
TPLP 24 (1): 22–56, 2024. c© The Author(s), 2023. Published by Cambridge University Press. This

is an Open Access article, distributed under the terms of the Creative Commons Attribution licence

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and

reproduction, provided the original article is properly cited.

doi:10.1017/S1471068423000315 First published online 2 August 2023

22

The Stable Model Semantics of Datalog with Metric
Temporal Operators∗†

PRZEMYS�LAW A. WA�LȨGA, DAVID J. TENA CUCALA and
BERNARDO CUENCA GRAU

Department of Computer Science, University of Oxford, Oxford OX1 3AZ, UK
(e-mails: przemyslaw.walega@cs.ox.ac.uk, david.tena.cucala@cs.ox.ac.uk,

bernardo.cuenca.grau@cs.ox.ac.uk)

EGOR V. KOSTYLEV
Department of Informatics, University of Oslo, Oslo, Norway

(e-mail: egork@ifi.uio.no)

submitted 29 March 2022; revised 4 June 2023; accepted 14 June 2023

Abstract

We introduce negation under the stable model semantics in DatalogMTL – a temporal extension
of Datalog with metric temporal operators. As a result, we obtain a rule language which combines
the power of answer set programming with the temporal dimension provided by metric operators.
We show that, in this setting, reasoning becomes undecidable over the rational timeline, and
decidable in ExpSpace in data complexity over the integer timeline. We also show that, if
we restrict our attention to forward-propagating programs, reasoning over the integer timeline
becomes PSpace-complete in data complexity, and hence, no harder than over positive programs;
however, reasoning over the rational timeline in this fragment remains undecidable.

KEYWORDS: temporal reasoning, metric temporal logic, stable model semantics, non-
monotonic negation

1 Introduction

DatalogMTL (Brandt et al . 2018) extends positive Datalog (Abiteboul et al . 1995) with

operators from metric temporal logic (MTL) (Koymans 1990) interpreted over the ratio-

nal or the integer timeline. For example, the following DatalogMTL rule can be used to

state that a bus driver should not work for more than six months (i.e., half a year) in a

row:

OnLeave(x)← BusDriver(x) ∧�[0,0.5]Working(x),

∗ This is an invited submission resulting from an earlier KR conference publication.
† This work was funded in whole or in part by the EPSRC project OASIS (EP/S032347/1), the EPSRC
project UK FIRES (EP/S019111/1), and the SIRIUS Centre for Scalable Data Access, and Samsung
Research UK. For the purpose of Open Access, the authors have applied a CC BY public copyright
licence to any Author Accepted Manuscript (AAM) version arising from this submission.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1471068423000315
https://orcid.org/0000-0003-2922-0472
https://orcid.org/0000-0003-2909-5923
mailto:przemyslaw.walega@cs.ox.ac.uk
mailto:david.tena.cucala@cs.ox.ac.uk
mailto:bernardo.cuenca.grau@cs.ox.ac.uk
https://orcid.org/0000-0002-8886-6129
mailto:egork@ifi.uio.no
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068423000315&domain=pdf
https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 23

where the expression �[0,0.5]Working(x) holds at time t if Working(x) holds continuously

in the time interval [t−0.5, t]. Some other examples of expressions allowed in DatalogMTL

are �[t1,t2]ϕ, which holds at time t if ϕ holds at some instant within the time interval

[t−t2, t−t1], and �[t1,t2]ϕ, which uses the “future-oriented” version of the operator � and

holds at time t if ϕ holds continuously in the time interval [t+ t1, t+ t2]. A DatalogMTL

dataset consists of facts involving intervals, such as Working(alex)@[2022, 2023], stating

that Alex was working continuously in the time interval [2022, 2023]. DatalogMTL is thus

a very expressive language which allows a user to capture complex definitions, regula-

tions, or events involving temporal intervals. DatalogMTL is powerful enough to capture

prominent temporal extensions of Datalog such as Datalog1S (Chomicki and Imieliński

1988; 1989) and Templog (Abadi and Manna 1989), and it has found applications in

areas such as ontology-based data access (Brandt et al . 2018), stream reasoning (Wa�lȩga

et al . 2019), and similar ideas were explored in logic programming (Brzoska 1998). Rea-

soning in DatalogMTL is known to be PSpace-complete in data complexity over both

the rational (Wa�lȩga et al . 2019) and the integer timeline (Wa�lȩga et al . 2020a).

Motivated by a range of applications, there has recently been a growing interest in logics

that combine non-monotonic negation with temporal constructs (Cabalar and Vega 2007;

Aguado et al . 2013; Cabalar et al . 2018; 2020; Beck et al . 2018; Zaniolo 2012). Recently,

we have proposed an extension of DatalogMTL over the rationals with stratified negation-

as-failure, where rules can have negated atoms in the body, but there can be no recursion

involving predicates mentioned in such atoms. With such an extension of DatalogMTL,

we can express, for example, a bus company’s policy that any vehicle older than 12 years

must be decommissioned permanently unless it has passed a special inspection in the

last year:

�[0,∞)Decommis(x)← �(12,∞)Manufactured(x) ∧ not�[0,1]PassInspect(x).

We also showed that the additional expressive power provided by this type of negation

does not increase the complexity of reasoning regardless of whether we consider the

rational or the integer timeline (Tena Cucala et al . 2021). The restriction to stratifiable

programs, however, significantly limits the applicability DatalogMTL to certain types of

use cases.

In this paper we take a further step in this direction and consider DatalogMTL

equipped with non-stratifiable negation interpreted under the stable model semantics

(Gelfond and Lifschitz 1988; Brooks et al . 2007; Nogueira et al . 2001). This extension

paves the way for the use of DatalogMTL in applications where derived information can

be retracted in light of new evidence, minimality of models is required, or temporal in-

ertia rules need to be formalised. For instance, consider a bus company with the policy

that vehicles that have been serviced at a given time t are automatically booked for a

routine service in a year’s time (i.e., at time t+ 1, represented by metric operator �[1,1]),

but this appointment must be cancelled if the bus is serviced again before then – that is,

within the interval (t + 0, t + 1), represented by �(0,1). This policy can be written using

the rule

�[1,1]Service(x)← Service(x) ∧ not�(0,1)Service(x),

which is not stratifiable as it involves recursion via negation.

Our setting is closely related to the recent research on combining answer set pro-

gramming (ASP) with temporal logics. For example, temporal equilibrium logic (TEL)

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

24 P. A. Wa�lȩga et al.

(Cabalar and Vega 2007; Aguado et al . 2013; Cabalar et al . 2018) combines ASP

with linear temporal logic, and LARS combines ASP with window-based temporal

constructs for stream reasoning (Beck et al . 2018). The logic recently proposed by Cabalar

et al . (2020) is perhaps the closest to our work, as it combines stable model semantics

with propositional MTL interpreted over the natural numbers; this logic, however, is

rather different from DatalogMTL, where the use of logical connectives and MTL oper-

ators is restricted in the spirit of Datalog to disallow disjunction and “existential” MTL

operators (such as diamond, since, or until operators) in rule heads. As we show in our

paper, considering a language with such restrictions can lead to favourable computational

behaviour.

Our contributions in this paper are summarised as follows. In Section 3 we present

our extension (DatalogMTL¬) of DatalogMTL with negation under stable model seman-

tics. Our language is defined similarly to other temporal ASP formalisms; it extends

both DatalogMTL with stratified negation and Datalog with stable model negation.

To capture the semantics of stable models, we use interpretations similar to those of

the here-and-there intuitionistic logic (Heyting 1930; Pearce 1996). The main reasoning

problem we consider is the existence of a stable model for a program and a dataset.

We show in Section 4 that, in this setting, reasoning over the rational timeline is un-

decidable; furthermore, undecidability holds even for propositional forward-propagating

programs (where rules cannot propagate information towards past time points) and to

data containing only bounded intervals (i.e., where endpoints of all intervals are rational

numbers). To regain decidability, in Section 5 we focus on the integer timeline. We show

in Section 5.1 that discreteness of the timeline has a crucial influence on the computa-

tional behaviour, as reasoning becomes decidable and in ExpSpace in data complexity;

this is shown by exploiting Büchi automata and their complements to find candidate

stable models and verify their minimality. Then, in Section 5.2 we show that, when

restricted to forward-propagating (or, dually, to backwards-propagating) programs and

bounded datasets, reasoning becomes PSpace-complete and hence no harder than for

negation-free DatalogMTL (Wa�lȩga et al . 2019; 2020a). This is in stark contrast with

the undecidability of the same fragment over the rational numbers.

2 Preliminaries

In this section we recapitulate the basics of temporal intervals over the integers or the

rationals, and introduce the syntax and semantics of metric temporal operators.

2.1 Timelines and temporal intervals

A timeline T is either the set Q of rationals or the set Z of integers. A T-time point is an

element of T. A T-interval � is a subset of T satisfying both of the following properties:

– t ∈ � for all t1, t2 ∈ � and t ∈ T such that t1 < t < t2; and

– the greatest lower bound �− and the least upper bound �+ of � are both in T ∪
{−∞,∞}.

The bounds �− and �+ are called the left and right endpoints of �, respectively. A

T-interval is punctual if it contains exactly one T-time point, it is non-negative if it

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 25

Table 1. Semantics of ground metric atoms

I, t |=T � for each t ∈ T

I, t |=T ⊥ for no t ∈ T

I, t |=T ��M iff I, t′ |=T M for some t′ with t− t′ ∈ �
I, t |=T ��M iff I, t′ |=T M for some t′ with t′ − t ∈ �
I, t |=T ��M iff I, t′ |=T M for all t′ with t− t′ ∈ �
I, t |=T ��M iff I, t′ |=T M for all t′ with t′ − t ∈ �
I, t |=T M1S�M2 iff I, t′ |=T M2 for some t′ with t− t′ ∈ � and I, t′′ |=T M1 for all t′′ ∈ (t′, t)
I, t |=T M1U�M2 iff I, t′ |=T M2 for some t′ with t′ − t ∈ � and I, t′′ |=T M1 for all t′′ ∈ (t, t′)

contains no negative T-time points, it is bounded if both its endpoints are in T, and it

is closed if it includes both of its endpoints. In these and similar notions, we often omit

the reference to T if it is clear from the context. We consider binary representations

of integers and fractional representations of rationals, with an integer numerator and a

positive integer denominator, encoded in binary. We use standard representations of the

form 〈�−, �+〉 for a non-empty interval � (i.e., �∩T �= ∅), where the left bracket 〈 is either

[or (, the right bracket 〉 is either] or), and, if numeric, the endpoints �− and �+ are

represented as explained above. Brackets [and] indicate that the endpoints are included

in the interval, whereas (and) indicate that they are not included; note that, by this

convention, [and] cannot be used with endpoints −∞ and ∞. We often abbreviate a

punctual interval [t, t] as t. If it is clear from the context, we abuse notation and identify

each interval representation with the interval it represents.

2.2 Syntax and semantics of metric temporal expressions

Assume a function-free first-order vocabulary and a timeline T. A relational atom is an

expression of the form P (s), where P is a predicate and s is a tuple of constants and

variables of the same arity as P . A metric atom is an expression given by the following

grammar, where P (s) ranges over relational atoms and � over non-empty, non-negative

intervals:

M ::=
 | ⊥ | P (s) | ��M | ��M | ��M | ��M |MS�M |MU�M.

A metric atom is ground if it mentions no variables. A metric fact is an expression M@�,

with M a ground metric atom and � a non-empty T-interval; it is relational if so is M .

A dataset is a finite set of relational facts; it is bounded if so are all intervals it mentions.

For a dataset D , we denote with tmin
D and tmax

D the smallest and the largest numbers

mentioned in D ; if D mentions no numbers, we let tmin
D = tmax

D = 0.

An interpretation I is a function which assigns to each time point t ∈ T a set of ground

relational atoms; if an atom P (c) belongs to this set, we say that P (c) is satisfied at t

in I and we write I, t |=T P (c). This notion extends to other ground metric atoms as

given in Table 1. Interpretation I is a model of a metric fact M@�, written I |=T M@�,

if I, t |= M for all t ∈ �; it is a model of a set M of metric facts (e.g., a dataset) if it is

a model of all facts in M . Set M entails a set M ′ of metric facts, written M |= M ′, if

every model of M is a model of M ′. An interpretation I contains an interpretation I′,
written I′ ⊆ I, if for each ground relational atom P (c) and each time point t ∈ T, having

I′, t |=T P (c) implies I, t |=T P (c). Furthermore, I is the least interpretation in a set X

of interpretations, if I ⊆ I′ for every I′ ∈ X.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

26 P. A. Wa�lȩga et al.

3 DatalogMTL with negation under stable model semantics

In this section we propose DatalogMTL¬, which extends DatalogMTL with stratified

negation as defined by Tena Cucala et al . (2021), to support unstratified use of negation

in rules interpreted under stable model semantics.

The syntax of DatalogMTL¬ is the natural extension of the positive case: rule bod-

ies are conjunctions of atoms and negated atoms, whereas rule heads are defined as in

DatalogMTL. Forward-propagating DatalogMTL¬ programs are also defined analogously

to the positive case (Wa�lȩga et al . 2019), by requiring that rule bodies and heads do not

mention metric operators referring to the future and to the past, respectively.

Definition 3.1

A rule r is an expression of the form

M ←M1 ∧ · · · ∧Mk ∧ notMk+1 ∧ · · · ∧ notMm, (m ≥ k ≥ 0) (1)

where each Mi is a metric atom, and M is a metric atom specified by the following

grammar, where P (s) ranges over relational atoms and � over non-empty non-negative

intervals:

M ::=
 | ⊥ | P (s) | ��M | ��M.

The head of r is the consequent M and the body is the conjunction in the antecedent,

where M1, . . . ,Mk are its positive body atoms, and Mk+1, . . . ,Mm are its negated body

atoms. A rule is safe if each variable it mentions in the head occurs in some positive body

atom in a position other than a left operand of S or U . A rule is ground if it has no

variables, and it is positive if it has no negated body atoms. A (DatalogMTL¬) program

is a finite set of safe rules; it is ground or positive if all its rules are. For a program

Π, we let ground(Π) be the set of all ground rules that can be obtained by replacing

variables in Π with constants. A program is forward-propagating (DatalogMTL¬FP) if it

is DatalogMTL¬ but does not mention the operators �, �, and U in rule bodies, or the

operator � in rule heads.

The definition of stable models for Datalog with negation relies on the reduct con-

struction by Gelfond and Lifschitz (1988), which has been adapted to various extensions

of ASP (Faber et al . 2004). Such reduct constructions, however, do not have a natural

equivalent in DatalogMTL¬, where interpretations may satisfy a fact at some, but not

all points of the infinite timeline, and it is thus unclear which rules or atoms should be

included in the reduct.

Following the approach of Cabalar and Vega (2007) and Cabalar et al . (2020), we

define stable models for DatalogMTL¬ analogously to the models of equilibrium logic

(Pearce 1996), which in turn are defined in terms of interpretations for the here-and-

there intuitionistic logic (Heyting 1930). In this logic, each interpretation is an ordered

pair (H,T) of sets H (“here”) and T (“there”) of relational propositional (i.e. using only

predicates of arity 0) atoms such that H ⊆ T . We therefore start by generalising such

interpretations to the context of DatalogMTL¬. For the remainder of this section, we fix

a timeline T, which will be implicit in all our definitions and technical results.

Definition 3.2

An HT-interpretation is a pair (H,T) of interpretations such that H ⊆ T. An HT-

interpretation (H,T) is an HT-model of a dataset D if H is a model of D ; furthermore, it

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 27

is an HT-model of a rule r if, for each rule of Form (1) in ground(Π) and for each t ∈ T,

the following hold:

1. If H, t |=T Mi for all i ∈ {1, . . . , k} and T, t �|=T Mj for all j ∈ {k + 1, . . . ,m}, then

H, t |=T M .

2. If T, t |=T Mi for all i ∈ {1, . . . , k} and T, t �|=T Mj for all j ∈ {k + 1, . . . ,m}, then

T, t |=T M .

Finally, (H,T) is an HT-model of a program if it is an HT-model of all its rules.

An HT-interpretation is, therefore, a pair (H,T) of standard interpretations. Interpreta-

tion H is contained in T and determines whether a dataset is satisfied. Although both

interpretations are used to evaluate rules, it is T which evaluates negated body atoms

and thus determines when a rule with negation can be “triggered”. When this happens,

the rule ensures that if any of H or T satisfies the positive body atoms, then it will also

satisfy the head. Since H ⊆ T in an HT-interpretation, all relational facts entailed by H

are also entailed by T. We show next that this property can be generalised to arbitrary

metric facts.

Proposition 3.3

For every HT-interpretation (H,T), metric atom M , and time point t, if H, t |= M then

T, t |= M .

Proof

We proceed by induction on the structure of M . If M is
 or ⊥, the claim holds trivially,

and if M is a relational atom, then the claim holds by H ⊆ T. For the inductive step it

suffices to consider the cases when M is of the form ��M1 or M1S�M2, for some interval

� and metric atoms M1 and M2. Indeed, if M is of the form ��M1 or ��M1, then it is

equivalent to
S�M1 or
U�M1, respectively, while the cases when M is of the form

��M1 or M1U�M2 are symmetric to the cases of ��M1 or M1S�M2, respectively.

If M is ��M1, then H, t |= M implies that H, t′ |= M1, for all t′ such that t − t′ ∈ �.

Hence, by the inductive hypothesis, T, t′ |= M1 for all t′ such that t − t′ ∈ �, and so,

T, t |= ��M1. Similarly, if M is M1S�M2, then there is t′ with t − t′ ∈ � such that

H, t′ |= M2 and H, t′′ |= M1, for all t′′ ∈ (t′, t). By the inductive hypothesis we obtain

that T, t′ |= M2 and T, t′′ |= M1, for all t′′ ∈ (t′, t), so T, t |= M1S�M2.

Although the converse statement does not always hold, we can nonetheless prove the

following result, which will underpin our definition of stable models.

Theorem 3.4

Let (T,T) be an HT-model of a program Π and a dataset D . Then the set of interpreta-

tions {H | (H,T) is an HT-model of Π and D} contains a unique least interpretation.

Proof

We use transfinite induction to construct a sequence of interpretations H0, H1, . . . , where

each interpretation is contained in T. We will then show that Hω1
, where ω1 is the first

uncountable ordinal, is the least amongst all interpretations H such that (H,T) is an

HT-model of Π and D .

Let H0 be the least model of D . Then, for each successor ordinal α, let Hα be the least

interpretation satisfying the following property: for each rule of Form (1) in ground(Π),

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

28 P. A. Wa�lȩga et al.

and for each time point t, if Hα−1, t |= Mi for each 1 ≤ i ≤ k and T, t �|= Mj for each

k + 1 ≤ j ≤ m, then Hα, t |= M . Moreover, for each limit ordinal α, we define Hα as⋃
β<α Hβ . By induction on ordinals α we can show simultaneously that Hα is well-defined

and that Hα ⊆ T. For the basis of the induction, we recall that H0 is the least model

of D , so H0 is well-defined. Moreover, since (T,T) is an HT-model of D , we obtain that

H0 ⊆ T. Now, consider the inductive step for a successor ordinal α. To show that Hα is

well-defined it suffices to show that for each rule of Form (1) in ground(Π), and for each

time point t, if Hα−1, t |= Mi for each 1 ≤ i ≤ k and T, t �|= Mj for each k + 1 ≤ j ≤ m,

then M is not ⊥. Indeed, by the inductive assumption we have Hα−1 ⊆ T, so if M is

⊥, then T, t |= ⊥, which contradicts the assumption that (T,T) is an HT-model of Π.

Moreover, since Hα−1 ⊆ T and (T,T) is an HT-model of Π, we need to have T, t |= M ,

so Hα ⊆ T. The inductive step for a limit ordinal α holds trivially, since Hα is defined as⋃
β<α Hβ .

We thus obtain that Hω1
⊆ T, and so, (Hω1

,T) is an HT-interpretation. By construc-

tion, Hω1
contains H0 and therefore (Hω1

,T) is an HT-model of D . It is also an HT-model

of Π, since ω1 rounds of rule applications are enough to ensure that Hω1
is a fixpoint

with respect to the application of the rules of Π (Brandt et al . 2017). Finally, to show

that Hω1
is the least among interpretations H such that (H,T) is an HT-model of Π

and D , consider any such H. Using transfinite induction in a way similar to the previous

paragraph, one can show that Hα ⊆ H for each ordinal α, and thus Hω1
⊆ H.

Given a program Π, a dataset D , and an interpretation T such that (T,T) is an HT-

model of Π, we let HT
Π,D denote the least interpretation whose existence is guaranteed

by Theorem 3.4.

In equilibrium logic, a model of a program is a set T of relational propositional atoms

that satisfies the rules of the program and for which there exists no set H � T such that

(H,T) is a model of the program in here-and-there logic. This ensures that equilibrium

logic implements a kind of minimal model reasoning. We next generalise this notion to

DatalogMTL¬ by building on our previous definition of the least interpretation HT
Π,D .

Definition 3.5

An interpretation T is a stable model of a program Π and a dataset D if and only if

(T,T) is an HT-model of Π and D , and HT
Π,D = T.

Example 3.6

Consider a dataset with a single fact P@[0, 1] and a propositional DatalogMTL¬ pro-

gram consisting of a single rule R ← �1P ∧ notQ. In this setting, there is just a single

stable model, namely the interpretation where P holds at all time points from [0, 1],

R holds at all time points from [1, 2], and no relational atoms are satisfied anywhere else.

Next, consider a dataset with facts P@0 and Q@1, together with a propositional

DatalogMTL¬ program that consists of two rules R← P∧not�1R and R← Q∧not�1R.

This dataset and program have two stable models. In the first model, P and R hold at

0, whereas Q holds at 1. In the second model, P holds at 0, whereas Q and R hold at 1.

Finally, let us consider the empty dataset and a program consisting of rules Q← notP

and P ← notQ. Syntactically, this is not only apropositional DatalogMTL¬ program, but

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 29

also a standard ASP. According to our temporal semantics, this program and dataset

admit infinitely many stable models: for each set X of time points, there is a stable

model in which P holds at each time point in X and Q holds at all other time points.

In contrast, the same program under the standard ASP semantics has only two stable

models, namely {P} and {Q}.
We next show that our semantics for DatalogMTL¬ also generalises the seman-

tics of (positive) DatalogMTL programs. If a DatalogMTL program Π and a dataset

D have a model, they also admit a least model (Brandt et al . 2017). This can

be equivalently reformulated by stating that if the set of all interpretations {I |
(I, I) is an HT-model of Π and D} is not empty, then this set contains a unique least

interpretation.

Theorem 3.7

Let Π be a positive program and let D be a dataset. An interpretation I is a stable model

of Π and D if and only if I is their least model.

Proof

We can first use the fact that Π is positive to show that if (I, I) is an HT-model of Π

and D , then HI
Π,D is the least model of Π and D . Indeed, if (I, I) is an HT-model of Π

and D , we can define the sequence H0, H1, . . . of interpretations contained in I as in the

proof of Theorem 3.4, which satisfies Hω1
= HI

Π,D . Furthermore, since Π is positive, we

can observe that, for every ordinal α, it holds that Hα = Tα
Π (ID), where Tα

Π (ID) is the

result of applying α times the immediate consequence operator of a positive program Π

to an interpretation ID represented by D . In particular, Hω1
= Tω1

Π (ID), which is the

least model of Π and D (Wa�lȩga et al . 2021; Brandt et al . 2017). Hence, HI
Π,D is the

least model of Π and D .

Now, if I is a stable model of Π and D , then (I, I) is an HT-model of Π and D ; as

shown in the previous paragraph, this implies that HI
Π,D is the least model of Π and D .

However, since I is a stable model of Π and D , we have I = HI
Π,D , and thus I is also the

least model of Π and D . Conversely, if I is the least model of Π and D , then (I, I) is an

HT-model of Π and D ; then, as shown in the previous paragraph, I = HI
Π,D , and so I is

a stable model of Π and D .

It follows that, if a positive program and a dataset have a model, then they have a stable

model. Note, however, that this is not the case for other temporal logics with stable

model semantics (Cabalar and Demri 2011; Bozzelli and Pearce 2015), and the reason

why this property holds in our setting is given by Theorem 3.4.

Finally, our semantics also generalises that of stratifiable DatalogMTL¬ pro-

grams (Tena Cucala et al . 2021), where rules do not have cyclic dependencies via

negation and can be organised in strata. Each such a stratifiable, ⊥-free program Π

and dataset D have a single least model constructed by applying to D rules of Π

stratum by stratum in a minimal way (Tena Cucala et al . 2021). As in the case of

positive programs, we can show that such least model corresponds to the single sta-

ble model of Π and D . Hence, analogously to the case of plain Datalog, positive

and stratifiable DatalogMTL programs cannot have multiple stable models. Arbitrary

programs, however, can have any number of stable models, which is witnessed by

Example 3.6.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

30 P. A. Wa�lȩga et al.

In the rest of the paper we study decidability and complexity of reasoning, which is (in

the context of this paper) the problem of checking if a DatalogMTL¬ program Π and a

dataset D have a stable model. We focus on data complexity – that is, we assume that Π

is fixed and only D forms the input – which is the most relevant measure if complexity

in data intensive applications.

Before we close this section, however, it is worth pointing out the connections between

the problem of checking existence of a stable model and the related problem of fact

entailment, as defined next. Following the standard conventions of non-monotonic logics

and ASP (Eiter et al . 2009), we say that a DatalogMTL¬ program Π and a dataset D

bravely entail a relational fact P (c)@� if I |=T P (c)@� for some stable model I of Π

and D , and we say that Π and D cautiously entail P (c)@� if I |=T P (c)@� for all stable

models I of Π and D . The problem of brave (resp. cautious) fact entailment consists

in deciding whether a DatalogMTL¬ program and a dataset bravely (resp. cautiously)

entail a given relational fact. As we show next, both variants of the problem are inter-

reducible with checking existence (or non-existence) of a stable model. Moreover, we

argue that these reductions allow us to transfer bounds for data complexity which, for

fact entailment, refers to the setting where both the program Π and the fact P (c)@� are

fixed, and only the dataset D constitutes the input.

Proposition 3.8

In DatalogMTL¬, existence of a stable model can be reduced in AC
0 to (i) brave fact

entailment, and to (ii) the complement of cautious fact entailment, and vice versa. Fur-

thermore, the reductions involved do not depend on the input dataset.

Proof

We start by showing Statement (i). To check if a DatalogMTL¬ program Π and a dataset

D have a stable model, it suffices to add to D a fact P@0 with a fresh proposition P

and check whether Π and the extended dataset bravely entail P@0. To check if Π and D

bravely entail a relation fact P (c)@�, it suffices to verify that the following program Π′

and dataset D ′ have a stable model:

Π′ = Π ∪ {⊥ ← P ′(x) ∧ not��1
P (x),⊥ ← P ′(x) ∧ not��2

P (x)}, D ′ = D ∪ {P ′(c)@t},
where P ′ is a fresh predicate of the same arity as P , x is a tuple of distinct variables, t

is an arbitrary time point belonging to �, whereas �1 and �2 depend on both � and t; for

example, if � = [t1, t2), then �1 = [0, t − t1] and �2 = [0, t2 − t), where if t2 = ∞, then

t2 − t stands for ∞.

Next, we show Statement (ii). To check if Π and D have a stable model, it suffices to

check if they do not cautiously entail a fact P@0, where P is a fresh proposition (Brandt

et al . 2018, Proposition 3). On the other hand, to check if Π and D do not cautiously

entail a relational fact P (c)@�, it suffices to verify that the following program Π′′ and

dataset D ′′ have a stable model:

Π′′ = Π ∪ {⊥ ← P ′(x) ∧��1
P (x) ∧��2

P (x)}, D ′′ = D ∪ {P ′(c)@t},
where P ′, x, t, �1, and �2 are as in the proof of Statement (i).

Finally, we observe that all the above reductions can be performed in AC
0. More-

over, they allow us to transfer data complexity bounds, since the programs and facts we

construct in the reductions do not depend on input datasets.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 31

4 Undecidability over the rational timeline

In this section we focus on the rational timeline, so let us fix T = Q. In this setting,

standard reasoning problems are PSpace-complete in data complexity for positive pro-

grams (Wa�lȩga et al . 2019), as well as for programs with negation, if they are strati-

fied (Tena Cucala et al . 2021).

We next show that, in stark contrast with the positive case, reasoning in DatalogMTL¬

is undecidable. Furthermore, undecidability holds even for programs that are proposi-

tional, forward-propagating and considered to be fixed, and even if the input datasets

are bounded.

Theorem 4.1

Checking whether a propositional DatalogMTL¬FP and a bounded dataset have a stable

model over the rational timeline is undecidable with respect to data complexity.

Proof

Let M = (Σ,Q, δ, qinit, qhalt) be a deterministic Turing machine with Σ the input al-

phabet, Q the set of states, δ : Σ� × (Q \ {qhalt}) −→ Σ� ×Q × {L,R} the transition

function for Σ� = Σ∪{�} and blank symbol �, L and R the symbols indicating the head

movements, and qinit, qhalt ∈ Q the initial and halting states. Without loss of generality,

we assume that M never tries to move to the left of the left-most cell of the tape.

We construct a propositional DatalogMTL¬FP program ΠM and then reduce (in AC
0)

every input word w to a dataset Dw with only bounded intervals so that M halts on w

if and only if ΠM and Dw do not have a stable model.

We represent, for each i ≥ 1, the ith configuration in the computation of M on input

w within the interval [2i, 2i + 2), as illustrated in Figure 1, where we assume that in the

configuration the state is q, the head is over the jth cell, and the contents of the first

|w|+ i cells of the tape are symbols s1, . . . , s|w|+i (in the ith configuration, only the first

|w| + i cells can be non-empty). The state is encoded within the first half [2i, 2i + 1] of

the interval: a proposition Sq holds at some time point within [2i, 2i + 1]. The contents

of the tape and the head position are encoded within the second half (2i + 1, 2i + 2)

of the interval; in particular, |w| + i time points ti1 < · · · < ti|w|+i in (2i + 1, 2i + 2) are

used so that, for each j ∈ {1, . . . , |w|+ i}, proposition Csj holds at tij , encoding the fact

that sj are the contents of the jth cell in the configuration, and proposition H holds

at tij , encoding the fact that the head is over the jth cell in the configuration. We also

use additional propositions: S, which holds all through [2i, 2i+ 1] and ensures that these

intervals are only used to encode states; N , which holds at a single new time point in

(2i + 1, 2i + 2) beyond ti|w|+i and will allow us to increase the number of time points

encoding cells; N and H, which simulate negations of N and H, respectively; C, which

2i 2i+ 1 2i+ 2

Sq

ti1

Cs1

ti|w|+i

Cs|w|+i N

tij

H,Csj

.

state tape contents

Fig. 1. Encoding of the ith configuration.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

32 P. A. Wa�lȩga et al.

marks points not used to encode the tape contents, and L, used for encoding left-moving

transitions.

The first block of rules in ΠM consists of the following rules, for each X ∈ {N,H} and

s ∈ Σ�:

X ← notX, X ← notX, ⊥ ← X ∧X, ⊥ ← X ∧�(0,1)X,

X ← S, N ← Cs, H ← C, ⊥ ← S ∧ (C ∧N)S(0,1)Cs.

The first three rules state that, at each time point, either X or X holds. The fourth

rule states that X cannot hold twice in an open interval of length 1. By the fifth rule,

X and S cannot hold at the same time point. The sixth rule states that N holds in

all time points encoding cells. The second to last rule states that H does not hold in

time points that do not encode cells. The last rule ensures that after time point ti|w|+i

encoding the last relevant cell in the ith configuration, there is another time point within

(2i + 1, 2i + 2) where N holds. Note that the last rule uses conjunction within a metric

operator, which is not syntactically allowed, but can be easily simulated by replacing

C ∧N with a fresh proposition P and adding a rule P ← C ∧N ; this abbreviation will

be useful for simplifying other formulas used later on in the reduction.

The second block consists of the following rules, propagating propositions to the in-

terval encoding the consequent configuration, for every s ∈ Σ�:

�2S ← S, �2C ← C ∧N, �2C� ← N ∧�(0,∞)Sqinit , �2Cs ← Cs ∧H.

By the first rule, S is always propagated into the future from t to t+ 2. The second rule

states that, if t does not encode a cell and N holds therein, then t+ 2 does not encode a

cell either. By the third rule, if N holds at t and this t is to the right of the time point

encoding the initial state, then t + 2 encodes an empty cell. The last rule states that, if

t encodes a cell with contents s and the head is not on this cell, then t + 2 also encodes

a cell with contents s.

We next encode the left-moving transitions. Proposition L is used to indicate a time

point encoding a cell such that the head was on it in the previous configuration and then

moved to the left. Program ΠM contains the following rules for every s ∈ Σ and q ∈ Q

with transition δ(s, q) = (s′, q′, L), and every s∗ ∈ Σ:

�2L ∧�1Sq′ ∧�2Cs′ ← H ∧ Cs ∧�(0,2)Sq,

⊥ ← L ∧�(0,1)H,

⊥ ← L ∧�(0,1)(Cs∗ ∧�(0,1)H).

The first rule simulates the transition: H holds as intended, the state is changed from

q to q′, and the contents of the cell under the head change from s to s′ (the conjunction

in the head is used for brevity and can be simulated by several rules). The last two rules

encode the position of the head in the consequent configuration, by stating that H holds

at the first time point encoding a cell to the left of the time point with L.

Similarly, for each transition δ(s, q) = (s′, q′,R) moving the head to the right and any

s∗ ∈ Σ, program ΠM has the rules

�1Sq′ ∧�2Cs′ ← H ∧ Cs ∧�(0,2)Sq,

�2H ← Cs∗ ∧ CS(0,1)(H ∧ Cs) ∧�(0,2)Sq,

�2H ← N ∧ CS(0,1)(H ∧ Cs) ∧�(0,2)Sq.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 33

Here, the first rule encodes the change of the state and the contents of the cell above

which the head is. The last two rules simulate the change of the position of the head.

Finally, ΠM contains rule ⊥ ← Sqhalt , which yields an inconsistency when the halting

state is reached.

We next reduce an input word w = s1 . . . s|w| to a dataset Dw. Assuming that w is

non-empty, we let tk = 1 + k
|w|+1 for each k ∈ {1, . . . , |w|} (it is only important here that

1 < t1 < · · · < t|w| < 2); then, Dw contains the facts:

S@[0, 1], N@[0, 1], H@[0, 1], Sqinit@1, H@t1,

Cs1@t1, . . . , Cs|w|@t|w|, C@(1, t1), C@(t1, t2), . . . , C@(t|w|, 2).

Intuitively, Dw describes the initial configuration of M on w within [0, 2); the initial state

is encoded in 1 and t1, . . . , t|w| encode the first |w| cells of M. Moreover, C holds in all

other time points in (1, 2), whereas N and H hold in [0, 1].

We next show that ΠM and Dw have a stable model if and only if M does not halt on w.

Assume that T is a stable model of ΠM and Dw. Then, using induction over i ∈ N, we can

prove that the ith configuration in the computation of M on w is encoded as discussed

above. In particular, if q is the state of M in the ith configuration, then T, t |= Sq for

some t ∈ [2i, 2i + 1]. Since T is a model of ΠM, however, it satisfies the rule ⊥ ← Sqhalt ;

therefore, the state qhalt cannot occur in any configuration in the computation of M on

w, and so M does not halt on w.

For the opposite direction assume that M does not halt on w. Then, we let T be the

minimal interpretation which satisfies Dw and the following statements, for every positive

integer i, where we let tij = 2i+ 1 +
∑j

k=1
1
2k

for each j ∈ N (this definition ensures that

there are infinitely many time points of the form tij in interval (2i + 1, 2i + 2)):

– T |= S@[2i, 2i + 1],

– T, tij |= Cs, whenever s are the contents of the jth cell of M in the ith step of

computation on w, for j ∈ {1, . . . , |w|+ i},
– T, t |= C, for each t ∈ (2i, 2i + 1) \ {ti1, . . . , ti|w|+i},
– T, ti|w|+i+1 |= N and T, t′ |= N for each t′ ∈ [2i, 2i + 2) \ {ti|w|+i+1},
– T, tij |= H if the head of M is above the jth cell in the ith step of its computation

on w,

– T, t |= H for each t ∈ [2i, 2i + 2)\{tij}, for j such that the head of M is above the

jth cell in the ith step of its computation on w,

– T, ti+1
j |= L if the head of M is above the jth cell in the ith step of its computation

on w,

– T, tij +1 |= Sq if T, tij |= H and M is in the state q in the i+1th step of computation

on w.

Clearly, (T,T) is an HT-model of Dw, and it can be also verified, by inspecting the

rules in ΠM, that (T,T) is an HT-model of ΠM. Finally, to show that (T,T) is a stable

model of ΠM and Dw, we need to show that T = HT
ΠM,Dw

. Towards this goal, we first

construct the sequence H0, H1 of interpretations as in the proof of Theorem 3.4, for which

it holds that Hω1
= HT

ΠM,Dw
. Then we can easily show, using transfinite induction, that

for each i ∈ N and each relational fact M@t with t ∈ [2i, 2i + 2), T |= M@t if and only

if Hi |= M@t, and also that Hi |= M@t if and only if HT
ΠM,Dw

|= M@t, which together

imply T = HT
ΠM,Dw

.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

34 P. A. Wa�lȩga et al.

Observe that the reduction above shows undecidability of reasoning in DatalogMTL¬

over the rational timeline, even if we restrict our attention to fixed propositional programs

in the forward-propagating fragment, and we consider only bounded datasets. In the next

section, we turn our attention to the integer timeline and show that reasoning becomes

decidable.

5 Decidability over the integer timeline

In this section we consider the integer timeline and thus we fix T = Z. We will show that,

in this case, reasoning becomes decidable in ExpSpace with respect to data complex-

ity; furthermore, complexity drops to PSpace if we restrict our attention to forward-

propagating programs and datasets mentioning only bounded intervals – a setting well-

suited for stream reasoning (Wa�lȩga et al . 2019; Ronca et al . 2018). In this setting, the ad-

ditional expressive power provided by stable models comes at no computational cost since

reasoning in the corresponding positive fragment is already PSpace-complete (Wa�lȩga

et al . 2020a; 2019).

In prior work on positive and stratifiable programs, upper bounds for reasoning have

been established by constructing generalised Büchi automata that accept (words de-

scribing) models of a given program and dataset (Wa�lȩga et al . 2020a; Tena Cucala

et al . 2021). Checking existence of a stable model is more demanding, as we additionally

need to ensure model minimality as in Definition 3.5; this requirement is non-trivial,

and we will handle it differently for the cases of arbitrary and forward-propagating

programs.

In the general case (Section 5.1), we construct two kinds of left- and right-moving

automata: the first kind allows us to check existence of an HT-model of the form (T,T),

while the second kind allows us to check existence of an HT-model of the form (H,T) with

H �= T. Then, a pair of words ←−w and −→w that are accepted, respectively, by a pair of left-

and right-moving automata of the first kind, but not by any pair of left and right-moving

automata of the second kind, represents a stable model. This construction is conceptually

similar to that of Cabalar and Demri (2011) for a logic with linear temporal operators

and involves complementing nondeterministic automata, which leads to an exponential

blowup. Consequently, we obtain an ExpSpace upper bound and thus an exponential

gap in data complexity with respect to positive programs (Wa�lȩga et al . 2020a). In the

case of forward-propagating programs (Section 5.2) we propose a different construction

exploiting the fact that rules propagate information in a single temporal direction. This

allows us to build automata that guarantee model minimality without complementation.

As a result, we can establish a tight PSpace bound in data complexity.

5.1 General programs

It will be convenient for our presentation to assume that programs are in a normal

form analogous to that by Tena Cucala et al . (2021) for stratifiable programs: in each

normalised rule the head is a relational atom or ⊥, there is neither nesting of metric

operators nor occurrences of � or � in rule bodies, and the only unbounded interval

allowed is [0,∞).

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 35

Proposition 5.1

Each program Π can be normalised in polynomial time into a program Π′ such that, for

each dataset D , program Π and dataset D have a stable model if and only if so do Π′

and D .

Proof

To construct Π′ we first delete all (trivial) rules having
 as the head. Then, we eliminate

from the remaining rule heads metric operators (i.e., boxes). To this end, we replace each

rule of the form �1
�1

. . .�n
�n
P (s)← B, where n ≥ 0, each �i is either � or �, and B is

the body of the rule, with rules P ′(s)← B and P (s)← ◇1
�1
· · ·◇n

�n
P ′(s), where ◇i = �

if �i = � and otherwise ◇i = �, and P ′ is a fresh predicate of the same arity as P .

Second, we iteratively eliminate nested temporal operators from rule bodies. To this

end, consider a rule r whose body has an occurrence M of a metric atom that mentions

only one temporal operator and which is in the scope of some other temporal operator.

If M is of one of the forms ��P (s), ��P (s), ��P (s), or ��P (s), then we replace it with

P ′(s) and add a rule P ′(s) ← M , where P ′ is a fresh predicate of the same arity as P .

If M mentions S or U , we need to proceed in a special way to ensure safety of the new

rules. If M is of the form P1(s1)S�P2(s2), we remove r and proceed as follows (note that

the conditions below are not exclusive):

– if 0 ∈ �, we add the rule obtained by replacing M in r with P2(s2),

– if 1 ∈ �, we add the rule obtained by replacing M in r with �1P2(s2),

– we add the rule P ′(s1, s2)← P1(s1)S�P2(s2) ∧�[0,∞)P1(s1) and the rule obtained

by replacing M in r with P ′(s1, s2), where P ′ is a fresh predicate whose arity equals

the sum of arities of P1 and P2.

If M is of the form P1(s1)U�P2(s2), we proceed analogously to the case when M is of

the form P1(s1)S�P2(s2), but instead of � and � we use, respectively, � and � in the

new rules. Moreover, if M mentions
 or ⊥, we treat these symbols as nullary predicates

and proceed as before.

Next, we eliminate diamond operators by replacing ��M and ��M with, respectively,

S�M and
U�M . Finally, we eliminate unbounded intervals � different from [0,∞)

as follows. If a rule r mentions ��P (s), we replace this ��P (s) with �tP (s) and add a

rule P ′(s)← �[0,∞)P (s), where � is either � or �, t is the least natural number in �

(so t ≥ 1), and P ′ is a fresh predicate of the same arity as P . In the case of operators S

and U we need to pay special attention to ensure that the new rules are safe. Assume

that a rule r mentions M = P1(s1)S�P2(s2) with an unbounded � �= [0,∞). We remove

r and proceed as follows, for t the least natural number belonging to �:

– if 1 ∈ �, we add the rule obtained by replacing M in r with �1P2(s2),

– if 1 �∈ �, we add the rule obtained by replacing M in r with �tP2(s2)∧�(0,t)P1(s1)

– we add the rule P ′(s1, s2) ← P1(s1)S[0,∞)P2(s2) ∧ P1(s1), and the rule obtained

by replacing M in r with �tP
′(s1, s2) ∧ �(0,t]P1(s1), where P ′ is a fresh predicate

whose arity equals the sum of arities of P1 and P2.

In the case of atoms mentioning U , as well as
 or ⊥, we proceed analogously.

In the remainder of this section, we fix a normalised program Π and a dataset D ,

and let ground(Π,D) be the subset of ground(Π) mentioning only constants from Π and

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

36 P. A. Wa�lȩga et al.

D . Then, at(Π,D) is the set consisting of all relational atoms in D , all metric atoms

in ground(Π,D), and all metric atoms of the forms �[0,∞)M and �[0,∞)M , with M a

relational atom mentioned in ground(Π,D).

We next define the notion of a window – a fragment of an HT-interpretation over a

particular interval; such windows will serve as states of our automata.

Definition 5.2

A window is a tuple (�,H, T, b), where � is a closed (and hence bounded) interval, b ∈
{0, 1}, and H and T are sets of metric facts of the form M@t satisfying the following

conditions:

– M ∈ at(Π,D), t ∈ �, and H ⊆ T ;

– there exist interpretations H and T such that, for each M ∈ at(Π,D) and t ∈ �,

– M@t ∈ H if and only if H |= M@t, and

– M@t ∈ T if and only if T |= M@t.

The window’s length is the length of �. Finally, we say that a window is initial if either

H = T and b = 0, or H �= T and b = 1.

Intuitively, a window (�,H, T, b) is a fragment of an HT-interpretation (H,T) restricted

to �, where H and T describe facts holding within � in H and T, respectively. Windows

will serve as states of the automata recognising word representations of specific HT-

interpretations, and in this process the flag b is used to distinguish between stable and

non-stable models; in particular, our automata will ensure that flag b is set to 1 in

each state W of a run such that H �= T in either W or in some previous state of this

run.

By definition, a window can be extended to an HT-interpretation. This HT-

interpretation can be an HT-model of Π only if the window locally satisfies Π, which

we define next.

Definition 5.3

A window (�,H, T, b) locally satisfies Π if, for each rule of Form (1) in ground(Π) and

each t ∈ �, both of the following hold:

– M@t ∈ H if Mi@t ∈ H for each i ∈ {1, . . . , k} and Mj@t /∈ T for each j ∈
{k + 1, . . . ,m},

– M@t ∈ T if Mi@t ∈ T for each i ∈ {1, . . . , k} and Mj@t /∈ T for each j ∈ {k +

1, . . . ,m}.
Next, given an initial window W0, we define automata A←W0

and A→W0
, which will allow

us to recognise HT-models of Π that extend W0. In particular, if A←W0
and A→W0

accept

words ←−w and −→w respectively, then we will be able to construct an HT-model extending

W0, for which the part located to the left of W0 is described by ←−w , and the part to the

right of W0 by −→w .

Definition 5.4

Let W0 = (�0, H0, T0, b0) be an initial window locally satisfying Π. Then, A←W0
=

(Q,Σ, δ, q0, F) is the generalised nondeterministic Büchi automaton with the following

components:

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 37

1. the states Q consist of all windows of the the same length as W0 locally satisfying

Π;

2. the alphabet Σ is the set of all σ ⊆ at(Π,D);

3. the transition function δ : Q×Σ→ 2Q is such that (�′, H ′, T ′, b′) ∈ δ
(
(�,H, T, b), σ

)
if

– �′ = [�− − 1, �+ − 1],

– M@t ∈ H ′ if and only if M@t ∈ H, for every M ∈ at(Π,D) and t ∈ �′ ∩ �,

– T ′ = {M@t′ ∈ T | t′ ∈ �′} ∪ {M@(�−− 1) |M ∈ σ}, and

– b′ = 1 whenever b = 1 or H ′ �= T ′, and b′ = 0 otherwise;

4. the initial state q0 is W0;

5. the accepting condition F is the family of sets of states which contains, for every

atom �[0,∞)M ∈ at(Π,D), the sets

{(�,H, T, b) ∈ Q | there exists t ∈ � such that �[0,∞) M@t ∈ H or M@t /∈ H},
{(�,H, T, b) ∈ Q | there exists t ∈ � such that �[0,∞) M@t ∈ T or M@t /∈ T},

and, for each M1S[0,∞)M2 ∈ at(Π,D), the sets

{(�,H, T, b) ∈ Q | there exists t ∈ � such that M1S[0,∞)M2@t /∈ H or M2@t ∈ H},
{(�,H, T, b) ∈ Q | there exists t ∈ � such that M1S[0,∞)M2@t /∈ T or M2@t ∈ T}.

The automaton A→W0
is defined analogously, except that we let �′ = [�− + 1, �+ + 1], in

the definition of T ′ we replace �−−1 with �++1, and in the definition of F we use � and

U instead of � and S , respectively.

Accepting runs of these automata will correspond to HT-interpretations. Indeed, as we

will show next, each HT-interpretation can be decomposed into an infinite sequence of

windows . . . ,W−1,W0,W1, . . . such that W0,W−1, . . . and W0,W1, . . . are accepting runs

of A←W0
and A→W0

, respectively. We define the decomposition of an HT-interpretation as

follows.

Definition 5.5

We define the �-decomposition of an HT-interpretation (H,T), for a bounded interval �,

as the sequence of tuples Wi = (�i, Hi, Ti, bi), for i ∈ Z, such that the following hold:

– �i = [�− + i, �+ + i],

– Hi is the set of all facts M@t such that M ∈ at(Π,D), t ∈ �i, and H |= M@t,

– Ti is the set of all facts M@t such that M ∈ at(Π,D), t ∈ �i, and T |= M@t,

– bi = 1 if there exists j ∈ {0, . . . , i} such that Hj �= Tj ; otherwise, bi = 0.

Lemma 5.6

Let � be a bounded interval, let a sequence of tuples Wi = (�i, Hi, Ti, bi), with i ∈ Z, be a

�-decomposition of an HT-model (H,T) of Π, and let ←−w = σ−1σ−2 · · · and −→w = σ1σ2 · · ·
be the words such that σk = Tk \ Tk+1 for k < 0 and σk = Tk \ Tk−1 for k > 0. Then the

following hold:

1. each Wi is a window locally satisfying Π,

2. W0,W−1, . . . is an accepting run of A←W0
on ←−w , and

3. W0,W1, . . . is an accepting run of A→W0
on −→w .

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

38 P. A. Wa�lȩga et al.

Proof

To show that Statement 1 holds, we start by observing that each Wi satisfies all the

conditions from Definition 5.2 of a window. Indeed, by Definition 5.5, Hi and Ti are sets

of metric facts M@t with M ∈ at(Π,D) and t ∈ �i such that Hi ⊆ Ti, whereas bi ∈ {0, 1};
moreover, H and T witness existence of the interpretations required in Definition 5.5.

Furthermore, since (H,T) is an HT-model of Π, each Wi locally satisfies Π.

To prove that Statement 2, we observe that W0 is an initial window by construction, so

the automaton A←W0
= (Q,Σ, δ, q0, F) is well-defined. By the definition of the transition

function δ of A←W0
(see Definition 5.4) as well as by the construction of W0,W−1, . . .

and ←−w = σ−1σ−2 . . . , we get that Wi−1 ∈ δ(Wi, σi−1), for each integer i ≤ 0. Thus,

W0,W−1, . . . is a run of A←W0
on ←−w . It remains to show that this run is accepting, that

is, for every set S in the accepting condition F , there are infinitely many integers i < 0

such that Wi ∈ S. Towards a contradiction suppose that there exists S ∈ F which does

not satisfy this property. Thus, there exists i ≤ 0 such that Wj /∈ S, for all j ≤ i. Assume

first that S is of one of the following forms

{(�′, H, T, b) ∈ Q | there exists t ∈ �′ such that �[0,∞) M@t ∈ H or M@t /∈ H}, or

{(�′, H, T, b) ∈ Q | there exists t ∈ �′ such that �[0,∞) M@t ∈ T or M@t /∈ T},
for some �[0,∞)M ∈ at(Π,D). As a result, I �|= �[0,∞)M@t and I |= M@t, for each

t ≤ �−i , where the interpretation I is either H or T, depending whether S is of the first

or the second form presented above. This, however, contradicts the semantics of �[0,∞).

It remains to consider the case where S is of one of the following forms

{(�′, H, T, b) ∈ Q | there exists t ∈ �′ such that M1S[0,∞)M2@t /∈ H or M2@t ∈ H}, or

{(�′, H, T, b) ∈ Q | there exists t ∈ �′ such that M1S[0,∞)M2@t /∈ T or M2@t ∈ T},
for some M1S[0,∞)M2 ∈ at(Π,D). Then, I |= M1S[0,∞)M2@t and I �|= M2@t, for each

t ≤ �−i , where I is either H or T, depending whether S is of the first or the second

form presented above. This directly contradicts the semantics of S[0,∞). Consequently,

W0,W−1, . . . needs to be an accepting run of A←W0
on ←−w .

The proof of Statement 3 is analogous to the proof of Statement 2, due to the symmetry

between the automata A←W0
and A→W0

.

To check existence of a stable model, however, we require automata that recognise

HT-models (H,T) with H = T, and automata that recognise HT-models (H,T) with

H � T. The intersection of the former with the complement of the latter allows us to

recognise stable models – that is, essentially, HT-models (T,T) for which there are no

models (H,T) with H � T. To this end, we define two more types of automata as follows:

Definition 5.7

Let W0 = (�0, H0, T0, b0) be an initial window locally satisfying Π. We define non-

deterministic generalised Büchi automata B←W0
, B→W0

and C←W0
, C→W0

as follows:

– if H0 = T0 and b0 = 0, the automata B←W0
and B→W0

are defined as A←W0
and A→W0

,

respectively, except that for a window (�,H, T, b) to be a state we additionally

require that H = T ,

– the automata C←W0
and C→W0

are defined as A←W0
and A→W0

, respectively, except that

we add to the accepting condition the set {(�,H, T, b) ∈ Q | b = 1}.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 39

Intuitively, if W0 satisfies D , then the automata B←W0
and B→W0

recognise interpretations

T such that (T,T) is an HT-model of Π and D . Furthermore, interpretations T accepted

by A←W0
and C→W0

, or by C←W0
and A→W0

are such that (H,T) is an HT-model of Π and

D , for some H � T. Hence, as we show next, we can use these automata to recognise

stable models. This, however, requires the additional assumption that the windows in

the automata are long enough to allow for capturing the semantics of metric operators

occurring in a program. To this end, we will use windows of the same length as the

interval �(Π,D) = [tmin
D , tmax

D + tΠ]. If the length of an initial window W0 is as required,

then we can reduce checking existence of a stable model to checking particular properties

of our automata, as stated next.

Theorem 5.8

Program Π and dataset D have a stable model if and only if there exists an initial window

W0 = (�0, T0, T0, 0) locally satisfying Π with �0 = �(Π,D) and T0 |= D , and there exist

words ←−w and −→w over 2at(Π,D) such that both of the following hold:

1. ←−w and −→w are accepted by B←W0
and B→W0

, respectively,

2. there is no initial window W ′
0 = (�0, H0, T0, b0) locally satisfying Π such that H0 |=

D , and←−w and −→w are accepted either by C←W ′
0

and A→W ′
0
, respectively, or by A←W ′

0
and

C→W ′
0
, respectively.

Proof

Assume that T is a stable model of Π and D . We will show how to construct the required

W0, ←−w , and −→w . To this end, let . . . ,W−1,W0,W1, . . . be the �(Π,D)-decomposition of

(T,T) with Wi = (�i, Hi, Ti, bi), for each i ∈ Z. By Definition 5.5, we obtain that Hi = Ti

and bi = 0, for all i ∈ Z; furthermore, W0 locally satisfies Π by Lemma 5.6. Finally,

we have �0 = �(Π,D), which ensures T0 |= D , so W0 satisfies the initial requirements

from the theorem. Next, let ←−w = σ−1σ−2 · · · and −→w = σ1σ2 · · · be the words such that

σk = Tk \ Tk+1 if k < 0, and σk = Tk \ Tk−1 if k > 0. It remains to show that W0, ←−w ,

and −→w satisfy Conditions 1 and 2 from the theorem.

To show that Condition 1 holds, we observe that, by Lemma 5.6, W0,W−1, . . . is an

accepting run of A←W0
on←−w , and W0,W1, . . . is an accepting run of A→W0

on −→w . Moreover,

since Hi = Ti and bi = 0 for all i ∈ Z, we obtain that W0,W−1, . . . is an accepting run of

B←W0
on ←−w , and W0,W1, . . . is an accepting run of B→W0

on −→w .

Next, let us suppose towards a contradiction that there exists W ′
0 = (�′0, H

′
0, T

′
0, b
′
0)

witnessing a violation of Condition 2. Hence, W ′
0 is an initial window locally satisfying

Π such that �′0 = �0, T ′0 = T0, and H ′0 |= D . Moreover, we assume that ←−w and −→w are

accepted by C←W ′
0

and A→W ′
0
, respectively. Hence, C←W ′

0
has an accepting run W ′

0 ,W
′
−1, . . .

on←−w and A→W ′
0

has an accepting run W ′
0 ,W

′
1 , . . . on −→w , where we let W ′

i = (�′i, H
′
i, T
′
i , b
′
i),

for all i ∈ Z. Clearly, �′i = �i, for all i ∈ Z. Moreover, by the definition of the transition

functions of the automata and the construction of ←−w and −→w , we obtain that T ′i = Ti,

for all i ∈ Z. Therefore, T is the least model of all relational facts in
⋃

i∈Z T
′
i . We let

H be the least model of all relational facts in
⋃

i∈Z Hi; we will show that (H,T) is an

HT-model of Π and D .

Since H ′i ⊆ T ′i , for all i ∈ Z, we obtain that H ⊆ T, and so (H,T) is an HT-

interpretation. Moreover, (H,T) is an HT-model of D , as H ′0 |= D . Next we will show

that (H,T) is an HT-model of Π. Since each W ′
i is a window of length [tmin

D , tmax
D + tΠ]

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

40 P. A. Wa�lȩga et al.

(which is the length of �(Π,D)), it holds that H |= M@t if and only if M@t ∈ H ′i; as well

as T |= M@t if and only if M@t ∈ T ′i , for any M ∈ at(Π,D) and t ∈ �′i. Indeed, we have

shown an analogous statement for positive (Wa�lȩga et al . 2019, Lemma 9) and stratifiable

programs (Tena Cucala et al . 2021), and the same argument applies here. Now, to show

that (H,T) is a model of Π, we fix a ground rule from ground(Π,D) of Form (1) and a

time point t. If H, t |= Mi for all i ∈ {1, . . . , k} and T, t �|= Mj for all j ∈ {k + 1, . . . ,m},
then Mi@t ∈ H ′n for all i ∈ {1, . . . , k} and Mj@t /∈ Tn for all j ∈ {k+ 1, . . . ,m}, for each

n such that t ∈ �′n. Since W ′
n is a window locally satisfying Π, we obtain that M@t ∈ Hn

(where M is the head of r), which implies H, t |= M by definition of H and the fact that

Π is in normal form so M is a relational atom. Similarly, if T, t |= Mi for all i ∈ {1, . . . , k}
and T, t �|= Mj for all j ∈ {k + 1, . . . ,m}, then we obtain that T, t |= M . Hence, (H,T) is

indeed an HT-model of Π.

However, the accepting condition of C←W ′
0

guarantees that b′i = 1, for some i ≤ 0, and

so H ′i � T ′i . Therefore, H � T, and so T is not a stable model, which rises a contra-

diction. If ←−w and −→w are accepted by A←W ′
0

and C→W ′
0
, respectively, then we construct in

an analogous way a run W ′
0 ,W

′
−1, . . . of A←W ′

0
and a run W ′

0 ,W
′
1 , . . . of C→W ′

0
. Repeat-

ing the argumentation above, we construct an HT-model (H,T) of Π and D , and then,

we show that there exists i ≥ 0 such that b′i = 1. Thus, H ′i � T ′i , so H � T, and

consequently, T is not a stable model, raising again a contradiction. Thus, Condition 2

holds.

For the converse implication, assume that there exist W0,←−w , and −→w as described in the

statement of the theorem. By Condition 1, there is an accepting run W0,W−1, . . . of B←W0

on←−w , and an accepting run W0,W1, . . . of B→W0
on −→w , where Wi = (�i, Ti, Ti, 0). We argue

that the least model T of relational facts in
⋃

i∈Z Ti is a stable model of Π and D . By an

argument analogous to the second to last paragraph above, (T,T) is an HT-model of Π

and D . Suppose for contradiction that T is not stable, so there exists H � T such that

(H,T) is an HT-model of Π and D . Let . . . ,W ′
−1,W

′
0 ,W

′
1 , . . . be the �(Π,D)-decomposition

of (H,T), with W ′
i = (�′i, H

′
i, T
′
i , b
′
i), and observe that W ′

0 is an initial window. By Lemma

5.6, W ′
0 ,W

′
−1, . . . is an accepting run of A←W ′

0
on ←−w , and W ′

0 ,W
′
1 , . . . is an accepting run

of A→W ′
0

on −→w . Moreover, since H � T, there is i ∈ Z such that H ′i �= T ′i , and so b′i = 1. If

i ≤ 0, then b′j = 1 for all j ≤ i, and so C←W ′
0

accepts ←−w ; analogously, if i ≥ 0, then C→W ′
0

accepts −→w . Thus, Condition 2 does not hold, leading to a contradiction.

Theorem 5.8 reduces checking existence of a stable model to checking specific properties

of our automata. We aim at showing that the latter is feasible in ExpSpace. The main

obstacle, however, is the size of states in the automata: W0 is exponential in size with

respect to D , and states of the automata from Theorem 5.8 can be arbitrarily large since

time points in windows can be arbitrary integers. To remedy the first issue, we let tΠ
be the largest positive number mentioned in Π, and we let tΠ = 1 if Π mentions no

positive numbers – this choice of value is arbitrary since in this case we only need tΠ to

be a positive number in the timeline. Then, we show in Lemma 5.10 that it suffices to

consider automata with states (i.e., windows) of length tΠ, which does not depend on D .

The second issue is addressed by Lemma 5.13 which tells us that, rather than considering

automata with states of unbounded size (each of length tΠ), we can construct equivalent

automata with polynomial-size states instead.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 41

To state Lemma 5.10, we define the left-most and right-most fragments of length tΠ
of a window as follows.

Definition 5.9

For a window W = (�,H, T, b) of length at least tΠ, we define W L = (�L, HL, TL, bL),

where

– �L = [�−, �− + tΠ],

– HL = {M@t ∈ H | t ∈ �L},
– TL = {M@t ∈ T | t ∈ �L},
– bL = 1 if HL �= TL; otherwise, bL = 0.

Analogously, we let W R = (�R, HR, TR, bR), where

– �R = [�+ − tΠ, �
+],

– HR = {M@t ∈ H | t ∈ �R},
– TR = {M@t ∈ T | t ∈ �R},
– bR = 1 if HR �= TR; otherwise, bR = 0.

We observe that if W is a window locally satisfying Π, then W L and W R (which are

“fragments” of W) also are windows locally satisfying Π. Furthermore, both W L and

W R are initial windows by definition. Thus, if W0 is such that X←W0
and X→W0

are well-

defined automata, for some X ∈ {A ,B,C }, then X←
W L

0
and X→

W R
0

are also well-defined

automata. Moreover, we can show several equivalences between these automata.

Lemma 5.10

Let X ∈ {A ,B,C } and let W0 = (�0, H0, T0, b0) be a window such that X←W0
and X→W0

are well-defined. Then, the following statements hold:

1. If X ∈ {A ,B}, then X←W0
and X→W0

are equivalent to X←
W L

0
and X→

W R
0

, respectively.

2. If X = C and H0 = T0, then X←W0
and X→W0

are equivalent to X←
W L

0
and X→

W R
0

,

respectively.

3. If X = C and H0 �= T0, then X←W0
and X→W0

are equivalent to A←
W L

0
and A→

W R
0

,

respectively.

Proof

First, we show Statement 1 for X = A . Assume that W0,W−1, . . . is an accepting

run of A←W0
on a word w = σ−1, σ−2, We will show that there is an accepting run

W ′
0 ,W

′
−1, . . . of A←

W L
0

on the same word. To define this run, for each integer i ≤ 0, we

let W L
i = (�i, Hi, Ti, bi), and we define W ′

i = (�i, Hi, Ti, b
′
i), where b′i = 1 if there exists

j ∈ {0, . . . , i} such that Hi �= Ti, and otherwise b′i = 0. In particular, W ′
0 = W L

0 . Now,

we will show that W ′
0 ,W

′
−1, . . . is an accepting run of A←

W L
0

on w. We start by observing

that since each Wi is a window locally satisfying Π and since W L
i is a “fragment” of Wi,

then W ′
i is also a window locally satisfying Π. Thus, W ′

0 ,W
′
−1, . . . are states of A←

W L
0

. To

show that they constitute a run of A←
W L

0
on w, we observe that the transition functions

δ of A←W0
and δL of A←

W L
0

are the same modulo definition of states. This observation and

our definition of b′i, ensure that Wi−1 ∈ δ(Wi, σi−1) implies W ′
i−1 ∈ δL(W ′

i , σi−1), for any

integer i ≤ 0. It remains to show that A←
W L

0
accepts the run W ′

0 ,W
′
−1, For this, we

observe that A←W0
and A←

W L
0

have the same accepting conditions modulo the definition

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

42 P. A. Wa�lȩga et al.

of states. Next, let k be the difference between lengths of windows W0 and W L
0 . Observe

that for any integer i ≤ −k, if Wi belongs to some set S from the accepting condition

of A←W0
, then there exists j ∈ [i, i + k] such that W ′

j belongs to a set from the accepting

condition of A←
W L

0
that corresponds to S. Since each set in the accepting condition of A←W0

is visited infinitely often by the states in the run W0,W−1, . . . , each set in the accepting

condition of A←
W L

0
is also visited infinitely often by the states in the run W ′

0 ,W
′
−1,

Thus, the latter is an accepting run of A←
W L

0
. The case of A→

W R
0

is symmetric so, by an

analogous argumentation, we obtain that if A→W0
accepts a word w, then so does A→

W R
0

.

For the opposite direction of Statement 1, let us assume that A←
W L

0
has an accepting run

W L
0 ,W ′

−1,W
′
−2, . . . on a word w = σ−1, σ−2, . . . ; we will show that A←W0

has an accepting

run on w. To facilitate the definition of this run, we divide W0 = (�0, H0, T0, b0) into tuples

W ′
0 , . . . ,W

′
k , where k is the difference between the lengths of W0 and W L

0 . In particular, for

each i ∈ {0, . . . , k}, we define W ′
i = (�′i, H

′
i, T
′
i , b
′
i), such that �′i = [�−0 + k, �−0 + tΠ + k],

H ′i = {M@t ∈ H0 | t ∈ �′i}, T ′i = {M@t ∈ T0 | t ∈ �′i}, whereas b′i = 1 if H ′i �= T ′i and

b′i = 0 if H ′i = T ′i . Recall that since A←W0
is well-defined, W0 is an initial window locally

satisfying Π, and as we already mentioned, by fragmenting windows locally satisfying Π

we obtain windows which also locally satisfy Π. Hence all of W ′
0 , . . . ,W

′
k locally satisfy

Π. Furthermore, observe that W ′
0 = W L

0 . Next, we show how to merge the windows

W ′
k , . . . ,W

′
0 ,W

′
−1, . . . to obtain an accepting run of A←W0

on w. To this end, for arbitrary

windows W = (�,H, T, b) and W ′ = (�′, H ′, T ′, b′) such that � ∩ �′ �= ∅, we define their

union, written as W ∪W ′, as the tuple (� ∪ �′, H ∪H ′, T ∪ T ′,max(b, b′)). We can then

establish the following claim:

Claim 5.11

Let W = (�,H, T, b) and W ′ = (�′, H ′, T ′, b′) be windows such that the left and right

endpoints of �′ succeed those of �, and for each t ∈ �∩�′ and each X ∈ {H,T}, M@t ∈ X

if and only if M@t ∈ X ′. If both W and W ′ are of length at least tΠ and locally satisfy

Π, then W ∪W ′ is a window locally satisfying Π.

Proof of Claim 5.11

Let W ′′ = W ∪ W ′ = (�′′, H ′′, T ′′, b′′). If W and W ′ locally satisfy Π, then clearly W ′′

also locally satisfies Π. It remains to show that W ′′ is a window. To this end, for I an

interpretation, �b a closed interval, and J a set of metric facts M@t with M ∈ at(Π,D)

and t ∈ �b, we say that I corresponds to J over �b if, for every t ∈ �b and M ∈ at(Π,D),

it holds that I |= M@t if and only if M@t ∈ J . To show that W ′′ is a window, the

only non-trivial condition that needs to be verified is that there exist two interpretations

that correspond, respectively, to H ′′ and T ′′ over �′′. We show this for H ′′ only, as the

argument for T ′′ is analogous. Let H (resp. H′) be an interpretation corresponding to H

over � (resp. H ′ over �′); such an interpretation exists, since W (resp. W ′) is a window.

Let H′′ be an arbitrary interpretation that coincides with H over � and all time points

to its left, and with H′ over �′ and all time points to its right. Note that H and H′ agree

over � ∩ �′ since, by assumption, M@t ∈ H if and only if M@t ∈ H ′ for all t ∈ � ∩ �′;
thus, H′′ is well-defined. It remains to show that H′′ corresponds to H ′′ over �′′ – that

is, for each M@t with M ∈ at(Π,D) and t ∈ �′′, we must show that H′′ |= M@t if and

only if M@t ∈ H ′′. We show this explicitly for the case where M is of the form ��b
P ,

for �b a bounded interval and P a relational atom; the remaining cases can be proved in

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 43

a similar way; see Wa�lȩga et al . (2019), Lemma 7. Suppose that t ∈ �. Since H′′ and H

coincide over � and all time points to its left, we have that H′′ |= ��b
P@t if and only

if H |= ��b
P@t. Then, since H corresponds to H over �, it holds that H |= ��b

P@t

if and only if ��b
P@t ∈ H. Finally, since H and H ′′ coincide over �, ��b

P@t ∈ H if

and only if ��b
P@t ∈ H ′′. Thus, by chaining together these double implications, we

have that H′′ |= ��b
P@t if and only if ��b

P@t ∈ H ′′, which is the target equivalence.

Suppose now that t /∈ �, so t is the right endpoint of �′. By the semantics of metric

atoms, H′′ |= ��b
P@t if and only if H′′ |= P@t − t′ for each t′ ∈ �b. Since the length of

�′ is at least tΠ, we have t− t′ ∈ �′ for each t′ ∈ �b. Hence, since H′′ and H′ coincide over

�′, H′′ |= ��b
P if and only if H′ |= ��b

P , and the rest follows by an argument analogous

to the previous case, finishing the proof of Claim 5.11.

We resume the proof of Lemma 5.10. Now, we construct an accepting run of A←W0
on

w as follows. For each integer i < 0, we let Wi = (�i, Hi, Ti, bi) be W ′
i ∪ · · · ∪W ′

i+k with

the exception that bi = 1 if there exists j ∈ {i, . . . , k} such that H ′i �= T ′i and bi = 0

otherwise.

Now, we will show that W0,W−1, . . . is indeed an accepting run of A←W0
on w. To this

end, we observe that each Wi is a window locally satisfying Π, since so is W ′
i ∪ · · · ∪W ′

i+k

by Claim 5.11; furthermore, each Wi it is of the same length as W0. Therefore, each Wi is

a state of the automaton A←W0
. Moreover, the definition of Wi ensures that if there exists

a transition on σi−1 from W ′
i to W ′

i−1 in A←
W L

0
, then there exists a transition on σi−1 from

Wi to Wi−1 in A←W0
, so W0,W−1, . . . is a run of A←W0

on w. Furthermore, if W ′
i belongs to

some set S in the accepting condition of A←
W L

0
, then the bigger window Wi belongs to the

set corresponding to S in the accepting condition of A←W0
. Hence, A←W0

accepts the run

W0,W−1, The case of A→W0
is symmetric, so we obtain that if A→

W R
0

accepts a word

w, then so does A→W0
.

To finish the proof of Statement 1, it remains to consider the case X = B. Recall

that the only difference between the automata of the types A and B is that the latter

impose additional requirement on the windows to be states (see Definition 5.7), namely

for a window W = (�,H, T, b) to be a state, it is required that H = T . This, however,

does not affect our argumentation above, and so, we obtain that B←W0
and B→W0

accept

the same words as B←
W L

0
and B→

W R
0

, respectively.

To show that Statements 2 and 3 hold, we recall that the automata C differ from

automata A only in the existence of an additional set S = {(�,H, T, b) ∈ Q | b = 1}
in their accepting conditions (see Definition 5.7). If W0 = (�0, H0, T0, b0) is such that

H0 = T0, then we can show that C←W0
and C→W0

accept the same words as C←
W L

0
and C→

W R
0

,

respectively, using the same argumentation as in the proof of Statement 1, except for

the following difference. We use the fact that H0 = T0 to ensure that in an arbitrary

accepting run of C←W0
for some word, there exists a window Wi = (�i, Hi, Ti, bi) to the left

of W0 with Hi �= Ti, which in turn allows us to ensure that the corresponding run that

we define for C←
W L

0
contains a “fragment” W ′

j = (�′j , H
′
j , T
′
j , b
′
j) of Wi with H ′j �= T ′j , and

hence the run is accepting. An analogous argument applies to C→W0
. Thus, Statement 2

holds.

However, if W0 = (�0, H0, T0, b0) is such that H0 �= T0 – as in Statement 3 – then

b0 = 1 since W0 is initial, and so, each window in any run of the automata C←W0
and C→W0

will belong to the additional set {(�,H, T, b) ∈ Q | b = 1} from the accepting condition.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

44 P. A. Wa�lȩga et al.

Hence, this additional condition is trivially satisfied by any infinite run, so C←W0
and

C→W0
are equivalent to A←W0

and A→W0
, respectively. Therefore, by Statement 1, we obtain

that C←W0
and C→W0

are also equivalent to A←
W L

0
and A→

W R
0

, respectively, which proves

Statement 3.

Lemma 5.10 allows us to restrict our attention to automata with windows of polynomial

length, but representations of such windows can still be unbounded, because arbitrarily

large integers may occur in them. However, we will show in Lemma 5.13 that we can

construct equivalent automata with states that can be represented in polynomial space,

by merging “similar” states in the original automata. We use a notion of similarity given

by the relation ∼ defined next:

Definition 5.12

Let ∼ be the equivalence relation on windows such that W ∼ W ′ if and only if

W ′ is obtained by increasing all time points mentioned in W by some integer c. Let

[W]∼ be the equivalence class of W with respect to ∼. Then, for any X ∈ {A ,B,C }
and any initial window W0, if automaton X←

W L
0

= (Q,Σ, δ, q0, F) is well-defined, then

X̃←
[W L

0]∼
= (Q̃, Σ̃, δ̃, q̃0, F̃) is the nondeterministic Büchi automaton defined as follows:

1. Q̃ is the quotient set of Q by the relation ∼,

2. Σ̃ = Σ,

3. δ̃ is such that, for any q, q′ ∈ Q̃ and σ ∈ Σ, it holds that q′ ∈ δ̃(q, σ) if and only if

there exist W ,W ′ ∈ Q such that [W]∼ = q, [W ′]∼ = q′, and q′ ∈ δ(q, σ),

4. q̃0 = [q0]∼,

5. F̃ = {S′1, . . . , S′n} is a family of subsets of Q̃ such that q ∈ S′i if and only if there

exists W ∈ Si such that [W]∼ = q;

and if X→
W R

0
= (Q,Σ, δ, q0, F) is well-defined, then automaton X̃→

[W R
0]∼

is defined analo-

gously.

Now we show that the new automata X̃←
[W L

0]∼
and X̃→

[W L
0]∼

are equivalent to the previ-

ously defined automata X←
W L

0
an X→

W L
0

, respectively.

Lemma 5.13

Let X ∈ {A ,B,C } and let W0 = (�0, H0, T0, b0) be an initial window locally satisfying Π

such that X←W0
and X→W0

are well-defined. Then, X←
W L

0
and X→

W R
0

are equivalent to X̃←
[W L

0]∼

and X̃→
[W R

0]∼
, respectively.

Proof

Assume that W0,W−1, . . . is an accepting run of X←
W L

0
on a word w. Then, by Definition

5.12, [W0]∼, [W−1]∼, . . . are states of X̃←
[W L

0]∼
and [W0]∼ = [W L

0]∼. Moreover, by the

definition of the transition function and the accepting conditions of X̃←
[W L

0]∼
, the fact

that W0,W−1, . . . is an accepting run of X←
W L

0
on w implies that [W0]∼, [W−1]∼, . . . is

an accepting run of X̃←
[W L

0]∼
on the same word w. Similarly, we can show that if X→

W R
0

accepts w, then so does X̃→
[W R

0]∼
.

For the opposite direction, let us assume that q0, q−1, . . . is an accepting run of X̃←
[W L

0]∼
on a word w. For each integer i < 0, we let Wi = (�i, Hi, Ti, bi) be a state of X←

W L
0

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 45

such that [Wi]∼ = qi and �i = [�−0 + i, �+0 + i]; such states are guaranteed to exist by

definition of X←
[W L

0]∼
. We show that W0,W−1, . . . is an accepting run of X←

W L
0

on w. To

this end, we will show that for every integer i ≤ 0 and every symbol σ, if qi−1 ∈ δ̃(qi, σ),

then Wi−1 ∈ δ(Wi, σ), where δ̃ and δ are the transition functions of X̃←
[W L

0]∼
and X←

W L
0

,

respectively. Indeed, by definition, if qi−1 ∈ δ̃(qi, σ), then there are states W and W ′

of X←
W L

0
such that [W]∼ = qi, [W ′]∼ = qi−1, and W ′ ∈ δ(W , σ). Hence, Wi ∼ W and

Wi−1 ∼ W ′. This, by the definition of ∼ and the fact that W ′ ∈ δ(W , σ), implies that

Wi−1 ∈ δ(Wi, σ). Therefore, W0,W−1, . . . is a run of X←
W L

0
on w. Finally, since q0, q−1, . . .

is an accepting run of X̃←
[W L

0]∼
, by the definition of accepting conditions, we obtain that

W0,W−1, . . . is an accepting run of X←
W L

0
. The same argumentation shows that if X̃→

[W R
0]∼

accepts w, then X→
W R

0
also does so.

We are now ready to show ExpSpace data complexity of reasoning in DatalogMTL¬

over Z.

Theorem 5.14

Checking whether a DatalogMTL¬ program and a dataset have a stable model over the

integer timeline is in ExpSpace with respect to data complexity.

Proof

It suffices to show that checking existence of W0, ←−w , and −→w from Theorem 5.8 is feasible

in ExpSpace in the size of (the representation of) D . First, we observe that the length of

�(Π,D) is exponential, and so is the representation of windows over �0 = �(Π,D). Thus, it

is feasible in ExpSpace to guess a tuple W0 = (�0, T0, T0, 0) as well as to verify that it is

an initial window locally satisfying Π and such that T0 |= D , as required in Theorem 5.8.

Thus, it remains to check existence of ←−w and −→w satisfying Conditions 1 and 2 from

Theorem 5.8. To this end, we will treat a candidate pair of words w1 = σ−1σ−2 · · · and

w2 = σ1σ2 · · · as a single word w1w2 = (σ−1, σ1)(σ−2, σ2) · · · and combine pairs of corre-

sponding automata so that they accept combined words. In particular, for automata X

and Y , we let XY be an automaton which on a word w1w2 simulates the run of X on w1

and the run of Y on w2, simultaneously. Such an automaton XY is polynomially bigger

than X and Y as its states are pairs consisting of a state of X and a state of Y . Thus,

checking existence of ←−w and −→w from Theorem 5.8 reduces to checking existence of ←−w−→w
such that

(i) ←−w−→w is accepted by B←W0
B→W0

(Condition 1) and

(ii) there exists no W ′
0 (satisfying properties from Condition 2) such that ←−w−→w is ac-

cepted by C←W ′
0
A→W ′

0
or by A←W ′

0
C→W ′

0
.

By Lemmas 5.10 and 5.13, Item (i) reduces to checking if ←−w−→w is accepted by

B̃←
[W L

0]∼
B̃→

[W R
0]∼

and Item (ii) reduces to checking non-existence of W ′
0 = (�0, H0, T0, b)

(satisfying properties from Condition 2) such that ←−w−→w is accepted by the union of the

automata C̃←[(W ′
0)

L]∼
Ã→[(W0)′R]∼

and C̃←[(W0)′L]∼
Ã→[(W ′

0)
R]∼

, if H0 = T0; or by the automaton

Ã←[(W ′
0)

L]∼
Ã→[(W ′

0)
R]∼

, if H0 �= T0.

To perform these checks in ExpSpace, we will characterise each initial window of the

form W ′
0 = (�0, H0, T0, b0) locally satisfying Π and such that H0 |= D – as mentioned

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

46 P. A. Wa�lȩga et al.

in Condition 2 of Theorem 5.8 – by a triple consisting of two initial windows (W ′
0)L,

(W ′
0)R, and a flag b ∈ {0, 1} such that b = 1 if and only if H0 �= T0 (so several windows

can be characterised by the same triple). Now, we will show that a set T of all triples

characterising all such windows W ′
0 can be constructed in ExpSpace. We observe that

all (W ′
0)L are over the same interval �L, which is independent from the choice of the

window W ′
0 , since all W ′

0 are over the same interval �(Π,D). Similarly, (W ′
0)R are over

the same interval �R, which is independent from the choice of W ′
0 . Moreover, these

�L and �R are polynomially long, and so, each (W ′
0)L and (W ′

0)R has a polynomial

representation. Thus, there are exponentially many triples (W1,W2, b) which need to

be checked for membership in T . Our ExpSpace procedure iterates through all these

triples. For each triple (W1,W2, b), the procedure checks if there exists an initial window

W ′
0 = (�0, H0, T0, b0) locally satisfying Π such that H0 |= D , (W ′

0)L = W1, (W ′
0)R = W2,

and b = 1 if and only if H0 �= T0. All these checks are feasible in ExpSpace, and if they

yield positive answers, then (W1,W2, b) ∈ T .

We observe that checking Items (i) and (ii) reduces to checking non-emptiness of an au-

tomaton obtained by intersecting B̃←
[W L

0]∼
B̃→

[W R
0]∼

with complements of all the automata

corresponding to triples from T , where we say that a triple ((W ′
0)L, (W ′

0)R, b) ∈ T

corresponds to the automaton which is the intersection of C̃←[(W ′
0)

L]∼
Ã→[(W0)′R]∼

and

C̃←[(W0)′L]∼
Ã→[(W ′

0)
R]∼

, if b = 0; and which is Ã←[(W ′
0)

L]∼
Ã→[(W ′

0)
R]∼

, if b = 1. To conclude,

we show that this check is feasible in ExpSpace. Indeed, by construction, all automata

mentioned above have states that can be represented in polynomial space. However, since

these automata are nondeterministic, their complements have states of exponential size.

To intersect the exponentially many such complemented automata, we construct an au-

tomaton whose states are exponentially long tuples, whose ith element is a state of the ith

complemented automata. Such an exponentially long tuple of exponentially large states

is itself exponentially representable. Thus, the obtained automaton has exponentially

big states. Checking non-emptiness of this automaton is feasible in ExpSpace using the

standard on-the-fly approach, where states are guessed one-by-one (Baier and Katoen

2008).

The procedure outlined in the proof of the theorem shows that reasoning in

DatalogMTL¬ over the integer timeline is in ExpSpace in data complexity. In the next

section, we show how restricting the form of DatalogMTL¬ programs to the forward-

propagating fragment allows us to establish a tight PSpace bound for data complexity.

5.2 Forward-propagating programs

In this section, we consider reasoning with forward-propagating programs (see Defini-

tion 3.1) and bounded datasets. This setting has already been studied in the context of

stream reasoning (Ronca et al . 2018; Wa�lȩga et al . 2019).

The normalisation of a DatalogMTL¬FP program, as defined in Section 5.1, results also

in a DatalogMTL¬FP program; thus, for the remainder of this section, we let Π be a fixed

(but arbitrary) DatalogMTL¬FP program in normal form and let D be a bounded dataset.

Restricting ourselves to forward-propagating programs and bounded datasets will en-

able a simplification of the procedure in Section 5.1, where we check existence of a stable

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 47

model of Π and D by looking for an initial window W0 and a pair of words ←−w , −→w sat-

isfying the conditions in Theorem 5.8. Towards this goal, we first show in Lemma 5.16

that we can guess the initial window W0 over an interval located to the left of all inter-

vals in D , instead of �(Π,D) as in the previous section. Furthermore, we can use the fact

that Π is forward-propagating to show that checking existence of word ←−w can be done

independently of D . Finally, to check existence of word −→w , we define a new family of

automata of the form F→W0
, which can be used instead of X→W0

, for X ∈ {A ,B,C }; doing

so requires no complementation, and thus we avoid the exponential blowup. As a result,

the procedure becomes feasible in polynomial space.

We next define a new automaton F→W0
as a refinement of B→W0

. Furthermore, we impose

an additional restriction on states of F→W0
to guarantee their minimality, as described

below.

Definition 5.15

We say that a window (�,H, T, b) locally satisfies D if M@t ∈ H for each M ∈ at(Π,D)

and each t ∈ � such that D |= M@t. Let W0 = (�0, T0, T0, 0) be an initial window locally

satisfying Π (see Definition 5.3) and D . We define the generalised Büchi automaton F→W0

analogously to the automaton B→W0
in Definition 5.7, except that:

– states in F→W0
are additionally required to locally satisfy D , and

– the transition function is additionally restricted so that transitions to a window

(�, T, T, 0) are only allowed if there exists no window (�,H, T, 1) locally satisfying

Π and D such that H and T coincide over [�−, �+− 1] and M@�+ ∈ T\H for some

relational atom M .

Note that F→W0
is essentially deterministic since δ(W , σ) contains at most one window

for every state W and σ ∈ Σ. The following lemma provides the result analogous to

Theorem 5.8 for the setting considered in this section.

Lemma 5.16

Program Π and dataset D have a stable model if and only if there exists an initial window

W0 = (�0, T0, T0, 0) locally satisfying Π and D with �0 = [tmin
D − (tΠ + 1), tmin

D − 1], which

mentions only constants and predicates from Π, and there exist words ←−w and −→w over

2at(Π,D) such that all of the following conditions hold:

1. ←−w and −→w are accepted by B←W0
and F→W0

, respectively,

2. there is no initial window W ′
0 = (�0, H0, T0, b0) locally satisfying Π and D such that

←−w is accepted by C←W ′
0
,

3. ←−w mentions only constants and predicates from Π.

Proof

Assume that T is a stable model of Π and D . To construct the required W0, ←−w , and
−→w , we let . . . ,W−1,W0,W1, . . . be the [tmin

D − (tΠ + 1), tmin
D − 1]-decomposition of HT-

interpretation (T,T), and we let Wi = (�i, Hi, Ti, bi). Moreover, we let ←−w = σ−1σ−2 · · ·
and −→w = σ1σ2 · · · be the words such that σk = Tk\Tk+1 if k < 0, and Tk\Tk−1 if k > 0. In

what follows, we will show that the above defined W0,←−w , and −→w satisfy the requirements

from the lemma. First, we observe that Hi = Ti and bi = 0, for each i ∈ Z. Furthermore,

by Lemma 5.6, each Wi is a window locally satisfying Π and, since T is a stable model of

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

48 P. A. Wa�lȩga et al.

Π and D , we obtain that each Wi locally satisfies D . Therefore, as required in the lemma,

W0 is an initial window of the form (�0, T0, T0, 0) with �0 = [tmin
D − (tΠ +1), tmin

D −1], and

it locally satisfies Π and D . Thus, it remains to show that W0 mentions only constants

and predicates from Π and that W0, ←−w , and −→w satisfy Conditions 1–3.

To show that Condition 1 holds, we observe that, by Lemma 5.6, W0,W−1, . . . is an

accepting run of A←W0
; moreover, since Hi = Ti and bi = 0 for all integers i ≤ 0, this

run is also accepting for B←W0
. Analogously, W0,W1, . . . is an accepting run of B→W0

.

Now, suppose towards a contradiction that F→W0
does not accept −→w . Then, by Definition

5.15, there exists a smallest integer i > 0 such that W0, . . . ,Wi−1 is a run of F→W0
on

σ1 · · ·σi−1 (where this word is empty if i = 1), but F→W0
does not have a transition from

Wi−1 to Wi on σi. Next, we will show how to define windows W ′
i ,W

′
i+1, . . . such that

W0, . . . ,Wi−1,W ′
i ,W

′
i+1, . . . is an accepting run of C→W0

on −→w , which will allow us to raise

a contradiction.

Claim 5.17

There exist windows W ′
i ,W

′
i+1, . . . locally satisfying D such that W0, . . . ,Wi−1,W ′

i ,

W ′
i+1, . . . is an accepting run of C→W0

on −→w .

Proof of Claim 5.17

Recall that Wi = (�i, Ti, Ti, 0). Since F→W0
does not have a transition from Wi−1 to Wi

on σi, there exists a window W ′ = (�i, H
′, Ti, 1) locally satisfying Π and D such that

H ′ coincides with Ti over [�−i , �
+
i−1], and there exists an atom M ′ ∈ at(Π,D) satisfying

M ′@�+i ∈ Ti\H ′. We note also that since W ′ is a window and H ′ ⊆ Ti, there exists an

interpretation H′ such that H′ ⊆ T and both items from Definition 5.2 hold. We will use

H′ to define W ′
i ,W

′
i+1, To this end, we will say that an HT-interpretation (H∗,T∗)

satisfies a dataset D and program Π over an interval �∗ if and only if

– for every M@� ∈ D and t ∈ � ∩ �∗ we have H∗, t |= M , and

– (H∗,T∗) satisfy the conditions of Definition 3.2 for each t ∈ �∗.

We can use a construction similar to that in the proof of Theorem 3.4 to define the least

interpretation H such that H′ ⊆ H ⊆ T, H coincides with H′ over (−∞, �−i), and (H,T)

satisfies D and Π over [�−i ,∞). An important observation is that since Π is forward-

propagating and W ′ locally satisfies Π and D , interpretations H′ and H also coincide

over the interval �i.

Now, we let . . . ,W ′
−1,W

′
0 ,W

′
1 , . . . , with W ′

j = (�′j , H
′
j , T
′
j , b
′
j), be the �0-decomposition

of (H,T); hence, �′j = �j and T ′j = Tj , for each j. We observe also that since H coincides

with H′ over (−∞, �+i], H ′i agrees with H ′ on all relational atoms over (−∞, �+i], so

M ′@t ∈ Ti\H ′i, and hence b′j = 1 for each j ≥ i.

We will show that W0, . . . ,Wi−1,W ′
i ,W

′
i+1, . . . is an accepting run of A→W0

on −→w where

all windows locally satisfy D , and then, we will show that this run is also accepted by

C→W0
. To this end, we observe that since W0, . . . ,Wi−1 is a run of F→W0

on σ1 · · ·σi−1, it

is also a run of A→W0
on σ1 · · ·σi−1. Moreover, W ′

i is an initial window, (since H ′i �= Ti

and b′i = 1) and, by an argument analogous to the proof of Lemma 5.6, each W ′
j for

j ≥ i locally satisfies Π and D , and W ′
j ,W

′
j+1, . . . is an accepting run of A→W ′

i
on

σi+1, σi+2, Hence, to show that W0, . . . ,Wi−1,W ′
i ,W

′
i+1, . . . is an accepting run of

A→W0
, it remains to show that A→W0

has a transition on σi from Wi−1 to W ′
i . To do this,

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 49

we first show that H ′i coincides with H ′ over [�−i , �
+
i−1]. Indeed, consider an arbitrary

fact M@t with M ∈ at(Π,D) and t ∈ [�−i , �
+
i−1]; we will show that M@t ∈ H ′i if and

only if M@t ∈ H ′. Note that since Π is forward-propagating, any atom M ∈ at(Π,D)

is either of the form �[0,∞)P (c) for some relational fact P (c), or it does not mention

future operators. Thus, if M does not mention future operators, the biconditional holds

because H and H′ coincide over the interval (−∞, �+i]. Now, suppose M is of the form

�[0,∞)P (c). If �[0,∞)P (c)@t ∈ H ′, then �[0,∞)P (c)@t ∈ H ′i since H ′ ⊆ H ′i by con-

struction of H ′i. Conversely, if �[0,∞)P (c)@t ∈ H ′i, we have that H, t |= �[0,∞)P (c), and

since H ⊆ T, we have T, t |= �[0,∞)P (c), so �[0,∞)P (c)@t ∈ Ti. Then, since H ′ agrees

with Ti over [�−i , �
+
i−1], we conclude that �[0,∞)P (c)@t ∈ H ′. Thus, the biconditional

also holds in this case. With the above result, we can show that there is a transition

in A→W0
from Wi−1 to W ′

i ; we can see this by checking that all the four conditions from

Item 3 in Definition 5.4 hold. The first, third, and fourth conditions hold directly by

the definition of W ′
i and the fact that �′i = �i, T

′
i = Ti, and b′i = 1. The second con-

dition states that H ′i and Hi−1 must coincide over the interval �i−1 ∩ �i. To see this,

recall that H ′i coincides with H ′ over this interval. In turn, H ′ coincides with Ti over

this interval by definition, and Ti coincides with Ti−1 over this interval by construc-

tion, but Ti−1 = Hi−1, so H ′i coincides with Hi−1 and the condition holds. Therefore,

W0, . . . ,Wi−1,W ′
i ,W

′
i+1, . . . is an accepting run of A→W0

on −→w where all windows locally

satisfy D .

Furthermore, W0, . . . ,Wi−1,W ′
i ,W

′
i+1, . . . is also an accepting run of C→W0

on −→w , since

every window in the run after W ′
i has 1 as its fourth component, and so the additional

accepting condition of C→W0
is satisfied. This concludes the proof of Claim 5.17.

Having proved the claim, we resume the proof of Lemma 5.16. Recall that

W0,W−1, . . . is an accepting run of A←W0
on ←−w and, as we showed in the claim above,

W0, . . . ,Wi−1,W ′
i ,W

′
i+1, . . . is an accepting run of C→W0

on −→w . Hence, as in the proof

of Theorem 5.8, we can use these runs to construct an HT-model (H′′,T) of Π and D

such that H′′ � T; in particular, H′′ |= D , as �−0 is to the left of any integer men-

tioned in D and each window in the run W0, . . . ,Wi−1,W ′
i ,W

′
i+1, . . . locally satisfies

D . This, however, means that T is not a stable model of Π and D , which raises a

contradiction.

To prove Condition 2, suppose towards a contradiction that there exists an initial

window W ′
0 = (�0, H0, T0, b0) which locally satisfies Π and D , and such that there exits

an accepting run W ′
0 ,W

′
−1, . . . of C←W ′

0
on←−w . We observe that, by definition of←−w , each W ′

i

is of the form (�i, Hi, Ti, bi), for some set Hi of metric atoms and bi ∈ {0, 1}. We consider

the least model H′ of all relational facts in
⋃

i≤0 Hi. The accepting conditions of C←W ′
0

ensure that there is an atom P (c) and a time point t ∈ (−∞, �+0] such that H′, t �|= P (c)

but T, t |= P (c). By an argument analogous to that in the proof of Theorem 5.8, and

using the facts that W ′
0 locally satisfies D and W ′

i locally satisfies Π for each i ≤ 0, we

obtain that (H′,T) satisfies D and Π over (−∞, �+0]. Then, using a construction similar

to that in the proof of Theorem 3.4, we can extend H′ to the minimal interpretation H

such that (H,T) is an HT-model of Π and D . Since Π is forward-propagating, and (H′,T)

already satisfies D and Π over (−∞, �+0], we have that H and H′ agree over (−∞, �+0].

But then, H � T since, as we have shown, there is t ∈ (−∞, �+0] such that H′, t �|= P (c)

but T, t |= P (c). Thus, T is not stable, which raises a contradiction.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

50 P. A. Wa�lȩga et al.

To prove Condition 3, we define a sequence H0,H1, . . . of interpretations as follows:

– H0 is the least model of D ,

– Hα, for a successor ordinal α, is the least interpretation such that for each rule of

Form (1) in ground(Π), and for each time point t, if Hα−1, t |= Mi for each 1 ≤ i ≤ k

and T, t �|= Mj for each k + 1 ≤ j ≤ m, then Hα, t |= M ,

– Hα, for a limit ordinal α, is
⋃

β<α Hβ .

By the proof of Theorem 3.4, each Hα is well defined and T = Hω1
. Hence, to prove

Condition 3, it suffices to show by transfinite induction that, for every ordinal α, if

Hα, t |= P (c) for some relational atom P (c) and t < tmin
D , then P and all constants in

c occur in Π. In the base case H0 is the least model of D . Since D is bounded, all the

facts it mentions are over intervals contained in [tmin
D ,∞), and so, the statement holds.

In the inductive step for a successor ordinal α, we suppose towards a contradiction that

Hα, t |= P (c) and Hα−1, t �|= P (c), for some relational atom P (c) and t < tmin
D , such that

P or some constant in c does not occur in Π. Hence, there exists a rule r in ground(Π,D)

whose head is P (c), whose positive body atoms are satisfied by Hα−1 at t, and whose

negated body atoms are satisfied by T at t. Thus, P appears in Π, so there exists a

constant c in c which does not appear in Π. By the safety and the normal form of r, the

constant c needs to occur in a relational atom M such that either M or ��M , or M ′S�M

is a positive body atom in r. Each of these cases, however, implies that Hα−1, t′ |= M ,

for some t′ ≤ t, which violates the induction hypothesis. In the inductive step for a

limit ordinal α, we have Hα =
⋃

β<α Hβ ; since the claim holds for each Hβ by induction

hypothesis, it holds also for Hα.

We observe that the above result not only shows that Condition 3 holds, but also that

W0 mentions only constants and predicates from Π, which completes the proof of the first

implication from the lemma.

To show the reverse implication from Lemma 5.16, let W0 = (�0, T0, T0, 0), ←−w , and
−→w be as described in Lemma 5.16. In particular, by Condition 2, B←W0

has an accepting

run W0,W−1, . . . on ←−w and F→W0
has an accepting run W0,W1, . . . on −→w , where we let

Wi = (�i, Ti, Ti, 0). We will show that the least model T of relational facts in
⋃

i∈Z Ti is a

stable model of Π and D . Using an argument analogous to the proof of Theorem 5.8, we

obtain that (T,T) is an HT-model of Π and D . Now, suppose towards a contradiction

that T is not a stable model, so there is an interpretation H � T such that (H,T) is an

HT-model of Π and D . We let . . . ,W ′
−1,W

′
0 ,W

′
1 , . . . be the [tmin

D − (tΠ + 1), tmin
D − 1]-

decomposition of (H,T), where we let W ′
i = (�′i, H

′
i, T
′
i , b
′
i). By construction, �′i = �i and

T ′i = Ti. Moreover, by Definition 5.5, W ′
0 is an initial window, and it is straightforward to

verify that W ′
i locally satisfies Π and D , for each i ∈ Z. Now, by Lemma 5.6, W ′

0 ,W
′
−1, . . .

is an accepting run of A←W ′
0

on ←−w , and W ′
0 ,W

′
1 , . . . is an accepting run of A→W ′

0
on −→w .

Since H � T, there exists i ∈ Z such that T, �+i |= M but H, �+i �|= M for some relational

atom M ∈ at(Π,D), which implies Hi �= Ti. If i ≤ 0, then b′j = 1 for all j ≤ i, and so

C←W ′
0

accepts ←−w , which contradicts Condition 2. Otherwise, let i be the least (positive)

integer such that T, �+i |= M but H, �+i �|= M , for some relational atom M ∈ at(Π,D).

Observe that this implies H ′j = Tj for each j < i, and M@�+i ∈ Ti\H ′i. By construction,

H ′i coincides with H ′i−1 over [�−i , �
+
i −1]; however, since H ′i−1 = Ti−1, and Ti−1 coincides

with Ti over [�−i , �
+
i − 1], we have that H ′i coincides with Ti over this interval. To sum

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 51

up, recall that Wi is of the form (�i, Ti, Ti, 0), whereas, by construction, W ′
i is of the

form (�i, H
′
i, Ti, 1); furthermore, H ′i coincides with Ti over [�−i , �

+
i − 1], and there exists

a relational atom M with M@�+ ∈ Ti\H ′i. This, by Definition 5.15, implies that the

automaton F→W0
cannot have a transition to Wi, and so, W0,W1, . . . is not an accepting

run of F→W0
on −→w , which raises a contradiction.

Next, we use Lemma 5.16 to establish a tight PSpace bound for reasoning in

DatalogMTL¬FP.

Theorem 5.18

Checking whether a DatalogMTL¬FP program and a bounded dataset have a stable model

is PSpace-complete with respect to data complexity.

Proof

For the lower bound, we observe that Wa�lȩga et al . (2020a) showed PSpace-hardness

in data complexity of checking existence of models for a class of programs which is

strictly smaller than the class of positive DatalogMTL¬FP programs. Their reduction can

be modified in a straightforward way so that the involved dataset is bounded. Then,

Theorem 3.7 directly implies that the same lower bound holds for all (i.e., not necessarily

positive) DatalogMTL¬FP programs, as required.

For the upper bound, by Lemma 5.16, it suffices to show that checking existence

of a window W0 and words ←−w and −→w satisfying the properties described in the

statement of the lemma is feasible in PSpace. First, we observe that W0 is over

�0 = [tmin
D − (tΠ + 1), tmin

D − 1], so its length does not depend on D . Hence, W0 is polyno-

mially large (in the size of the representation of D), and so it can be guessed in PSpace;

moreover, one can check in PSpace whether W0 locally satisfies Π and D , and whether it

mentions only constants and predicates from Π. Next, we show how to verify existence of

words ←−w and −→w over 2at(Π,D) such that W0, ←−w , and −→w satisfy Conditions 1–3. To verify

existence of a word ←−w accepted by B←W0
(first part of Condition 1) which is not accepted

by any C←W ′
0

(Condition 2) we can use the approach from the proof of Theorem 5.14. We

observe that W0 mentions only constants and predicates from Π, and so, the same holds

for windows W ′
0 from Condition 2. Moreover, by Condition 3, ←−w also mentions only con-

stants and predicates from Π, and so the above check can be performed independently

of D .

It remains to be shown that checking existence of a word −→w accepted by F→W0
(that is,

the second part of Condition 1) is feasible in PSpace. To this end, we check existence

of an accepting run W0,W1, . . . of F→W0
in two steps. First, we guess windows W1, . . . ,Wj

one by one, where j = tmax
D − tmin

D + 2tΠ + 2, and second, we check if F→Wj
has an accept-

ing run. We observe that each of the windows W1, . . . ,Wj is of polynomial size, and so

guessing them one by one, as well as checking that F→W0
has transitions between consec-

utive windows, is feasible in PSpace. To check non-emptiness of the language of F→Wj
,

we construct for it an automaton F̃→Wj
in a similar way as we constructed X̃→Wj

for X→Wj

in the proof of Theorem 5.14. The difference, however, is that the set of states of F̃→Wj
is

the quotient set of ∼ between only those states of F→Wj
whose first elements are intervals

located entirely to the right of tmax
D + tΠ. For any such state Wi = (�i, Ti, Ti, 0), check-

ing whether it locally satisfies D simply amounts to verifying that M@t ∈ Ti for each

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

52 P. A. Wa�lȩga et al.

M ∈ at(Π,D) such that M@�−j ∈ Tj , and each t ∈ �i. Indeed, this follows from two obser-

vations: first, for any atom M ∈ at(Π,D) and two arbitrary time points t, t′ > tmax
D + tΠ,

D |= M@t if and only if D |= M@t′; second, �−j > tmax
D + tΠ, by definition of j. Then,

using an argument analogous to the proof of Lemma 5.10, we can show that F→Wj
and

F̃→Wj
are equivalent. Hence, it remains to check if the language of the latter automaton

is non-empty. By construction, each state of the automaton F̃→Wj
can be represented in

polynomial space, so the non-emptiness check is feasible in PSpace using a standard

on-the-fly approach.

The assumption that D is bounded has been used to ensure existence of a time point

such that no fact of D holds to the left of it. Thus, our results can be extended to

show that reasoning is still PSpace in data complexity for datasets where intervals

are only bounded on the left. Furthermore, none of our results in this section depend

on the direction of time. Indeed, we can define the backward-propagating fragment of

DatalogMTL¬ (analogously to DatalogMTL¬FP) as the set of programs where operators

�, �, and S are disallowed in rule bodies, and operator � is disallowed in the head.

Then, we can obtain an analogous set of results for the backward-propagating fragment

and show that reasoning in such fragment is also PSpace in data complexity.

6 Related work

Positive DatalogMTL (Brandt et al . 2018) has been studied over both the rational

(Brandt et al . 2018) and the integer (Wa�lȩga et al . 2020a) timelines. In both cases, the

main reasoning tasks are ExpSpace-complete for combined complexity (Brandt et al .

2018) and PSpace-complete for data complexity (Wa�lȩga et al . 2019). Low complexity

fragments (Wa�lȩga et al . 2020b; 2021) and alternative semantics (Ryzhikov et al . 2019)

have also been studied. Practical reasoning algorithms for positive DatalogMTL have

been recently proposed and implemented in the MeTeoR system (Wang et al . 2022).

DatalogMTL¬ is an extension of DatalogMTL; therefore, it also extends other promi-

nent temporal rule languages captured by DatalogMTL such as Datalog1S (Chomicki and

Imieliński 1988; 1989) and Templog (Abadi and Manna 1989). In turn, DatalogMTL¬FP
generalises the forward-propagating fragment of DatalogMTL introduced by Wa�lȩga et al .

(2019), and it is thus related to other forward-propagating temporal logics proposed in

the literature (Baldor and Niu 2012; Ronca et al . 2018; Basin et al . 2018). Our stable

model semantics (Wa�lȩga et al . 2021) extends the semantics for stratified DatalogMTL¬

programs (Tena Cucala et al . 2021).

Our approach is closely related to a recently proposed family of non-monotonic tem-

poral logics which simultaneously support ASP and modal temporal operators. TEL

(Cabalar and Vega 2007; Aguado et al . 2013; Cabalar et al . 2018) combines proposi-

tional ASP with operators from linear temporal logic (Pnueli 1977). Metric equilibrium

logic (MEL) (Cabalar et al . 2020) extends TEL with metric temporal operators that are

roughly equivalent to our past operators S[0,k] and �k, and their future counterparts.

Both logics introduce non-monotonic semantics for negation based on stable models,

which are defined – as in our work – analogously to the models of equilibrium logic.

However, TEL and MEL differ from our approach. First, they allow formulas supporting

all Boolean connectives; therefore, they can represent disjunction between propositions,

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 53

as well as ‘existential’ formulas using diamond operators; in contrast, in DatalogMTL¬ the

use of logical connectives and temporal operators is restricted so that all formulas are

shaped as rules similar in spirit to those of Datalog (see Definition 3.1). Second, they

are propositional logics, so they do not allow universally quantified variables. Finally,

the semantics of TEL and MEL are defined on integer timelines with a least time point,

whereas we consider both the full integer timeline as well as the dense rational timeline.

In terms of complexity, checking whether a formula has a stable model is known to be

PSpace-hard for both TEL and MEL, and feasible in ExpSpace for TEL.

Our approach is also related to the LARS language (Beck et al . 2018) for stream rea-

soning. LARS is also a rule-based language allowing for negation interpreted under stable

model semantics. The differences between DatalogMTL¬ and LARS are as follows. First,

conjuncts in the body of LARS rules are formulas constructed using temporal opera-

tors and unrestricted combinations of Boolean connectives; in contrast, body conjuncts

in DatalogMTL¬ are metric atoms, which do not mention Boolean operators. Second,

LARS does not allow for metric operators (only LTL-style boxes and diamonds), but it

allows for window operators that have no counterpart in DatalogMTL¬. Third, LARS

rules are meant to be interpreted at individual time points, so the notion of a stable

model in LARS is always relative to a time point (e.g., a LARS interpretation can be

a stable model of a program at t, but not at t + 1); in contrast, a stable model of a

DatalogMTL¬ program satisfies each rule at every time point in the timeline (see Defini-

tion 3.2). Finally, LARS interpretations are defined over bounded intervals of the integer

timeline, whereas DatalogMTL¬ interpretations are defined over the full integer or ratio-

nal timeline. Checking whether a LARS program and dataset have a stable model at a

time point t is PSpace-complete.

The use of ASP for temporal reasoning has been intensively explored, especially in the

context of stream reasoning. Streamlog (Zaniolo 2012) introduces a variant of Datalog

with negation where atoms are “time-stamped,” in the sense that the first term of an

atom is a natural number representing the time point where the atom holds. Rules in

Streamlog must be forward-propagating in time; furthermore, programs must be locally

stratified, which ensures that they have a unique stable model. Do et al . (2011) present

an approach which combines a general-purpose ASP solver with a monotonic stream

reasoner to support ASP in stream reasoning; in this approach, both systems are treated

as black boxes. Another approach that supports ASP on a temporal setting is time-

decaying reasoning (Gebser et al . 2013), which relies on programs similar to Datalog, but

where each fact and rule need to hold only over a fixed time interval; this behaviour is used

to capture changing information from a sliding window over a sequence of temporal data.

More recently, negation-free DatalogMTL¬ has been applied in the context of monotonic

stream reasoning (Wa�lȩga et al . 2019), and we see our current work as providing the

foundations for extending this approach with support for ASP.

7 Conclusion and future work

We extended DatalogMTL with negation-as-failure under stable model seman-

tics and shown that reasoning in this language is undecidable over the rational

timeline but ExpSpace in data complexity over the integers. We also studied the forward-

propagating fragment and shown that, although reasoning remains undecidable over the

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

54 P. A. Wa�lȩga et al.

rational timeline, it is becomes PSpace-complete in data complexity over the integers

(thus no harder than in the negation-free case).

We see many avenues for future work. The more immediate challenge is to provide tight

data complexity bounds for reasoning in the full language over the integer timeline, where

we currently have an ExpSpace upper bound and a lower bound for data complexity.

We also plan to consider combined complexity and identify fragments of the language

where reasoning becomes decidable over the rational timeline. Finally, we are planning to

develop practical algorithms and implement them as an extension the MeTeoR reasoner,

that is currently allows for reasoning with positive DatalogMTL programs only (Wang

et al . 2022).

References

Abadi, M. and Manna, Z. 1989. Temporal logic programming. Journal of Symbolic Computa-
tion 8, 3, 277–295.

Abiteboul, S., Hull, R. and Vianu, V. 1995. Foundations of Databases. Addison-Wesley.

Aguado, F., Cabalar, P., Diéguez, M., Pérez, G. and Vidal, C. 2013. Temporal equilib-
rium logic: A survey. Journal of Applied Non-Classical Logics 23, 1–2, 2–24.

Baier, C. and Katoen, J. 2008. Principles of Model Checking. MIT Press.

Baldor, K. and Niu, J. 2012. Monitoring dense-time, continuous-semantics, metric temporal
logic. In Runtime Verification, Third International Conference, Revised Selected Papers, vol.
7687, 245–259.

Basin, D., Klaedtke, F. and Zălinescu, E. 2018. Algorithms for monitoring real-time prop-
erties. Acta Informatica 55, 4, 309–338.

Beck, H., Dao-Tran, M. and Eiter, T. 2018. LARS: A logic-based framework for analytic
reasoning over streams. Artificial Intelligence 261, 16–70.

Bozzelli, L. and Pearce, D. 2015. On the complexity of temporal equilibrium logic. In
Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science,
645–656.

Brandt, S., Kalaycı, E. G., Ryzhikov, V., Xiao, G. and Zakharyaschev, M. 2018. Query-
ing log data with metric temporal logic. Journal of Artificial Intelligence Resesearch 62,
829–877.

Brandt, S., Kontchakov, R., Ryzhikov, V., Xiao, G. and Zakharyaschev, M. 2017.
Ontology-based data access with a Horn fragment of metric temporal logic. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence, 1070–1076.

Brooks, D. R., Erdem, E., Erdogan, S. T., Minett, J. W. and Ringe, D. 2007. Inferring
phylogenetic trees using answer set programming. Journal of Automated Reasoning 39, 4,
471–511.

Brzoska, C. 1998. Programming in metric temporal logic. Theoretical Computer Sci-
ence 202, 1–2, 55–125.

Cabalar, P. and Demri, S. 2011. Automata-based computation of temporal equilibrium
models. In International Symposium on Logic-Based Program Synthesis and Transformation,
Revised Selected Papers, 57–72.

Cabalar, P., Dieguez, M., Schaub, T. and Schuhmann, A. 2020. Towards metric temporal
answer set programming. Theory and Practice of Logic Programming 20, 5, 783–798.

Cabalar, P., Kaminski, R., Schaub, T. and Schuhmann, A. 2018. Temporal answer set
programming on finite traces. Theory and Practice of Logic Programming 18, 3–4, 406–420.

Cabalar, P. and Vega, G. P. 2007. Temporal equilibrium logic: A first approach. In Proceed-
ings of the 11th International Conference on Computer Aided Systems Theory, 241–248.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

DatalogMTL with negation under stable model semantics 55

Chomicki, J. and Imieliński, T. 1988. Temporal deductive databases and infinite objects.
In Proceedings of thes 7th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, 61–73.

Chomicki, J. and Imieliński, T. 1989. Relational specifications of infinite query answers. In
Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data,
174–183.

Do, T. M., Loke, S. W. and Liu, F. 2011. Answer set programming for stream reasoning. In
Proceedings of the 24th Canadian Conference on Artificial Intelligence, vol. 6657. Springer,
104–109.

Eiter, T., Ianni, G. and Krennwallner, T. 2009. Answer set programming: A primer. In
Reasoning Web International Summer School. Springer, 40–110.

Faber, W., Leone, N. and Pfeifer, G. 2004. Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Proceedings of the 9th European Conference on Logics
in Artificial Intelligence, 200–212.

Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O. and Schaub, T. 2013.
Answer set programming for stream reasoning. CoRR arXiv:1301.1392 [cs.AI].

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Logic Programming, Proceedings of the Fifth International Conference and Symposium,
1070–1080.

Heyting, A. 1930. Die formalen regeln der intuitionistischen logik. In Sitzungsberichte der
Preussischen Akademie der Wissenschaften, physikalisch-mathematische klass, 42–56.

Koymans, R. 1990. Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2, 4, 255–299.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R. and Barry, M. 2001. An
A-Prolog decision support system for the space shuttle. In Proceedings of the 1st Interna-
tional Answer Set Programming Workshop.

Pearce, D. 1996. A new logical characterisation of stable models and answer sets. In Proceedings
of the International Workshop on Non-monotonic Extensions of Logic Programming, 57–70.

Pnueli, A. 1977. The temporal logic of programs. In Proceedings of the 18th Annual Symposium
on Foundations of Computer Science, 46–57.

Ronca, A., Kaminski, M., Cuenca Grau, B. and Horrocks, I. 2018. The window validity
problem in rule-based stream reasoning. In Proceedings of the Sixteenth International Confer-
ence on Principles of Knowledge Representation and Reasoning, 571–580.

Ronca, A., Kaminski, M., Cuenca Grau, B., Motik, B. and Horrocks, I. 2018. Stream
reasoning in temporal Datalog. In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, 1941–1948.

Ryzhikov, V., Wa�lȩga, P. A. and Zakharyaschev, M. 2019. Data complexity and rewritabil-
ity of ontology-mediated queries in metric temporal logic under the event-based semantics. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence, 1851–1857.

Tena Cucala, D., Wa�lȩga, P. A., Cuenca Grau, B. and Kostylev, E. V. 2021. Strat-
ified negation in Datalog with metric temporal operators. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence, 6488–6495.

Wang, D., Hu, P., Wa�lȩga, P. A. and Cuenca Grau, B. 2022. MeTeoR: Practical reasoning
in Datalog with metric temporal operators. In Proceedings of the 36th AAAI Conference on
Artificial Intelligence.

Wa�lȩga, P., Cuenca Grau, B. and Kaminski, M. 2019. Reasoning over streaming data in
metric temporal Datalog. In Proceedings of the 33rd AAAI Conference on Artificial Intelli-
gence, 1941–1948.

Wa�lȩga, P., Cuenca Grau, B., Kaminski, M. and Kostylev, E. V. 2020a. DatalogMTL
over the integer timeline. In Proceedings of the 17th International Conference on the Principles
of Knowledge Representation and Reasoning, 526–541.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

56 P. A. Wa�lȩga et al.

Wa�lȩga, P. A., Cuenca Grau, B., Kaminski, M. and Kostylev, E. V. 2019. DatalogMTL:
Computational complexity and expressive power. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, 1886–1892.

Wa�lȩga, P. A., Cuenca Grau, B., Kaminski, M. and Kostylev, E. V. 2020b. Tractable
fragments of Datalog with metric temporal operators. In Proceedings of the 29th International
Joint Conference on Artificial Intelligence, 1919–1925.

Wa�lȩga, P. A., Tena Cucala, D. J., Kostylev, E. V. and Cuenca Grau, B. 2021. Data-
logMTL with negation under stable models semantics. In Proceedings of the 18th International
Conference on Principles of Knowledge Representation and Reasoning, 609–618.

Wa�lȩga, P. A., Zawidzki, M. and Cuenca Grau, B. 2021. Finitely materialisable Datalog
programs with metric temporal operators. In Proceedings of the 18th International Conference
on Principles of Knowledge Representation and Reasoning, 619–628.

Zaniolo, C. 2012. Logical foundations of continuous query languages for data streams.
In Proceedings of the 2nd International Workshop on Datalog in Academia and Industry,
177–189.

https://doi.org/10.1017/S1471068423000315 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000315

	Introduction
	Preliminaries
	Timelines and temporal intervals
	Syntax and semantics of metric temporal expressions

	DatalogMTL with negation under stable model semantics
	Undecidability over the rational timeline
	Decidability over the integer timeline
	General programs
	Forward-propagating programs

	Related work
	Conclusion and future work
	References

