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SUMMARY

To clarify the determinants of vaccine trial power for non-typable Haemophilus influenzae, we

constructed stochastic SIS models of infection transmission in small units (e.g. day-care centres)

to calculate the equilibrium distribution of the number infected. We investigated how unit size,

contact rate (modelled as a function of the unit size), external force of infection and infection

duration affected the statistical power for detection of vaccine effects on susceptibility or

infectiousness. Given a frequency-dependent contact rate, the prevalence, proportion of infections

generated internally and the power to detect vaccine effects each increased slightly with unit size.

Under a density-dependent model, unit size had much stronger effects. To maximize information

allowing inference from vaccine trials, contact functions should be empirically evaluated by

studying units of differing size and molecular methods should be used to help distinguish internal

vs. external transmission.

INTRODUCTION

The effect of vaccines on reducing transmission is of

increasing interest in a variety of settings. We have

demonstrated that vaccines for non-typable Haemo-

philus influenzae (NTHi) will have considerably

greater benefit if they prevent transmission than if

they only prevent disease given transmission [1]. To

gain insight into the determinants of the power of

vaccine trials to detect such effects, we constructed

models of transmission in small units like day-care

centres (DCCs). We simplified our model by assuming

that the only source of immunity is from vaccines. A

key insight is the role of contact functions (i.e. the

contact rate as a function of the number of individuals

in the unit) on such assessment [2]. Our model analysis

makes clear that contact function is central to detec-

tion of vaccine effects on transmission.

The relationship between the contact rate and

the number of individuals within the unit is often

assumed without much critical evaluation. At one

extreme, the number of contacts by an individual per

unit time is independent of unit size. Transmission

depends only on the proportion of infected and sus-

ceptible individuals within the unit ; it is the same

whether there is 1 infected among 5 or 5 infected

among 25 individuals. That extreme is called fre-

quency-dependent contact. At another extreme, the

contact rate increases in proportion to the number

of individuals within the unit. That extreme is called

density-dependent contact. We formulate a contact

function that can be adapted to either of these ex-

tremes, or to allow intermediate forms. For example,

the contact rate could be density dependent within

a small unit but approach frequency-dependent con-

tact within a larger unit. We will also demonstrate

how the contact function influences the power to

detect vaccine effects on transmission.

The statistical power to detect an effect is always

a major concern in designing vaccine trials. Power

depends on the number of individuals in the trial,

the difference between the vaccinated and the
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unvaccinated groups and the variability within each

group, i.e. the probability distributions for the num-

bers of infected individuals within the vaccinated and

the unvaccinated groups are required. Our stochastic

model of SIS (susceptiblep infectedpsusceptible)

transmission derived the equilibrium probability dis-

tribution of the number infected in the unit. This

method allowed us to calculate the statistical power

of vaccine trials while varying the vaccine effect, the

unit size, the external force of infection and through

the contact function, the internal force of infection.

Our model separated the internal vs. external forces

and allowed assessment of how their relative magni-

tude influenced the power to detect vaccine effects

on infectiousness or susceptibility. Although the im-

mune response to H. influenzae is complex, a previous

mathematical analysis [3] suggested that an SIS model

fits the data reasonably well.

METHODS

Model description

The contact process formulation

The generation of new infections within the unit is

modelled as CN
. S . I/(Nx1) where S is the num-

ber of susceptible individuals, I is the number of

infected, N is the unit size and CN is the contact

function (Table 1). We used the contact function

CN=
Cd (Nx1)

1+(Cd=Cmax)(Nx2)

Table 1. Summary of terms

Term Meaning Comments

P[I] Probability of exactly ‘I ’ infected
in a unit

A distribution of N+1 mutually exclusive
probability states

N Unit size
lout Coefficient for outside force of

infection
Acts on all levels except P[N] to convert
susceptible to infected

c Recovery rate Acts on all levels except P[0] to recover
susceptible from infected

Cd Contact rate per individual Contact rate per individual per time per
contactee

Cmax Potential contact rate for a unit of
unlimited size

Contact rate per individual per time

CN=
Cd(Nx1)

1+(Cd=Cmax)(Nx2)
Contact rate as a function of unit

size

Requires estimates of Cd and Cmax

lin=CN I/(Nx1) Inside force of infection Acts on all levels except P[0] and P[N], to
generate a new infection from inside the unit

0fsf1
unvaccinated state : s=1

Susceptibility effect Decreased probability of acquiring infection
post vaccination

0fkf1
unvaccinated state : k=1

Infectiousness effect Decreased probability of transmitting infection
post vaccination

0f1/df1
unvaccinated state : d=1

Duration effect Decreased length of infectiousness period
(1/d) after vaccination

Incidenceout=
XI=Nx1

I=0

lout(NxI)P[I] Incidence from external forces Rate of infection generation from P[0, …, N–1]
to next level, summed across all levels

Incidencein=
XI=Nx1

I=1

lin(NxI)P[I] Incidence from internal forces Rate of infection generation from

P[1, …, Nx1] to next level, summed across
all levels

Prevalenceout=
100

N(c)
Incidenceout Prevalence from external forces Percentage of persons in the unit infected

from outside the unit

Prevalencein=
100

N(c)
Incidencein Prevalence from internal forces Percentage of persons in the unit infected

from within the unit

Prevalenceall=
100

N

Xi=N

I=0

I*P[I] Total prevalence Percentage of persons in the unit who are

infected
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to describe the relationship between the contact rate

and the number of individuals within the unit. Cd is

the rate of contact per contactee, while Cmax is the

summed rate of contact with all other individuals.

In the frequency-dependent model Cd=Cmax, while

in the density-dependent model, Cmax4Cd. Figure 1

illustrates the form of CN in density-dependent, fre-

quency-dependent and intermediate formulations,

when the latter each have the same value for Cmax.

The density-dependent formulation results in a con-

tact rate that increases linearly vs. the number of

contactees (Nx1), the frequency-dependent for-

mulation has a constant contact rate and the others

approach Cmax asymptotically.

Transmissions given system states

In a simple SIS model, an individual is either infected

or susceptible, so the system is completely described

by N+1 states, corresponding to (I=0, …, N) in-

fected individuals within the unit. We defined the

transmission model using the forward Kolmogorov

equations [4, 5] to describe the transitions from each

state to the adjacent states. There are three factors

influencing the transitions: internal (lin) and external

forces of infection (lout) acting upon each susceptible

individual and a recovery rate (c) acting upon each

infected individual (see Table 1). Equilibrium is

reached when the generation of new infections (from

both the internal and external force of infection) is

exactly balanced by the recovery of infected in-

dividuals to susceptible status, simultaneously for all

P[I] (I=0, …, N) states (see Appendix).

Modelling vaccine effects

We model three potential vaccination effects : a sus-

ceptibility effect (s), acting to decrease the probability

of acquiring an infection, an infectiousness effect (k),

acting to decrease the probability of transmitting an

infection and a duration effect (d), acting to decrease

the mean duration of the infectious state (see Appen-

dix for further details of the model). Our trial design

compares units where none is vaccinated with units

where all are vaccinated. The model assumes that the

community outside the vaccinated and unvaccinated

units is itself unvaccinated and provides a constant

external force of infection.

MODEL ANALYSIS

Among the unvaccinated units, there are five para-

meters (lout, c, N, Cd, Cmax) that influence the number

of infected individuals. We can characterize Cmax

through the ratio Cd/Cmax and we show the distri-

bution of the number of infected based on c=1,

while varying lout, N and Cd. One could derive

another set of distributions based on resetting c,

but inspection of equations (A 1)–(A 3) shows that a

rescaling of lout and Cd by multiplying all equations

by the mean duration of infection (1/c) would make

the relationships mathematically equivalent to those

based on c=1. Stated differently, the time unit is

arbitrary, so if we adjust the time unit to one recovery

period (1/c), then the external and internal trans-

mission rates could each be rescaled to the mean

recovery period.

0

0·2

0·4

0·6

0·8

1·0

1·2

0 5 10 15 20 25

Unit size

C
on

ta
ct

 r
at

e

Frequency Density
Cd/Cmax = 0·5 Cd/Cmax = 0·2
Cd/Cmax = 0·1

Fig. 1. The contact rate as a function of unit size (the contact function) is illustrated for frequency-dependent,
density-dependent and intermediate formulations. The frequency-dependent contact rate is invariant to unit size ; the density-

dependent increases with unit size and the intermediate formulations initially rise, but approach a limiting value.
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Prevalence attributable from inside vs. outside the unit

The primary outcome variable was the equilibrium

probability distribution of the number infected within

the unit. From this, the total prevalence and the in-

fections generated externally or internally as defined

in Table 1 were calculated. Since the primary outcome

is a probability distribution, the prevalence and inci-

dence are each described by an array of terms, corre-

sponding to the frequency of each possible system

state. The expectation of the number of infections

within the unit provides a summary measure for the

distribution. Since the mean duration of infection

equals 1, the equilibrium prevalence and incidence

values are equal. Because we are modelling the en-

demic prevalence of NTHi, we were most interested in

the 10–50% prevalence range.

Calculation of power in vaccine trials

The calculation of power is illustrated in Figure 2 for

three different outside forces of infection when the

prevalence in each situation is 30%. To maintain

30% prevalence when the outside force of infection is

increased, the transmission rate within the unit must

be decreased. The distributions for the vaccinated and

the unvaccinated groups are shown. The statistical

power is calculated by first determining the threshold

for the number of infected individuals in the un-

vaccinated distribution that represents the lowest 5th

percentile. The cumulative distribution among the

vaccinated group, that is less than this threshold,

represents the statistical power of the trial. In the

trials illustrated, there is less power under conditions

of higher external force of infection. With a higher

outside force of infection generating the 30% preva-

lence, the distribution of the number infected within

the unvaccinated group has less variance, which

would decrease power. However the power is in-

creased, because when transmission rates within the

unit are higher, vaccination reduces transmission

within the unit more, and the overlap between the

vaccinated and unvaccinated groups is greater.

In order to compare trials with units of differing

sizes, we kept the total number in each arm of the trial
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Fig. 2. The overlapping distributions for the expected number of infected individuals in an unvaccinated unit of 48 are
contrasted with a vaccinated unit with a vaccine effect to reduce susceptibility by 50%. Mean prevalence in the unvaccinated
group was 30%, with high, moderate and low external force of infection. At a lower outside force of infection, there is greater

separation of the probability distributions for the unvaccinated and the vaccinated groups, and therefore more statistical
power to detect a vaccine effect.

Table 2. Infection prevalence and probability of

disappearance of infection vs. unit size at the extremes

of the contact function

n

Density dependent Frequency dependent

Prevalence P[0]* Prevalence P[0]*

12 0.242 0.137 0.242 0.137

24 0.546 0.0002 0.255 0.017
36 0.696 10x9 0.260 0.002
48 0.771 10x16 0.263 0.0002

* P[0]=probability that no one is infected within the unit.

Prevalence=prevalence of infection within the unit.
This example assumes lout=0.10, c=1 for both models. In
order to maintain a constant lin among units of 12,

Cd=Cmax=1.0 in the frequency-dependent model and
Cd=1/11, Cmax=O in the density-dependent model.
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constant by comparing trials with four units of size

12, two units of size 24 and one unit of size 48.

Assuming independence for the trials, we used the

probability distribution from one trial to calculate

the expected distribution of k replications by expand-

ing the initial distribution to the kth power. This

approach was used to derive the distributions from

which the total prevalence, the prevalence attributable

to internal and external forces and the power were

calculated.

RESULTS

The effect of the contact function on prevalence and

fraction of infections internally generated

Tables 2–4 illustrate the influence of the contact

function and unit size on the endemic infection

prevalence, the probability that no one within the

unit is infected and the proportion of infections

generated internally. Given a frequency-dependent

contact function, as the unit size increases, the preva-

lence rises <10%, and the probability of the unit

having no infected individuals dramatically decreases.

Given a density-dependent contact function, as the

unit size increases, the prevalence increases >200%

and the probability of the unit having no infected

individuals decreases much faster than under the

frequency-dependent model. Equivalency of contact

rates among units of size 12 was maintained by

setting Cd=Cmax=1.0 for the frequency-dependent

model and Cd=1/11 and Cmax=O for the density-

dependent model.

For both the frequency-dependent and the density-

dependent models, as the external force of infection

Table 3. Infection prevalence and proportion of infections generated inside the unit vs. unit size and external

force of infection (lout) for a frequency-dependent contact function

l

n=12 n=24 n=48

Prevalence
Internal
proportion Prevalence

Internal
proportion Prevalence

Internal
proportion

0.10 0.242 0.686 0.255 0.709 0.263 0.719

0.15 0.299 0.648 0.309 0.665 0.314 0.672
0.20 0.343 0.616 0.351 0.63 0.355 0.636
0.25 0.378 0.589 0.384 0.6 0.387 0.605

0.30 0.408 0.565 0.413 0.574 0.416 0.578
0.35 0.433 0.543 0.438 0.551 0.44 0.555
0.40 0.456 0.524 0.46 0.53 0.462 0.534

0.45 0.476 0.506 0.48 0.512 0.481 0.515
0.50 0.495 0.49 0.498 0.495 0.499 0.498

Cd=Cmax=1.0 in the frequency-dependent model.

Table 4. Infection prevalence and proportion of infections generated inside the unit vs. unit size and external

force of infection (lout) for a density-dependent contact function

l

n=12 n=24 n=48

Prevalence

Internal

proportion Prevalence

Internal

proportion Prevalence

Internal

proportion

0.10 0.242 0.686 0.546 0.917 0.771 0.97
0.15 0.299 0.648 0.564 0.884 0.775 0.956
0.20 0.343 0.616 0.58 0.855 0.778 0.943

0.25 0.378 0.589 0.594 0.829 0.781 0.93
0.30 0.408 0.565 0.606 0.805 0.784 0.917
0.35 0.433 0.543 0.618 0.783 0.787 0.905

0.40 0.456 0.524 0.628 0.763 0.79 0.894
0.45 0.476 0.506 0.638 0.744 0.793 0.882
0.50 0.495 0.49 0.648 0.726 0.795 0.871

Cd=1/11, Cmax=O in the density-dependent model, so that the n=12 units are identical to those in Table 3.
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increased, the proportion of infections arising from

transmission within the unit decreased for each unit

size, with slightly higher proportions of internally

generated infections among the larger units. For the

density-dependent model, the proportion of internal

infections increased with the unit size. Therefore,

the contact function had a huge impact on the in-

ternal force of infection, the relationship between the

internal and external force of infection and the

total prevalence.

Estimating lout

Our model assumes a constant outside force of infec-

tion, independent of unit size. This could be verified

in a vaccine trial by collecting data by unit size and

including the frequency of the P[I] states, rather than

a summary measure like the mean number infected

across units. An estimate of the external force of

infection could be made from rearrangement of

equation (A 4) as lout=(c . P[1])/(N .P[0]). Thus lout
can be estimated once c is known and its estimation

is independent of the form of the contact function.

Once lout and the probability distribution of the

number of infected individuals within the unit are

estimated, then the proportion of infections attribu-

table to lout can be calculated. However, this estimate

depends on a relatively high frequency of the P[0] and

P[1] states (i.e. mostly in small units and low endemic

levels of infection).

Comparison of vaccine effects in this model

A vaccine effect that reduces susceptibility by a pro-

portion ‘s ’ will have a greater effect on reducing

prevalence of infection than a vaccine that reduces

infectiousness by the same proportion, since the

former diminishes both lout and lin, while the latter

selectively decreases lin. A vaccine effect on duration

of infection (1/d) is algebraically equivalent to a sus-

ceptibility effect in this SIS model ; that is, increasing

the recovery rate by a factor of 2 is equivalent to

reducing susceptibility by 1
2 (see Appendix).

Power to detect a susceptibility effect

Figure 3 shows the power to detect a moderate effect

on susceptibility (s=0.50, k=1.0) under the fre-

quency-dependent and the density-dependent models

for the various unit sizes and a variable external force

of infection. In the frequency-dependent model, the

power to detect a susceptibility effect increased as

the external force increased and there was little dif-

ference comparing four replications of n=12, two

replications of n=24 and a single trial of n=48. In

the density-dependent model, the power to detect a

susceptibility effect is more sensitive to the unit size

than in the frequency-dependent model. As the unit

size increases in the density-dependent model and

the prevalence increases, there are fewer susceptible

individuals in the unit and the power to detect a
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Fig. 3. The power to detect a 50% reduction in susceptibility is shown vs. the unit size, the outside force of infection and

the contact function. The power to detect a susceptibility effect was dependent on the overall prevalence and the proportion
of infections generated from inside vs. from outside the unit, which was in turn related to the contact function.
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susceptibility effect is diminished (see two replications

of n=24 vs. one trial of n=48 in Fig. 3).

Power to detect an infectiousness effect

The contact function has a much stronger influence

on the power to detect an infectiousness effect

(k=0.5, s=1.0), as shown by Figure 4. In the ranges

examined, if the contact process was frequency de-

pendent, then the unit size had only a modest effect

on the power to detect a vaccine effect. If the contact

function was density-dependent, then the power to

detect an infectiousness effect was sensitive to the

unit size and to the external force of infection, since

the former will raise the proportion of infections

generated inside the unit and the latter will lower

it. So the power to detect an infectiousness effect is

greatest at low levels of external force of infection

and high contact rates generated within a larger unit

size by the density-dependent contact function.

Power to detect an effect on susceptibility or

infectiousness, given constant prevalence

Since our model is based on an endemic infection,

we illustrated the power to detect vaccine effects on

susceptibility or infectiousness at constant preva-

lence. With each value of lout we calculated the value

of Cd to obtain a constant endemic prevalence

(among the unvaccinated group) of 20, 30, 40, 50

and 60%. Figure 5 shows the power to detect a sus-

ceptibility effect (s=0.50, k=1.0) at those constant

prevalence levels. At all prevalence values, the power

decreases as the external force increases, but the slope

is more negative at lower prevalence values. In the

range illustrated, in order to obtain a reasonable

value for the power of the trial, a prevalence ofo0.40

is required. These curves do not show a monotonic

decrease; there are discrete jumps in the value for

the power. This is a consequence of the probability

distribution having discrete values and the necessity

of using a threshold where a has a value as close as

possible to (but less than) 0.05. When the distribution

changes slightly so that a<0.05 shifts to the next

highest number of infected individuals, the power

abruptly increases.

The power to detect an infectiousness effect

(k=0.50, s=1.0) under the same condition of con-

stant prevalence is shown in Figure 6. The power

decreases as the external force increases across all

levels of prevalence, but the slope of power vs. ex-

ternal force of infection is more negative than for

the susceptibility effect. To detect an infectiousness

vaccine effect, both a low external force and a

reasonable overall prevalence are required. That is,

most of the infections must be generated internally

and their number must be sufficiently large in order

to detect a significant difference given a vaccine in-

fectiousness effect.

DISCUSSION

To capture all vaccine effects on transmission,

one should study populations in settings where
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Fig. 4. The power to detect a 50% reduction in infectiousness is shown vs. the unit size, the outside force of infection and the
contact function. The power to detect an infectiousness effect was generally less than the power to detect a susceptibility

effect, but was more strongly related to the contact function and the unit size.
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transmission occurs. The planning for such trials and

the information to be extracted from them depends

upon a correct formulation of the transmission

process. Transmission has been summarized (e.g.

ref. [6]) as occurring by ‘mass-action’, or propor-

tional to S . I, where S and I represent the numbers

of susceptible and infected individuals present per

unit area. Many others (e.g. refs [1, 7, 8]), have

modelled the transmission rate as proportional to

S . (I/N), dividing the product by the total population

(N). The terminology ‘density dependent ’ for the

former and ‘frequency dependent’ for the latter has

been suggested previously [2].

Contact rate as a function of unit size

The proper formulation of the contact function is

central for modelling transmission dynamics within

small units, since contact rates determine the in-

ternal force of infection. The density-dependent vs.

frequency-dependent models represent extremes that

will not apply across all unit sizes or with all infectious

agents. The density-dependent model leads to a

steady rise in the rate of infection transmission as

the number of infected individuals within the unit

increases, even if their proportion is fixed; this

quickly generates high internal forces of infection.
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Fig. 5. The power to detect a 50% reduction in susceptibility is plotted vs. the outside force of infection at contours of
constant prevalence. The abrupt jumps in the curve occur as a result of the probability distributions being discrete, rather

than continuous.
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Fig. 6. The power to detect a 50% reduction of infectiousness is plotted vs. the outside force of infection at contours of

constant prevalence. As the proportion of infections generated from within the unit decreases, there is less power to detect an
infectiousness effect.
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The frequency-dependent model holds the trans-

mission rate constant as unit size changes, and thus,

the internal force is invariant to unit size. While the

density-dependent model may be a reasonable de-

scription of the contact process for units with a small

number of people, the process might saturate as

the unit size increases. Particularly among small to

moderately sized units (e.g. 5–40 individuals, as

encountered in a DCC), the contact rate may vary

considerably with N.

Using a contact function that is proportional to

N for small values of N and reaches an asymptote

for large values of N has been suggested previously

[8–10]. McCallum et al. [2] expressed this as a trans-

mission function

N

1+e(Nx1)
� b � I � S

N
,

in which two parameters (e, b) modify the contact

rate. If e=0, the transmission is density dependent;

if e=1, it is frequency dependent. While their for-

mulation, and ours, each have two parameters, we

suggest that ours is more easily understood as Cd

and Cmax relate to contact rates per potential con-

tactee and contact rates independent of unit size,

rather than the dimensionless constant, e. By stipu-

lating the value for e and b in their model or of Cd

and Cmax in ours, one could construct a relation-

ship of prevalence vs. unit size that is between the

frequency-dependent and the density-dependent func-

tions. There are more complex formulations between

the extremes of density-dependent and frequency-

dependent models [2] that are based on pair for-

mation [11] or a power relationship [12] of the

number of susceptible and infected individuals.

One could also model a contact function that has

a much steeper rate of rise for a given unit size

by raising the [Nx1] and [Nx2] terms to a power,

analogous to the Hill equation [13] in Michaelis–

Menten dynamics. By empirical evaluation of preva-

lence and strength of internal force of infection as a

function of unit size, the contact function could be

estimated as frequency dependent, density dependent

or intermediate.

Vaccine effects

Ideally, a vaccine confers complete protection (a

‘sterilizing’ effect) so that no matter how intense the

internal or external force of infection, the vaccinated

individual will not become infected [14]. Although

some vaccines approach this ideal, many have relative

effects on susceptibility, infectiousness, duration or

pathogenicity. The success of H. influenzae type b

vaccine [15, 16] has been cited as an example of the

importance of infectiousness effects [17]. Pertussis

vaccine is another example of an important infec-

tiousness effect [18]. However, our study is not con-

cerned with estimation of vaccine effects ; we used

hypothetical pure vaccine effects on susceptibility,

infectiousness or duration to illustrate how the

power to detect a difference in prevalence would be

affected in different unit sizes and under scenarios

of frequency- or density-dependent contact functions.

A thorough discussion of this topic can be found in

ref. [19], while a general framework for considering

the data required to estimate transmission effects

and to separate susceptibility from infectiousness

effects is in ref. [20]. The present study design, where

vaccination coverage levels are all vs. none, will not

allow separation of susceptibility and infectiousness

vaccine effects. Longini and colleagues propose a

model for measuring both susceptibility and infec-

tiousness effects in populations vaccinated at differ-

ing coverage levels [17]. All these approaches must

specify a model of the contact process, but this is

usually modelled as a constant contact rate (i.e. im-

plicitly as a frequency-dependent contact function).

Our study demonstrates that a vaccine trial design

for an endemic infection requires more than the

prevalence among unvaccinated vs. vaccinated groups

to estimate the power of the trial. One must have

some knowledge regarding the contact function in

the range of unit sizes to be tested, the relative

strength of internal vs. external force of infection

acting on the units and the degree to which the vac-

cine effect relates to infectiousness or susceptibility.

Observational data from DCCs

A likely setting for vaccine trials of NTHi focused

on detecting transmission effects are DCCs. Attend-

ance at a DCC is an important risk factor for colon-

ization with H. influenzae [21], and siblings who

attended DCCs were the principal source of colon-

ization for younger infants who themselves were not

yet enrolled [22]. However, there are few studies

comparing transmission across DCC unit size. One

study [23] demonstrated that prevalence of H. influ-

enzae infection is related to DCC size; among units

of size<10, prevalence was 32%, among units 10–50,

the prevalence was 38% and among units >50, the
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prevalence was 58%. In another study [24], the pro-

portion of ampicillin-resistant strains of H. influenzae

was related to the size of the DCC. In units having

<20 children, 35% of strains were resistant, in units

of 20–50 children, 34% were resistant and in units

with>50 children, 63% were resistant. More import-

antly, when the bacterial DNA pattern was classified

as to whether there was a shared pattern in the DCC,

in units <20, there was never a shared pattern be-

tween two individuals. Among units of size 20–50,

32% shared a pattern with others and among the

largest units, 52% shared a common pattern with

others in the DCC. The authors conclude that the

size of the DCC may affect the risk of transmission

of ampicillin-resistant strains. In another study, [25],

carriage rates for H. influenzae were 37% for children

in a DCC compared with 11% among controls. DNA

analyses of the H. influenzae matched in 38% of

the DCC children but was only 4% in the controls.

When the DCC children were examined serially, a

child’s newly acquired strain was the same as that

previously found within the same DCC in 40% of

cases. The size of the DCC appears to be an import-

ant determinant of the internal force of infection

for H. influenzae ; this must be understood in order

to properly model transmission within DCCs.

Our analysis demonstrates the effect of the con-

tact function and, therefore, unit size on the internal

force of infection in small to moderately sized units.

This unit size effect is supported by the clinical data

available from DCCs of differing sizes. Further

studies should be performed both to observe the

effect of DCC size on the overall prevalence of H.

influenzae and specifically to distinguish via DNA

analyses those infections generated internally vs. ex-

ternally. Accurate tracking of transmission by strain

will allow better estimation of the outside vs. inside

force of infection acting on the unit. As shown by

Figures 3 and 4, the power to detect vaccine effects,

especially those on infectiousness, is profoundly in-

fluenced by the proportion of infections generated

from outside vs. inside the unit.

In this model, we compared units where everyone

or no one in the unit was vaccinated and where

the external force of infection was both constant and

arose from a community that was not vaccinated.

These simplifications helped us to highlight that

under these conditions, vaccines reducing suscepti-

bility would lower infection rates from both internal

and external forces while vaccines reducing infec-

tiousness would lower infection rates only if they

were generated from internal forces. This model has

no age-dependent structure in terms of prevalence,

contact function or vaccine effects. Our conclusions

may not apply to vaccine trials in populations

having some degree of acquired immunity from

natural infections. The next step is to extend these

analyses to a more realistic model having both natural

immunity and vaccine effects.
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APPENDIX (see Table 1 for definitions of terms)

The Kolmogorov forward equations describing the

transitions between the states are of three types :

dP[0]=dt=xlout NP[0]+cP[1], (A 1)

dP[I]=dt for I=1, . . . , Nx1=lout(NxI+1]P[Ix1]

xlout(NxI)P[I]+
CN(Ix1)

(Nx1)
(NxI+1)P[Ix1]

x
CNI

(Nx1)
(NxI)P[I]

xcIP[I]+c(I+1)P[I+1], (A 2)

dP[N]=dt=lout P[Nx1]+
CN

(Nx1)
(Nx1)P[Nx1]

xcNP[N]: (A 3)

For the vaccinated group, the equations are modified

by multiplying each lout by s, each CN by s .k and

each c by (1/d). The equivalence of reciprocal changes

in susceptibility vs. duration effects can be appreciated

by multiplying through by d, and collecting factors:

the duration effect (1/d) is equivalent to a suscepti-

bility effect (s .d).
The three equations could also be summarized in

matrix form as:

dP/dt=AP, where A is a square tridiagonal matrix

whose non-zero elements are

supradiagonal elements:

AI, Ix1=(NxI+1)[(I+1)CN+lout]

diagonal elements:

AI, I=x[I � c+(NxI)ICN+(NxI)lout]

subdiagonal elements:

AI, I+1=(I+1)c (0fIfN):
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The solution

We used Berkeley Madonna software [26] to numeri-

cally solve the set of differential equations, but an

exact solution to the N+1 equations could be found

by iteration, beginning with the P[0] state and substi-

tuting for the next state, with the constraints thatPI=N
I=0 P[I]=1 and c>0:

P[1]=
loutNP[0]

c
, (A 4)

P[2]=
1

2c
[lout(Nx1)+CN]P[1], (A 5)

In general, for [I, …, Nx1], P[I+1] can be expressed

in terms of the previous two states :

P[I+1]=
P[I]

c(I+1)
(c(I)+lout(NxI)

+CNI(NxI)=(Nx1))

x
P[Ix1]

(c)(I+1)
(lout(NxI+1)

+CN(Ix1)(NxI+1)=(Nx1)) (A 6)

and

P[N]=
1

Nc
(lout+CN)P[Nx1]: (A 7)

All of these can be expressed iteratively in terms

of P[0] and since
PI=N

I=0 P[I]=1, the coefficients of

P[0] would sum to the normalizing factor, allowing

calculation of P[0, …, N]. Therefore, an exact (non-

ergodic) solution exists, showing that there is a

unique set of equilibrium values for the P[I] states.

The solution when there is no outside force of infection

In the special case of no outside force of infection

(lout=0, c>0), it can be shown by induction that the

P[0] state will ultimately occur with probability=1.
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