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We analyse the steady viscoelastic fluid flow in slowly varying contracting channels of
arbitrary shape and present a theory based on the lubrication approximation for calculating
the flow rate–pressure drop relation at low and high Deborah (De) numbers. Unlike
most prior theoretical studies leveraging the Oldroyd-B model, we describe the fluid
viscoelasticity using a FENE-CR model and examine how the polymer chains’ finite
extensibility impacts the pressure drop. We employ the low-Deborah-number lubrication
analysis to provide analytical expressions for the pressure drop up to O(De4). We further
consider the ultra-dilute limit and exploit a one-way coupling between the parabolic
velocity and elastic stresses to calculate the pressure drop of the FENE-CR fluid for
arbitrary values of the Deborah number. Such an approach allows us to elucidate
elastic stress contributions governing the pressure drop variations and the effect of finite
extensibility for all De. We validate our theoretical predictions with two-dimensional
numerical simulations and find excellent agreement. We show that, at low Deborah
numbers, the pressure drop of the FENE-CR fluid monotonically decreases with De,
similar to the previous results for the Oldroyd-B and FENE-P fluids. However, at high
Deborah numbers, in contrast to a linear decrease for the Oldroyd-B fluid, the pressure
drop of the FENE-CR fluid exhibits a non-monotonic variation due to finite extensibility,
first decreasing and then increasing with De. Nevertheless, even at sufficiently high
Deborah numbers, the pressure drop of the FENE-CR fluid in the ultra-dilute and
lubrication limits is lower than the corresponding Newtonian pressure drop.
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1. Introduction
The ability to accurately predict the hydrodynamic features is at the core of understanding
viscoelastic fluid flows. Such complex fluid flows may exhibit significantly different
characteristics from Newtonian flows, even with a small concentration of polymer
molecules present, giving rise to viscoelastic effects such as normal stress differences
and extensional thickening (Bird et al. 1987; Steinberg 2021; Datta et al. 2022; Ewoldt &
Saengow 2022).

One hydrodynamic feature that has received considerable attention in the fluid
mechanics community is the relationship between the pressure drop �p and the flow
rate q in viscoelastic channel flows with spatially varying shapes. Over the years, the
q−�p relation of viscoelastic fluid flows has been studied in different geometries, through
numerical simulations (Szabo et al. 1997; Alves et al. 2003; Binding et al. 2006; Alves &
Poole 2007; Zografos et al. 2020; Varchanis et al. 2022) and experimental measurements
(Rothstein & McKinley 1999, 2001; Sousa et al. 2009; Ober et al. 2013; James & Roos
2021), and recently, via theoretical analysis (Pérez-Salas et al. 2019; Boyko & Stone 2022;
Housiadas & Beris 2023, 2024c; Boyko et al. 2024; Hinch et al. 2024). For an overview
of recent studies, the reader is referred to Boyko & Stone (2022) and Hinch et al. (2024).

The majority of previous numerical and experimental studies on the flow rate–pressure
drop relation have focused on rapidly varying geometries with sharp corners, such as
abrupt or hyperbolic contraction and contraction–expansion (constriction) channels (see
e.g. Rothstein & McKinley 1999; Alves et al. 2003; Binding et al. 2006; Campo-
Deaño et al. 2011; Keshavarz & McKinley 2016; Zografos et al. 2022). However, such
rapidly varying geometries greatly complicate theoretical analysis. Therefore, to overcome
this issue and enable asymptotic analysis, theoretical studies have considered instead
a slowly varying geometry and exploited the narrowness of the geometry through the
application of the lubrication theory (see e.g. Boyko & Stone 2022; Housiadas & Beris
2023,2024a,b,c,d). There have been numerous applications of lubrication theory to other
viscoelastic fluid flows, such as thin films and tribology problems (Ro & Homsy 1995;
Tichy 1996; Sawyer & Tichy 1998; Zhang et al. 2002; Saprykin et al. 2007; Ahmed
& Biancofiore 2021; Gamaniel et al. 2021; Datt et al. 2022; Ahmed & Biancofiore
2023, 2024), as well as translation of a sphere near a rigid plane (Ardekani et al. 2007;
Ruangkriengsin et al. 2024), and analysis of forces and torques acting on nearly touching
spheres (Dandekar & Ardekani 2021). For example, Sari et al. (2024) recently explored the
effect of fluid viscoelasticity in soft lubrication contacts using the Oldroyd-B model, con-
sidering elastohydrodynamic lubrication situations at low values of the Deborah number.

Using such a theoretical approach in conjunction with applying a perturbation expansion
in powers of the Deborah number De (see definition in § 2.1), Boyko & Stone (2022)
studied the steady flow of an Oldroyd-B fluid in a slowly varying, arbitrarily shaped
two-dimensional (2-D) channel and provided the expression for the q−�p relation up to
O(De3) in the low-Deborah-number limit. Recently, Housiadas & Beris (2023) extended
the analysis of Boyko & Stone (2022) to much higher asymptotic orders and provided
analytical expressions for the pressure drop up to O(De8) for different constitutive models,
such as Oldroyd-B, Phan-Thien−Tanner (PTT) (Phan-Thien & Tanner 1977; Phan-Thien
1978), Giesekus (Giesekus 1982) and a finitely extensible nonlinear elastic (FENE) model
with the Peterlin approximation (FENE-P) (Bird et al. 1980, 1987). Their low-Deborah-
number theoretical predictions for pressure drop using more complex constitutive models
are very close to those of the Oldroyd-B model, showing a monotonic decrease in the
scaled pressure drop with De for the flow through a hyperbolic contraction (Housiadas &
Beris 2023).
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Recently, Hinch et al. (2024) and Boyko et al. (2024) analysed the flow of an Oldroyd-
B fluid in a slowly varying 2-D channel in the high-De limit using lubrication theory.
Hinch et al. (2024) studied numerically the flow through a contraction, expansion and
constriction for order-one Deborah numbers, and provided asymptotic solutions at high
Deborah numbers. Boyko et al. (2024) studied the flow of the Oldroyd-B fluid in a
slowly varying contraction considering the ultra-dilute limit, in which there is a one-way
coupling between the Newtonian velocity and polymer stresses (Remmelgas et al. 1999;
Moore & Shelley 2012; Li et al. 2019; Mokhtari et al. 2022). Such an approach allows for
considerable theoretical progress beyond low De, yielding semi-analytical expressions for
the conformation tensor and pressure drop for arbitrary values of the Deborah number. For
a contraction, Hinch et al. (2024) and Boyko et al. (2024) showed that the pressure drop
of the Oldroyd-B fluid monotonically decreases with De, scaling linearly with De at high
Deborah numbers, and identified two physical mechanisms responsible for the pressure
drop reduction.

Although the Oldroyd-B model is the simplest viscoelastic model that combines viscous
and elastic stresses and can be derived from kinetic theory, it has several shortcomings
(Beris 2021; Hinch & Harlen 2021; Shaqfeh & Khomami 2021; Castillo-Sánchez et al.
2022; Stone et al. 2023). One well-known shortcoming of the Oldroyd-B model is that it
allows the polymer chains, represented by elastic dumbbells, to be infinitely extensible
(Bird et al. 1987). However, in reality, the polymer chains have a finite length. More
importantly, theoretical and numerical predictions for the pressure drop reduction of an
Oldroyd-B fluid in a contraction (Alves et al. 2003; Boyko & Stone 2022; Housiadas &
Beris 2023; Boyko et al. 2024) are in contrast with the experiments showing a nonlinear
increase in the pressure drop with De for the flow of a Boger fluid through abrupt
contraction–expansion and contraction geometries (Rothstein & McKinley 1999; Nigen
& Walters 2002; Nigen & Walters 2002; Sousa et al. 2009). As pointed out by Hinch et al.
(2024), this discrepancy might be resolved by using a more complex constitutive model
that incorporates some form of extra dissipative stress instead of a simple Oldroyd-B
model.

Different models, such as the FENE-CR model introduced by Chilcott & Rallison (1988)
and the FENE-P model, incorporate the feature of finite extensibility through a nonlinear
restoring force and include extra dissipation. Similar to the Oldroyd-B model, the FENE-
CR model does not account for the shear-thinning effect and is suitable for describing
constant shear-viscosity viscoelastic (Boger) fluids (James 2009). In contrast, the FENE-P
model incorporates both the finite extensibility and the shear-thinning effect of viscoelastic
fluids. Recently, Ahmed & Biancofiore (2023) used both the FENE-CR and FENE-P
models to study the influence of viscoelastic effects in a thin lubricated contact with a
boundary-driven flow in the low-Deborah-number limit.

There are several advantages of studying the FENE-CR model prior to the FENE-P
model, particularly at high Deborah numbers. First, the FENE-CR model allows the study
of elastic effects on the pressure drop without the influence of shear thinning in shear
viscosity. Second, the FENE-CR model is more convenient for theoretical analysis. For
example, in contrast to the conformation tensor components of the fully developed flow
of a FENE-CR fluid in a straight channel, which have relatively simple expressions (see
Appendix A), the corresponding expressions for the FENE-P fluid are more cumbersome
(Cruz et al. 2005).

Nevertheless, it should be noted that at low De, more complex constitutive models,
such as PTT, Giesekus, FENE-P and FENE-CR, exhibit behaviour similar to Oldroyd-B
due to the weak effect of additional microscopic features (Boyko & Stone 2024). Indeed,
at low Deborah numbers, the PTT, Giesekus and FENE-P fluids showed only a slight
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difference in the pressure drop results compared with the Oldroyd-B fluid (Housiadas &
Beris 2023). However, at high Deborah numbers, additional microscopic features, such as
finite extensibility, become apparent and impact the elastic stresses (see e.g. Zografos et al.
2022). Therefore, one should anticipate significant differences between the predictions
for the pressure drop of the Oldroyd-B and the more complex constitutive models, thus
motivating further investigation.

In this work, we study the pressure-driven flow of the FENE-CR fluid in slowly varying,
arbitrarily shaped, planar contracting channels using lubrication theory. Specifically, in the
current work, we analyse the low-Deborah-number limit and the ultra-dilute limit, with
the latter enabling us to explore arbitrary values of Deborah number. This is in contrast
to Housiadas & Beris (2023), who considered the flow of a FENE-P fluid through a non-
uniform channel at low De. We first employ a perturbation expansion in powers of the
Deborah number to calculate the non-dimensional pressure drop for the FENE-CR fluid
up to O(De4) and then apply the Padé approximation (Housiadas 2017) to improve the
convergence of the asymptotic series. We find that, at low Deborah numbers, the pressure
drop of the FENE-CR fluid monotonically decreases with De, similar to the Oldroyd-B
and FENE-P fluid predictions.

To elucidate the pressure drop behaviour at high De, we consider the ultra-dilute limit
of small polymer concentration and leverage a one-way coupling between the parabolic
velocity and polymer stresses to calculate the pressure drop for arbitrary values of the
Deborah number. Such an approach allows us to study the elastic stress contributions
governing the pressure drop variations and the effect of finite extensibility for all De.
We show that, at high Deborah numbers, in contrast to a linear pressure drop reduction of
the Oldroyd-B fluid, the pressure drop of the FENE-CR fluid exhibits a non-monotonic
variation, first decreasing and then increasing with De. Nevertheless, in the ultra-
dilute limit, the pressure drop of the FENE-CR fluid is lower than the corresponding
Newtonian pressure drop even at sufficiently high Deborah numbers. We validate our
theoretical predictions with 2-D finite-volume numerical simulations and find excellent
agreement. However, as expected, at sufficiently high De, our 2-D finite-volume numerical
simulations, implementing the log-conformation formulation, suffer from accuracy and
convergence difficulties due to the high-Weissenberg-number problem (Owens & Phillips
2002; Alves et al. 2021). Therefore, we believe that our theoretical results for the FENE-
CR fluid in the ultra-dilute limit, valid at high Deborah numbers, are of fundamental
importance for validating simulation predictions and advancing our understanding of
viscoelastic channel flows.

Table 1 presents a summary of previous theoretical and numerical work on the pressure
drop of viscoelastic fluids in slowly varying contraction geometries, highlighting the
novelty of this study. It is evident from table 1 that all prior studies incorporating the
effect of finite extensibility considered only low values of De and predicted a monotonic
pressure drop reduction, similar to the Oldroyd-B behaviour. In contrast, our study shows
that the finite extensibility leads to the non-monotonic pressure drop behaviour at high
De. Furthermore, we believe that this study is an important step in understanding and
resolving the theoretical/experimental discrepancy for the pressure drop of a Boger fluid
through contraction geometries, discussed in the previous paragraphs.

2. Problem formulation and governing equations
We study the incompressible steady flow of a viscoelastic fluid in a slowly varying and
symmetric planar channel of height 2h(z) and length �, where h � �, as shown in figure 1.
Motivated by the geometries used in previous experimental and numerical studies (see e.g.
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Model Contribution/Prediction Remarks/Focus

Pérez-salas et al. (2019) PTT Closed-form expressions for See discussion by
velocity and pressure Boyko & Stone,

(2022)
Boyko & Stone (2022) Oldroyd-B Analytical expressions for pressure Low De

drop up to O(De3); β̃ ∈ [0, 1]
Monotonic pressure drop reduction

Housiadas & Beris (2023) Oldroyd-B Analytical expressions for pressure Low De
PTT drop up to O(De8); β̃ ∈ [0, 1]
Giesekus Monotonic pressure drop reduction No slip on the walls
FENE-P

Housiadas & Beris (2024d) Oldroyd-B Analytical expressions for pressure Low De
PTT drop and Trouton ratio up to O(De8); β̃ ∈ [0, 1]
Giesekus Monotonic pressure drop reduction Slip on the walls
FENE-P

Boyko et al. (2024) Oldroyd-B Semi-analytical expressions for Arbitrary values of De
conformation tensor and pressure β̃ � 1
drop for arbitrary values of De
in the ultra-dilute limit;
Asymptotic solutions for
pressure drop at high De;
Monotonic pressure drop reduction

Hinch et al. (2024) Oldroyd-B Asymptotic and numerical solutions Order-one De
for pressure drop at high De; β̃ ∈ [0, 1]
Physical mechanisms responsible
for pressure drop reduction;
Monotonic pressure drop reduction

Housiadas & Beris (2024b) Oldroyd-B Analytical expressions for pressure Low De
drop and Trouton ratio up to O(De8); β̃ ∈ [0, 1]
Monotonic pressure drop reduction Axisymmetric case

Present work FENE-CR Theoretical model for calculating Arbitrary values of De
conformation tensor and pressure β̃ � 1
drop for arbitrary values of De
in the ultra-dilute limit incorporating
the effect of finite extensibility;
Validation of theoretical predictions See figures 5 and 9
against full 2-D numerical
simulations up to order-one De;
Source of the non-monotonic See figure 6(b)
variation of the pressure drop

Table 1. Theoretical and numerical studies of the pressure-driven flows of viscoelastic fluids in slowly varying
contraction geometries that employed lubrication theory and focused on understanding the pressure drop
behaviour.

Szabo et al. 1997; Rothstein & McKinley 1999; Alves et al. 2003; Alves & Poole 2007;
Campo-Deaño et al. 2011; Ober et al. 2013; Zografos et al. 2020; Boyko & Stone 2022;
Boyko et al. 2024; Hinch et al. 2024), we assume that the inlet (z = 0) and outlet (z = �)
of the contraction are connected to two long straight channels of height 2h0 and 2h�, and
length �0 and ��, respectively. We consider the fluid motion with the pressure distribution
p and velocity u = (uz, uy) induced by an imposed flow rate q (per unit depth). Our
primary interest in this work is to examine the pressure drop �p of a viscoelastic fluid
over the contraction region at low and high Deborah numbers while incorporating the
finite extensibility of polymer chains.
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Pressure drop �p over
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                     Slowly spatially varying contraction

Figure 1. Schematic illustration of the planar configuration consisting of a slowly varying and symmetric
contraction of height 2h(z) and length � (h � �). Upstream of the contraction inlet, there is an entry channel
of height 2h0 and length �0, and downstream of the contraction outlet, there is an exit channel of height 2h�

and length ��. The imposed flow rate q results in a viscoelastic fluid flow through the geometry, and we aim
to determine the pressure drop �p across the contraction region. We have indicated the qualitatively expected
extension of polymers as the fluid flows through the contraction since the extension affects the fluid response
in the FENE-CR description.

We consider low-Reynolds-number flows and neglect the fluid inertia. In this creeping
flow limit, the governing equations are the continuity and momentum equations

∇ · u = 0, ∇ · σ = 0. (2.1a,b)

Here, the stress tensor σ can be expressed as

σ = −pI + 2μsE + τp, (2.2)

where −pI is the pressure contribution, 2μsE is the viscous stress contribution of a
Newtonian solvent with a constant viscosity μs , where E = (∇u + (∇u)T)/2 is the
rate-of-strain tensor, and τp is the polymer contribution to the stress tensor.

To describe the viscoelastic rheology of the fluid, we use the FENE-CR model
introduced by Chilcott & Rallison (1988). In contrast to the Oldroyd-B constitutive
equation (Oldroyd 1950), the FENE-CR constitutive model considers polymer molecules
as dumbbells with a finite extensibility L relative to their value at equilibrium. However,
the FENE-CR model does not account for the shear-thinning effect, which can be
captured using the FENE-P model (Bird et al. 1987). For the FENE-CR model, the
polymer contribution to the stress tensor τp can be expressed in terms of the symmetric
conformation tensor (or the deformation of the microstructure) A as (Chilcott & Rallison
1988; Alves et al. 2021)

τp = μp

λ
F(A)(A − I ), (2.3)

where μp is the polymer contribution to the shear viscosity at zero shear rate and λ is the
relaxation time. We also introduce the total zero-shear-rate viscosity μ0 = μs + μp.

The function F(A) in (2.3) accounts for the finite extensibility of polymers represented
by elastic dumbbells and is modelled using the Warner spring function (Warner 1972),

F(A) = 1
1 − (trA)/L2 , (2.4)

where trA denotes the trace of the conformation tensor A.
At a steady state, the conformation tensor of the FENE-CR model satisfies (Chilcott &

Rallison 1988)

u · ∇A − (∇u)T · A − A · (∇u) = − F(A)

λ
(A − I ). (2.5)
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For large values of L , the function F(A) tends to 1, so that the FENE-CR model, given in
(2.3) and (2.5), reduces to the steady form of the Oldroyd-B constitutive equation.

2.1. Non-dimensionalisation
We analyse the viscoelastic fluid flow through a narrow slowly varying channel, in which
the channel height is much smaller than the channel length, h(z) � �. Therefore, for
the non-dimensionalisation of the viscoelastic flow problem, we introduce dimensionless
variables based on the lubrication theory (Tichy 1996; Zhang et al. 2002; Saprykin et al.
2007; Ahmed & Biancofiore 2021; Boyko & Stone 2022; Boyko & Stone 2022; Boyko
et al. 2024),

Z = z

�
, Y = y

h�

, Uz = uz

uc
, Uy = uy

εuc
, (2.6a)

P = p

μ0uc�/h2
�

, �P = �p

μ0uc�/h2
�

, H(Z) = h(z)

h�

, (2.6b)

Ãzz = ε2 Azz, Ãyz = ε Ayz, Ãyy = Ayy, (2.6c)

Tp,zz = ε2�

μ0uc
τp,zz, Tp,yz = ε�

μ0uc
τp,yz, Tp,yy = �

μ0uc
τp,yy, (2.6d)

where uc = q/2h� is the characteristic velocity scale, q is the imposed flow rate per unit
depth and h� is the half-height at z = �. In addition, we introduce the aspect ratio of the
configuration, which is assumed to be small,

ε = h�

�
� 1, (2.7)

the contraction ratio,

H0 = h0

h�

, (2.8)

the viscosity ratios,

β̃ = μp

μs + μp
= μp

μ0
and β = 1 − β̃ = μs

μ0
, (2.9)

and the Deborah and Weissenberg numbers,

De = λuc

�
and Wi = λuc

h�

. (2.10)

Finally, we note that the fluid inertia is negligible, provided the reduced Reynolds number
is small,

εRe = ε
ρuch�

μ0
= ρqh�

2μ0�
� 1, (2.11)

where ρ is the density of the fluid.
Note that we have defined both the Deborah and Weissenberg numbers. Although the

Deborah and Weissenberg numbers are equivalent in many steady flows, in lubrication
flows, they have different orders of magnitude due to the two distinct length scales. The
Deborah number De is the ratio of the relaxation time of the fluid, λ, to the residence
time in the non-uniform region, �/uc (Tichy 1996; Zhang et al. 2002; Saprykin et al.
2007; Ahmed & Biancofiore 2021; Boyko & Stone 2022; Ahmed & Biancofiore 2023;
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Housiadas & Beris 2023; Boyko et al. 2024; Hinch et al. 2024). The Weissenberg number
Wi is the product of the relaxation time of the fluid, λ, and the characteristic shear rate of
the flow, uc/h�, and is related to the Deborah number through De = εWi . Therefore, for
lubrication flows in narrow geometries with ε � 1, the Deborah number can be small, but
Wi = O(1). In addition to the Deborah number De = λq/(2�h�) based on the exit height,
we can introduce the Deborah number Deentry = λq/(2�h0) based on the entry height; the
two Deborah numbers are related through Deentry = De/H0.

2.2. Non-dimensional governing equations in Cartesian coordinates and pressure drop
Substituting the non-dimensional variables (2.6)–(2.10) into the governing equations
(2.1)–(2.5) and considering the leading order in ε, we obtain

∂Uz

∂ Z
+ ∂Uy

∂Y
= 0, (2.12a)

∂ P

∂ Z
= (1 − β̃)

∂2Uz

∂Y 2 + β̃

De

(
∂(F(Ã) Ãzz)

∂ Z
+ ∂(F(Ã) Ãyz)

∂Y

)
, (2.12b)

∂ P

∂Y
= 0, (2.12c)

Uz
∂ Ãzz

∂ Z
+ Uy

∂ Ãzz

∂Y
− 2

∂Uz

∂ Z
Ãzz − 2

∂Uz

∂Y
Ãyz = −F(Ã)

De
Ãzz, (2.12d)

Uz
∂ Ãyz

∂ Z
+ Uy

∂ Ãyz

∂Y
− ∂Uy

∂ Z
Ãzz − ∂Uz

∂Y
Ãyy = −F(Ã)

De
Ãyz, (2.12e)

Uz
∂ Ãyy

∂ Z
+ Uy

∂ Ãyy

∂Y
− 2

∂Uy

∂ Z
Ãyz − 2

∂Uy

∂Y
Ãyy = −F(Ã)

De
( Ãyy − 1), (2.12f )

where

F(Ã) = 1

1 − 1
L2ε2 ( Ãzz + ε2 Ãyy)

≈ 1

1 − Ãzz/(L2ε2)
. (2.13)

From the y-momentum equation, (2.12c), it follows that P = P(Z) + O(ε2), i.e. the
pressure is constant across a cross-section but varies along the z-direction. Under the
non-dimensionalisation (2.6c), the right-hand side of (2.12d) becomes −(F(Ã)/De)
( Ãzz − ε2). Thus, at the leading order in ε, we have −(F(Ã)/De) Ãzz .

For lubrication flows through the slowly varying geometries that we consider, (2.13)
clearly indicates that the finite extensibility is governed by the dimensionless parameter
L2ε2 rather than L2 (Ahmed & Biancofiore 2023; Housiadas & Beris 2023). Although
we consider ε � 1, since the realistic values of L2 are typically large (see e.g. Remmelgas
et al. (1999); Rothstein & McKinley (1999)), we may have L2ε2 = O(1).

The corresponding boundary conditions on the velocity are

Uz(H(Z), Z) = 0, Uy(H(Z), Z) = 0,
∂Uz

∂Y
(0, Z) = 0,

∫ H(Z)

0
Uz(Y, Z)dY = 1.

(2.14a–d)

These boundary conditions respectively represent the no-slip and no-penetration
conditions along the channel walls, the symmetry boundary condition at the centreline,
and the integral mass conservation along the channel. In addition, we assume a fully
developed unidirectional flow of a FENE-CR fluid in the straight entry channel, given

1009 A12-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

14
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.142


Journal of Fluid Mechanics

by the Poiseuille velocity profile, and the corresponding conformation tensor (see the
derivation in Appendix A)

Ãzz = L2ε2 + L3ε3
Lε −

√
L2ε2 + 72De2Y 2/H6

0

36De2Y 2/H6
0

, (2.15a)

Ãyz = Lε
Lε −

√
L2ε2 + 72De2Y 2/H6

0

12DeY/H3
0

and Ãyy = 1. (2.15b)

Following the steps outlined in Appendix B, the non-dimensional pressure drop �P =
P(0) − P(1) across the non-uniform region can be expressed as

�P = (1 − β̃)�P̂ + β̃

De

∫ H(0)

0
[F(Ã) ÃzzÛz]Z=0dY − β̃

De

∫ H(1)

0
[F(Ã) ÃzzÛz]Z=1dY

+ β̃

De

∫ 1

0

∫ H(Z)

0
F(Ã) Ãzz

∂Ûz

∂ Z
dY dZ + β̃

De

∫ 1

0

∫ H(Z)

0
F(Ã) Ãyz

∂Ûz

∂Y
dY dZ .

(2.16)

Here, the function F(Ã) is given in (2.13), and �P̂ and Ûz are the corresponding
pressure drop and axial velocity of a Newtonian fluid given by (Boyko & Stone 2022)

�P̂ = 3
∫ 1

0

dZ

H(Z)3 , Ûz = 3
2

H(Z)2 − Y 2

H(Z)3 . (2.17a,b)

Equation (2.16) represents the expression for the non-dimensional pressure drop
previously obtained from an application of the reciprocal theorem in a slowly varying
channel (Boyko & Stone 2021, 2022). The first term on the right-hand side of (2.16)
represents the contribution of the Newtonian solvent to the pressure drop. The second and
third terms represent the contribution of the elastic normal stresses at the inlet and outlet
of the non-uniform channel. Finally, the fourth and fifth terms represent the contribution
of the elastic normal stresses and elastic shear stresses within the non-uniform channel.

3. Low-Deborah-number lubrication analysis
In this section, we employ the low-Deborah-number lubrication analysis to derive
asymptotic expressions for the velocity, conformation tensor and pressure drop of a weakly
viscoelastic FENE-CR fluid up to O(De4). To this end, we expand the velocity, pressure
drop and conformation tensor components into perturbation series in the Deborah number
De � 1, ⎛

⎜⎜⎜⎜⎜⎜⎝

Uz
Uy
P

Ãzz

Ãyy

Ãyz

⎞
⎟⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎜⎜⎝

Uz,0
Uy,0
P0

Ãzz,0
Ãyy,0
Ãyz,0

⎞
⎟⎟⎟⎟⎟⎟⎠+ De

⎛
⎜⎜⎜⎜⎜⎜⎝

Uz,1
Uy,1
P1

Ãzz,1
Ãyy,1
Ãyz,1

⎞
⎟⎟⎟⎟⎟⎟⎠+ De2

⎛
⎜⎜⎜⎜⎜⎜⎝

Uz,2
Uy,2
P2

Ãzz,2
Ãyy,2
Ãyz,2

⎞
⎟⎟⎟⎟⎟⎟⎠+ . . . . (3.1)

As noted by Boyko & Stone (2022), in the weakly viscoelastic and lubrication limits,
De � 1 and ε � 1, it is sufficient to apply the boundary conditions on the velocity (2.14)
to find the flow field, conformation tensor components and pressure drop at each order in
De. Indeed, the iterative structure of the solution eliminates the need to use the boundary
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condition (2.15) on the conformation tensor (Black & Denn 1976; Boyko & Stone 2022;
Housiadas & Beris 2023). For example, considering the leading and first order in De, we
find

Ãzz,0 = 0, Ãyz,0 = 0, Ãyy,0 = 1, (3.2)

Ãzz,1 = 0, Ãyz,1 = ∂Uz,0

∂Y
, Ãyy,1 = 2

∂Uy,0

∂Y
. (3.3)

In Appendix C, we provide a detailed derivation of the expressions for the pressure drop
of the FENE-CR fluid in the low-De limit up to O(De4). We obtain that the expressions
for the pressure drop at the leading, first and second order in De are the same for the
FENE-CR and Oldroyd-B fluids, and are given by

�P0 = 3
∫ 1

0

dZ

H(Z)3 , �P1 = 9
2
β̃

(
1

H(0)4 − 1
H(1)4

)
, (3.4a,b)

�P2 = 324
35

β̃

∫ 1

0

(
14H ′(Z)2

H(Z)7 − 3H ′′(Z)

H(Z)6

)
dZ . (3.4c)

Interestingly, unlike the FENE-CR fluid, the pressure drop of the FENE-P fluid is different
from the Oldroyd-B case at O(De2) and depends on finite extensibility through L2ε2, as
recently shown by Housiadas & Beris (2023).

At the third order in De, the pressure drop of the FENE-CR fluid is different from the
Oldroyd-B fluid due to the finite extensibility and is given as

�P3 = − 2673β̃

70L2ε2

(
1

H(0)8 − 1
H(1)8

)

+ 648β̃(9 − β̃)

35

(
H ′(0)2

H(0)8 − H ′(1)2

H(1)8

)
− 216β̃(8 − β̃)

35

(
H ′′(0)

H(0)7 − H ′′(1)

H(1)7

)
.

(3.5)

From (3.5), it follows that �P3 may increase, decrease or not change the total pressure
drop of the FENE-CR fluid, depending on the geometry. For a contraction (H(0) > H(1)),
the first term, which depends on finite extensibility through L2ε2 and distinguishes the
FENE-CR fluid from the Oldroyd-B fluid, leads to an increase in the pressure drop.
However, for an expansion (H(0) < H(1)), the first term leads to a decrease in the pressure
drop, and for a constriction (H(1) = H(0)), it does not contribute to the pressure drop. We
also note that our expression for the pressure drop �P3 of the FENE-CR fluid is similar
to the expression for the pressure drop of the FENE-P fluid at O(De3), albeit a different
number in the coefficient of the first term in (3.5) (Housiadas & Beris 2023).

Finally, at the fourth order in De, the resulting expression for the pressure drop of the
FENE-CR fluid is

�P4 = 3888β̃(8β̃ + 25)

175L2ε2

[
H ′(1)

H(1)10 − H ′(0)

H(0)10

]
+ 648β̃

175L2ε2

∫ 1

0

[
a1

H ′′

H10 + a2
H ′2

H11

]
dZ

+
∫ 1

0

[
a3

H ′′2

H9 + a4
H ′′′H ′

H9 + a5
H3 H ′′′′

H11 + a6
H ′4

H11 + a7
H ′2 H ′′

H10

]
dZ

+ a8

[
H ′′′(0)

H(0)8 − H ′′′(1)

H(1)8

]
+ a9

[
H ′(1)H ′′(1)

H(1)9 − H ′(0)H ′′(0)

H(0)9

]

+ a10

[
H ′(0)3

H(0)10 − H ′(1)3

H(1)10

]
, (3.6)
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Coefficient Expression Coefficient Expression

a1 55 − 8β̃ a2 20(4β̃ − 15)

a3
3240β̃

13 475
[β̃(41 − 70β̃) + 910] a4

4536β̃

13 475
[β̃(119 − 82β̃) + 750]

a5
1296β̃

13 475
[2β̃(7β̃ − 5) − 175] a6

9072β̃

13 475
[11β̃(83 − 40β̃) + 2400]

a7
1944β̃

13 475
[β̃(1666β̃ − 2789) − 12 950] a8

5184β̃

13 475
[3β̃(7β̃ − 24) + 175]

a9
2592β̃

13 475
[3β̃(175β̃ − 618) + 4550] a10

3888β̃

1925
[11β̃(8β̃ − 29) + 800]

Table 2. Coefficients appearing in the expression (3.6) for the fourth-order pressure drop �P4 of the
FENE-CR fluid in a planar contracting channel.

where the coefficients a1, ..., a10 are summarised in table 2.
The first two terms on the right-hand side of (3.6) depend on L2ε2, and thus clearly

distinguish the analytical prediction for �P4 of the FENE-CR fluid from the Oldroyd-
B fluid. For the Oldroyd-B fluid, our analytical result for �P4 fully agrees with the
solution of Housiadas & Beris (2023) when accounting for the differences in the non-
dimensionalisation. However, as expected based on the previous orders, our expression for
the fourth-order pressure drop of the FENE-CR fluid differs from the expression for the
FENE-P fluid given by Housiadas & Beris (2023). Specifically, the first two terms in (3.6)
that include L2ε2 appear in the fourth-order expressions for both FENE-CR and FENE-P
fluids with different coefficients. Furthermore, the expression for the FENE-P fluid has an
additional term of the form of

∫ 1
0 H(Z)−11dZ that depends on 1/L4ε4.

For a given flow rate, we have determined the dimensionless pressure drop �P =
�p/(μ0q�/2h3

�) of a FENE-CR fluid as a function of the shape function H(Z), the
viscosity ratio β̃, the parameter L2ε2 and the Deborah number De up to O(De4),

�P = �P0 + De�P1 + De2�P2 + De3�P3 + De4�P4 + O(ε2, De5), (3.7)

where the expressions for �P0, �P1, �P2, �P3 and �P4 are given in (3.4a),
(3.4b), (3.4c), (3.5) and (3.6), respectively. Physically, the non-dimensional quantity
�P = �p/(μ0q�/2h3

�) represents the dimensionless flow resistance (�p/q) for a given
geometry.

Having the low-De asymptotic expressions for �P0, �P1, �P2, �P3 and �P4, we can
improve the convergence of the asymptotic series (3.7) by using the diagonal Padé [2/2]
approximation (Hinch 1991; Housiadas 2017; Housiadas & Beris 2023),

�PPadé = �P0

+ De
De(�P2)

3 + �P1�P2(�P2 − 2De�P3) + �P2
1 (De�P4 − �P3)

(�P2)2 + De2(�P3)2 + �P1(De�P4 − �P3) − De�P2(De�P4 + �P3)
.

(3.8)

It should be noted that Housiadas & Beris (2023) extended the low-Deborah-number
lubrication analysis to much higher asymptotic orders and provided analytical expressions
for the pressure drop of the Oldroyd-B and FENE-P fluids up to O(De8). Nevertheless, as
shown for the Oldroyd-B fluid, the low-De perturbation solutions obtained from the Padé
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approximations remain indistinguishable when adding more terms in the asymptotic series
beyond O(De4).

4. Low-β̃ lubrication analysis
In the previous section, we derived analytical expressions for the non-dimensional pressure
drop of a FENE-CR fluid in a non-uniform channel of arbitrary shape H(Z) in the low-
Deborah-number limit, De � 1. However, as pointed out by Boyko et al. (2024) and Hinch
et al. (2024), the low-Deborah-number asymptotic analysis cannot accurately predict the
pressure drop at high De where there are significant elastic stresses.

In this section, we employ orthogonal curvilinear coordinates and consider the ultra-
dilute limit, β̃ = μp/μ0 � 1 (Remmelgas et al. 1999; Moore & Shelley 2012; Li et al.
2019; Mokhtari et al. 2022; Boyko et al. 2024; Hinch et al. 2024), which allows us to
analyse the pressure drop and conformation tensor at high Deborah numbers.

4.1. Orthogonal curvilinear coordinates for a slowly varying geometry

For our low-β̃ lubrication analysis, we first transform the geometry of the contraction
from the Cartesian coordinates (Z , Y ) to orthogonal curvilinear coordinates (ξ, η) with
the mapping (Boyko et al. 2024; Hinch et al. 2024)

ξ = Z − 1
2
ε2 H ′(Z)

H(Z)
(H(Z)2 − Y 2) + O(ε4), η = Y

H(Z)
, (4.1)

and use U eξ + V eη and Ã11eξ eξ + Ã12(eξ eη + eηeξ ) + Ã22eηeη to denote the
components of velocity and conformation tensor in curvilinear coordinates (ξ, η).

The corresponding components of the non-dimensional velocity field and conformation
tensor in different coordinates are related through

Uz = U − ε2ηH ′(ξ)V, Uy = ηH ′(ξ)U + V, (4.2a)

Ãzz = Ã11 + O(ε2), (4.2b)

Ãzy = Ã12 + ηH ′(ξ) Ã11 + O(ε2), (4.2c)

Ãyy = Ã22 + 2ηH ′(ξ) Ã12 + η2(H ′(ξ))2 Ã11 + O(ε2). (4.2d)

Note that, since there is only a O(ε2) difference between the ξ - and z-directions, for con-
venience, we prefer to use Z rather than ξ in curvilinear coordinates (Boyko et al. 2024).

4.2. Non-dimensional governing equations in orthogonal curvilinear coordinates
Using the mapping (4.1), the governing equations (2.12), (2.13) and the corresponding
boundary conditions (2.14), (2.15) in curvilinear coordinates (Boyko et al. 2024; Hinch
et al. 2024) take the form

∂(HU )

∂ Z
+ ∂V

∂η
= 0, (4.3a)

dP

dZ
= (1 − β̃)

1
H2

∂2U

∂η2 + β̃

De

(
1
H

∂(HF(Ã) Ã11)

∂ Z
+ 1

H

∂(F(Ã) Ã12)

∂η

)
, (4.3b)

U
∂ Ã11

∂ Z
+ V

H

∂ Ã11

∂η
− 2

∂U

∂ Z
Ã11 − 2

H

∂U

∂η
Ã12 = −F(Ã)

De
Ã11, (4.3c)
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U
∂ Ã12

∂ Z
+ V

H

∂ Ã12

∂η
− H

∂

∂ Z

(
V

H

)
Ã11 − 1

H

∂U

∂η
Ã22 = −F(Ã)

De
Ã12, (4.3d)

U
∂ Ã22

∂ Z
+ V

H

∂ Ã22

∂η
− 2H

∂

∂ Z

(
V

H

)
Ã12 + 2

∂U

∂ Z
Ã22 = −F(Ã)

De
( Ã22 − 1), (4.3e)

where

F(Ã) = 1

1 − 1
L2ε2 ( Ã11 + ε2 Ã22)

≈ 1

1 − Ã11/(L2ε2)
, (4.4)

subject to the boundary conditions

U (Z , 1) = 0, V (Z , 1) = 0,
∂U

∂η
(Z , 0) = 0, H(Z)

∫ 1

0
U (Z , η)dη = 1, (4.5a–d)

and

Ã11(0, η) = L2ε2 + L3ε3
Lε −

√
L2ε2 + 72De2η2/H4

0

36De2η2/H4
0

, (4.6a)

Ã12(0, η) = Lε
Lε −

√
L2ε2 + 72De2η2/H4

0

12Deη/H2
0

and Ã22(0, η) = 1. (4.6b)

Following similar steps as in Appendix B and using the integral constraint (4.5d), the
non-dimensional pressure drop can be expressed in curvilinear coordinates as

�P = 3(1 − β̃)

∫ 1

0

dZ

H(Z)3︸ ︷︷ ︸
Solvent stress contribution

+ − 3β̃

De

∫ 1

0

[
1

H(Z)

∫ 1

0
ηF(Ã) Ã12dη

]
dZ

︸ ︷︷ ︸
Elastic shear stress contribution

+ 3β̃

2De

(∫ 1

0
(1 − η2)

[
F(Ã) Ã11

]0

1
dη −

∫ 1

0

[
H ′(Z)

H(Z)

(∫ 1

0
(1 − η2)F(Ã) Ã11dη

)]
dZ

)
︸ ︷︷ ︸

Elastic normal stress contribution

,

(4.7)

where [F(Ã) Ã11]0
1 =F(Ã) Ã11|Z=0 −F(Ã) Ã11|Z=1.

Equation (4.7) represents the pressure drop in curvilinear coordinates and is an analogue
of (2.16), written in Cartesian coordinates. The first term on the right-hand side of (4.7)
represents the viscous contribution of the Newtonian solvent to the pressure drop. The
second term represents the contribution of the elastic shear stresses and the last term
represents the contribution of the elastic normal stresses to the pressure drop.

4.3. Velocity, conformation and pressure drop in the ultra-dilute limit

Next, we consider the ultra-dilute limit, β̃ � 1, representing a one-way coupling between
the velocity and pressure fields and the conformation tensor. At the leading order in β̃,
the velocity field of the FENE-CR fluid is parabolic, similar to Newtonian and Oldroyd-B
fluids, and is given as

U = 3
2

1
H(Z)

(1 − η2) and V ≡ 0. (4.8a,b)

1009 A12-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

14
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.142


B. Mahapatra, T. Ruangkriengsin, H.A. Stone and E. Boyko

We note that in orthogonal curvilinear coordinates, the velocity in the η-direction
is identically zero at O(β̃0), in contrast to the Cartesian coordinates where Uy =
(3/2)H ′(Z)Y (H(Z)2 − Y 2)/H(Z)4. As pointed out by Boyko et al. (2024), the latter
fact significantly simplifies the theoretical analysis.

Substituting (4.8) into (4.3c)−(4.3e) and using (4.4), we obtain the simplified equations
for the conformation tensor components of the FENE-CR fluid at leading order in β̃,

U
∂ Ã22

∂ Z
+ 2

∂U

∂ Z
Ã22 = − 1

De

1

1 − Ã11/(L2ε2)
( Ã22 − 1), (4.9a)

U
∂ Ã12

∂ Z
− 1

H

∂U

∂η
Ã22 = − 1

De

1

1 − Ã11/(L2ε2)
Ã12, (4.9b)

U
∂ Ã11

∂ Z
− 2

∂U

∂ Z
Ã11 − 2

H

∂U

∂η
Ã12 = − 1

De

1

1 − Ã11/(L2ε2)
Ã11, (4.9c)

where U is given in (4.8a).
Equation (4.9) represents a set of coupled first-order semi-linear partial differential

equations that should be solved to obtain Ã22, Ã12 and Ã11 for the FENE-CR fluid.
When L2ε2 → ∞, corresponding to the Oldroyd-B fluid, (4.9) reduces to a set of one-way
coupled equations, allowing us to derive semi-analytical expressions for the conformation
tensor for arbitrary values of the Deborah number in the ultra-dilute limit (Boyko et al.
2024). Furthermore, Boyko et al. (2024) and Hinch et al. (2024) provided analytical
expressions for the conformation tensor and the pressure drop of the Oldroyd-B fluid in the
high-Deborah-number limit. In particular, the pressure drop of the Oldroyd-B fluid across
the non-uniform channel in the high-De limit is

�P = 3(1 − β̃)

∫ 1

0

dZ

H(Z)3︸ ︷︷ ︸
Solvent stress

+ 3β̃ H−2
0

∫ 1

0

dZ

H(Z)︸ ︷︷ ︸
Elastic shear stress

+ 9
5
β̃ De

(
H−4

0 − H−2
0

)
︸ ︷︷ ︸

Elastic normal stress

for De 
 1.

(4.10)
The coupling between equations in (4.9) greatly complicates the analytical progress,
particularly in the high-De asymptotic limit for the FENE-CR fluid. Nevertheless,
examining the expressions in (4.9), we observe that for a given value of η ∈ [0, 1], (4.9)
represent a set of first-order ordinary differential equations for Ã22, Ã12 and Ã11 of the
FENE-CR fluid. Therefore, we solve numerically the coupled equations (4.9) subject to
the boundary conditions (4.6) using MATLAB’s routine ode45 and obtain the distribution
of Ã22, Ã12 and Ã11 in a contraction for different values of De and H0 in the limit of
β̃ � 1. Typical values of the grid size are �Z = 10−3 and �η = 0.005. Once Ã11 and Ã12
are determined, we use MATLAB’s routine trapz to calculate the pressure drop (4.7) in a
contraction.

5. Results
In this section, we present our theoretical results for the pressure drop and elastic stresses of
the FENE-CR fluid as developed in the previous sections. We also validate the predictions
of our theoretical model against the two-dimensional numerical simulations with the finite-
volume software OpenFOAM. The details of the numerical procedure are provided in
Appendix D. For comparison and validation, in addition to the FENE-CR fluid, we show
the results for the Oldroyd-B fluid.

1009 A12-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

14
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.142


Journal of Fluid Mechanics

As an illustrative example, we consider a hyperbolic contracting channel of the form

H(Z) = H0

(H0 − 1)Z + 1
, (5.1)

where H0 = h0/h� is the ratio of the heights at the inlet and outlet; for the
contracting geometry, we have H0 > 1. The present study focuses on the contraction ratio
H0 = h0/h� = 4.

5.1. Pressure drop at low Deborah numbers
In this subsection, we elucidate the pressure drop behaviour of the FENE-CR fluid
at low Deborah numbers using our analytical predictions and OpenFOAM simulation
results. In addition, we present the pressure drop of the Oldroyd-B and FENE-P fluids,
thus highlighting how the finite extensibility (without the influence of shear thinning)
incorporated by the FENE-CR model impacts pressure drop.

For the planar hyperbolic contracting channel (5.1), using (3.4a), (3.4b), (3.4c), (3.5)
and (3.6), we obtain analytical expressions for the pressure drop contributions of the
FENE-CR fluid up to O(De4),

�P0 = 3
4

(
1 + H−1

0

) (
1 + H−2

0

)
, (5.2a)

�P1 = −9
2
β̃
(

1 − H−4
0

)
, (5.2b)

�P2 = 648
35

β̃
(

1 − H−1
0

)2 (
1 + H−1

0

) (
1 + H−2

0

)
, (5.2c)

�P3 = 2673
70L2ε2 β̃

(
1 − H−8

0

)
− 216

35
β̃(11 − β̃)

(
1 − H−1

0

)3 (
1 + H−1

0

) (
1 + H−2

0

)
,

(5.2d)

�P4 = − 162
35L2ε2 β̃(32β̃ + 139)

(
1 − H−1

0 − H−8
0 + H−9

0

)
+ 324

13475
β̃(840β̃2 − 3351β̃ + 9800)

(
1 − H−1

0

)4 (
1 + H−1

0

) (
1 + H−2

0

)
.

(5.2e)

Using (5.2) in conjunction with (3.8), we obtain the Padé approximation for the pressure
drop. Note that for L2ε2 → ∞, we recover the Oldroyd-B limit. In this case, the first terms
in (5.2d) and (5.2e), which are dependent on L2ε2, vanish.

We present in figure 2 the scaled pressure drop �P/�P0 as a function of De =
λq/(2�h�) for the Oldroyd-B and FENE-CR fluids in a contracting channel for different
values of L2ε2. Grey triangles and purple circles represent the OpenFOAM simulation
results for the Oldroyd-B and FENE-CR fluids obtained from calculating the pressure
drop along the centreline. Grey solid and green dashed lines represent the fourth-order
asymptotic solutions for the Oldroyd-B and FENE-CR fluids. Cyan dotted and black
solid lines respectively represent the Padé approximation (3.8) applied to the fourth-order
asymptotic solutions for the Oldroyd-B and FENE-CR fluids.

First, we observe that the fourth-order asymptotic solutions (grey solid and green dashed
lines) cannot accurately capture the pressure drop except for very low values of De,
consistent with results of Housiadas & Beris (2023), indicating that the asymptotic series
has a very small radius of convergence. Nevertheless, when using the Padé approximation
to accelerate the convergence of the asymptotic series, we find that our analytical
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Figure 2. Non-dimensional pressure drop at low Deborah numbers for the Oldroyd-B and FENE-CR fluids in a
contracting channel described by (5.1). (a–d) Scaled pressure drop �P/�P0 as a function of De = λq/(2�h�)

for (a) L2ε2 = 10, (b) L2ε2 = 5, (c) L2ε2 = 0.5 and (d) L2ε2 = 0.1. Grey triangles and purple circles
respectively represent the OpenFOAM simulation results for the Oldroyd-B and FENE-CR fluids. Grey solid
and green dashed lines represent the fourth-order asymptotic solutions for the Oldroyd-B and FENE-CR fluids,
given by (5.2a)−(5.2e). Cyan dotted and solid black lines represent the Padé approximation (3.8) applied to
the fourth-order asymptotic solutions for the Oldroyd-B and FENE-CR fluids. All calculations were performed
using H0 = 4 and β̃ = 0.4.

predictions for the pressure drop are in excellent agreement with numerical simulations
for both Oldroyd-B and FENE-CR fluids. For example, even for L2ε2 = 0.1, where the
Padé approximation slightly overpredicts the pressure drop of the FENE-CR fluid, the
relative error is approximately 5 % for up to De = 0.5.
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Figure 3. Comparison of non-dimensional pressure drop at low Deborah numbers for the Oldroyd-B, FENE-
CR and FENE-P fluids in a contracting channel. (a,b) Scaled pressure drop �P/�P0 as a function of
De = λq/(2�h�) for (a) L2ε2 = 0.5 and (b) L2ε2 = 0.25. Grey triangles and purple circles represent the
OpenFOAM simulation results for the Oldroyd-B and FENE-CR fluids, respectively. Cyan dotted, solid black
and dashed blue lines represent the Padé approximation (3.8) applied to the fourth-order asymptotic solutions
for the Oldroyd-B, FENE-CR and FENE-P fluids. All calculations were performed using H0 = 4 and β̃ = 0.4.

Second, it is evident that, at low Deborah numbers, the dimensionless pressure drop
of both Oldroyd-B and FENE-CR fluids monotonically decreases with De, similar to
Giesekus and FENE-P fluids (Housiadas & Beris 2023). Furthermore, as expected,
for L2ε2 = 10 and L2ε2 = 5, the pressure drop behaviour of both fluids is almost
indistinguishable. However, when the finite extensibility becomes more apparent, i.e. as
L2ε2 decreases, the FENE-CR model predicts a higher dimensionless pressure drop than
the Oldroyd-B model, as shown in figure 2(d).

It is of particular interest to compare and contrast our predictions for the pressure drop
of the FENE-CR fluid with the recent low-De results of Housiadas & Beris (2023) for
the FENE-P fluid. Such a comparison of the non-dimensional pressure drop is shown
in figure 3 for Oldroyd-B, FENE-CR and FENE-P fluids in a contracting channel for
L2ε2 = 0.5 and 0.25. Blue dashed lines represent the Padé approximation (3.8) applied
to the fourth-order asymptotic solutions obtained from Housiadas & Beris (2023) for the
FENE-P fluid, when accounting for the differences in characteristic scales. Similar to the
Oldroyd-B and FENE-CR fluids, the dimensionless pressure drop of the FENE-P fluid
monotonically decreases with De at low Deborah numbers. Furthermore, as expected, the
FENE-P fluid shows a higher pressure drop than the Oldroyd-B fluid due to the effects of
finite extensibility. However, due to the shear-thinning effects, the resulting pressure drop
of the FENE-P fluid is lower than that of the FENE-CR fluid.

Although our low-De analysis using the Padé approximation predicts well the pressure
drop at low Deborah numbers, it cannot accurately capture the pressure drop behaviour
at high Deborah numbers. To this end, in the next subsections, we employ numerical
simulations and the low-β̃ lubrication analysis.
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Figure 4. Non-dimensional pressure drop at high Deborah numbers for the Oldroyd-B and FENE-CR fluids in
a contracting channel. (a, b) Scaled pressure drop �P/�P0 as a function of De = λq/(2�h�) (or Deentry =
λq/(2�h0)) for (a) β̃ = 0.4 and (b) β̃ = 0.05. Grey triangles and purple circles represent the OpenFOAM
simulation results for the Oldroyd-B and FENE-CR fluids. Black dots and grey crosses in (b) represent the
results of the low-β̃ lubrication analysis for the Oldroyd-B and FENE-CR fluids. Cyan dotted and solid black
lines represent the low-De Padé approximation (3.8) for the Oldroyd-B and FENE-CR fluids. Red dashed lines
represent the high-De asymptotic solution (4.10) for the Oldroyd-B fluid. All calculations were performed using
H0 = 4 and L2ε2 = 0.5.

5.2. Pressure drop and elastic stresses at high Deborah numbers
In this subsection, we study and contrast the elastic stresses and pressure drop of
the Oldroyd-B and FENE-CR fluids across the contraction at high Deborah numbers.
Specifically, we first consider high Deborah numbers up to De = 4 using the OpenFOAM
simulations and validate the predictions of our low-β̃ lubrication analysis. Then, we
employ the low-β̃ lubrication analysis to study the behaviour of the elastic stresses and
pressure drop at sufficiently high Deborah numbers up to De = 20.

First, in figure 4(a, b), we present the scaled pressure drop �P/�P0 of the Oldroyd-B
and FENE-CR fluids in the contraction as a function of De = λq/(2�h�) for β̃ = 0.4 (panel
a) and β̃ = 0.05 (panel b) , with L2ε2 = 0.5. Grey triangles and purple circles respectively
represent the OpenFOAM simulation results for Oldroyd-B and FENE-CR fluids. Black
dots and grey crosses respectively represent the results of the low-β̃ lubrication analysis
for the Oldroyd-B and FENE-CR fluids. Cyan dotted and solid black lines represent the
low-De Padé approximation (3.8) for the Oldroyd-B and FENE-CR fluids. Red dashed
lines represent the high-De asymptotic solution (4.10) for the Oldroyd-B fluid in the ultra-
dilute limit. As both the Deborah number De = λq/(2�h�) based on the exit height and the
Deborah number Deentry = λq/(2�h0) based on the entry height are used in the literature,
we present our results both as a function of De and Deentry .
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Consistent with the previous studies (Boyko et al. 2024; Hinch et al. 2024), the
pressure drop of the Oldroyd-B fluid monotonically decreases with De and scales linearly
with De at high Deborah numbers for β̃ = 0.05, corresponding to the ultra-dilute limit,
as represented by the red dashed line in figure 4(b). Furthermore, there is excellent
agreement between the predictions of the low-β̃ lubrication analysis with β̃ = 0.05 and the
OpenFOAM simulations. In particular, for the Oldroyd-B fluid, the relative error at De = 2
is 0.2 %. Nevertheless, as expected, for β̃ = 0.4 (figure 4a), the high-De asymptotic
solution (4.10) for the Oldroyd-B fluid in the ultra-dilute limit does not accurately capture
the slope of the OpenFOAM simulations due to the deviations in the flow velocity from
the parabolic profile when β̃ �� 1.

In contrast to a monotonic pressure drop reduction with De observed for the Oldroyd-B
fluid, the pressure drop of the FENE-CR fluid levels off to a plateau at high Deborah
numbers for both β̃ = 0.4 and 0.05, with a slight increase for De � 3. Understanding
this non-monotonic pressure drop variation for the FENE-CR fluid necessitates analysing
higher Deborah numbers. We note that the presented OpenFOAM simulations for the
FENE-CR fluid are in the range of 0 � De � 4. Performing simulations at higher Deborah
numbers requires a longer downstream (exit) section to allow the elastic stresses to
reach their fully relaxed values (see e.g. Debbaut et al. 1988; Keiller 1993; Alves
et al. 2003; Boyko et al. 2024), thus significantly increasing the computational time.
Furthermore, above a certain high De, we expect our OpenFOAM simulations to suffer
from accuracy and convergence difficulties associated with the high-Weissenberg-number
problem (Owens & Phillips 2002; Alves et al. 2021). Indeed, for the Oldroyd-B fluid with
β̃ = 0.05, we cannot obtain reliable results above De ≈ 2.

Therefore, instead of carrying out computationally expensive simulations, we use the
low-β̃ lubrication analysis considering the ultra-dilute limit, which is considerably faster
and allows us to access the behaviour of the elastic stresses and pressure drop at arbitrary
values of De. Such an approach is strongly supported by the excellent agreement between
the pressure drop predictions of the low-β̃ lubrication analysis and the OpenFOAM
simulation results, as shown in figure 4(b). Specifically, for the FENE-CR fluid, we find a
relative error of approximately 0.3 % for up to De = 4.

Before investigating the pressure drop behaviour at higher Deborah numbers, it is of
particular interest to elucidate the spatial variation of the elastic stresses. We present in
figure 5 the streamwise variation of the elastic normal and shear stresses of the FENE-CR
fluid, scaled by their entry values, on η = 0.5 in a contracting channel in the ultra-dilute
limit for different values of De and L2ε2. As expected, for L2ε2 = 50, we recover the
Oldroyd-B behaviour previously studied by Hinch et al. (2024) and Boyko et al. (2024).
Specifically, we find that, at low Deborah numbers (De = 0.05, figure 5a), the elastic shear
and normal stresses increase by a factor of H2

0 = 16 and H4
0 = 256, respectively, by the end

of contraction. In contrast, at high Deborah numbers (De = 5, figure 5g), the elastic shear
stress F(Ã) Ã12 preserves its entry value and the elastic normal stress F(Ã) Ã11 increases
by a factor of H2

0 = 16.
It is evident from figure 5(a–c) that at De = 0.05, the elastic shear stress weakly depends

on the finite extensibility parameter L2ε2, where the magnitude of the elastic normal stress
decreases as L2ε2 is reduced from 50 to 0.005. At higher Deborah numbers, De = 0.5 and
De = 5, we observe a trade-off between the axial component of the conformation tensor
Ã11 and the finite extensibility, incorporated by the nonlinear spring function F(Ã) = (1 −
Ã11/(L2ε2))−1. On the one hand, when L2ε2 is large (the Oldroyd-B limit), the dumbbell
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Figure 5. Streamwise variation of elastic stresses of the FENE-CR fluid on η = 0.5 in a contracting channel
in the ultra-dilute limit. (a–i) Elastic normal and shear stresses F(Ã) Ã11 and F(Ã) Ã12, scaled by their entry
values, as a function of Z for different values of De and L2ε2. Solid lines represent the results of the low-β̃
lubrication analysis. Cyan dotted lines in panel (a–c) represent the low-De asymptotic solutions for the FENE-
CR fluid. Red dashed lines in panel (g) represent the high-De asymptotic solutions for the Oldroyd-B fluid. All
calculations were performed using H0 = 4.

extension, as measured by trÃ ≈ Ã11, is large and F(Ã) ≈ 1. On the other hand, when
L2ε2 is small, the dumbbell extension trÃ ≈ Ã11 is also small but F(Ã) can be large.
Therefore, as shown in figures 5(d– f ) and 5(g–i), for a sufficient large De, the maximum
value of elastic normal stress F(Ã) Ã11, achieved at the end of contraction, may exhibit a
non-monotonic variation with L2ε2 (see also figure 8b). For example, when De = 5, the
maximum value of F(Ã) Ã11 for L2ε2 = 0.5 is greater than the corresponding values for
L2ε2 = 50 and L2ε2 = 0.005. Furthermore, for De = 5, in contrast to the Oldroyd-B fluid
where F(Ã) Ã12 maintains its entry value, when the finite extensibility is significant, i.e.
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Figure 6. (a) Scaled pressure drop �P/�P0 as a function of De = λq/(2�h�) for β̃ = 0.05. Black dots and
grey crosses represent the results of the low-β̃ lubrication analysis for the Oldroyd-B and FENE-CR fluids.
Cyan dotted and solid black lines represent the low-De Padé approximation (3.8) for the Oldroyd-B and FENE-
CR fluids. The red dashed line represents the high-De asymptotic solution (4.10) for the Oldroyd-B fluid.
(b) Elastic contributions to the non-dimensional pressure drop, scaled by β̃, as a function of De = λq/(2�h�)

in the ultra-dilute limit. Black circles and grey dots represent ultra-dilute predictions of the Oldroyd-B fluid for
elastic shear and normal stress contributions. Black crosses and purple squares represent ultra-dilute predictions
of the FENE-CR fluid for elastic shear and normal stress contributions. Red and black dashed lines represent
the high-De asymptotic solution of the Oldroyd-B fluid for elastic shear and normal stress contributions. All
calculations were performed using H0 = 4 and L2ε2 = 0.5.

L2ε2 = 0.5 and L2ε2 = 0.005, we observe a non-monotonic increase of elastic shear stress
with axial position Z .

Next, we analyse the pressure drop variation at significantly higher Deborah numbers
using our low-β̃ lubrication analysis. We present in figure 6(a) the scaled pressure drop
�P/�P0 of the Oldroyd-B and FENE-CR fluids in the contraction as a function of
De = λq/(2�h�) for L2ε2 = 0.5 and β̃ = 0.05, corresponding to the ultra-dilute limit.
Black dots represent the results of the low-β̃ lubrication analysis, the cyan dotted line
represents the low-De Padé approximation (3.8) and the red dashed line represents
the high-De asymptotic solution (4.10) for the Oldroyd-B fluid. We observe excellent
agreement between our low- and high-De asymptotic solutions and the low-β̃ lubrication
results. Moreover, somewhat surprisingly, from figure 6(a) it follows that the low-De
Padé approximation (3.8) captures fairly well the pressure drop reduction with De for
up to De = 2 (Deentry = 0.5) for both Oldroyd-B and FENE-CR fluids. More importantly,
unlike a linear pressure drop reduction of the Oldroyd-B fluid at high Deborah numbers,
the pressure drop of the FENE-CR fluid (grey crosses) exhibits a non-monotonic variation,
first decreasing with De, attaining a local minimum at De ≈ 2.8 and then increasing with
De. Nevertheless, the non-dimensional pressure drop for the FENE-CR fluid in the ultra-
dilute limit is lower than the corresponding Newtonian pressure drop, i.e. �P/�P0 < 1,
even for very high Deborah numbers. Such a non-monotonic variation in the pressure drop
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of the FENE-CR fluid is consistent with the previous numerical studies on the flow of
the FENE-P fluid in 2-D abruptly contracting geometries (Zografos et al. 2022). It is well
known that the FENE-P fluid incorporates both features of finite extensibility and shear
thinning. However, we believe that the main source of the non-monotonic pressure drop
behaviour is associated with the finite extensibility since the shear-thinning effect leads to
the pressure drop reduction, as shown in figure 3, and thus is unlikely to reverse the trend,
causing the pressure drop increase.

To probe deeper into the source of the non-monotonic variation of the pressure drop
for the FENE-CR fluid, we present in figure 6(b) the elastic contributions to the non-
dimensional pressure drop, scaled by β̃, as a function of De = λq/(2�h�) in the ultra-dilute
limit. Black circles and grey dots represent the elastic shear and normal stress contributions
obtained from the low-β̃ lubrication analysis for the Oldroyd-B fluid. Black crosses and
purple squares represent the elastic shear and normal stress contributions obtained from
the low-β̃ lubrication analysis for the FENE-CR fluid. As expected, for the Oldroyd-B
fluid, there is excellent agreement between our low-β̃ lubrication results and the high-De
asymptotic solution (4.10), represented by red and black dashed lines.

In contrast to the Oldroyd-B fluid, where the elastic normal stress contribution decreases
with De and scales linearly with De at high Deborah numbers, for the FENE-CR fluid,
we observe a non-monotonic variation. In particular, the elastic normal stress contribution
of the FENE-CR fluid first decreases, attains a minimum at De ≈ 3.2 and then increases
with De. Such an increase is associated with the dissipative effect of the finite extensibility.
Despite this increase, figure 6(b) clearly shows that the elastic normal stress contribution
of the FENE-CR fluid is negative at De = 20, leading to a reduction in the pressure drop,
similar to the Oldroyd-B fluid. However, we find that, at De ≈ 118, the elastic normal
stress contribution of the FENE-CR fluid becomes positive and then increases with De.
For β̃ = 0.05, we have confirmed that up to De = 1000, this positive elastic normal stress
contribution is too weak since it scales with β̃, and thus cannot lead to the pressure drop
enhancement above the Newtonian value �P0. Note that we have assumed steady flows, so
further investigation is necessary to determine if there might be flow instabilities at these
high Deborah numbers. Nevertheless, as pointed out by Hinch et al. (2024), under the
lubrication approximation, the hoop stress is neglected, so purely elastic instability cannot
arise due to curved streamlines.

The elastic shear stress contribution of the FENE-CR fluid also exhibits a non-
monotonic variation with the Deborah number. It first decreases, attains a minimum
at De ≈ 1.2 and then approaches a plateau at high Deborah numbers. Such a non-
monotonic variation of the elastic normal and shear stress contributions rationalises the
non-monotonic pressure drop behaviour, shown in figure 6(a). Similar to the Oldroyd-B
fluid, the elastic shear stress contribution of the FENE-CR fluid is independent of De at
high Deborah numbers, but with a constant value higher than for the Oldroyd-B fluid, due
to the dissipative effect of the finite extensibility. This higher value of elastic shear stress
contribution leads to an even greater increase in the pressure drop of the FENE-CR fluid
compared with the Oldroyd-B fluid.

5.3. Assessing the effect of the finite extensibility on the pressure drop
In the previous subsections, we analysed the pressure drop variation with the Deborah
number De and the viscosity ratio β̃, mainly considering the finite extensibility parameter
L2ε2 = 0.5. In this subsection, we study how the finite extensibility parameter L2ε2

impacts the pressure drop.
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Figure 7. Influence of the finite extensibility on the non-dimensional pressure drop of the FENE-CR fluid in
a contracting channel. (a,b) Scaled pressure drop �P/�P0 as a function of the finite extensibility parameter
L2ε2 for (a) low and (b) high Deborah numbers. Triangles in (a) represent the OpenFOAM simulation results.
Dots represent the results obtained from the low-β̃ lubrication analysis. Dash-dotted lines represent the low-De
Padé approximation (3.8) applied up to the fourth-order asymptotic solution. Cyan dotted lines represent the
low-L2ε2 asymptotic solution, corresponding to the Newtonian limit. Red dashed lines represent the high-L2ε2

asymptotic solution, corresponding to the Oldroyd-B limit. All calculations were performed using H0 = 4 and
β̃ = 0.05.

First, in figure 7(a, b), we present the variation of the scaled pressure drop �P/�P0
as a function of L2ε2 for the FENE-CR fluid in a contracting channel for low and high
Deborah numbers, with β̃ = 0.05. Triangles and dots respectively represent the results of
the OpenFOAM simulations and low-β̃ lubrication analysis. Dash-dotted lines represent
the low-De Padé approximation (3.8) applied up to the fourth-order asymptotic solution.
Cyan dotted and red dashed lines represent the low- and high-L2ε2 asymptotic solutions,
corresponding to the Newtonian and Oldroyd-B limits, respectively.

At low Deborah numbers, it is evident from figure 7(a) that the pressure drop
monotonically decreases with increasing L2ε2. Clearly, there is excellent agreement
between our low-De asymptotic solutions based on the Padé approximation, the
OpenFOAM simulation results and the predictions of the low-β̃ lubrication analysis.
Consistent with the low-De Padé approximation (3.8), for small values of L2ε2, the
pressure drop becomes independent of De, approaching the Newtonian limit for all values
of De, represented by cyan dotted lines. As expected, for large values of L2ε2, the pressure
drop approaches the Oldroyd-B limit, represented by red dashed lines.

Next, we consider the variation in pressure drop with L2ε2 at high Deborah numbers, as
shown in figure 7(b). At high Deborah numbers, the pressure drop shows Newtonian and
Oldroyd-B asymptotic behaviour for Lε � 1 and Lε 
 1, similar to the low-De limit.
However, in contrast to low Deborah numbers, at high Deborah numbers De = 2 and
3, pressure drop exhibits a strong non-monotonic behaviour with L2ε2. Specifically, we
observe that the pressure drop first decreases and then increases with L2ε2 approaching
the Oldroyd-B limit, with the transition occurring at L2ε2 = O(1).
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Figure 8. (a) Elastic contributions to the non-dimensional pressure drop of the FENE-CR fluid, scaled by β̃,
as a function of the finite extensibility parameter L2ε2 for De = 3 in the ultra-dilute limit. Black crosses and
purple squares represent the elastic shear and normal stress contributions obtained from the low-β̃ lubrication
analysis. Cyan and grey dotted lines represent the low-L2ε2 asymptotic solution for the elastic shear and normal
stress contributions, corresponding to the Newtonian limit. Red and black dashed lines represent the high-L2ε2

asymptotic solution (4.10) for the elastic shear and normal stress contributions, corresponding to the Oldroyd-B
limit at high De. (b) Elastic normal stress F(Ã) Ã11(Z , η = 0.7) as a function of Z for De = 3 and L2ε2 = 0.45
(dotted line), L2ε2 = 2.8 (dashed line) and L2ε2 = 100 (solid line). All calculations were performed using
H0 = 4.

To provide further insight into the pressure drop dependence on the finite extensibility
L2ε2 for a given De, we study the relative importance of elastic contributions to the
pressure drop. The elastic contributions to the non-dimensional pressure drop across the
contraction, scaled by β̃, as a function of L2ε2 are shown in figure 8(a) for De = 3. Black
crosses and purple squares represent the elastic shear and normal stress contributions
obtained from the low-β̃ lubrication analysis. Red and black dashed lines represent the
high-L2ε2 asymptotic solution (4.10) for the elastic shear and normal stress contributions,
corresponding to the Oldroyd-B limit at high De.

For small values of L2ε2, the elastic normal stress contribution to the pressure drop
approaches zero, while the elastic shear stress contribution approaches an order-one
Newtonian value. We rationalise this behaviour by noting from (4.4) and (4.6a), (4.6b)
that at the beginning of the contraction, in the low-L2ε2 limit, we have

Ã11 = L2ε2 − H2
0 L3ε3

3
√

2Deη
+ O(L4ε4), Ã12 = − Lε√

2
+ H2

0 L2ε2

12Deη
+ O(L3ε3) for Lε � 1,

(5.3)

F(Ã) Ã11 = 3
√

2LεDe

H2
0

η + O(L2ε2), F(Ã) Ã12 = −3De

H2
0

η for Lε � 1. (5.4)

This result is valid for all De. Therefore, for Lε � 1, the elastic normal stress F(Ã) Ã11
scales as O(LεDe) and the elastic shear stress F(Ã) Ã12 scales as O(De). Using (4.7), the
latter scaling arguments imply that the elastic normal stress contribution to the pressure
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drop scales as O(Lε) and thus is negligible when De = O(1). However, the elastic shear
stress has a Newtonian contribution, which is independent of De, as shown in figure 8(a).

Furthermore, we observe that, while the elastic shear stress contribution monotonically
decreases with increasing L2ε2, the elastic normal stress contribution exhibits a non-
monotonic variation with L2ε2. Thus, the non-monotonic behaviour of the pressure drop,
shown in figure 7(b) for De = 2 and 3 at L2ε2 = O(1), arises due to the elastic normal
stress contribution. Such a non-monotonic variation with L2ε2 for a given De can be
attributed to the trade-off between the axial component of the conformation tensor Ã11 and
the finite extensibility L2ε2 through F(Ã) = (1 − Ã11/(L2ε2))−1, as discussed in § 5.2.
For example, as shown in figure 8(b), for a given De, the elastic normal stress F(Ã) Ã11
can exhibit similar spatial variations for small (dotted line) and large (solid line) values of
L2ε2, rationalising the non-monotonic behaviour of elastic normal stress contribution to
the pressure drop.

6. Concluding remarks
In this work, we studied the flow of a FENE-CR fluid in slowly varying contracting
channels at low and high Deborah numbers. Employing the low-Deborah-number
lubrication analysis, we provided analytical expressions for the non-dimensional pressure
drop for the FENE-CR fluid up to O(De4) and applied the Padé approximation to improve
the convergence of the asymptotic series. To understand the pressure drop behaviour of
the FENE-CR fluid at high Deborah numbers, we considered the ultra-dilute limit of small
polymer concentration and exploited the one-way coupling between the parabolic velocity
and elastic stresses to calculate the pressure drop for arbitrary values of De. We further
compared and contrasted the predictions of the FENE-CR model to the recent results of
Boyko et al. (2024) and Hinch et al. (2024) for the Oldroyd-B model as well as to the
low-De results of Housiadas & Beris (2023) for the FENE-P model. We validated our
theoretical results for the dimensionless pressure drop in a contracting channel with 2-D
finite-volume numerical simulations for both Oldroyd-B and FENE-CR fluid and found
excellent agreement.

At low Deborah numbers, the pressure drop of the FENE-CR fluid monotonically
decreases with De, as shown in figure 2, similar to the predictions of the Oldroyd-B and
FENE-P fluids. However, at high Deborah numbers, unlike a linear pressure drop reduction
of the Oldroyd-B fluid, the pressure drop of the FENE-CR fluid exhibits a non-monotonic
variation, first decreasing and then increasing with De. Note that the pressure drop for
the FENE-CR fluid remains lower than the corresponding Newtonian pressure drop even
for very high Deborah numbers, as shown in figure 6(a). We identified two causes for
such pressure drop variation of the FENE-CR fluid (see figure 6b). The first cause is the
elastic normal stress contribution to the pressure drop, which becomes less negative as De
increases at high Deborah numbers due to the dissipative effect of the finite extensibility.
The second cause is the contribution of elastic shear stresses, which is higher compared
with the Oldroyd-B fluid, again owing to the dissipative effect of the finite extensibility.

In general, the pressure drop of the FENE-CR fluid increases compared with the
Oldroyd-B fluid as the finite extensibility becomes more apparent (when L2ε2 decreases).
Nevertheless, for very small values of L2ε2, the pressure drop of FENE-CR fluid becomes
independent of De and approaches the Newtonian value. Specifically, when L2ε2 � 1,
the elastic normal stress contribution vanishes while the elastic shear stress contribution
shows a Newtonian behaviour for all De (see figure 7 and figure 8a).

Our theoretical framework, based on lubrication theory and the ultra-dilute limit, allows
us to study the behaviour of the elastic stresses and pressure drop of a FENE-CR fluid
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at sufficiently high Deborah numbers. We emphasise that we are currently unable to
achieve these high values of the Deborah number using finite-volume or finite-element
simulations. We, therefore, believe that our theoretical results for the FENE-CR fluid in
the ultra-dilute limit, valid at all De, are of fundamental interest and can be helpful for
simulation validation and enhancing our understanding of viscoelastic channel flows.

The theoretical predictions of the non-monotonic pressure drop behaviour of the
FENE-CR fluid in a contraction are consistent with the previous numerical studies on
contraction geometries (see e.g. Nyström et al. 2012; Zografos et al. 2022). However,
these predictions are in contrast with the experimental results showing a nonlinear increase
in the pressure drop with De above the Newtonian pressure drop value for the flow
of a Boger fluid through abrupt axisymmetric contraction and contraction–expansion
geometries (Rothstein & McKinley 1999; Nigen & Walters 2002; Nigen & Walters 2002;
Sousa et al. 2009). Our results with the FENE-CR model that incorporates the feature of
finite extensibility cannot resolve this contradiction. Thus, as a future research direction, it
is interesting to study more complex elastic dumbbell models that account for additional
microscopic features of realistic polymer chains, such as the conformation-dependent
friction coefficient and the conformation-dependent non-affine deformation (Phan-Thien
et al. 1984; Boyko & Stone 2024), and to elucidate their effect on the pressure drop.

Finally, we note that, in this work, we have focused on studying the pressure drop across
the contraction region. However, numerical simulations and experimental set-ups include
a long downstream (exit) section to allow the stresses to reach their fully relaxed values
(Keiller 1993; Rothstein & McKinley 2001; Boyko et al. 2024). Therefore, one interesting
extension of the present work is to study the spatial relaxation of elastic stresses, velocity
and pressure of viscoelastic fluids in the exit channel using the FENE-CR model and more
complex constitutive equations.
Supplementary material. Supplementary material is available at http://doi.org/10.1017/jfm.2025.142.
Supplementary material includes the MATHEMATICA file containing the explicit expressions for the velocity,
conformation tensor components and the pressure drop in the low-Deborah-number limit up to O(De4).
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Appendix A. A fully developed flow of a FENE-CR fluid in a straight channel
Consider a steady and fully developed flow of a FENE-CR fluid in a straight and long
channel of non-dimensional height 2H0. Under the assumption of a fully developed flow,
we have Uy ≡ 0, so that the governing equations (2.12) simplify to

dP

dZ
= (1 − β̃)

d2Uz

dY 2 + β̃

De

d(F(Ã) Ãyz)

dY
, (A1a)

2
dUz

dY
Ãyz = F(Ã)

De
Ãzz, (A1b)

∂Uz

∂Y
Ãyy = F(Ã)

De
Ãyz, (A1c)

Ãyy = 1. (A1d)
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Substituting (A1c) into (A1a) yields

dP

dZ
= d2Uz

dY 2 . (A2)

Solving for the velocity Uz subject to (2.14), we obtain a parabolic profile

Uz(Y ) = 3
2

H2
0 − Y 2

H3
0

. (A3)

Next, substituting (A1c) into (A1b), and using (A1d) and (2.13) leads to the nonlinear
algebraic equation for Ãzz

2De2

(
1 − Ãzz

L2ε2

)2 (
∂Uz

∂Y

)2

= Ãzz . (A4)

The corresponding solution of (A4) is

Ãzz = L2ε2 + L3ε3
Lε −

√
L2ε2 + 72De2Y 2/H6

0

36De2Y 2/H6
0

. (A5)

Combining (A1c) and (A5) provides the expression for Ãyz :

Ãyz = Lε
Lε −

√
L2ε2 + 72De2Y 2/H6

0

12DeY/H3
0

. (A6)

Finally, we note that considering the limit L2ε2 → ∞ and using (A5), (A6), we obtain
the corresponding expressions for the conformation tensor components of the Oldroyd-B
fluid:

Ãzz = 18De2

H6
0

Y 2, Ãyz = −3De

H3
0

Y, Ãyy = 1. (A7)

Appendix B. Non-dimensional pressure drop across the contraction
The integral mass conservation along the channel (2.14d) sets the local value of the
pressure gradient and allows one to calculate the pressure drop without solving for the
velocity field. Integrating by parts the integral constraint (2.14d) and using (2.14a) and
(2.14c), we obtain (Boyko et al. 2024; Hinch et al. 2024)

1 =
∫ H(Z)

0
UzdY = −

∫ H(Z)

0
Y

∂Uz

∂Y
dY = −1

2

∫ H(Z)

0
(H(Z)2 − Y 2)

∂2Uz

∂Y 2 dY. (B1)

Substituting the expression for ∂2Uz/∂Y 2 from the momentum equation (2.12b) into (B1)
and rearranging provides an expression for the pressure gradient,

dP

dZ
= − 3(1 − β̃)

H(Z)3

+ 3β̃

2DeH(Z)3

∫ H(Z)

0
(H(Z)2 − Y 2)

[
∂(F(Ã) Ãzz)

∂ Z
+ ∂(F(Ã) Ãyz)

∂Y

]
dY. (B2)
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Next, integrating (B2) with respect to Z from 0 to 1 yields the pressure drop �P = P(0) −
P(1) across the non-uniform region

�P = 3(1 − β̃)

∫ 1

0

dZ

H(Z)3

− 3β̃

2De

∫ 1

0

1
H(Z)3

∫ H(Z)

0
(H(Z)2 − Y 2)

[
∂(F(Ã) Ãzz)

∂ Z
+ ∂(F(Ã) Ãyz)

∂Y

]
dY dZ . (B3)

Finally, using integration by parts, (B3) can be expressed as in the form given in (2.16).

Appendix C. Low-Deborah-number lubrication analysis: detailed derivation
We here provide details of the derivation of the analytical expressions for the pressure drop
of the FENE-CR fluid in the low-De limit up to O(De4).

Before proceeding to the asymptotic solution of the pressure drop, we expand F(Ã) Ãzz ,
F(Ã) Ãyz and F(Ã)( Ãyy − 1) into perturbation series in De � 1. Specifically, using
(2.13), (3.1), (3.2) and noting that Ãzz,1 = 0, we obtain

F(Ã) Ãzz = De2 Ãzz,2 + De3 Ãzz,3 + De4

[
Ãzz,4 + ( Ãzz,2)

2

L2ε2

]
+ O(De5), (C1a)

F(Ã) Ãyz = DeÃyz,1 + De2 Ãyz,2 + De3

[
Ãyz,3 + Ãyz,1 Ãzz,2

L2ε2

]

+De4

[
Ãyz,4 + Ãyz,2 Ãzz,2 + Ãyz,1 Ãzz,3

L2ε2

]
+ O(De5), (C1b)

F(Ã)( Ãyy − 1) = DeÃyy,1 + De2 Ãyy,2 + De3

[
Ãyy,3 + Ãyy,1 Ãzz,2

L2ε2

]

+De4

[
Ãyy,4 + Ãyy,2 Ãzz,2 + Ãyy,1 Ãzz,3

L2ε2

]
+ O(De5). (C1c)

C.1. Leading-order solution for the pressure drop of a FENE-CR fluid
Substituting (3.1) into (2.12) and considering the leading order in De, and using (3.3) and
(C1), we obtain

∂Uz,0

∂ Z
+ ∂Uy,0

∂Y
= 0,

dP0

dZ
= (1 − β̃)

∂2Uz

∂Y 2 + β̃
∂ Ãyz,1

∂Y
= ∂2Uz,0

∂Y 2 , (C2a,b)

subject to the boundary conditions

Uz,0(H(Z), Z) = 0, Uy,0(H(Z), Z) = 0,
∂Uz,0

∂Y
(0, Z) = 0,

∫ H(Z)

0
Uz,0(Y, Z)dY = 1.

(C3a–d)

As expected, (C2b) is the classical momentum equation of the Newtonian fluid with a
constant viscosity μ0. The leading-order solutions, previously derived by Boyko & Stone
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(2022), are given as

Uz,0 = 3
2

H(Z)2 − Y 2

H(Z)3 , Uy,0 = 3
2

H ′(Z)Y (H(Z)2 − Y 2)

H(Z)4 , �P0 = 3
∫ 1

0

dZ

H(Z)3 ,

(C4a–c)

where primes indicate derivatives with respect to Z .

C.2. First-order solution for the pressure drop of a FENE-CR fluid
Substituting (3.1) and (C1) into (2.12) and considering the first order in De, we obtain

∂Uz,1

∂ Z
+ ∂Uy,1

∂Y
= 0,

dP1

dZ
= (1 − β̃)

∂2Uz,1

∂Y 2 + β̃

(
∂ Ãzz,2

∂ Z
+ ∂ Ãyz,2

∂Y

)
,

(C5a,b)

2
∂Uz,0

∂Y
Ãyz,1 = Ãzz,2, (C5c)

Uz,0
∂ Ãyz,1

∂ Z
+ Uy,0

∂ Ãyz,1

∂Y
− ∂Uz,0

∂Y
Ãyy,1 − ∂Uz,1

∂Y
= − Ãyz,2, (C5d)

Uz,0
∂ Ãyy,1

∂ Z
+ Uy,0

∂ Ãyy,1

∂Y
− 2

∂Uy,0

∂ Z
Ãyz,1 − 2

∂Uy,0

∂Y
Ãyy,1 − 2

∂Uy,1

∂Y
= − Ãyy,2. (C5e)

These governing equations are supplemented by the boundary conditions

Uz,1(H(Z), Z) = 0, Uy,1(H(Z), Z) = 0,
∂Uz,1

∂Y
(0, Z) = 0,

∫ H(Z)

0
Uz,1(Y, Z)dY = 0.

(C6a–d)

At the first order in De, the dimensionless governing equations for the FENE-CR fluid are
equivalent to those of the Oldroyd-B fluid. Thus, from (C5), it follows that the expressions
for the velocity and pressure drop at O(De) as well as Ãzz,2, Ãyz,2, Ãyy,2 are identical
for the FENE-CR and Oldroyd-B fluids, and are given by (Boyko & Stone 2022)

Uz,1 ≡ 0, Uy,1 ≡ 0, �P1 = 9
2
β̃

(
1

H(0)4 − 1
H(1)4

)
, (C7a–c)

Ãzz,2 = 18Y 2

H(Z)6 , Ãyz,2 = 18Y
(
2Y 2 − H(Z)2) H ′(Z)

H(Z)7 , (C7b)

Ãyy,2 = 9
2

4
(−2Y 2 + H(Z)2)2 H ′(Z)2 − H(Z)H ′′(Z)

(
Y 2 − H(Z)2)2

H(Z)8 . (C7c)

We note that the FENE-CR and Oldroyd-B fluids exhibit a second-order fluid behaviour at
O(De), so that the velocity field remains Newtonian, i.e. Uz,1 = Uy,1 = 0, following the
theorem of Tanner and Pipkin (Tanner 1966; Tanner & Pipkin 1969).

C.3. Second-order solution for the pressure drop of a FENE-CR fluid
At the second order, O(De2), the governing equations (2.12) yield

∂Uz,2

∂ Z
+ ∂Uy,2

∂Y
= 0, (C8a)

dP2

dZ
= (1 − β̃)

∂2Uz,2

∂Y 2 + β̃

[
∂ Ãzz,3

∂ Z
+ ∂

∂Y

(
Ãyz,3 + Ãyz,1 Ãzz,2

L2ε2

)]
, (C8b)
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Uz,0
∂ Ãzz,2

∂ Z
+ Uy,0

∂ Ãzz,2

∂Y
− 2

∂Uz,0

∂ Z
Ãzz,2 − 2

∂Uz,0

∂Y
Ãyz,2 = − Ãzz,3, (C8c)

Uz,0
∂ Ãyz,2

∂ Z
+ Uy,0

∂ Ãyz,2

∂Y
− ∂Uy,0

∂ Z
Ãzz,2 − ∂Uz,0

∂Y
Ãyy,2 − ∂Uz,2

∂Y
= − Ãyz,3 − Ãyz,1 Ãzz,2

L2ε2 ,

(C8d)

Uz,0
∂ Ãyy,2

∂ Z
+ Uy,0

∂ Ãyy,2

∂Y
− 2

∂Uy,0

∂ Z
Ãyz,2 − 2

∂Uy,0

∂Y
Ãyy,2 − 2

∂Uy,2

∂Y

= − Ãyy,3 − Ãyy,1 Ãzz,2

L2ε2 , (C8e)

where we have used the expressions Ãzz,1 = 0, Uz,1 = 0 and Uy,1 = 0. The governing
equations (C8) are subject to the boundary conditions

Uz,2(H(Z), Z) = 0, Uy,2(H(Z), Z) = 0,
∂Uz,2

∂Y
(0, Z) = 0,

∫ H(Z)

0
Uz,2(Y, Z)dY = 0.

(C9a–d)

We note that the evolution equation for Ãzz,3, given in (C8c), is the same for the FENE-
CR and Oldroyd-B fluids. In contrast, the evolution equations for Ãyz,3 and Ãyy,3, given in
(C8d) and (C8e), are different for the two fluids due to additional terms for the FENE-CR
fluid, which depend on L2ε2. Nevertheless, similar to the first order, the expressions for
the velocity and pressure drop at O(De2) are the same for the FENE-CR and Oldroyd-B
fluids. This can be seen by substituting (C8d) into the last term on the right-hand side
of the momentum equation (C8b), thus clearly showing that the velocity and pressure are
independent of L2ε2 at O(De2).

The resulting expressions for Uz,2, Uy,2 and Ãzz,3, Ãyz,3, Ãyy,3 are readily found using
MATHEMATICA software, but they are rather lengthy and, thus, not presented here.
As the Ãyz,3 and Ãyy,3 for the FENE-CR fluid are coupled to L2ε2, we expect the
pressure drop to depend on the finite extensibility at the next order, O(De3). We show
this dependence in the following subsection.

C.4. Third-order solution for the pressure drop of a FENE-CR fluid
Substituting (3.1) and (C1) into (2.12) and considering the third order in De, we obtain

∂Uz,3

∂ Z
+ ∂Uy,3

∂Y
= 0, (C10a)

dP3

dZ
= (1 − β̃)

∂2Uz,3

∂Y 2

+ β̃

[
∂

∂ Z

(
Ãzz,4 + ( Ãzz,2)

2

L2ε2

)
+ ∂

∂Y

(
Ãyz,4 + Ãyz,2 Ãzz,2 + Ãyz,1 Ãzz,3

L2ε2

)]
,

(C10b)

Uz,0
∂ Ãzz,3

∂ Z
+ Uy,0

∂ Ãzz,3

∂Y
− 2

∂Uz,0

∂ Z
Ãzz,3 − 2

∂Uz,0

∂Y
Ãyz,3

− 2
∂Uz,2

∂Y
Ãyz,1 = −

(
Ãzz,4 + ( Ãzz,2)

2

L2ε2

)
, (C10c)
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Uz,0
∂ Ãyz,3

∂ Z
+ Uz,2

∂ Ãyz,1

∂ Z
+ Uy,0

∂ Ãyz,3

∂Y
+ Uy,2

∂ Ãyz,1

∂Y
− ∂Uy,0

∂ Z
Ãzz,3 − ∂Uz,0

∂Y
Ãyy,3

− ∂Uz,2

∂Y
Ãyy,1 − ∂Uz,3

∂Y
= −

(
Ãyz,4 + Ãyz,2 Ãzz,2 + Ãyz,1 Ãzz,3

L2ε2

)
, (C10d)

Uz,0
∂ Ãyy,3

∂ Z
+ Uz,2

∂ Ãyy,1

∂ Z
+ Uy,0

∂ Ãyy,3

∂Y
+ Uy,2

∂ Ãyy,1

∂Y
− 2

∂Uy,0

∂ Z
Ãyz,3 − 2

∂Uy,2

∂ Z
Ãyz,1

− 2
∂Uy,0

∂Y
Ãyy,3 − 2

∂Uy,2

∂Y
Ãyy,1 − 2

∂Uy,3

∂Y
= −

(
Ãyy,4 + Ãyy,2 Ãzz,2 + Ãyy,1 Ãzz,3

L2ε2

)
,

(C10e)

where we have used the expressions Ãzz,1 = 0, Uz,1 = 0 and Uy,1 = 0. The governing
equations (C10) are subject to the boundary conditions

Uz,3(H(Z), Z) = 0, Uy,3(H(Z), Z) = 0,
∂Uz,3

∂Y
(0, Z) = 0,

∫ H(Z)

0
Uz,3(Y, Z)dY = 0.

(C11a–d)

First, we integrate (C10b) twice with respect to Y and apply the boundary conditions
(C11a) and (C11c) to obtain the expression for Uz,3(Y, Z) that involves the pressure
gradient dP3/dZ . The resulting expression is lengthy and thus not shown here. To
determine dP3/dZ , we use the integral constraint (C11d), leading to

dP3

dZ
= 10692β̃ H ′(Z)

35L2ε2 H(Z)9

+ 216β̃

35

[
(β̃ − 8)

H ′′′(Z)

H(Z)7 + (110 − 13β̃)
H ′(Z)H ′′(Z)

H(Z)8 + 24(β̃ − 9)
H ′(Z)3

H(Z)9

]
.

(C12)

Integrating (C12) with respect to Z from 0 to 1 provides an expression for the pressure
drop of the FENE-CR fluid at O(De3) given in (3.5).

C.5. Fourth-order solution for the pressure drop of a FENE-CR fluid
To calculate the pressure drop at the next order, O(De4), we use the expression (2.16),
which resembles the result of an application of the reciprocal theorem (Boyko & Stone
2021, 2022), and requires only the knowledge of velocity and conformation tensor
components from the previous orders. At O(De4), the expression for the pressure drop
�P4 takes the form

�P4 = β̃

∫ H(0)

0
[Gzz,5Ûz]Z=0dY − β̃

∫ H(1)

0
[Gzz,5Ûz]Z=1dY

+β̃

∫ 1

0

∫ H(Z)

0

(
Gzz,5

∂Ûz

∂ Z
+ Gyz,5

∂Ûz

∂Y

)
dY dZ , (C13)

where Gzz,5 and Gyz,5 are given by

Gzz,5 = −Uz,0
∂ Ãzz,4

∂ Z
− Uz,2

∂ Ãzz,2

∂ Z
− Uy,0

∂ Ãzz,4

∂Y
− Uy,2

∂ Ãzz,2

∂Y
+ 2

∂Uz,0

∂ Z
Ãzz,4

+2
∂Uz,2

∂ Z
Ãzz,2 + 2

∂Uz,0

∂Y
Ãyz,4 + 2

∂Uz,2

∂Y
Ãyz,2 + 2

∂Uz,3

∂Y
Ãyz,1, (C14a)
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Gyz,5 = − Uz,0
∂ Ãyz,4

∂ Z
− Uz,2

∂ Ãyz,2

∂ Z
− Uz,3

∂ Ãyz,1

∂ Z
− Uy,0

∂ Ãyz,4

∂Y
− Uy,2

∂ Ãyz,2

∂Y

− Uy,3
∂ Ãyz,1

∂Y
+ ∂Uy,0

∂ Z
Ãzz,4 + ∂Uy,2

∂ Z
Ãzz,2 + ∂Uz,0

∂Y
Ãyy,4 + ∂Uz,2

∂Y
Ãyy,2

+ ∂Uz,3

∂Y
Ãyy,1 + ∂Uz,4

∂Y
. (C14b)

We note that, because of the integral constraint
∫ H(Z)

0 Uz,4dY = 0, the last term
appearing in (C14b), ∂Uz,4/∂Y , satisfies∫ H(Z)

0

∂Uz,4

∂Y

∂Ûz

∂Y
dY = −

∫ H(Z)

0
Uz,4

∂2Û

∂Y 2 dY = −dP̂

dZ

∫ H(Z)

0
Uz,4dY = 0, (C15)

and thus, this term does not contribute to the pressure drop, since it is identically zero.
Therefore, the expressions for Gzz,5 and Gyz,5 depend on the solution from the previous
orders, and we can calculate the fourth-order pressure drop �P4 using the results of the
leading-, first-, second- and third-order viscoelastic problems. The resulting expression for
�P4 for the FENE-CR fluid is given in (3.6).

For completeness, in the supplementary material available at
http://doi.org/10.1017/jfm.2025.142, we provide the MATHEMATICA file containing the
explicit expressions for the velocity, conformation tensor components and the pressure
drop in the low-Deborah-number limit up to O(De4).

Appendix D. Details of numerical simulations using OpenFOAM
In this appendix, we describe the numerical procedure used to solve the system of
nonlinear governing equations (2.1)–(2.5) for the viscoelastic fluid flow. In addition to
the FENE-CR fluid, we also consider the Oldroyd-B fluid for comparison and validation.
We have performed two-dimensional finite-volume simulations using an open-source
framework OpenFOAM (Jasak et al. 2007) integrated with viscoelastic flow solver
RheoTool (Pimenta & Alves 2017). We use the log-conformation method to calculate
the polymer stress tensor by solving the equations for the logarithm of the conformation
tensor Θ instead of τ p (Pimenta & Alves 2017; Habla et al. 2014; Kumar et al. 2021;
Kumar & Ardekani 2021). The log-conformation approach delays the numerical instability
caused by high Deborah/Weissenberg numbers by maintaining the positive definiteness of
the conformation tensor (Fattal & Kupferman 2004, 2005). The details of the numerical
implementation and the code validation are given in prior studies (see e.g. Pimenta &
Alves 2017; Favero et al. 2010).

In our simulations, we impose the no-slip and no-penetration boundary conditions along
the wall, y = ±h(z), and a fully developed unidirectional Poiseulille velocity profile at the
entrance (z = −�0) and exit (z = ��). In addition, we specify a null value of polymeric
stress tensor and zero-gradient of pressure at the channel entrance. At the channel wall, we
impose a linear extrapolation for polymer stresses and zero-normal gradient for pressure
(Pimenta & Alves 2017). At the exit (z = ��), we use a zero-gradient boundary condition
for polymer stresses and prescribe a constant value for pressure, p = 0. Finally, we
calculate the pressure drop along the centreline between the inlet (z = 0) and outlet (z = �)
of the contraction, i.e. �p = p(y = 0, z = 0) − p(y = 0, z = �), eliminating the entrance
and exit effects.

We summarise in table 3 the values of physical and geometrical parameters used
in the numerical simulations. We consider a geometry with an inlet-to-outlet ratio
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� h0 h� μ0 ρ q uc pc λ De β̃

(mm) (mm) (mm) (Pa s) (kg m−3) (mm2 s−1) (mm s−1) (Pa) (s) (–) (–)
5 0.4 0.1 1 1 1 5 2500 0−4 0−4 0.05, 0.4

Table 3. Values of physical and geometrical parameters used in the two-dimensional numerical simulations of
the pressure-driven flow of the FENE-CR fluid in a hyperbolic contracting channel.

H0 = h0/h� = 4 and an aspect ratio ε = h�/� = 0.02, and explore two different polymer-
to-total viscosity ratios: β̃ = μp/μ0 = 0.4 and β̃ = μp/μ0 = 0.05, where the latter
corresponds to the ultra-dilute limit. In all simulations, we keep �0 = � and �� = 5�.

To study the effect of Deborah numbers in the case of the FENE-CR fluid, we mainly
set the finite extensibility parameter to L2 = 1250, corresponding to L2ε2 = 0.5, and
change the value of relaxation time λ, while keeping the values of all other parameters.
When investigating the effect of finite extensibility L2ε2 on the pressure drop, we change
the value of L2 and set different λ corresponding to different values of De, while
keeping the values of all other parameters. Similarly, when analysing the pressure drop
at different viscosity ratios μp/μ0, we change the value of μp and μs , while setting
μ0 = 1 Pa s and keeping the values of all other parameters. We note that the effect
of fluid inertia is negligible in our simulations because the reduced Reynolds number
εRe = (h�/�)ρuch�/μ0 = 10−8 is very small. Eventually, we use the transient rheoFoam
solver (Pimenta & Alves 2017) for simulations, and once the residuals of the variables u,
p and Θ become less than 10−6, we terminate the simulation and calculate the pressure
drop. We non-dimensionalise the time t using the residence time in the contraction
tc = �/uc = 1 s. Typical non-dimensional values of the time step are �T = 10−4 for the
low-De simulations and a reduced time step �T = 10−5 for the high-De simulations.

To assess the grid sensitivity, we have performed tests by considering three different
mesh resolutions (total number of node points is 75 672, 114 882, and 139 482) at four
different Deborah numbers (De = 1, 2, 3 and 4), and established grid independence with a
maximum relative error of 0.3 % for the pressure drop. We have also carried out numerical
simulations without the log-conformation approach and found an excellent agreement with
the log-conformation results.

In addition, we cross-validate our OpenFOAM results for Oldroyd-B and FENE-
CR fluids with those obtained from the finite-element software COMSOL Multiphysics
(version 6.2, COMSOL AB, Stockholm, Sweden). The details of the numerical
implementation in COMSOL are given by Boyko & Stone (2022) for the Oldroyd-B fluid.
To simulate the FENE-CR fluid in COMSOL, we impose the polymer stress distribution
corresponding to the Poiseuille flow at the entrance.

We present in figure 9 the scaled pressure drop �P/�P0 for the Oldroyd-B and FENE-
CR fluids as a function of De in a contracting channel for L2ε2 = 0.5 (panel a) and L2ε2 =
0.25 (panel b), with H0 = 4 and β̃ = 0.4. Grey triangles and purple circles represent the
OpenFOAM simulation results for the Oldroyd-B and FENE-CR fluids. Black squares and
red crosses represent the COMSOL simulation results for the Oldroyd-B and FENE-CR
fluids. Cyan dotted and solid black lines represent the low-De Padé approximation (3.8) for
the Oldroyd-B and FENE-CR fluids. In COMSOL simulations of the Oldroyd-B fluid, we
could not obtain converged results beyond De = 0.45. In contrast, using OpenFOAM, we
have performed simulations up to De = 4 with no difficulties, thus achieving the high-De
limit. We encountered no convergence issues when running simulations with the FENE-
CR model in OpenFOAM (up to De = 4) and COMSOL (up to De = 0.8). Clearly, for
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� �

Figure 9. Comparison of simulation results obtained from OpenFOAM and COMSOL for the pressure drop
for the Oldroyd-B and FENE-CR fluids in a contracting channel. (a,b) Scaled pressure drop �P/�P0 as
a function of De = λq/(2�h�) for (a) L2ε2 = 0.5 and (b) L2ε2 = 0.25. Grey triangles and purple circles
represent the OpenFOAM simulation results for the Oldroyd-B and FENE-CR fluids. Black squares and
red crosses represent the COMSOL simulation results for the Oldroyd-B and FENE-CR fluids. Cyan dotted
and solid black lines represent the low-De Padé approximation (3.8) applied to the fourth-order asymptotic
solutions for the Oldroyd-B and FENE-CR fluids. All calculations were performed using H0 = 4 and β̃ = 0.4.

both Oldroyd-B and FENE-CR fluids, there is excellent agreement between the simulation
results obtained from OpenFOAM and COMSOL. In particular, for the Oldroyd-B fluid,
the maximum relative error is 1.3 % at De = 0.45. Similarly, for the FENE-CR fluid,
we find a maximum relative error of 0.4 % and 0.3 % at De = 0.8, corresponding to
L2ε2 = 0.5 and L2ε2 = 0.25, respectively.
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