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REGULAR POLYGONS AND TRANSFINITE DIAMETER

MICHEL GRANDCOLAS

We study the behaviour of the transfinite diameter of regular polygons of fixed
diameter, as a function of the number of their vertices.

1. INTRODUCTION

We recall that Favard's Problems involved studying the behaviour of the diameter
of complete sets of conjugate algebraic integers. Two problems were solved in [2], where
it was shown that

(1.1) mit2(X)2V3

(1.2) lim inf t2(X) = 2
dK»X6G

where X is a set of conjugates of an algebraic integer belonging to G, (respectively
Gd) the set of all sets of conjugates of algebraic integers (respectively, those of degree
bigger or equal to d) and t2{X) is the diameter of X. Favard's second problem was
solved by the inequality: t(X) ̂  t2(X)/2 where t(X) is the transfinite diameter of
X (see [3]) due to Bieberbach. These problems suggest a great number of still open
questions on the links between the diameter, weighted diameter or transfinite diameter
of a complete set of conjugate algebraic integers, or more generally a convex set in the
plane (or particular convex sets, say regular polygons). We can also study the links
between diameters and characteristic values of a convex set (see also [1]), for example
the t3 diameter and the length of a convex set (see [6] and the definition of Section
2.1). Minimal diameters or weighted diameters of complete sets of conjugate algebraic
integers for small degrees have been determined by the author and Lloyd-Smith [7,
8, 5]).

With this paper we continue our contributions to Favard type problems. We prove a
Theorem on the transfinite diameter of regular polygons: we study the behaviour of the
transfinite diameter of a regular polygon of fixed diameter as a function of the number of
its vertices. A surprising result is that the transfinite diameter of a regular polygon with
fixed diameter does not increase as a function of the number of its vertices. We deduce
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a nice necessary and sufficient condition on the diameter and transfinite diameter to
ensure equality between two regular polygons (isometrically).

In Section 2 we determine the transfinite diameter as a function of the diameter.
In Sections 3 and 4, we study the behaviour of the transfinite diameter of a regular
polygon of fixed diameter as a function of the number of its vertices. In Section 5,
we obtain the Principal Theorem and we give also a conjecture which generalises this
result.

2. GENERALITIES ON THE DIAMETERS OF REGULAR POLYGONS

DEFINITION 2.1: Let X be a convex set in the plane.

(a) The diameter of X, denoted by t2(X), is defined to be

= sup \cti = OCJ\-

(b) The weighted diameter of X, called the tn -diameter of X if n > 2, is
defined to be

(2.1) tn(X)= sup

(Note that this is just the diameter if n = 2.)

(c) The transfinite diameter of X is defined to be

(2.2) t(X) = lim tn(X)
n—>oo

We remark that the sequence (tn(X)) is decreasing (see [7]). The transfinite
diameter is also called the capacity, and is generally difficult to compute. However, its
value is known for regular polygons.

PROPOSITION 2 . 2 . [9] The transfinite diameter of a regular polygon with n

vertices and side length d is

There are two formulae (depending on the parity of the number of vertices) which
give the diameter of a regular polygon in terms of its side length d.
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PROPOSITION 2 . 3 . Let R be the radius of the circle circumscribing a reguJar
polygon X with n vertices and side length d.

(a) If n is even,

t2{X) = 2R = . f
sin (n/n)

(b) If n is odd

d
t2{X) = 2flcos(7r/2n) = —

2 sin (n/2n)'

PROOF: (a) is obvious. For (b) note that t2(X) — 2Rsin (TT/2 - n/2n), since

7T — ?r/n is the angle AOC where O is the centre of the circle circumscribing the

polygon, and A and C two vertices of the polygon such that AC = t2{X). D

Using Proposition 2.3 and formula (2.3), we can express the transfinite diameter
of a regular polygon with n vertices in terms of its diameter as follows.

P R O P O S I T I O N 2 . 4 .

(a) If n is even,

f2(X)sin(7r/n)r2(l/n)

(b) If n is odd,

_ 2t2(X)sxn(n/2n) r2(l/n)
t[X) - 4^ T

DEFINITION 2.5: The transfinite diameter function tr is defined for n € N by:

i s i n ( J T I ' n ) T 2 { \ I'n) . . . , ^ otr{n) = ' if n is even and n ^ 2,
I(2/n)

. , 2 s i n ( 7 r / 2 n ) r 2 ( l / n ) . . . , , . ^ _
tr(n) = r,/n / N rf n 1S °dd and n ^ 3.

i\2/n)

Thus tr(n) represents the transfinite diameter of a regular polygon with n vertices
(n ^ 2) of diameter 4TT .

https://doi.org/10.1017/S0004972700018487 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018487


70 M. Grandcolas [4]

3. TECHNICAL LEMMAS

Put

and

We obtain bounds for /(x) and g(x) for large x.

We have (see [10]) T'{x) = F(x)(-c-x+ £ (l/*-l/(Jfe + x))) where c is Euler's
v fc=i '

constant. By using Taylor's formula of order 4, we obtain that for z € [0,0.04],

1 + cz + az2 + bz3 < T(l - z) ^ 1 + cz + az2 + bz3 + 2z4

where

Hence, using the formula

we obtain bounds of T(z) for z 6 [0,0.04]:

_ ! E ]; < r(2) < -̂

sin (nz) l + cz + az2 + bz3 + 2z*^ K ' *" sin (TTZ) 1 + cz +

We use (3.2) to estimate f(x) and g(x) for large x. If a; ̂  50,

n2 66-6ac + 2c3 30
+ +

7T2 6 6 - 6 a c

T2 6 6 - 6 a c + 2 c 3

x) . / n \ n A 6 6 - 6 a c + 2c3 32

Now we show both f(x) and g(x) are increasing on [l,oo). Note

2 ( l /x ) COS(TT/2X) T-TT / / ^ N N A V ^ 2

https://doi.org/10.1017/S0004972700018487 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700018487


[5] Regular polygons 71

The sign of g'(x) is the same on [1, oo) as that of

but p(x) > q{x) where

q{x) =

VK ' 2x

Furthermore, for x > 0, q'(x) < 0 and lim q(x) = 0, so g'(x) > q(x) > 0 if x > 0
X—•+OO

and g'(x) > 0 on [l ,oo). Hence g is an increasing function on [l,oo).

Similarly, the sign of f'(x) on [l,oo) is the same as that of

but r(x) > s(x) where

x

Furthermore, for x > 0, s'(x) < 0 and lim s(x) = 0, so s(x) > 0 if x > 0 and
X—>+OO

/'(x) > 0 on [l,oo).
Hence / is an increasing function on [1, oo).

4. STUDY OF tr

We apply the observation of the preceeding section to the transfinite diameter
function tr.

PROPOSITION 4.1.

(a) tr(2n + 2) > tr(2n), for all n € f ;
(b) tr(2n + 1) > tr(2n - 1), for all n £ N*;
(c) tr{2n - 1) > tr{2n), for all n € N - {0,1};
(d) tr(2n + 1) > tr(2n), for all n € N*.

PROOF: (a) and (b) are immediate, since the functions / and g are increasing on
[l.oo).

(c) Note tr(2n - l)-tr{2n) - g{2n - l ) - / ( 2 n ) . For n > 26, if we use the bounds
of the preceeding section we have:

U^-
n2 \ 96 96n n
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if n ^ 26. From n = 1 to 25, we compute the values of tr(2n — 1) and tr(2n).

(d) Note tr(2n + 1) > tr{2n - 1) > tr(2n) if n 2 2 and tr(3) > tr(4). D

Finally, for large n, we observe that

lim tr(n) = t(C) = 2n

where C is a circle of radius 2TT .

5. PRINCIPAL THEOREM

THEOREM 5 . 1 . If X and Y are two regular polygons with the same diameter
and the same transfinite diameter, then X = Y (isometrically).

PROOF: Since X and Y have the same diameter, it is enough to show that the tr
function is one to one. We prove that if n jt n' then tr(n) ^ tr(n').

(1) If n and n' are even, this comes from Proposition 4.1(a).
(2) If n and n' are odd, this comes from Proposition 4.1(b).
(3) If n is odd and n' is even, n > n', this comes from tr(n) > tr(n - 1) ^

tr(n') by Proposition 4.1(d) and (a).
(4) If n is odd and n' is even, n < n', we can set n = 21 — 1 and n' = 2p

with I $J p.

There are 3 possible cases.

CASE (A). I ̂  ^Jlflp:
From the bounds of Section 3, if p > 25 and / ^ 26

with h = 66 - 6oc + 2c3, where a, 6, c are the values of Section 3, because 5n2/96l2

TT2/12p2 and the other terms are strictly positive.

CASE (B). 1 + -fijlp ^ / ^ 0.8p:
if p ^ 25 and I ^ 26, using the bound of 1/p as a function of 1//, ,Jbf&/(l - 1)
1/p ^ 4/5/, we get *r(2p) - tr{2l - I) < -5TT2/96/3 + 5//4 < 0.

CASE (C). 0.8p ^ / :

if p ^ 25 and Z ^ 26,
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If we replace I by p, tr{2p) - tr(2l - 1) < (-1 .44TT 2 + 0.5)/p2 < 0.

Conclusion of (4): tr(n) ^ tr(n') if n, n' are bigger than 50. Furthermore if
n ^ 66, tr(n) ^ tr(66) = 6.278492... > tr(51) = 6.278330... ^ tr(n') if n' is between
1 and 51. So for all n' € N, n' ^ 2, ir(n) ^ ir(ra') if n is bigger than 66. We also
check that the values of tr(n) are distinct from 2 to 65. D

CONJECTURE 5.2: If X and Y are two compact convex sets in the plane, such

that

tn(X) = tn(Y) for all n € N*\{1}

then

X = Y

isometrically.

REMARK. The result holds for regular polygons. Furthermore, a convex set X in the
plane is specified by a discrete number of points. By a Theorem of Riemann, there is
a meromorphic function which maps the exterior of the unit disk onto the exterior of
the convex set X. The coefficients of this map probably have a link with the weighted
diameters of X. It should be interesting to prove this result for two triangles. Indeed
this conjecture seems very difficult to prove.
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