategory, the 1-cells @ : U → U⊗U∗
and λ : U ⊗U∗ → U get drawn (running down the page) as nodes of the shape

@ and λ

while the 2-cells η and β become rewriting rules

η
=⇒

@

λ

λ

@

β
=⇒

with the zig-zag identities expressing a coherence condition on these rewriting rules.

For ease of reference, we’ll also give names (adopted from Mairson (2002)) to the

different wires positioned around the 1-cells: running clockwise around an @-node,

the incoming wire at the top is called the function port, followed by the (incoming)

argument and (outgoing) continuation, and running counterclockwise around a λ-

node, the outgoing wire at the bottom is called the root port, followed by the

(outgoing) parameter and (incoming) body.4

As an example, the closed linear lambda term t = λx[λy[x(λz[y(z)])]] we con-

sidered above denotes a morphism �t� : 1 → U in any smc bicategory with a

4 The reader might suspect that there is some degree of arbitrariness in these layout conventions, for
example, if we had used left implication U�U instead of right implication U �U in Definition 4.1.
The bijection we present in Sections 5 and 6 works for any layout convention, and will only rely on
having a particular convention fixed. I should also point out this way of ordering the wires corresponds
to what was briefly discussed as the “RL” convention in Zeilberger and Giorgetti (2015, Section 3.1),
rather than the “LR” convention which was mainly used in that paper.
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reflexive object U. Drawing this 1-cell as a string diagram using the compact closed

conventions, we get the following picture:

λ

λ

@ λ

@

(4)

Observe that this diagram is essentially the same as the one in Equation (3), just

turned upside down and with explicit orientations on the wires. The correspondence

with the original linear lambda term can be made a bit more evident by labeling

the wires with subterms of t:

λ

λ

@ λ

@

t

λy[x(λz[y(z)])]

x(λz[y(z)])
λz[y(z)]

y

x

y(z) z

One thing it is important to point out is that not every physical combination of

@-nodes and λ-nodes represents a linear lambda term, a consequence of the fact

that not every smc (bi)category is compact closed. For instance, the diagrams

λ

λ

@
and

@ λ

λ

do not correspond to the interpretation of a linear lambda term. (This phenomenon

is well-known in proof-nets, and is often analyzed by considering additional “cor-

rectness criteria” for the diagrams.) Nonetheless, the interpretation of linear lambda

terms using reflexive objects in smc bicategories is complete in the following sense:

Claim 4.3 (Completeness)
There is an smc bicategory KΛ equipped with a reflexive object U, such that every

1-cell f : U⊗k → U is the interpretation f = �t� of a unique (up to α-equivalence)

https://doi.org/10.1017/S095679681600023X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681600023X


10 N. Zeilberger

linear lambda term t with k free variables, and such that there is a 2-cell �t1�⇒ �t2� if

and only if t1 can be rewritten to t2 (up to α-equivalence) by a series of β-reductions

and η-expansions.

The proof essentially follows Hyland’s analysis of Scott’s Representation Theorem

(Hyland, 2013), replacing cartesian closed categories by smc bicategories. The idea

is to takeKΛ as a presheaf bicategory [Cop,Cat], where C is a symmetric monoidal

bicategory whose 0-cells are contexts, 1-cells are tuples of linear lambda terms, and

2-cells are rewritings between tuples. The smc structure on [Cop,Cat] is defined by

Day convolution, and the reflexive object is constructed as the representable presheaf

for a singleton context. (Note that [Cop,Cat] is not compact closed.)

5 From linear lambda terms to rooted trivalent maps

Once we view linear lambda calculus through the lens of string diagrams, it is pretty

clear how to turn any closed linear lambda term into a rooted trivalent map: Just

look at its string diagram and forget the distinction between @-nodes and λ-nodes,

as well as the orientations on the wires. Here, we apply this transformation on

λx[λy[x(λz[y(z)])]] and its corresponding string diagram (4):

λ

λ

@ λ

@

�→

•

•

• •

•

Even though we identify @-nodes and λ-nodes, it is important that we take care

to remember the ordering of the wires around each node, since we are interested

in obtaining a combinatorial map rather than an abstract trivalent graph. Strictly

speaking, the diagram on the right is not a trivalent map in the sense of Definition

2.3 since it has a dangling edge, but it can be interpreted as a rooted trivalent map

(in the sense of Definition 2.4) by reading the outgoing trivalent vertex as a “normal

vector” to the root dart of a map with that vertex smoothed out:

•

•

• •

•

↔

•

• •

•
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Actually, there is a hiccup in performing this last step for the identity term I = λx[x],

λ �→ • ↔

since the no-vertex map is not technically a rooted map (again in the sense of

Definition 2.4), although studies of the combinatorics of rooted maps often treat the

empty map as an exceptional case (Tutte, 1968).

Both of these minor technical issues will be resolved smoothly once we adopt

the more general notion of rooted trivalent map to be described shortly. The real

reason for considering this more general notion, though, is that we would also like to

interpret linear lambda terms with free variables as rooted trivalent maps. Consider

the term x(λz[y(z)]) with free variables x and y, whose string diagram corresponds

to a subdiagram of Equation (4):

@ λ

@

(5)

Identifying @-nodes and λ-nodes in Equation (5) yields a trivalent map with three

dangling edges,

• •

•

but since it is no longer clear from the diagram which dangling edge marks the root,

we attach an extra univalent vertex to one of them (turning it into a full edge):

@ λ

@

�→

•

• •

•

By considering the output of this transformation on linear lambda terms with any

number of free variables, we arrive at the following generalization of Definition 2.4:

Definition 5.1

For any G-set X and g ∈ G, let fixg(X)
def
= {x ∈ X | g ∗ x = x }, and again take

T def
=

〈
v, e | v3 = e2 = 1

〉
. A rooted trivalent map with boundary is a transitive T-set

M with a distinguished element r ∈M and a list of distinct elements x1, . . . , xk ∈M,

such that fixv(M) = { r } and fixe(M) = {x1, . . . , xk }. We refer to the unique v-fixed

point as the root r(M) of the map, the ordered list of e-fixed points as the boundary
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Γ(M) of the map, and to the integer k (= the number of e-fixed points) as the

degree of the boundary. A rooted trivalent map with boundary of degree 0 is called

a closed rooted trivalent map.

From now on, when we say “rooted trivalent map” without qualification, we mean

rooted trivalent map with boundary in the sense of Definition 5.1, referring to the

sense of Definition 2.4 as “classical rooted trivalent map”.

Proposition 5.2

For all n > 0, there is a bijection between closed rooted trivalent maps with n + 1

trivalent vertices and classical rooted trivalent maps with n trivalent vertices. This

extends to a bijection for all n � 0 if the empty T-set is admitted as a classical

rooted trivalent map.

Proof

As explained in the first paragraph of this section. �

Observe that the simplest possible rooted trivalent map with boundary is the

singleton T-set M = {x } with r(M) = Γ(M) = x, corresponding to the trivial

map • with no trivalent vertices and one free edge. With this definition, it is clear

how any linear lambda term induces a rooted trivalent map with boundary.

Proposition 5.3

To any linear lambda term with k free variables, p applications, and q abstractions,

there is naturally associated a rooted trivalent map with boundary of degree k and

p + q trivalent vertices.

Proof

Consider the string diagram of the term, which has k incoming wires and one

outgoing wire, as well as p @-nodes and q λ-nodes internal to the diagram. Transform

@-nodes and λ-nodes into trivalent vertices, attach a univalent vertex to the end

of the outgoing wire, and finally forget the orientations of the wires. The result is

manifestly a rooted trivalent map with boundary of degree k and p + q trivalent

vertices. �

We call the map described in the proof of Proposition 5.3 the underlying rooted

trivalent map of a linear lambda term. Although the high-level description is clear

enough, we can also explicitly compute the permutations v and e associated to the

underlying rooted trivalent map by induction on the structure of the linear lambda

term, which just requires a bit of bookkeeping. What is somewhat more surprising

is that this “forgetful” transformation can be reversed – our next topic.

6 From rooted trivalent maps to linear lambda terms

Given a rooted trivalent map M (with a boundary of dangling edges Γ(M)), our

task is to find a linear lambda term (with free variables Γ) whose underlying

rooted trivalent map is M (hopefully, such a linear lambda term always exists

and is unique!). To be able to do this, clearly we will somehow have to decide

for each trivalent vertex whether it corresponds to an application (@) or an
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abstraction (λ). The trick is that there is always an immediate answer for the trivalent

vertex incident to the root: If removing that vertex disconnects the underlying graph,

then the vertex corresponds to an @-node, and otherwise it corresponds to a λ-node.

In either case, we can re-root the resulting submap(s) (while adjusting the boundary)

•

•

M1 M2

disconnected−→
•

M1

+
•

M2

•

•

M1 connected−→
•

M1

and continue the process recursively until we eventually arrive at the trivial map • .

For example, here we start applying this process to a closed rooted trivalent map

•

•

•

• •

•

connected−→

•

•

• •

•

connected−→

•

• •

•
disconnected−→ • +

•

•

•

and continue until we are left with only trivial maps:

•

•

•
connected−→

•

• disconnected−→
•

+
•

From the trace of this decomposition, we can reconstruct the necessarily unique

linear lambda term whose underlying rooted trivalent map is our original map:

+ −→
@

@ −→
λ

λ

@

+
λ

@

−→
@ @ λ

@

−→
λ

λ

@ λ

@

−→
λ

λ

λ

@ λ

@

Theorem 6.1

To any rooted trivalent map M with boundary of degree k and n trivalent vertices,

there is a unique linear lambda term with k free variables, p applications, and q

abstractions whose underlying rooted trivalent map is M, for some p + q = n.
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Proof

As sketched above, by induction on n. Note that uniqueness relies on the fact that

we define rooted trivalent maps with boundary as equipped with a fixed ordering

on dangling edges, which determines the ordering of the free variables inside the

context of the corresponding linear lambda term. �

Corollary 6.2

Rooted trivalent maps with boundary of degree k and n trivalent vertices are in

one-to-one correspondence with linear lambda terms with k free variables and n

total applications and abstractions. Both families are counted by the generating

function satisfying the functional–differential Equation (2).

Example 1

The standard linear combinators (Curry et al., 1972) B = λx[λy[λz[x(yz)]]] and

C = λx[λy[λz[(xz)y]]] correspond to two different rooted embeddings of the K4

graph (respectively, a planar embedding and a toric one):

•

•

•

•

•
•

←�

λ

λ

@

@

λ

•

•

•

•

•
•

←�

λ

λ

@

@

λ

Example 2

A rooted embedding of the Petersen graph, and its corresponding linear lambda

term (λa[λb[λc[λd[λe[a(λf[c(e(b(d(f))))])]]]]]):

•
•

•

•

•

•

•

•
•

•

• •
←�

λ

λ

@

λ

λ

λ

@

@

@

@ λ

https://doi.org/10.1017/S095679681600023X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681600023X


Theoretical pearls 15

7 Indecomposable linear lambda terms and the 4CT

Recall that a bridge in a connected graph is any edge whose removal disconnects

the graph. Among the first five non-trivial closed rooted trivalent maps, exactly

three of them contain bridges (we do not count the outgoing root edge as a

bridge):

•

•

• •

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

If we look at the corresponding string diagrams,

λ

@ λ

λ

λ

@

λ

λ

@

λ

@

λ

@ λ

λ

we see that each of the bridges corresponds to a wire oriented toward an @-node

(either in function or in argument position), and that it sends a closed subterm of

the underlying linear lambda term (in these three cases an identity term I) to that

@-node.

Definition 7.1

Let (Γ, t) be a linear lambda term. A subterm of (Γ, t) is a linear lambda term (Δ, u)

that appears in the derivation of Γ � t. Explicitly:

• (Γ, t) is a subterm of itself;

• if t = t1(t2) for some Γ1 � t1 and Γ2 � t2, then every subterm (Δ, u) of (Γ1, t1)

or (Γ2, t2) is also a subterm of (Γ, t); and

• if t = λx.t1 for some Γ, x � t1, then every subterm (Δ, u) of ((Γ, x), t1) is also a

subterm of (Γ, t).

We refer to all the subterms of (Γ, t) other than (Γ, t) itself as proper subterms.

Definition 7.2

A linear lambda term is said to be decomposable if it has a closed proper subterm,

and indecomposable otherwise.

Proposition 7.3

A closed rooted trivalent map is bridgeless if and only if the corresponding closed

linear lambda term is indecomposable.

To prove this claim, let’s first recall the notion of the lambda lifting of a term with

free variables.

https://doi.org/10.1017/S095679681600023X Published online by Cambridge University Press

https://doi.org/10.1017/S095679681600023X


16 N. Zeilberger

Definition 7.4

Let (Γ, t) be a linear lambda term, where Γ = (x1, . . . , xk). The lambda lifting of (Γ, t)

is the closed linear lambda term λΓ[t]
def
= λx1[· · · λxk[t] · · · ].

Proof of Proposition 7.3

By Theorem 6.1, it suffices to do an induction over linear lambda terms, and check

whether the underlying rooted trivalent map of their lambda lifting contains a

bridge (and again, we do not count the outgoing root edge itself as a bridge).

From examination of the root-deletion procedure, it is immediate that the only way

of potentially introducing a bridge is by using an @-node to form an application

t = t1(t2), so we just have to check whether or not removing the edge corresponding

to either the function port (t1) or argument port (t2) of the @-node disconnects the

diagram of λΓ[t]. Well, if ti has a free variable x, then the subdiagram rooted at

ti will remain connected to the root port of λΓ[t], by a path running through the

root port of the λ-node for x. Hence, the edge corresponding to ti is a bridge in the

underlying rooted trivalent map of λΓ[t] just in case ti is closed. �

This analysis immediately suggests a way of enumerating bridgeless rooted trivalent

maps.

Proposition 7.5

The generating function Lind(z, x) counting indecomposable linear lambda terms

by size (= number of applications and abstractions) and number of free variables

satisfies the following functional-differential equation:

Lind(z, x) = x + z(Lind(z, x)− Lind(z, 0))2 + z
∂

∂x
Lind(z, x) (6)

In particular, the ordinary generating function

Lind(z, 0) = z + 2z3 + 20z5 + 352z7 + 86249 + 266784z11 + · · ·

counts closed indecomposable linear lambda terms by size, as well as closed

bridgeless rooted trivalent maps (on oriented surfaces of arbitrary genus) by number

of trivalent vertices.

Now, let us say that a linear lambda term is planar just in case its underlying rooted

trivalent map is planar. Planar lambda terms have the special property that after

we’ve fixed the convention for ordering wires around @-nodes and λ-nodes, there is

always exactly one planar term with any given underlying tree of applications and

abstractions (see Zeilberger and Giorgetti (2015, Section 2)). This makes them easy

to count, and the following “discrete analogues” of Equations (2) and (6) define

the two-variable generating functions for planar lambda terms and indecomposable

planar lambda terms, respectively:

P (z, x) = x + zP (z, x)2 + z
P (z, x)− P (z, 0)

x
(7)

Pind(z, x) = x + z(Pind(z, x)− Pind(z, 0))2 + z
Pind(z, x)− Pind(z, 0)

x
(8)

In particular, the ordinary generating function Pind(z, 0) = z + z3 + 4z5 + 24z7 +

176z9 + 1456z11 + · · · counts rooted bridgeless planar trivalent maps by number of
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trivalent vertices, as originally enumerated by Tutte (1962) (OEIS A000309; keep

in mind that we define closed rooted trivalent maps to contain one extra trivalent

vertex relative to the classical definition, cf. Proposition 5.2).

Bridgeless planar trivalent maps are closely related to the Four Color Theorem:

By Tait’s well-known reduction (Thomas, 1998), the statement that every bridgeless

planar map has a proper 4-coloring of its faces is equivalent to the statement that

every bridgeless planar trivalent map has a proper 3-coloring of its edges, i.e., a

labeling of the edges by colors in {R,G, B } such that every vertex has the form

•
R

GB

• or •
R

BG

•

For the purposes of coloring, there is little difference between rooted and unrooted

maps: Without loss of generality, it suffices to root a trivalent map M arbitrarily at

some edge by splitting it with a trivalent vertex, assign both halves of that edge the

same arbitrary color (
•
•
M

RR • ), and then look for a proper 3-coloring of the remaining

edges.
It seems that the problem of 3-coloring the edges of a rooted trivalent map may

be naturally formulated as a typing problem in linear lambda calculus. Typing for
linear lambda calculus is standardly defined by the following rules:

x : X � x : X
Γ � t : X� Y Δ � u : X

Γ,Δ � t(u) : Y

Γ, x : X � t : Y

Γ � λx[t] : X� Y

Γ, y : Y , x : X,Δ � t : Z

Γ, x : X, y : Y ,Δ � t : Z (9)

General types (X,Y , . . . ) are built up from some set of type variables (α, β, . . . )

using only implication (X�Y ), and the typing judgment x1 : X1, . . . , xk : Xk � t : Y

expresses that the given term t has type Y assuming that the free variables have

the prescribed types X1, . . . , Xk . In this way, closed linear lambda terms can be seen

as proofs of tautologies in a very weak, purely implicative logic (sometimes called

BCI logic, after the combinators B, C, and I). Moreover, planar lambda terms are

typable without using the rightmost rule, resulting in an even weaker logic.

The standard typing rules can also be expressed concisely using string diagrams,

where they correspond to the following conditions for annotating the wires by types

(cf. Mairson, 2002; Zeilberger, 2015a):

@

X� Y

Y X

λ

X� Y

XY

In this form, the connection to edge-coloring is more suggestive. Indeed, we can use

a specific interpretation of types in order to obtain a new reformulation of the map

coloring theorem (cf. Penrose, 1971; Kauffman, 1990; Bar-Natan, 1997):

Recall that the Klein Four Group can be defined as a group whose underlying

set has four elements � = { 1, R, G, B }, with unit element 1 and the following
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multiplication table for non-unit elements:

R G B

R 1 B G

G B 1 R

B G R 1

Observe that the product operation of the Klein Four Group is commutative

xy = yx, and that every element is its own inverse x−1 = x.

Definition 7.6

We write �� for the typing judgment induced from Equation (9) by restricting

types to elements of the Klein Four Group � and interpreting implication by

x � y = yx−1 = xy for all x, y ∈ �. A 3-typing of a linear lambda term t

with free variables x1, . . . , xk is defined as a derivation of the typing judgment

x1 : X1, . . . , xk : Xk �� t : Y for some X1, . . . , Xk and Y in �. The 3-typing is said to

be proper if no proper subterm of t is assigned type 1.

Theorem 7.7 (Reformulation of 4CT )

Every planar indecomposable linear lambda term has a proper 3-typing.

Example 3

The B combinator (Example 1) has most general type

B : (β� γ)� ((α� β)� (α� γ))

corresponding to the following formal typing derivation with type variables α, β, γ:

x : β� γ � x : β� γ

y : α� β � y : α� β z : α � z : α

y : α� β, z : α � y(z) : β

x : α� β, y : α� β, z : α � x(yz) : γ

x : α� β, y : α� β � λz[x(yz)] : α� γ

x : β� γ � λy[λz[x(yz)]] : (α� β)� (α� γ)

� λx[λy[λz[x(yz)]]] : (β� γ)� ((α� β)� (α� γ))

Instantiating α = R, β = B, and γ = G, we obtain a proper 3-typing of the

combinator:

λ

λ

@

@

λ

λz[x(yz)] : B x(yz) : G

x : Rλy[λz[x(yz)]] : R

B : 1

y : G

z : R

y(z) : B
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