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CONVERGENCE AND ANALYTIC CONTINUATION FOR A 
CLASS OF REGULAR C-FRACTIONS 

BY 

D. MASSON 

Dedication: In memory of Robert Arnold Smith 

ABSTRACT. Regular C-fractions / (a) = 1 + aia/l + a2a/\ + . . . 
with an = an2 + bn + c + Vn, \ Vn\ sufficiently small are examined. In the 
case Vn = 0, exact expressions are obtained which reveal a two sheeted 
Riemann structure for /(a) . If Vn =É 0 analytic properties are obtained by 
means of perturbation theory applied to the associated difference equation. 
A conjecture that/(a) is the ratio of two entire functions of 1/Vô for an 
even larger class of C-fractions is proved for the case an = II, =, (n + r,)p', 
r, ^ — n, 2 / = 1 Pi = 2. 

1. Introduction. The connection between continued fractions 

ax a2 

b\ + 02 + 

and three term recursion relations 

(2) Xn - bnXn-x - anXn-2 = 0 

lies at the heart of continued fraction theory [5], [7]. 
The solution of (2) in terms of a minimal (or subdominant) solution X{

n
s) and a 

dominant solution X{^ with the property 

(3) lim X{
n

s)/X(
n

d) = 0 
n—>°° 

provides a necessary and sufficient condition for the convergence of (1) with: 

PINCHERLE'S THEOREM [3]: Let an ± 0, n > 1. Then 

(4) K £ = -X(
0

S)/X{1\. 
n=\ Dn 

Although the existence of a minimal solution may be obtained from the asymptotics 
of (2), instability limits its usefulness in determining X(

n
s) because of the build up of 
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errors. Algorithms for the practical determination of X(
n

s) and its more detailed proper­
ties usually rely on the interplay between (1) and (2) (see Gautschi [2] and Henrici in 
Appendix B of [3]). Thus, new exact minimal solutions and approximation methods are 
welcome additions to the theory. 

If bn i= 0, n ^ 0 then the identity (equivalence transformation) 

b0+ K - = U l + K 
n=\ bn V „=l 1 / 

allows attention to be focused on continued fractions having bn = 1. With the intro­

duction of a parameter a in the partial numerators one obtains the regular corresponding 

fraction (C-fraction) 

(5) 1 + K — - , an ± 0, n > 1 
n = i 1 

and a further connection with analytic function theory [1], [3], [7]. Convergence will 

now occur for a in certain complex domains and one can discuss the analytic properties 

of such C-fractions. Some typical classical results are: 
(1) If an > 0, n > 1, then (5) converges to a meromorphic function of a if and only 

if an -» 0 (Stieltjes, loc. cit. [7], p. 210).' 
(2) If an —» a > 0 then (5) converges to a meromorphic function of a in the cut plane 

a £ (-oo, - i/4a] (Van Vleck, loc. cit. [7], p. 210).2 

(3) If an > 0, n > 1 and 2 ^ x a~m = °°, then (5) converges to a holomorphic function 
of a in the cut plane |arg a| < u (Stieltjes, see [7], Thm. 28.1).3 

In case (2) or (3) with an -/+ 0 one can inquire about a nontrivial analytic continuation 
of the corresponding C-fraction. A recent result for case (2) due to Thron and 
Waadeland [6] is: 

(4) If the convergence of an to a > 0 is geometric or faster (\an — a\ < dKn, 
K < 1), then (5) has a square root branch cut on a < — 1/4a. 

Analytic continuation for case (3) where an —» oo does not appear to have been 
examined except for the special case an = bn + c where in [4] it was shown that 

(6) 1 + K • = VâD-c(l/Vâ)/D-c-,(l/Vâ), |arg a | < 77 
/ !=1 1 

(Dx(z) the parabolic cylinder function). One then has convergence in the cut a-plane, 
|arg a| < TT to the branch of a meromorphic function of p = 1/Va. 

We believe this to be a general feature of a wide class of C-fractions and venture the 
following conjecture. 

1 a„ —» 0 implies convergence to a meromorphic function of a but the converse is not necessarily true 
unless an > 0. 

2a > 0 is for conveniece without loss of generality. 
3If an > 0, n ^ n0 > 1 and ^Z=nQ a~m = °°, replace "holomorphic" by "meromorphic". 
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CONJECTURE: Ifan = a II /=1 (n + r,-)^ w/fft r, =£ -n, n> 1, « > 0 tf/id 0 < p < 
2 w/iere /? = 2 / = 1 /?/, f/iew (5) converges in the cut a-plane |arg a| < TT to f/ze branch 
of a meromorphic function of (3 = 1/Va. 

If this is indeed true then one has a class of C-fractions associated with a surprisingly 
simple global analytic structure consisting of only two Riemann sheets. We hope to 
make the conjecture more plausible by continuing here the investigation in [4], where 
it was explicitly shown to be true for the case p = 1, N = 1. 

In Section 2 we prove the conjecture for the case N = 2, px = p2 = 1 by obtaining 
exact expressions for (5) and the solutions to its associated difference equation in terms 
of hypergeometric functions. 

In Section 3 we introduce a perturbation method for obtaining minimal solutions and 
their analytic properties using a Volterra equation and apply it to the case an = an2 + 
bn + c + Vn with a ï 0 and |V„| ^ const. n]~\ e > 0. 

In Section 4 we indicate how the conjecture can be resolved in terms of the properties 
of an associated difference equation and sketch a proof of the conjecture for the case 
p = 2. The method of proof yields a simple solution to the analytic continuation of (5) 
in terms of limit averaging formulae for X(j° and X{1\. 

2. Exact results. From the general theory of Stieltjes type continued fractions 
(Theorem 28.1 of [7]) one may conclude that if a, b, c are real then 

00 (an2 + bn + c)a 
(7) f(a,b9c,a) = 1 + K 

# i= i l 

converges in the cut a-plane. 
Some special cases are evaluated in Wall [7] where it is shown that 

1 pe-M / VVw 
Tr ,*+i = l / / a , M , a ) , f c > - l , | a r g a | < < i r 
V a Jo cosh* 'w 

^ ^ ^ ^ ) - ^ + ^ ) ] = 1//(1'0'0'a)'|arga|<1T 

1 f00 t~udu 
-7= — F = ! / / ( 0 , 1,0, a), arg a < it. 

It is actually possible to evaluate the general case for complex coefficients by solving 
the associated difference equation in terms of hypergeometric functions. For the case 
a i= 0 (we take a = 1 without loss of generality) one has: 

THEOREM 1: If n2 + bn + c ± 0, n ^ 1 and 0 < |a | < °° then 

(8) Xn - * „ _ , - a(rc2 + bn + c)X„_2 = 0 

has linearly independent analytic solutions X„(±(3), (3 = 1/Va vv/zere 
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(9) X„(p) = ( 2 p r " —? 

V 2 2 2 

x f (n + 2 + I + p., n + 2 + I - W » + § + I - | ; ^), » ̂  -1 

and |x = (b2 - 4c) , / 2/2. 

PROOF: Let un(x) = F (oLn,^n;yn\x) with 
2 1 

b n b 1 b P 
a„ = n + - + |x, P„ = n + - - ji, 7» = n + 2 2~~H' 

Then 

Using the facts 

T(ajr(pJ n 
X„-2(P) = (2pr«+2

 Wn 1-
r(7«) vz 

(Xnfin = n2 + bn + c, 

WnU) = «n + l W , 
7* 

and 

7„ "(<*„ + P„+ 1)(±) = - | 

one obtains 

X„(P) - XB_,(P) - P"2(«2 + bn + c)X„_2(p) = 4(2(3) 
H a j r o j 

r(7«) 
X [JC(1 - x)u"n{x) + (7n - (a„ + pn + l)-r)ui(jc) - o ^ P ^ U X U i ^ = 0 

since un(x) satisfies the hypergeometric equation in the square brackets. • 

COMMENT: Note that 0"Xn(p) is an entire function of (3 since (T(C))'1 F (A,5; C;5) 
2 1 

is an entire function of C. 

LEMMA 2: 77ie /arge n behaviour ofXn($) in (9) is given by 

(10) X„(P) = (2P)-n2V^^-n(2Ai)w+1+ft /2+p/2(l + o ( - ) ) . 

PROOF: One uses Stirling's asymptotic formula for the three T functions which appear 
in (9) together with the formulae 

FI(A,B;C$ = (±)C~A~\FI(C-AX-B-,C± 
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and 

F ( A , B ; C ; | ) = 1 + ©(£ ) for Re C 

Thus the large n behaviour of the hypergeometric function which appears in (9) is given 
by V2 2n+]+b/2+v/2 (1 + 0(1/n)) and (10) is obtained. • 

LEMMA 3: 7/|arg a| < TT, 0 < |a| < °° (i.e. 0 < Re p, |p | < o°) f/îéw tfze difference 
equation (8) /ww a subdominant solution X^ given by 

(11) X{
n
s)=Xn(-£). 

PROOF: From (10) one has 

(12) X„(-p)/X„(P) = ( - i r ( 2 n ) - p ( l + o ( i ) ) 

which has limit 0 as n —> oo if Re p > 0. • 

THEOREM 4: / / | arg a| < IT, 0 < |a| < <» then the regular C-fraction (7) with a = 
1 is4 

(13) / ( l , * , c , a ) = V a ( l + b + -7= 

PROOF: From Theorem 1, Lemma 3 and Pincherle's Theorem one has 
/ ( l , b, c, a) = (X- , ( - p) - X 0 ( - P) ) / /X_, ( - P) with X„(- p) determined from (9). 
If c =£ 0 this yields - a c X _ 2 ( - P) /X_,(- p) which reduces to the right side of (13). 
If c = 0 (i.e. |JL = ± b/2) then X_2 does not exist but a limit as c —> 0 again yields 
(13) with the numerator hypergeometric function now equal to one. • 

For the case a = 0, b =É 0 one has: 

THEOREM 5: If n + c =£ 0, n > 1 and 0 < |a | < 00 then 

(14) X n - X n _ , - a(« + c)Xs-2 = 0 

/KZS linearly independent analytic solutions X„(±P), P = 1 /Va vv/iere 

(15) X w ( P ) - p - T ( 2 + n + c)D_c_n_2(-p), n > - l 

4Perron ([5], Ch. 11, §82) considered the connection between continued fractions with an = (an2 + bn 
+ c)/(d + en)(d + e(n — 1)) and hypergeometric functions but his method required e =£ 0. In §83 he used 
a different method (Cesàro's) to obtain f(\,b,c,a) as a ratio of integrals for the case a,b,c > 0,0 ^ 
fc2 - Ac < (1 + 1/V^)2. 
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and Dx($) is the parabolic cylinder function. Furthermore Xn(-$)/Xn($) = (~ l ) n 

exp ( - 2 p V n ) (1 + 0(1 /Vn)) so that */|arg a| < TT (i.e. Re (3 > 0 ) then (14) has 
a subdominant solution X^ = Xn(— (3). 

PROOF: See [4]. 

THEOREM 6: 

n D_C(1/VS) . 
(16) /(O, l , c , a ) = V a TT^", arg a < IT . 

D - c - . d / V a ) 
PROOF: One uses Pincherle's Theorem and Theorem 5. See also [4]. • 

COMMENT: One again has solutions with the property that (3"X„(P) is an entire 
function of (3. Thus in both Theorems 4 and 6 one has/(a, b, c, a) given by the ratio 
of two entire functions of (3 and the result: 

COROLLARY 7: If a > 0 or if a = 0, b > 0 then f(a,b,c,a) is the branch of a 
meromorphic function of (3 = 1 /Va with branch cut along the negative a-axis. 

3. Perturbation Theory. In analogy with the theory of second order linear differ­
ential equations, one may use the associated difference equation to obtain properties of 
continued fractions which are "small perturbations" of a known continued fraction. 

Consider the second order linear difference operator Ln defined by 

(17) Ln(Xn) =Xn-XH.l - aanXn-2 

and let X{^ X™ be linearly independent solutions to 

(18) 

If the Wronskian is 

(19) 

then from (18) one 

(20) 

Let Gnm (a Green 

(21) 

defined by 

W(f„, 

has 

W(X»\X<? 

Ln(Xn) = 0. 

gn ) Jn gn + 1 gn Jn + 1 

' ) = -aaH+lW(X™l9X 

's function for Ln) be defined by 

Gnm 

y(Dy(2) V ( 2 ) v ( l ) 

W(X(>\X%) 

<2) 

Then Gnm has the obvious properties 

(22) Ln(Gnm) = 0, Gnn = 0, Gn+ln= - 1 

and the property 

(23) -aanGn-2n-i = 1 

which follows from (20). 
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LEMMA 8: The linear difference equation 

(24) Ln(Yn)=fn 

has a solution 
00 

(25) Yn = Xn + 2J Gnmfm+] 
m — n+ 1 

provided that the summation converges. 

PROOF: 

00 

L„(Yn) = Ln(Xn ) + 2J Ln(Gnm)fm+] 

m = n+ 1 

+ (Gnn - Gn-]n - OianGn-2n)fn+] — a-anGn-2n-lfn = fn 

where (18), (22) and (23) have been used. • 

In order to solve the linear difference equation 
(26) Yn - yB_, - a(an + Vn)YH.2 = 0 

with boundary condition Yn — X(
n
} —> 0, one may use (25) with/, = aVnYn-2. This 

yields the Volterra sum equation 

(27) Yn=X™+ 1 aG„Jffl+1yffl_, 

which may be solved by iteration to obtain 
00 

(28) Y„ = 2 Y„r 
r = 0 

with Yn0 = X{? and 

(29) Ynr= S aG„J m + 1 y m - „ - i , r = l , 2 , . . . . 
m — n+ 1 

The method is justified by showing that the above summations converge if |V„| is 
sufficiently small for n large. 

Given a subdominant solution to (18) with known analytic properties, this method 
is capable of not only proving the existance of a subdominant solution to (26) but also 
determining its analytic properties. This in turn yields information on the analytic 
continuation of the corresponding C-fraction. 

For example with an = 1, |V„| < dKn, K < 1 one reproduces the Thron and 
Waadland result (4) mentioned in Section 1, namely: 

THEOREM 9: Let an = 1, |V„| < dK\ K < 1. Then 

- (1 + Vn)a 
K , 1 + Vn ± 0, n > 1 

n=\ 1 
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converges for a (£ (—°°, - \] to a function whose analytic continuation is meromorphic 
in z = V l 4- 4a in the domain |(1 - z)/( l 4- z)\ < K~\ 

PROOF: Let 

Then 

„ r v{1) — — 

Hence 

*?-m-
1 - z 

1 + ({ 
— z 

1 + z 
1 - z 
1 + z m n + 1 . 

|aGnmVm+iX' (i) I 
m - l l (m - n)dKm+xP" m n + 1 

where 

P = max I 1, 
1 - z 
1 + z 

z * - 1 . 

If KP < 1, this implies the absolute convergence of (29) for r = 1, together with the 
estimate \Ynl\ < g J l / 2 - z / 2 | \ &, - d£ r t+2 (1 - KP)2 and by induction on r, |Fnr | 
< 2^| 1/2 — z/2|n . Thus (28) converges absolutely if Qn < 1 and one obtains Yn for 
n > n0 (with n0 determined by Qno < 1), together with the estimate \Yn\ < 
|(1 - z ) / 2 | 7 ( l - g j . This implies that if « > n0, K\(\ - z) / ( l + z)\ < 1, then F„ 
is to (26) as ((1 - z)/2)n is to (18). In particular: 

- a( l + K) 
(a) K = -Yno+l/Yno, 0 < 

1 
1 

(b) Yn, n > % is analytic in z if £ 
1 - z 
1 + z 

1 + z 

< 1, 

< 1, 

where (a) follows form Pincherle's Theorem and (b) follows from Weierstrass' 
Theorem on the analyticity of a uniformly convergent sequence of analytic functions. 
This establishes the Theorem since it suffices to consider the tail of the continued 
fraction. • 

On applying the method to a perturbation of the continued fraction of Section 2, one 
obtains the following companion to Theorem 4 and Corollary 7. 

THEOREM 10:Letan = n2 + bn + c, \Vn\ < dn]~\ e > 0. ThenK.°°n=x ((an + V„)a/1), 
#« + Vn ̂  0, n > 1 converges for |arg a| < TT to a function whose analytic continuation 
is a meromorphic function of z — v a in the domain exterior to the circle \z\ = —cos 
(arg z)/e. 

PROOF: Let X^ = X„(-0), X r = Xn(P) where XW(P) is given by (9) and (3 = z" 
From (10), (12), and (20) 
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aGnmXm-x{-Ç>) — [l-(-\y+m - for m,n-»™. 
2m2 V V / l / / 

Thus l a C ^ - . C - p ) ^ , , ! < C ^ C - P ) ^ - 1 - 6 ^ , " ^ "o with 2„m = 
max(l, (m/«)"Rep) and C independent of n and m. From (29) one has for Re (3 > —e, 
\Ynl\ < C|XM(-P) |2:= n + 1 m-l-'Qnm < C|Xn(-p) | / i-7(e + P) where P = 
min(0,Re p) and by induction |yBr| < Cr\Xn(-^)\n're/TTr

s=l(se + P). Equation (28) 
then yields \Yn\ < |X„(-0)| exp (C/i~7(e + P)), Re p > - e , n > n0. This implies 
that: 

- (n2 + iw + c + VJa 
(a) K = - y 0 / F - , , R e p > 0 , 

n=\ 1 

(b) pT„ , w > - 1 is analytic in p for Re p > - e , 

where (a) follows from Pincherle's Theorem and Lemma 3 and (b) for n> n0 follows 
from Weierstrass' Theorem and Theorem 1. For n < n0 one uses (26) with backward 
recursion together with the condition an + V„ i= 0, n > 1. • 

COMMENT: The restriction Re P > - e is misleading because the estimates involve 
|Vm+i|. Singularities are not necessarily present in the disc \z\ < -cos (arg z)/e (apart 
from an essential singularity at z = 0). It is an oscillating behaviour, such as (-1)", 
in Vn which appears to produce singularities. 

4. Conjecture and proof for p = 2. In order to prove the conjecture of Section 1 
it is natural to examine the difference equation 

N 

(30) X„ - *„_, - a EI (« + nrXn-2 = 0. 
1=1 

If one puts 

N 

(31) Xn = (2"a)"/2 EI P'((n + r, + 2)/2)Z„ 
1=1 

then (30) becomes 

(32) Zn - §bnZn-x -Zn-2 = 0 

with p = l/Va and bn = 2~p/2 11*1, TPi((n + r, + \)/2)/TPi{(n + n + 2)/2). From 
Stirling's formula one has 

/ h(]) h{2) 

v n n 

and one can check that for n —» » 

__ r np/2, p = 2 

(34) Z " ( P ) ~ l e x p ( p / i , - " 7 ( 2 - / > ) ) , 0<p<2 
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are asymptotic solutions to (32). Since (32) has a coefficient $bn with bn —> 0 and the 
boundary condition (34) is an entire function of P, one suspects that such a Z„((3) may 
itself be an entire function of p. 

Given a solution with the above boundary condition one has a second linearly 
independent solution (—l)nZn( —P). It is then clear that for Re p > 0 one expects 

Z[d) = ZB(P) 

ri*) -

with 

z{:]/z[d) 

z^ = (-irz„(-p) 

(-\)nn-\ p = 2 

(-1)" exp (-2$nl-p/2/(2 - /?)), 0 < p < 2 

and corresponding dominant and subdominant solutions to (30) via (31). 
The proof of the conjecture thus hinges on demonstrating that the solution Z„(P) 

satisfying the boundary condition (34) is an entire function of p. More generally one 
can ask the question: For what bn does (32) have a minimal solution which is an entire 
function of P? The case bn ~ l/n (I + bil)/n + . . . ) i s seen below to be sufficient. 

PROOF FOR p — 2: From (32) and (33) one obtains a Frobenius expansion 

(35) Z„(P) ~ «p/2(l + cil)/n + ci2)/n2 + . . . ) 

with recursion relations determining the coefficients c{l) in terms of P and b{l). From 
(35) one obtains 

(36) A*Z„(P) ~ n^-A I I (P/2 - i) + o(-)). 

where A is the difference operator. 
Let An be the solution to (32) which satisfies the initial condition A-x = 0, A0 = 2. 

One has An a polynomial of degree n in p with An odd (even) for n odd (even). Thus, 

(37) An = a(P)Z„(P) + tf(-p)(-irz„(-p). 

From (35) and (32) one has the Wronskian Zn(P)Z„_!(-p) + Zn(-p)Z„_,(P) = 2 so 
that 

(38) a(P) = Z_ , ( -p) . 

From (37), (36) with m = 1 and (35) one obtains 

P 
An + An-X -

so that 

2a(p)nW - a ( - P ) | ( - i ) - n ^ - ' ] (l + o ( I ) ) 

a(p) = lim n"P/2(A„ + A„_,)/2 
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uniformly for Re p > Re (30 > - 1 , |(3| < M < &. Hence, from the Weierstrass 
Theorem, one has <2(0) = Z-x (-(3) analytic for Re (3 > - 1 , |p | < oo. By taking the 
limit of an average of more and more terms one obtains Z_, ( - p ) analytic for | p | < oo. 
In particular (35), (36), (37) and (38) imply 

n-m 
(39) Z - , ( -p ) = lim —— (An + 2An.x + . . . + 2An_m+1 + An.J 

for Re p > -m, |p | < oo. 
By a similar argument, Z0(—P) is analytic for | p | < oo and the proof of the conjecture 

for/? = 2 follows from Pincherle's Theorem. • 

COMMENT: Equation (39) may be expanded in powers of p to obtain limit averaging 
formulae for the power series coefficients of Z-x{—P) (and similarly for Z0(—P)). One 
can thus obtain the continued fraction in terms of a ratio of two convergent power series 
in p. This solves the analytic continuation problem in principle. The practical utility of 
the method will have to be determined by numerical experiment and/or error analysis. 
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