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ABSTRACT. Ice-sheet flow solutions commonly adopt a simple isotropic viscous law, in which the
deviatoric stress is coaxial with the strain rate, and the single response function depends on only one
invariant, the second principal invariant of the deviatoric stress. This can be correlated with single-stress
component tests, which cannot, however, verify the validity of the simplification. Morland (2007) has
shown how combined compression and shear tests can verify and correlate a general quadratic isotropic
viscous relation, or simply third invariant dependence, and there is evidence that at least third principal
invariant dependence is required. Morland (2007) showed that a significant quadratic term changes the
relative stress magnitudes in the reduced model for ice-sheet flow, that crucial simplifications are not
achieved and formally noted that dependence on the third invariant in the coaxial relation also
prevented the simplification. It is now shown that, provided the third invariant dependence does not
dominate the isotropic relation, further asymptotic expansion does yield the reduced model
simplification, and the influence of different weightings of third invariant dependence is illustrated
by a comparison of steady radial flow solutions over a flat bed. It is found that the third invariant
dependence does not have a large influence in these examples.

INTRODUCTION

On the large timescales of ice-sheet flow, the ice is assumed
to be incompressible and to obey a non-linearly isotropic
viscous constitutive law for the shear response, neglecting
the shorter-timescale viscoelastic effects. It has been a
common assumption in large-scale ice-sheet modelling that
the ice behaves as a simple isotropic viscous incompressible
fluid for which, at constant temperature, the deviatoric stress
depends only on the strain rate, and the pressure is a
workless constraint, not given by any constitutive law, but
determined by the momentum balances and boundary
conditions. Such a viscous law is necessarily isotropic by
material frame indifference, and neglects fabric evolution
(induced anisotropy). Flow solutions incorporating fabric
evolution have been much more restricted. The present
analysis addresses only the flow with the isotropic viscous
law which still dominates large-scale modelling.

The isotropic viscous law has a general quadratic
representation, with alternative, but equivalent, stress and
strain-rate formulations, as discussed by Morland (1979).
However, it is still common practice to ignore the quadratic
term and adopt a simple relation proposed by Nye (1953), in
which the deviatoric stress is coaxial with the strain rate, and
which depends on only one of the two deviatoric stress (or
strain-rate) invariants. Glen (1958) (acknowledging F. Ursell)
presented the quadratic viscous relation for the strain rate,
and noted that Steinemann‘s (1954) combined compression
and shear data were inconsistent with the simple form, so
that dependence on a second invariant, or the quadratic
term, or both, is necessary. Standard single-stress component
tests, uniaxial compression or simple shear, are not sufficient
to determine the general form, nor can they verify the
validity of the simpler coaxial form. The determination of
two response functions with two invariant arguments
requires biaxial or combined shear and compression tests.
While combined compression and shear tests have been

conducted (e.g. Li and others, 1996; Warner and others,
1999), there has been no attempt to correlate data with other
than the simple coaxial form. Prompted by the personal
communication from W.F. Budd, T.H. Jacka, J. Li and
R.C. Warner of their recent unpublished exposition of such
tests, Morland (2007) showed that confined and unconfined
compression combined with shear tests can check the
consistency of the general quadratic form, independent of
the actual response functions, assess the significance of the
contribution made by a quadratic term and then determine
the two response functions of two invariant arguments.

A general isotropic viscous relation including the quad-
ratic term has yet to be incorporated into the flow equations
for an ice sheet, but would certainly yield changes from the
simple coaxial form. The commonly adopted reduced model
equations are the leading-order balances of an asymptotic
expansion in a small parameter arising from a dimensionless
viscosity magnitude in the coaxial form, which, in turn,
defines the small surface slope magnitude or sheet aspect
ratio (shallow-ice approximation). Morland (2007) showed
that with the quadratic relation, the relative magnitudes of
the stress components are different to those found using the
coaxial form. However, the same leading-order momentum
balances, and their explicit depth integrations to yield the
same expressions for the pressure and horizontal shear
stresses, are obtained, but with different error magnitudes.
The resulting expressions for the velocity gradients with
depth cannot be explicitly integrated, so no expressions for
the velocity fields are available to incorporate into the
surface and bed kinematic conditions to obtain a differential
equation for the surface profile. It was also noted that the
same problem arises with the simple coaxial form if the
response function depends on two invariants, which is
the minimum generalization implied by Steinemann (1954).

The asymptotic analysis of the reduced model for a
coaxial isotropic viscous relation with dependence on both
second and third principal invariants of deviatoric stress or
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of strain rate is presented here, on the assumption that the
third invariant dependence does not dominate the second
invariant dependence. It is found, then, that the leading-
order balances do allow explicit depth integrations of the
velocity gradients so that surface and bed conditions can be
applied to determine a differential equation for the surface
profile; the simplification of the reduced model. This does,
of course, depend on knowing how the single response
function depends on both invariants, which has yet to be
determined. However, uniaxial compression data can be
weighted between dependence on the second and third
invariants, and Smith and Morland’s (1981) polynomial
correlation of Glen‘s (1955) data in terms of the second
invariant is here modified to include both dependencies
with an arbitrary weighting factor. Steady radially symmetric
reduced model flows over a flat bed are determined for
different weighting factors to illustrate the possible signifi-
cance of the third invariant dependence, with a prescribed
temperature distribution and an elevation-dependent surface
accumulation/ablation, for modest and large basal friction
coefficients. It is found that the third invariant dependence
does not have a large influence on the ice-sheet profiles,
though the influence is greater for the large basal friction,
essentially because the non-linear viscous terms are small
for the modest shear stresses arising in these examples. This
would not follow for larger shear stresses arising near
significant bed topography.

THE ISOTROPIC VISCOUS RELATION
Let � denote the Cauchy stress tensor and �̂ the deviatoric
stress tensor, then

�̂ ¼ �þ pI, p ¼ � 1
3
trace �ð Þ, trace �̂ð Þ ¼ 0, ð1Þ

where p is the mean pressure and I is the unit tensor. Let D
denote the strain-rate tensor, the symmetric part of the
velocity gradient tensor, which has zero trace by incompres-
sibility. The dependence on temperature, T, is assumed to be
given by a rate factor, a (T ), by replacing D by an effective
strain rate, ~D, defined by

D ¼ a Tð Þ ~D, ð2Þ
where a (T ) is an increasing function of T; that is, the actual
strain rate at a given stress increases with temperature.

The coaxial frame-indifferent viscous relation (necessarily
isotropic) between �̂ and ~D can be expressed in two
alternative, but equivalent, forms of the Rivlin–Ericksen
representation between tensors with zero trace:

�̂

�0
¼ � ~I2, ~I3

� � ~D
D0

,
~D
D0
¼  J2, J3ð Þ �̂

�0
, ð3Þ

where ~I2, ~I3 are the second and third principal invariants of
~D=D0 and J2, J3 are those of �̂=�0, defined by (omitting the
minus sign in the second invariant for convenience),

~I2 ¼ trace ~D=D0
� �2�

2, ~I3 ¼ det ~D
�
D0

� �
, ð4Þ

J2 ¼ trace �̂=�0ð Þ2�2, J3 ¼ det �̂=�0ð Þ: ð5Þ
The units �0 and D0 are chosen, with unit rate factor, a, at
the melting temperature, so that the constitutive functions,  
and �, are of order unity for deviatoric stresses and strain
rates arising in typical ice-sheet flows:

�0 ¼ 105Nm�2, D0 ¼ 1a�1 ¼ 3:17� 10�8s�1: ð6Þ

From (3), � and  , and their invariants, satisfy the relations

� � 1, ~I2 ¼ J2 2, J2 ¼ ~I2�2, ~I3 ¼ J3 3, J3 ¼ ~I3�3:

ð7Þ
The pressure, p, is a workless constraint not given by a
constitutive law, but determined by momentum balance and
boundary conditions. While the expansions (3) are equiva-
lent, there is no explicit algebraic inversion. It is the stress
formulation (3)1 which is required for substitution in the
momentum balances of a general ice-sheet flow.

The pioneering experimental work of Glen (1952, 1953,
1955, 1958) and Steinemann (1954) was used to construct
power laws for a simplified form of (3) proposed by Nye
(1953), namely

D ¼  J2ð Þ�̂, ð8Þ
in which D is coaxial with �̂, and there is only one response
function,  , depending on only one invariant, J2, which is a
measure of the shear stress squared. The tests were mainly
on polycrystalline ice at constant temperature with ran-
domly oriented crystals, in either unconfined compression
or simple shear, so that only one function of one argument
could be inferred.

Comparisons of known datasets at the time were made by
Smith and Morland (1981), which demonstrated wide
differences. The form (8) was constructed from Glen‘s
(1955) uniaxial compression data at near-melting tempera-
ture over a shear stress range 0–5�105Nm–2, 0 � J2 � 25,
showing that a three-term fifth-order polynomial representa-
tion, with finite viscosity at zero stress, was a much closer
correlation than a power law with infinite viscosity at zero
stress:

 J2ð Þ ¼  0 þ  1 J2 þ  2 J 22 : ð9Þ
 0 ¼ 0:3336,  1 ¼ 0:32,  2 ¼ 0:02963: ð10Þ

They also derived an accurate representation for a (T ) from
data presented by Mellor and Testa (1969) for temperatures
between melting and 60K below melting, and showed a
good simplifying approximation over the range of practical
significance from melting to 40K below melting is

a Tð Þ ¼ 0:68 exp 12�Tð Þ þ 0:32 exp 3�Tð Þ,
T ¼ 273:15Kþ ½20K� �T ; ð11Þ

where [20K] is a typical temperature-change magnitude
over an ice-sheet depth, and the dimensionless temperature,
�T , is zero at melting, and –2 at 40K below melting.

While the uniaxial data correlation, (9), assumes depend-
ence on J2 alone, and cannot distinguish dependence on J2
and J3, it can theoretically be separated additively into
dependence on both with an arbitrary weighting factor. In
terms of uniaxial compressive stress, �,

J2 ¼ �2

3�20
, J3 ¼ 2�3

27�30
, J2 ¼ 3

J3
2

� �2=3

: ð12Þ

Hence the uniaxial data correlation, (9), can be equivalently
expressed by the additive decomposition

 J2, J3ð Þ ¼  0 þ � 1J2 þ � 2J 22 þ 3  1 � � 1
� �

J3=2ð Þ2=3

þ 9  2 � � 2
� �

J3=2ð Þ4=3, ð13Þ
� 1 ¼ � 1, � 2 ¼ � 2, ð14Þ

for arbitrary weighting, � (0 � � � 1), where � ¼ 1 denotes
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pure J2 dependence and � ¼ 0 pure J3 dependence. A
multiplicative decomposition has not been considered. The
viscous function given by (13) and (14), together with the
rate factor (11), will be adopted to determine the influence
of J3 dependence on reduced-model steady radially sym-
metric ice-sheet flow solutions.

REDUCED MODEL FOR ICE-SHEET FLOW
The ice is assumed incompressible with density � ¼
918 kgm–3. Now let the rectangular Cartesian spatial co-
ordinates, x, y, z, where the z axis points vertically up-
wards, and the corresponding velocity components, u, v,w,
be dimensionless with units d0 and q0, respectively. These
are, respectively, an ice-sheet thickness magnitude and a
surface accumulation magnitude, so the dimensionless
velocity gradient and strain rate, �D, have units q0 /d0.
Define dimensionless stress, ��, with units of a typical over-
burden pressure, �gd0, where g is the gravity acceleration,
9.81m s–2. Then

D ¼ q0 �D d0,= � ¼ �gd0 ��, p ¼ �gd0P ,

d0 ¼ 2000m, q0 ¼ 1ma�1: ð15Þ
The isotropic viscous relations (3) are now expressed by

�̂� ¼ "2a�1 Tð Þ� ~I2, ~I3
� �

�D, �D ¼ "�2a Tð Þ J2, J3ð Þ �̂�, ð16Þ
~I2 ¼ #"2a�2�I2 ¼ #"2a�2trace �Dð Þ2�2,
~I3 ¼ #3=2"3a�3�I3 ¼ #3=2"3a�3det �Dð Þ, ð17Þ

J2 ¼ #"�2�J2 ¼ #"�2trace �̂�
� �2

=2,

J3 ¼ #3=2"�3�J3 ¼ #3=2"�3det �̂�
� �

, ð18Þ

"2 ¼ �0q0
�gD0d2

0
¼ 2:776� 10�6,

" ¼ 0:00167, # ¼ �gq0
�0D0

¼ 0:09: ð19Þ

In relation (16), "2 defines a very small dimensionless
viscosity magnitude, given in (19) and # is an order unity
dimensionless parameter. The small parameter, ", is that
introduced by Morland and Johnson (1980) and Morland
(1984) to derive the leading-order balances (reduced model)
for ice-sheet flow. To obtain a finite-span ice-sheet profile
from the leading-order balances, it is necessary to introduce
the coordinate and velocity scalings

x ¼ "�1X, y ¼ "�1Y , z ¼ Z ,

u ¼ "�1U, v ¼ "�1V , w ¼W , ð20Þ
where the upper-case variables are order unity, and deriva-
tives with respect to X, Y, Z do not change orders of
magnitude from that of the dependent variable. This requires
that the bed topography slope does not induce greater X and
Y derivative magnitudes. The corresponding asymptotic
analysis when bed topography is of small slope, but larger
than ", (i) induces greater local magnitudes (presented by
Morland (2000, 2001) for plane flow and Cliffe and
Morland, 2002 for radially symmetric flow), (ii) follows for
three-dimensional flow and (iii) extends to the isotropic
viscous relation (16). Here it is supposed that the bed
topography is as smooth as the surface and does not induce
greater magnitudes when the reduced model for the simple
viscous relation (8) has error O("2). Note that D occurs only
through the effective strain rate �D defined by (2); that is,

divided by a which can become very small in cold upper
regions of the sheet, but Morland (1984) argued that this was
compensated by very small strain rates there, so the formal
expansion in ", ignoring the magnitude of a, is valid.

With the scalings (20),

�Dxx ¼ @U
@X

, �Dxy ¼ 1
2

@U
@Y

þ @V
@X

� �
,

�Dyy ¼ @V
@Y

, �Dzz ¼ @W
@Z

, ð21Þ

are all order unity, while

�Dxz ¼ 1
2"

@U
@Z

þ "2 @W
@X

� �
� 1

2"
@U
@Z

,

�Dyz ¼ 1
2"

@V
@Z

þ "2 @W
@Y

� �
� 1

2"
@V
@Z

, ð22Þ

are both O("–1) with the leading-order expressions shown
having relative errors O("2). Then, to leading order with
relative errors O("2), using (17),

�I2 � �D2
xz þ �D2

yz ¼ O "�2
� �

, ~I2 ¼ #"2a�2�I2 ¼ O 1ð Þ, ð23Þ

�I3 � 2 �Dxy �Dxz �Dyz � �D2
xz

�Dyy � �D2
yz

�Dxx ¼ O "�2
� �

,

~I3 ¼ #3=2"3a�3�I3 ¼ O "ð Þ: ð24Þ

From (16) and (18), with relative error O("2),

�̂�xx , �̂�yy , �̂�zz , ��xy ¼ �̂�xy ¼ O "2
� �

,

��xz ¼ �̂�xz ¼ O "ð Þ, ��yz ¼ �̂�yz ¼ O "ð Þ, ð25Þ
��xx � ��yy � ��zz � �P ¼ O 1ð Þ, ð26Þ

�J2 � �̂�
2
xz þ �̂�

2
yz ¼ O "2

� �
, J2 ¼ #"�2�J2 ¼ O 1ð Þ, ð27Þ

�J3 � 2 �̂�xy �̂�xz �̂�yz � �̂�
2
xz �̂�yy � �̂�

2
yz �̂�xx ¼ O "4

� �
,

J3 ¼ #3=2"�3�J3 ¼ O "ð Þ: ð28Þ
The momentum balances and equilibrium equations due to
the very small inertia terms, are

"
@ ��xx
@X

þ " @ ��xy
@Y

þ @ ��xz
@Z

¼ 0, ð29Þ

"
@ ��xy

@X
þ " @ ��yy

@Y
þ @ ��yz

@Z
¼ 0, ð30Þ

"
@ ��xz
@X

þ " @ ��yz
@Y

þ @ ��zz
@Z

� 1 ¼ 0: ð31Þ

With the above leading-order stress expressions, these
become, with error O("2),

� @P
@X
þ "�1 @ ��xz

@Z
¼ 0, ð32Þ

� @P
@Y
þ "�1 @ ��yz

@Z
¼ 0, ð33Þ

@P
@Z

¼ �1: ð34Þ

To leading order, neglecting terms of order O("2), the
traction-free surface, Z ¼ HðX ,Y , tÞ, conditions are

Z ¼ H X,Y , tð Þ: ��xz ¼ ��yz ¼ P ¼ 0, ð35Þ
where t denotes a dimensionless time with units d0 /q0, and
(34), (32), (33) can be explicitly integrated with respect to Z
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from the surface to yield the familiar stress expressions

P ¼ H � Z , ��xz ¼ �" @H
@X

H � Zð Þ,

��yz ¼ �" @H
@Y

H � Zð Þ: ð36Þ
Now (27) and (28) show that J3 is of order "J2, so neglecting
O(") compared to unity  ðJ2, J3Þ is approximated by  ðJ2, 0Þ,
and similarly, by (23) and (24), �ð~I2, ~I3Þ is approximated by
�ð~I2, 0Þ, consistent with (7). Hence, with relative error of
order ", relation (16)2 gives

@U
@Z

¼ �2a Tð Þ J2, 0ð Þ @H
@X

H � Zð Þ,
@V
@Z

¼ �2a Tð Þ J2, 0ð Þ @H
@Y

H � Zð Þ, ð37Þ
where, using (36) and (27),

J2 ¼ #ðH � Z Þ2 @H
@X

� �2

þ @H
@Y

� �2
" #

: ð38Þ

Thus, provided that  ðJ2, J3Þ is known, so  ðJ2, 0Þ is known,
depending only on J2, Equations (37) and (38) are the
familiar reduced model equations which can be integrated
explicitly from bed to surface. Then application of the bed
kinematic and sliding conditions yields the usual partial
differential equation for HðX ,Y , tÞ. However, in the case
 ¼  ðJ3Þ, independent of J2, (37) with (28) gives velocity
derivatives depending on all the deviatoric stress com-
ponents, not just those in (36) determined by the leading-
order momentum balances, and explicit depth integration of
(37) is no longer possible. That is, the case � ¼ 0 in (14) with
J3 � 0 does not determine a pure J3-dependent solution.

The combined J2 and J3 dependence will now be
illustrated for steady radially symmetric flow, when an
ordinary differential equation is obtained and solved for the
surface profile, HðRÞ, so the influence of the weighting
factor, �, in the viscous function,  , defined by (13) and (14)
can be demonstrated.

RADIALLY SYMMETRIC FLOW
Although axially symmetric flow has dependence on only
one horizontal coordinate, it does incorporate lateral
spreading, and is thus a more realistic illustration of ice-
sheet flow than plane flow. This has already been exploited
in many theoretical/numerical illustrations (Morland, 1997;
Cliffe and Morland, 2000, 2001, 2002, 2004; Morland and
Staroszczyk, 2006), where details of the following formula-
tion are presented.

In cylindrical polar coordinates ðr, �, zÞ, the physical
components of an axisymmetrical flow are ðu, 0,wÞ, and the
scalings analogous to (20) for steady flow are

r ¼ "�1R, z ¼ Z , u ¼ "�1U R,Zð Þ, w ¼W R,Zð Þ,
ð39Þ

with corresponding scaled non-zero strain-rate components

�Drr ¼ @U
@R

, �D�� ¼ U
R
, �Dzz ¼ @W

@Z
,

�Drz ¼ 1
2"

@U
@Z

þ "2 @W
@R

� �
� 1

2"
@U
@Z

, ð40Þ

where the �Drz approximation has a relative error O("2). The
dominant scaled deviatoric stress component is then �̂�rz and

the analogues of (32), (33), (34) and (35) are

� @P
@R
þ "�1 @ ��rz

@Z
¼ 0,

@P
@Z

¼ �1; ð41Þ
Z ¼ H Rð Þ: ��rz ¼ P ¼ 0, ð42Þ

and (36), (37) and (38) become

P ¼ H � Z , ��rz ¼ �"� H � Zð Þ, � Rð Þ ¼ @H
@R

, ð43Þ
@U
@Z

¼ �2a Tð Þ � J2ð Þ� H � Zð Þ, � J2ð Þ ¼  J2, 0ð Þ,
J2 ¼ #�2 H � Zð Þ2: ð44Þ

With the isotropic viscous relation given by (13), (14), (9)
and (10),

� J2ð Þ ¼ 0:3336þ 0:32� J2 þ 0:02963� J22 , ð45Þ
which is simply the form (9), (10) used in the previous
applications with the coefficients  1 and  2 scaled by �. The
limit � ¼ 1 is exactly the pure J2-dependent form (9), and the
limit � ¼ 0 is pure J3 dependence, equivalent to the linearly
viscous case with  �  0. Illustrations are presented in the
next section for a set of � values between 0 and 1.

Incompressibility, trace (D) ¼ 0, is satisfied identically by

@U
@R
þU

R
þ @W
@Z

¼ 0! U ¼ @�

@Z
, W ¼ � @�

@R
, ð46Þ

where �ðR,Z Þ is the stream function. Integration of (44) and
(46) from the bed Z ¼ FðRÞ, where F 0ðRÞ ¼ � is assumed to
be order unity (the bed topography slope does not exceed "
in magnitude), gives

U ¼ Ub Rð Þ þ g1 R,Zð Þ,
� ¼ �b Rð Þ þ RUb Rð Þ Z � F Rð Þ½ � þ Rg2 R,Zð Þ, ð47Þ

where subscript b denotes evaluation on the bed, and

g1 R,Zð Þ ¼ �2� Rð Þ
Z Z

F Rð Þ
a T 0ð Þ � J 02

� �
H � Z 0ð ÞdZ 0,

g2 R,Zð Þ ¼
Z Z

F Rð Þ
g1 R,Z 0ð Þ dZ 0, ð48Þ

where the superscript ’ on variables denotes evaluation
at the dummy integration variable Z 0. The vertical velocity,
W, is then given by (46)3, and P and ��rz by (43), once H, �
and � are determined.

The kinematic conditions on the surface and bed are

Z ¼ H Rð Þ: �U �W ¼ 1
R
d�s

dR
¼ Q R,Hð Þ, ð49Þ

Z ¼ F Rð Þ: �U �W ¼ 1
R
d�b

dR
¼ B Rð Þ, ð50Þ

where subscript s denotes evaluation on the surface,
QðR,HÞ is the surface accumulation (inward volume flux,
negative in ablation zones), depending on R and elevation H
in general, and B is the basal melting (outward volume flux,
negative if refreezing), in the dimensionless units. Finally, on
Z ¼ FðRÞ, the adopted basal sliding law is

��rz=" ¼ ��� ¼ Pb� Pbð ÞUb, � ¼ H � F ¼ Pb, ð51Þ
where � is a non-dimensional order unity or greater friction
coefficient (�!1 is the no-slip limit), �ð0Þ 6¼ 0 and the
proportionality to Pb ensures bounded surface slope at the
margin where Pb ¼ 0. Equation (51) gives Ub in terms of �
and �. Differencing relations (49) and (50) and using
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relations (47) and (51) yields the second-order ordinary
differential equation

d
dR

� R��

� �ð Þ þ Rg2 R,H Rð Þ½ �
� �

¼ R Q R,H Rð Þ � B Rð Þ½ �f g ¼ R �Q, ð52Þ
for HðRÞ on the unknown span 0 � R � RM, where RM is
the unknown margin radius. Asymptotic analysis relates the
surface slope at the margin,

�M ¼ 1
2
�M � �2M � 4�M �QM

� �1
2

h i
, ð53Þ

to margin values of �, � and �Q, denoted by the subscript M.
The second derivative H 00ðRÞ given by differential equa-
tion (52) is indeterminate at the margin where �! 0, and at
the divide where R ! 0, but further asymptotic analysis
determines the required limits, given, for example, in Cliffe
and Morland (2002).

The numerical solution is obtained by expressing the
second-order equation as four first-order differential equa-
tions for H, �, RM and HD, where HD is the elevation at the
divide R ¼ 0, on a fixed span 0 � t � 1 with the change of
variable R ¼ RMt. Then RM and HD are unknown constants,
with zero derivative with resepct to t. The four equations are
integrated from both ends t ¼ 0 and t ¼ 1 starting with trial
RM and HD and iterating until H and � match accurately at
an interior point.

ILLUSTRATIONS
The simple, physically plausible, surface accumulation/
ablation distribution adopted is an elevation-dependent
example with large margin ablation, introduced by Morland
(1997) and used in later papers:

Q ¼ 0:5� 6:5 exp �4Hð Þ,
QM ¼ �6, Q ! 0:5 as H !1: ð54Þ

Decay height scale H ¼ 0:25 corresponds to h ¼ 500m. The
equilibrium height (snowline) where Q ¼ 0 is at H ¼ 0.64,
corresponding to h ¼ 1280m. The basal melting, B, is
assumed zero, so �Q is simply Q.

The temperature distribution adopted was also introduced
by Morland (1997) and used in later papers:

�T ¼� 0:8H þ 0:5 H � Zð Þ
� 0:125� � H � Zð Þ � 0:5 H � Zð Þ2

h i
, ð55Þ

which depends on surface elevation and depth below the

surface. The corresponding thermal boundary conditions are

Z ¼ H Rð Þ: �T s ¼ �0:8H Rð Þ;

Z ¼ 0:
@ �T
@Z

¼ �0:5, ð56Þ

with the realistic properties that the surface temperature
decreases at a rate of 0.8 K per 100m rise, a uniform heat
flux into the base equivalent to a temperature gradient of
0.5 K per 100m, and that the Laplacian of T, arising in the
energy balance, is bounded.

Two constant friction coefficients are considered: a
modest � � 25 and a larger � � 100.

Tables 1 and 2 show the values of RM and HD for different
values of the invariant weighting parameter, �, for � � 25
and � � 100, respectively. The case � ¼ 0 is the linearly
viscous limit, and not an actual pure J3-dependent solution.
For the friction coefficient � � 25, Table 1 shows that RM

decreases by only 3% as � decreases from 1 to 0, and HD

increases by only 0.45%. For � � 100, Table 2 shows that
RM decreases by 10% as � decreases from 1 to 0, and now
HD decreases, by 0.9%. While the larger basal friction
enhances the differences as J3 dependence increases, the
overall change is still not large. The corresponding surface
profiles for the different values of � are similarly close.
Essentially, at the shear stress levels near the bed, where they
are at their greatest, the magnitude of the invariant J2 is not
sufficiently large for the non-constant terms of the isotropic
viscous relation (13) to dominate, so the non-linear depend-
ence on J2 is not very significant even when there is no J3
dependence. This will not be the case over significant bed
topography where greater shear stresses occur, but where the
reduced model is not valid.

CONCLUSIONS
The commonly adopted reduced model (shallow-ice ap-
proximation) equations are the leading-order balances of an
asymptotic approximation using the small surface slope
magnitude or aspect ratio as small parameter. They are valid
only when the bed topography also has small slope; the full
equations are necessary otherwise. Until now the reduced
model has been applied with a coaxial isotropic viscous law
dependent only on the second principal invariant of the
deviatoric stress. Here, the asymptotic analysis is extended
to a coaxial isotropic viscous relation with dependence on
both second and third principal invariants. This shows that
the leading-order momentum balances are the same,
allowing explicit depth integration to yield the same
expressions in terms of the surface profile for the pressure
and horizontal shear stresses. Further, the third invariant

Table 1. Margin span, RM, and divide height, HD, for different �
with � � 25

� RM HD

1.0 0.85328 1.61483
0.8 0.84871 1.61607
0.6 0.84394 1.61741
0.4 0.83889 1.61883
0.2 0.83357 1.62039
0.0 0.82790 1.62209

Table 2. Margin span, RM, and divide height, HD, for different �
with � � 100

� RM HD

1.0 0.58536 1.49739
0.8 0.57619 1.49594
0.6 0.56611 1.49412
0.4 0.55481 1.49173
0.2 0.54182 1.48845
0.0 0.52623 1.48347
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dependence does not explicitly change the velocity gradient
relations so that they can also be integrated through the
depth as before, leading to the usual reduced model
equation for the surface profile. This is explicitly determined
for steady axially symmetric flow, yielding the usual second-
order differential equation for the surface elevation on an
unknown span. An isotropic viscous relation with depend-
ence only on the second invariant, determined by correl-
ation with uniaxial compressive stress data, is here weighted
additively between second and third invariant dependence
with a variable weighting parameter. A set of steady radial
solutions has been constructed with different values of the
parameter to explore the influence of third invariant
dependence with modest and large basal friction. It is found
that the third invariant dependence does not have a large
influence on the ice-sheet profiles in these reduced-model
examples, essentially because the non-linear terms of the
viscous relation are not large, though greater with the larger
basal friction. Third invariant dependence would have more
influence over significant bed topography where larger shear
stresses occur, but where the reduced model is not valid.
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