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On the sum of the square of a prime and a square-free number

Adrian W. Dudek and David J. Platt

Abstract

We prove that every integer n > 10 such that n 6≡ 1 mod 4 can be written as the sum of the
square of a prime and a square-free number. This makes explicit a theorem of Erdős that every
sufficiently large integer of this type may be written in such a way. Our proof requires us to
construct new explicit results for primes in arithmetic progressions. As such, we use the second
author’s numerical computation regarding the generalised Riemann hypothesis to extend the
explicit bounds of Ramaré–Rumely.

1. Introduction

We say that a positive integer is square-free if it is not divisible by the square of any prime
number. It was proven by Erdős [7] in 1935 that every sufficiently large integer n 6≡ 1 mod 4
may be written as the sum of the square of a prime and a square-free number. The congruence
condition here is sensible. If n ≡ 1 mod 4, then 4|(n−p2) for any odd prime p. This only leaves
the case p = 2, but n− 4 fails to be square-free infinitely often†.

It is the objective of this paper to make explicit the proof provided by Erdős, to the end of
proving the following theorem.

Theorem 1. Let n > 10 be an integer such that n 6≡ 1 mod 4. Then there exist a prime p
and a square-free number k such that n = p2 + k.

In a recent paper [5], the first author proved that every integer greater than two can be
written as the sum of a prime and a square-free number. One can think of such a result as
a weak-but-explicit form of Goldbach’s conjecture. Theorem 1 is significantly stronger than
this, for the sequence of squares of primes is far more sparse than the sequence of the primes.
To prove Theorem 1, we combine modern explicit results on primes in arithmetic progressions
and computation.

The proof may be outlined as follows. For any integer n satisfying the conditions of the above
theorem, we want to show that there exists a prime p <

√
n such that n − p2 is square-free.

That is, we require some prime p such that

n− p2 6≡ 0 mod q2

for all odd primes q <
√
n. The idea is to consider, for some large n and each odd prime

q <
√
n, those mischievous primes p that satisfy the congruence

n ≡ p2 mod q2.

Then, for each q, we explicitly bound from above (with logarithmic weights) the number of
primes p which satisfy the above congruence. Summing over all moduli q gives us an upper
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†For example, one can consider the congruence class 13 mod 36.
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bound for the weighted count of the so-called mischievous primes∑
q<
√
n

∑
p<
√
n

n≡p2 mod q2

log p.

It is then straightforward to show that for large enough n, the above sum is less than the
weighted count of all primes less than

√
n, and therefore there must exist a prime p <

√
n

such that n− p2 is not divisible by the square of any prime.
This method works well, and allows us to prove Theorem 1 for all integers n > 2.5 ·1014 that

satisfy the congruence condition. We eliminate the remaining cases by direct computation to
complete the proof.

2. Theorem 1 for large integers

2.1. Case 1

We start by considering integers in the range n > 2.5 · 1014 such that n 6≡ 1 mod 4. As usual,
we define

θ(x; k, l) =
∑
p6x

p≡lmod k

log p,

where p denotes a prime number.
The paper of Ramaré and Rumely [10] provides us with bounds of the form∣∣∣∣θ(x; k, l)− x

ϕ(k)

∣∣∣∣ < ε(k, x0)
x

ϕ(k)

and ∣∣∣∣θ(x; k, l)− x

ϕ(k)

∣∣∣∣ < ω(k, x1)
√
x

for various ranges of x > x0 and x 6 x1, respectively. These computations were in turn based
on Rumely’s numerical verification of the generalised Riemann hypothesis (GRH) [12] for
various moduli and to certain heights. Since then, the second author has verified the GRH
for a wider range of moduli and to greater heights [9]. For our purposes, we rely only on the
following result.

Lemma 2. Let q be a prime satisfying 17 6 q 6 97. All non-trivial zeros ρ of Dirichlet
L-functions derived from characters of modulus q2 with =ρ 6 1000 have <ρ = 1/2.

Proof. See [9, Theorem 10.1].

We can therefore extend the results of Ramaré–Rumely with the following lemma.

Lemma 3. For x > 1010, we have∣∣∣∣θ(x; q2, l)− x

ϕ(q2)

∣∣∣∣ < ε(q2, 1010)
x

ϕ(q2)

for the values of q and ε(q2, 1010) in Table 1.
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Proof. We refer to [10]. The values for q ∈ {3, 5, 7, 11, 13} are from Table 1 of that paper.
For the other entries, we use Theorem 5.1.1 with Hχ = 1000 and C1(χ,Hχ) = 9.14 (see
display 4.2). We set m = 10 for q 6 23, m = 12 for q > 47 and m = 11 otherwise. We use

δ = 2e/Hχ and, for Ãχ, we use the upper bound of Lemma 4.2.1. Finally, for Ẽχ, we rely on
Lemma 4.1.2 and we note that 2 · 9.645908801 · log2(1000/9.14) > log 1010, as required.

Lemma 4. We have

ω(32, 1010) = 1.109042,

ω(52, 1010) = 0.821891,

ω(72, 1010) = 0.744132,

ω(112, 1010) = 0.711433

and
ω(132, 1010) = 0.718525.

If q is a prime such that 17 6 q 6 97, we have

ω(q2, 1010) =
log 7− 7/ϕ(q2)√

7
.

Proof. The results for {32, 52, 72, 112, 132} are from [10, Table 2] with a slight correction to
the entry for 52. A short computation shows that the maximum occurs for all of the other q
when x = 7 and a = 7.

Lemma 5. Let T =
√

2.5 · 1014. Then, for x > T and q 6 97 an odd prime, we have∣∣∣∣θ(x; q2, l)− x

ϕ(q2)

∣∣∣∣ < ε(q2, T )
x

ϕ(q2)
,

where the values of ε(q2, T ) are given in Table 2.

Proof. Using ω(q2, 1010), we have∣∣∣∣θ(T ; q2, l)− T

ϕ(q2)

∣∣∣∣ < ω(q2, 1010)
√
T

and so, for x ∈ [T, 1010], we have∣∣∣∣θ(x; q2, l)− x

ϕ(q2)

∣∣∣∣ < ω(q2, 1010)ϕ(q2)√
T

x

ϕ(q2)

Table 1. Values for ε(q2, 1010).

q ε(q2, 1010) q ε(q2, 1010) q ε(q2, 1010) q ε(q2, 1010)

3 0.003228 19 0.17641 43 0.95757 71 2.82639
5 0.012214 23 0.25779 47 1.15923 73 3.00162
7 0.017015 29 0.41474 53 1.50179 79 3.56158

11 0.031939 31 0.47695 59 1.89334 83 3.96363
13 0.042497 37 0.69397 61 2.03488 89 4.61023
17 0.14271 41 0.86446 67 2.49293 97 5.55434
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and so we can take

ε(q2, T ) = max

(
ε(q2, 1010),

ω(q2, 1010)ϕ(q2)√
T

)
.

Let n > 2.5 · 1014 be such that n 6≡ 1 mod 4 and consider the case where q is an odd prime
such that q 6 97. We want to bound from above the number of primes p <

√
n satisfying

n ≡ p2 mod q2. (1)

Clearly, p can belong to at most two arithmetic progressions modulo q2. Therefore, by Lemma 5,
we can estimate the weighted count of such primes as follows:∑

p<
√
n

n≡p2 mod q2

log p 6 θ(
√
n; q2, l) + θ(

√
n; q2, l′) <

2(1 + ε(q2, T ))

q(q − 1)

√
n,

where l and l′ are the possible congruence classes for p and ε(q2, T ) is given in Table 2. Summing
this over all 24 values of q gives us the contribution∑

q∈{3,...,97}

∑
p<
√
n

n≡p2 mod q2

log p < 0.568
√
n. (2)

2.2. Case 2

We now consider the case where 97 < q 6 nc and c ∈ (0, 1/4) is to be chosen later to achieve
an optimal result. Montgomery and Vaughan’s [8] explicit version of the Brun–Titchmarsh
theorem gives us that

π(x; k, l) 6
2x

ϕ(k) log(x/k)

for all x > q. Trivially, one has that

θ(
√
n; q2, l) 6

√
n

q(q − 1)

log n

log(
√
n/q2)

.

As q < nc, it follows that∑
97<q6nc

∑
p<
√
n

n≡p2 mod q2

log p <

√
n

1/4− c
∑

97<q6nc

1

q(q − 1)
. (3)

Table 2. Values for ε(q2, T ) for Lemma 5.

q ε(q2, T ) q ε(q2, T ) q ε(q2, T ) q ε(q2, T )

3 0.00323 19 0.17641 43 0.95757 71 2.82639
5 0.01222 23 0.25779 47 1.15923 73 3.00162
7 0.01702 29 0.41474 53 1.50179 79 3.56158

11 0.03194 31 0.47695 59 1.89334 83 3.96363
13 0.04250 37 0.69397 61 2.03488 89 4.61023
17 0.14271 41 0.86446 67 2.49293 97 5.55434
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We can bound the sum as follows:∑
97<q6nc

1

q(q − 1)
<

∑
97<q<1000001

1

q(q − 1)
+

∑
n>1000001

1

n(n− 1)

=
∑

97<q<1000001

1

q(q − 1)
+

1

1000000
< 0.00183.

Substituting this into (3) gives us that

∑
97<q6nc

∑
p<
√
n

n≡p2 mod q2

log p <
0.00183

√
n

1/4− c
. (4)

2.3. Case 3

Let q be an odd prime such that nc < q < A
√
n and A ∈ (0, 1) is to be chosen later for

optimisation. Since there are at most two possible residue classes modulo q2 for p, the number
of primes p such that n ≡ p2 mod q2 is trivially less than

2

(√
n

q2
+ 1

)
.

Clearly, including our logarithmic weights, one has that

∑
p<
√
n

n≡p2 mod q2

log p <

(√
n

q2
+ 1

)
log n

and so ∑
nc<q<A

√
n

∑
p<
√
n

n≡p2 mod q2

log p <
√
n log n

∑
m>nc

1

m2
+ π(A

√
n) log(n),

where π(x) denotes the number of primes not exceeding x. The sum can be estimated in a
straightforward way by

∑
m>nc

1

m2
<

1

n2c
+

∫∞
nc

1

t2
dt =

1

n2c
+

1

nc

and Dusart [6, Theorem 6.9] gives us that

π(A
√
n) <

A
√
n

log(A
√
n)

(
1 +

1.2762

log(A
√
n)

)
.

Therefore, putting this all together, we have

∑
nc<q<A

√
n

∑
p<
√
n

n≡p2 mod q2

log p <
√
n(n−2c + n−c) log n+

A
√
n log n

log(A
√
n)

(
1 +

1.2762

log(A
√
n)

)
. (5)
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2.4. Case 4

Finally, we consider the range A
√
n 6 q <

√
n. If n− p2 is divisible by q2, then

n = p2 +Bq2 (6)

for some positive integer B < A−2. We will need some preliminary results here. First, it
is known by the theory of quadratic forms (see Davenport [4, Chapter 6]) that the equation
ax2+by2 = n, where a, b and n are given positive integers, has at most w2ω(n) proper solutions,
that is, solutions with gcd(x, y) = 1. Note that w denotes the number of automorphs of the
above form and ω(n) denotes the number of different prime factors of n. The number of
automorphs is directly related to the discriminant of the form; specifically, w = 4 for the case
B = 1 and w = 2 for B > 1. Moreover, we are only interested in the case where x and y
are both positive, and so it follows that equation (6) has at most w2ω(n)−2 proper solutions.
Finally, noting that there will be at most one improper solution to (6), namely p = q, we can
bound the overall number of solutions to (6) by w2ω(n)−2 + 1.

Furthermore, Robin [11, Theorem 11] gives us the explicit bound

ω(n) 6 1.3841
log n

log logn

for all n > 3. Thus, for fixed n and B, it is easy to bound explicitly from above the number of
solutions to (6). It remains to sum this bound over all valid values of B. However, we should
note that given an integer n, there are not too many good choices of B, and this will allow us
to make a further saving.

This comes from the observation that every prime p > 3 satisfies p2 ≡ 1 mod 24. For, with
p > 3 and q > 3, equation (6) becomes

B ≡ n− 1 mod 24,

and this confines B to the integers in a single residue class modulo 24.
Formally and explicitly, we argue as follows. Consider first the case where B is an integer in

the range
n− 9

A2n
6 B <

1

A2
.

The left-most inequality above keeps p 6 3. Here, there are clearly at most

9

A2n
+ 1

integer values for B. We now consider the case where p > 3, and it follows that B ≡ n −
1 mod 24. Clearly, then, there are at most

1

24A2
+ 1

values for B in this range. Therefore, in total, there are at most

2 +
1

24A2
+

9

A2n

values of B for which we need to sum the solution counts to equation (6). Also, we must also
consider that w = 4 for B = 1. Therefore, we have that the number of solutions to equation
(6) summed over B is bounded above by

2ω(n)−1
(

3 +
1

24A2
+

9

A2n

)
.
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Therefore, the number of primes p (including weights) which satisfy (6) is at most

∑
A
√
n6q<

√
n

∑
p<
√
n

n≡p2 mod q2

log p < 21.3841 logn/log logn

(
3

2
+

1

48A2
+

9

2A2n

)
log n. (7)

2.5. Collecting terms

Now, collecting together (2), (4), (5) and (7), we have that the weighted count over all the
so-called mischievous primes can be bounded thus:∑

q<
√
n

∑
p<
√
n

n≡p2 mod q2

log p <

(
0.568 +

0.00183

1/4− c
+ (n−2c + n−c) log n

)√
n

+
A
√
n log n

log(A
√
n)

(
1 +

1.2762

log(A
√
n)

)
+ 21.3841 logn/log logn

(
3

2
+

1

48A2
+

9

2A2n

)
log n.

As expected, however, the weighted count over all primes exceeds this for large enough n and
good choices of c and A. Dusart [6] gives us that

θ(x) > x− 0.2
x

log2 x

for all x > 3594641, and thus it follows that

θ(
√
n) >

√
n− 0.8

√
n

log2 n

for all n > 1014. Therefore, if we denote by R(n) the (weighted) count of primes p such that
n− p2 is square-free, it follows that

R(n) >

(
1− 0.568− 0.00183

1/4− c
− 0.8

log2 n
− (n−2c + n−c) log n

)√
n

− A
√
n log n

log(A
√
n)

(
1 +

1.2762

log(A
√
n)

)
− 21.3841 logn/log logn

(
3

2
+

1

48A2
+

9

2A2n

)
log n.

It is now straightforward to check that choosing c = 0.209 and A = 0.0685 gives R(n) > 0 for
all n > 2.5× 1014.

3. Numerical verification for ‘small’ n

We now describe a computation undertaken to confirm that all n 6≡ 1 mod 4, 10 6 n 6
4 000 023 301 851 135, can be written as the sum of a prime squared and a square-free number†.
We will first describe the algorithm used, and then say a few words about its implementation.

†This is a factor of 16 further than we actually needed to check, but we did not expect our analytic approach
to fare as well as it did.
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3.1. The algorithm

We aim to test 3 · 1015 different n. We quickly conclude that we cannot afford to individually
test each candidate n − p2 to see if they are square-free. There is an analytic algorithm [3]
that is conjectured to be able to test a number of size n in time O(exp([log n]2/3+o(1))), but
this is contingent on the GRH. We would be left needing to factor each n − p2, which would
be prohibitively expensive.

We proceed instead by choosing a largest prime P and a sieve width W . To check all the
integers in [N,N + W ), we first sieve all the integers in [N − P 2, N + W − 4) by crossing
out any that are divisible by a prime square p2 with p <

√
(N +W − 5)/2. Now, for each

n ∈ [N,N + W ), n 6≡ 1 mod 4, we look up in our sieve to see if n − 4 is square-free†. If not,
we try n− 9, then n− 25 and so on until n− p2 is square-free. If it fails all these tests up to
and including n− P 2, we output n for later checking.

3.2. The implementation

Numbers of this size fit comfortably in the 64 bit native word size of modern CPUs and we
implemented the algorithm in C++. We use a character array for the sieve‡ and choose a sieve
width W = 231, as this allows us to run 16 such sieves in parallel in the memory available. We
set the prime limit P = 43, as this was found to reduce the number of failures to a manageable
level (see below). To generate the primes used to sieve the character array, we used Walisch’s
PrimeSieve [13].

We were able to run 16 threads on a node of the University of Bristol’s Bluecrystal
Phase III cluster [1] and in total we required 5400 core hours of CPU time to check all
n ∈ [2048, 4 000 023 301 851 135]. A total of 4915 n were rejected as none of n− p2 with p 6 43
were square-free. We checked these 4915 cases in seconds using PARI [2] and found that p = 47
eliminated 4290 of them, 53 does for a further 538, 59 for 14 more, 61 for 61 (!), 67 does not
help (!), 71 kills off 11 more and the last one standing, n = 1 623 364 493 706 484, falls away
with p = 73. Finally, we use PARI again to check n ∈ [10, 2047] with n 6≡ 1 mod 4 and we are
done.

It is interesting to consider the efficiency of the main part of this algorithm. The CPUs on
the compute nodes of Phase III are 2.6 GHz Intel Xeon processors and we checked 3 · 1015

individual n in 5400 hours. This averages less than 17 clock ticks per n, which suggests that
the implementation must have made good use of cache.
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