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Abstract

The object is to unify and complement some recent theorems of Hewitt and Ritter on the
integrability of Fourier transforms, but the underlying theme is the ancient one that Plancherel's
theorem is the "only" integrability constraint on Fourier transforms. The distinguishing
feature of the results is that we restrict attention to positive measures (or functions) which
satisfy an ergodic condition and whose transforms are positive. (In fact we employ sums of
discrete random variables, a technique which seems to have been largely ignored in context.)
The general setting is that of locally compact abelian groups but we are chiefly interested in the
line or the circle, and it appears that the theorems are new for these classical groups.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 42 A 68, 42 A 73, 43 A 25.

Keywords: Fourier-Stieltjes transforms, discrete random variables.

1. Introduction
(1.1) Scheme. The general background is discussed in the next sub-section, the
notation to be used is listed in (1.3) and the main theorem stated and discussed
in (1.4) and (1.5). Some basic technical preliminaries are gathered in Section 2.
The business of Section 3 is the proof of the main result for the real line (and
circle). The extension to locally compact abelian groups is proved in Section 4.
In particular it should be possible (and desirable) for the reader to pass directly
from Section 1 to Sections 3 and 4 using Section 2 only for occasional reference.
Formulae are numbered consecutively, with a fresh start in each of the four
sections.

(1.2) Background and general description. A fundamental question of harmonic
analysis concerns the relationship between species of "good" behaviour of a
function or measure and the convergence properties of its Fourier transforms.
There are various positive results in which smoothness of a function implies
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130 Gavin Brown [2]

smallness of its transform, but we are concerned here with interpreting the question:
"How does integrability of a measure condition integrability of its transform?"
In this we are following two recent papers by Hewitt and Ritter (1976, 1977).

A partial answer to the question just posed has been well known for over fifty
years—in general, the only constraints are imposed by the theorems of Riesz-
Fischer, Plancherel and Hausdorff-Young. (Curiously though, explicit theorems
demonstrating even this "answer in principle" for the case of the real line do not
appear to have been given prior to the Hewitt-Ritter work just cited.) A convenient
focus is a theorem proved by Gronwall (1921), or see Zygmund (1959).

If <p: ]0,oo[->-[0,oo[ satisfies limg^pCy) = oo, then there is a continuous function
f on the circle such that

This rules out pure integrability-to-integrability results from Lp(J) to /a>(Z), and
does so, in a strong way, because of the continuity condition imposed.

In the opposite direction there is a corpus of theorems which obtain integrability
properties off* from integrability properties of/, provided that / satisfies some
additional constraints. (A survey of a particular class of these is given by Boas
(1967). The side-conditions typically involve positivity o f /o r off*.)

Accordingly, by a "theorem of Gronwall type" we mean a result which estab-
lishes sharp failure of integrability-to-integrability statements for some class of
well-behavedmeasures (functions).

All the main results of Hewitt and Ritter (1976, 1977) are theorems of Gronwall
type in this sense. In particular, all measures considered in Hewitt and Ritter (1977)
are positive and have positive transforms. (As we noted above, this can be classed
as significantly good behaviour in the context of the theorems exposed in Boas
(1967).) On the other hand, for the absolutely continuous functions discussed in
Hewitt and Ritter (1976), the side-condition is continuity in the presence of compact
support—in other words, the original Gronwall condition. (We have discussed
an alternative route to this kind of result in Brown (1977b).)

However, one does not obtain a theorem of Gronwall type where both kinds of
constraint are imposed, because there is the (easy) integrability-to-integrability
result that, i f / e L ^ . / i s continuous at 0, and/~SsO, then f el^R). It should
also be noted that the apparent weakening of theorems of Gronwall type which
arises when the functions are required only to be bounded as opposed to continuous
is largely illusory because one may take a convolution product with a suitable
function in L±. Such a method was used by Salem and Zygmund (1947) and the
analogue on the real line is what underpins Brown (1977b).

Thus we may say that Brown (1977b) and Hewitt and Ritter (1976) are concerned
with theorems of Gronwall type in the absolutely continuous case with boundedness
constraint, while Hewitt and Ritter (1977) consider theorems of Gronwall type
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[3] Integrability of Fourier transforms 131

in the singular case with positivity constraint. In addition, many different proof
techniques are employed in Hewitt and Ritter (1976,1977) (general Riesz products,
Aj-sets, Rudin-Shapiro polynomials, lifting from T to R, systematic translation
and dilation) and, in general, objects constructed are highly irregular under
translation.

In our main theorem we impose the constraint of a regular pattern of construction
(the convenient formalization being ergodicity with respect to a countable subgroup)
on both functions and measures, and demand also that all transforms, functions
and measures be positive. In this way we obtain an omnibus theorem of Gronwall
type whose method of proof is uniform throughout all cases, which sharpens the
results of Hewitt and Ritter (1977) and gives a unified treatment complementary
to the various results of Hewitt and Ritter (1976). Moreover, the real line is as
natural as the circle group from the standpoint of our methods. We must pay for
all this, in the absolutely continuous case, by removing the boundedness constraint
on the functions involved. Indeed our functions are generically unbounded and,
in view of our insistence on translation regularity, this means unbounded in every
neighbourhood which intersects the support. Because boundedness was used to
force the integrability properties in the original Gronwall theorem, we must include
some such constraints explicitly. In fact it is possible to make the best possible
demand and insist that the functions belong to Lp, for every positive p.

I am grateful to the authors of Hewitt and Ritter (1976,1977) for prepublication
copies of their work, and take pleasure in acknowledging some stimulating
conversations with Edwin Hewitt on the integrability of Fourier transforms.

(1.3) Notation. In general the symbol G denotes a non-discrete locally compact
abelian group, and X the character group of G. Haar measure on G is denoted by
A and on X by 6.

In the cases of special interest, namely when G is the real line, R, or the circle
group, T, we choose specific realizations as follows: For G = R we take A as
Lebesgue measure and identify X with R according to the correspondence x<->x>
where

X(j) = exp(2nixy) 0>eR).

(In fact we also find it convenient to employ the notation e(—) as an alternative
for exp(27ri-).) It is, of course, natural to take 6 to be (l/2w) A. The circle group
is realized as the closed interval [—£,£] with the end points identified and with
addition defined modulo one. With this realization of G = T, we take A as Lebesgue
measure on ]—£,£] and identify Xwith the additive group Z of integers. Here the
character x represented by the integer n is given by

X(t) = e(nt) (teT),

and 6 is taken to be counting measure.
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132 Gavin Brown [4]

There will be occasion to consider also the cyclic group, Z(a), of order a, and
the group, \ , of ̂ -adic integers, but the details can be left until needed in Section 4.

The Fourier-Stieltjes transform of a measure /x on G is the function ^ defined by

For p>0, LP(G) denotes the space of (equivalence classes modulo A) ofp-integrable
functions, and LP{X)nas a similar significance. For feL^G), the Fourier transform
/ A of / coincides with the Fourier-Stieltjes transform of the measure / whose
Radon-Nikodym derivative with respect to A is/.

C0(Z) (respectively C^(X)) denotes the continuous (respectively non-negative
continuous) functions on X which vanish at infinity. By a probability measure on G
we shall mean a positive regular bounded Borel measure on G which has total
mass one. For such a measure /* the involute p. is the unique probability measure
characterized by the formula

/A is called hermitian if /* = (L. Note that if /* is any probability measure on G
whose Fourier-Stieltjes transform vanishes at infinity then the convolution product
fi*p. is a hermitian probability measure on G whose Fourier-Stieltjes transform
belongs to C£(X).

Let D be a countable subgroup of G. A Borel set E is D-invariant if the set
{x+d: xeE} is contained in E for every d in D. A probability measure fi on G
is D-ergodic if p assigns to each D-invariant Borel set either mass one or mass
zero (that is, y. is concentrated on every non-negligible D-invariant Borel set).
An example of this phenomenon is a uniform mass distribution over the classical
Cantor set in R. The resulting measure is D-ergodic when D is chosen as the group
of triadic rationals. We shall say that a probability measure y, on G is ergodic if
there exists some countable subgroup D with respect to which y. is D-ergodic, and,
to avoid difficulties in the non-metrizable case, we include also measures of the
form XK*[i, where K is a compact subgroup of G and the image of y. in M(G/K)
(under the canonical map TT^ induced by the quotient map) is D-ergodic. The
class S of ergodic measures is then stable under quotients, in the sense that
jLteAf(G), fie& implies w|-(/x)e<?, for any compact subgroup K of G. (See
Proposition 5 in (4.4) below.)

(1.4) Main result.

THEOREM. Let G be a nondiscrete locally compact abelian group. Suppose that
\<,p<co and that <p: ]0,oo[->]0,oo[ is a measurable function such that p(x)->oo
as x->0. Then there exist measures op,rp on G whose Fourier-Stieltjes transforms
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[5] Integrability of Fourier transforms 133

belong to C$(X) and satisfy

(0 J<#X)P dd(x) < oo, jo;(x)P ?>«(*)) dd(x) = oo,

< oo.

Moreover ap,rp may be chosen as ergodic probability measures with support a
compact neighbourhood of zero, and the following additional properties:

The measures ap, forp>2, andrp,forp~^2, are singular to Haar measure Xon G.
In the remaining cases ap, rp are absolutely continuous, and their Radon-Nikodym
derivatives with respect to A belong to n r > 0Lr (G) .

COROLLARY. For l</><oo, an ergodic probability measure a, whose transform
is nonnegative and vanishes at infinity, may be chosen to satisfy either

(i) o* belongs to Lr(Z) if and only ifr^p,

or

(ii) a* belongs to Lr(X) if and only ifr>p.

PROOF OF COROLLARY. TO obtain (i) take cp(x) = log Or1) and a = ap in the
theorem. To obtain (ii) take $»(*) = \o%{x~v) and a = TP in the theorem.

(1.5) Comments. The main interest is, of course, when <p tends very slowly to
infinity as x->0. There is no loss of generality in assuming that <p is decreasing in
the wide sense and we can allow ap, rp to take the value zero by making the
obvious interpretation of the values of the integrands at the appropriate points.
(In fact on the classical groups we construct measures with strictly positive
transforms.)

We are now in a position to explain in technical terms how the main theorem
fits into the complex of existing work. It is natural to concentrate mainly on the
relationship with the recent papers (Hewitt and Ritter, 1976, 1977), bearing in
mind the historical comments given there.

The closest point of contact with the Hewitt-Ritter work concerns the singular
measures TP, for p ̂  2, which appear in the statement. Indeed the special case
which asserts the existence of T2 is effectively Theorem 9.2 of Hewitt and Ritter
(1977), sharpened by the addition of the ergodic property. By considering also
2<p<co, we are able to incorporate also (a) of Theorem 2.2 of Hewitt and Ritter
(1977). In this connexion recall that the original Gronwall theorem demonstrates a
species of left-handed discontinuity in the sense that it considers transforms which
fail to belong to Lr(Z) for r < 2 but belong to Lr(Z) for r > 2 . (It would be more
accurate to associate this discontinuity phenomenon, per se, with the name of
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Carleman, since it is the sharpening which arises from consideration of the function
rp that corresponds to Gronwall's contribution.) Theorem 9.2 of Hewitt and Ritter
(1977) (even specialized to the circle) gives not only the first Gronwall analogue
for singular measures, but also the first right-handed discontinuity result in the
sharp Gronwall form—the underlying pattern involves transforms which fail to
belong to Lr(X) for r<2 but belong to Lr(X) for r>2. In the terminology just
coined, our earlier remark about Theorem 2.2(a) of Hewitt and Ritter (1977)
becomes the comment that consideration of rp (rather than only T2) allows us to
treat a left-handed discontinuity at any/? in the range [2, oo[. By considering also <JP,
for p > 2, we are able to find a Gronwall analogue for singular measures which
establishes a right-handed discontinuity at any p in the range ]2, oo[. Thus we can
absorb also (b) of Theorem 2.2 of Hewitt and Ritter (1977) into our version of a
Gronwall theorem for singular measures.

Still concentrating on the relationship between the singular case of our theorem
and the main results of Hewitt and Ritter (1977), we note that our theorem is
formally stronger, because we insist on ergodic measures, and that our methods
are different, because we use infinite convolutions of discrete measures. Hewitt
and Ritter employed general Riesz products.

The first point to be noted is that ergodicity can also be achieved with Riesz
products although these measures are not typically ergodic. (In fact it was shown
in Brown (1975) that a Riesz product is ergodic if the dissociate set used in its
construction satisfies certain (strong) number-theoretic constraints, and it was
noted that a Riesz jproduct may fail to be ergodic for every countable subgroup.)
It follows that, at least in the case of the circle, the singular case of our theorem
could be proved along the lines used in Hewitt and Ritter (1977) and, presumably,
a development of the ideas of (7.2) of Brown (1975) in the light of the structure
theory of discrete abelian groups would make available such a proof for general
compact abelian groups.

Our main reason for choosing to work with infinite convolutions springs from
quite separate considerations. The advantage is that we obtain a simple and
natural construction on the real line—indeed there is no essential difference
between our treatment of the line and the circle. In contrast the Riesz product
approach used in Hewitt and Ritter (1977) requires that R be approached indirectly
by "lifting" from its quotient R/Z. That particular lifting process, although well
understood, can be rather troublesome. This is unlike passage from a quotient of
the form G/K, where Kis compact, a process which lends itself to general arguments
(cf. Ritter (1968, 8.2.7), and Brown (1973, 2.5)). Thus one has both practical and
aesthetic motivation for giving a direct construction on the line.

Given that we use infinite convolutions on R and T, it is natural that we should
use a similar method for general groups. However, it should be noted that, away
from the case G = R, Riesz products offer certain advantages. Once one has gone
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[7] Integrability of Fourier transforms 135

through the structure theoretical arguments inherent in the choice of a dissociate
set, the question of singularity or absolute continuity of the resulting Riesz product
can be settled without further reference to the particular choice of compact abelian
groups. This follows from a theorem of Brown and Moran (1974), and avoids
consideration of special groups. In fact, if ergodicity and some other technical
properties are set aside, the neatest approach seems to be to use infinite convolutions
on R (and T) and Riesz products on compact abehan groups (including T)!
However we go about things, it is necessary to consider some, if not all, of the
stability properties appearing in the statement of Proposition 4 (of Section 2
below) in order to obtain results valid for all nondiscrete locally compact abelian
groups.

The remaining cases of our theorem complement the results of Hewitt and
Ritter (1976) but do not contain them. What we show here is that the same methods
which apply to singular measures can be extrapolated to absolutely continuous
measures. There they give theorems of Gronwall type which establish left-handed
and right-handed discontinuities when/? does not exceed 2. All the usual examples
in the absolutely continuous case focus on continuity of the Radon-Nikodym
derivative and are either violently non-ergodic or involve rapid change of argument.
The question arises, however, whether the methods in Hewitt and Ritter (1977)
could also be extrapolated to the case of absolutely continuous measures. Here a
problem arises because we want the measure, say /x, under consideration to
have a compact neighbourhood for its support and also the property that
dfi/dXe [\p>0Lp{G). For the Riesz products fi which would arise, these properties
were established in Hewitt and Zuckerman (1967) for /x*/* (rather than for /*
itself). The difficulty concerning the support of /* was resolved in Brown (1975),
but there appears to be an essential problem concerning the integrability of
(du/dX)p, for large p. We have no such difficulties with infinite convolutions.
Moreover, ergodicity is guaranteed by the results in Brown and Moran (1973).

2. Technical preliminaries

(2.1) Summability of sequences. We require some elementary estimates concerning
summability of sequences which arise in connexion with the function cp which
appears in the statement of Gronwall's theorem. The proof of part (i) of Proposition
1 can be compared with the proof of Theorem 7.5 of Chapter XII of Zygmund
(1959). The sharpening which arises from consideration of an auxiliary sequence
such as (an) was used in a related context (for p = 2) in Brown (1977b). Assertion
(ii) is a variant of Lemma 9.5 of Hewitt and Ritter (1977) but we offer a simpler
argument.

PROPOSITION 1. Suppose that \4,p<<x> and that <p: ]0,oo[->]0,oo[ is a function
such that limfr+of>(j) = oo. Suppose further that (an) is an arbitrary pth power
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summable sequence of numbers in [0,1] and that C is a positive constant greater
than one. Then there exist sequences (•?„),(*„)> with 0<sn,tn^ 1, such that

00 00

(0 :

(ii) SO
n - 1

Moreover,

t%l9(2tn)y\
i

it may be stipulated

CO

£*»
n - 1

CO

S tr
n

n = l

that

= oo.

< oo,

COs <s - «.
n - 1

wAeweper

whenever

Kr<p,

r>p.

Proof. Let us define, for all JC>0,

O(JC) = inf{min(

Observe that O: ]0,oo[->]0,oo[ is decreasing in the wide sense and satisfies
limx^o4>(jc) = oo. In addition, the truth of (i) and (ii) when <p is replaced by O
implies not only these assertions for <p but also the final summability assertions
concerning sr

n, r>p, and tT
n, \^r<p. Accordingly, it will suffice simply to prove

that (i), (ii) can be attained in the special case where q> is nonincreasing. Let us
make that assumption and proceed to give inductive definitions of (sn) and (fB).
In the interests of clarity we keep these definitions completely distinct.

Definition of(s^: Choose a positive decreasing sequence (£>„) such that 0 < bn ^ 1,
n = 1,2,..., and

<p(2x)>n whenever 0<x^bn. (1)

At they'th stage of an induction choose positive integers p(J\<l(J)> a Qd a positive
real number x(J) such that

K/)>K/-i)+«C/-i). (2)
sup {an: n ̂ p(j)} < x(J) < bj, (3)

and
q(j)x<jr = r 2 . (4)

(Because 2a£<oo, there is no difficulty in choosing p(J) large enough to ensure
that the supremum appearing in (3) is less than, say, \b}. It is then a simple matter
to make the required choice consistent with (2), (3) and (4).)

Now define, for positive integers n,

sn = x(j), wheneverp(J)<n^p(J)+?0")-1» for some j=l,2,...,

sn = an, for all other values of n.
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[9] Integrability of Fourier transforms 137

The only case in which sn differs from an is when sn = x(J), with p(J)^n. It is
clear therefore that the left-hand side of (3) ensures that sn^an, for all positive
integers n. In addition, we see, by ignoring some indices and applying (4), (3)
and (1), that

9 . ) * q

On the other hand we can estimate the two cases in the definition of (sn) separately
(using (4) in conjunction with the second) to see that

n=l m=l }"=1

Definition of(tn): For 0<y<C~1, let N(y) be the least positive integer such that

2<(1 + Cy*>)m'>) <3. (5)

Choose a positive decreasing sequence (y(j)) m P> C-1[> such that

<p(2y(j)) > 10̂ , j = 1,2,..., and N{y(J)) is strictly increasing. (6)

Now define, for positive integers n,

2
t=l i=l

(In view of the last part of (6) this defines tn for all positive integers n.) It follows
from this definition of (fj that

3 = 1

p(Xi))-1 N(y(j))y(j)p A (l+CXO
3=1 i=l

S vQyij))-1 ft (i+CJCO
3"=1 i=l

where the final step follows from (5). Of course (6) demonstrates finiteness of the
last sum. It remains only to note, from (5), that

fiII (1 + Ct$ > fi (1 + Cy(j)p)mvU))

l *" 1n = l

It follows that 2 'S diverges and the proof of the proposition is complete.
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(2.2) Singularity of measures. We need a criterion for singularity of measures of
the type which arise as distributions from coin-tossing experiments. The result
quoted next is taken from Brown (1977a) and is a simplification of the basic
technical lemmas of Brown and Moran (1975b).

PROPOSITION 2. Let Px, Pz be probability measures on the measurable space (Q, S)
and let Et denote expectation with respect to Pt, for i= 1,2. Suppose that there
exists a sequence (Xn) of complex random variables on (Q, &) (square integrable with
respect to Plt P^) such that

CO £ sup\Ei(XnXn+^-Ei(Xn)Ei(Xn+k)\<cc,
k=O i,n

(ii) £
n=l

Then Plt P2 are mutually singular.

(2.3) The independent case. There would be no need for Proposition 2 if we could
work exclusively with products of independent random variables; in which case all
questions would be answered by the next proposition. The result in question is
essentially Kakutani's criterion for orthogonality of product measures, which we
quote in the form stated and proved in Brown and Moran (1975b). Because lack
of independence militates against singularity rather than the other way about,
this proposition serves as a general criterion for absolute continuity. It will be
particularly useful in Section 4 where we consider products of cyclic groups
because there one does have independence.

PROPOSITION 3. Let (X^) be a sequence of independent complex random variables
such that J\E(\ XnY) converges for some r> 1. Then fl-^n converges almost surely
and in Lr if and only ifJJE(X^) converges.

(2.4) General groups. Our final technical preliminary concerns extension to general
locally compact abelian groups. It handles results which are known in the following
special cases: R; T; I I "=i Z(/nn), where the mn are arbitrary integers not less than 2;
Aa, where q is prime. The proposition is quoted from Brown (1973) but was
extracted from the work in Stromberg (1968). All groups appearing in the statement
are assumed locally compact and abelian.

PROPOSITION 4. Let & be the smallest class of locally compact abelian groups
which contains the special cases enumerated above and which has the stability
properties:

(i) IfG = H1xHt) where H^V then
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[11] Integrability of Fourier transforms 139

(ii) If Kis a compact subgroup of G andG/KeIS then
(iii) If H is an open subgroup ofG and He@ then

Then & is the class of all non-discrete locally compact abelian groups.

3. The real line and the circle
The proof will be broken down into a sequence of lemmas. Throughout we

employ measures whose Fourier-Stieltjes transforms are of the form

/**(*) = 5 (cos2(2-»-ix)+rnsin2(2-»-1x)), (1)
n-=l

where (rn) is a sequence of positive real numbers not greater than one. Any such
measure may be exhibited as an infinite convolution,

M = * M » . (2)
n-l

of discrete probability measures, defined by

/*. = id + '„) 8(0)+1(1 - O («(2-») + S(- 2-) ) , (3)

where 8(a) denotes the probability measure concentrated at a. It is clear from (2)
and (3) that fj. is a probability measure which is ergodic with respect to the group
of dyadic rationals and obvious from (1) that ^ is nonnegative. This can also be
verified in a more complicated way if we note that fin = (l—rn) (/>„ * pn)+rn 8(0),
where pn = JS(2-n-1)+|S(-2-n-1). This point will recur in (4.1), (4.2), where it
no longer appears artificial. A simple proof of the fact that the Fourier-Stieltjes
transform of fi vanishes at infinity if and only if rn-+0 can be found in Brown
(1973, p. 503).

So far it has made no difference whether we regarded the measure /x. as defined
on the line or on the circle. For the sake of definiteness we will now fix attention on
the line. Some mild modifications (simplifications in the main) give the corre-
sponding results for the circle.

Unlike Riesz products, measures such as //. do not offer exact interpolation by
their transforms. In our present context this is not a serious drawback as the first
lemma shows.

LEMMA 1. There is a positive constant A (independent of the choice of(rn)) such
that,for —ir^x^n,

, n = l , 2 (4)
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140 Gavin Brown [12]

PROOF. Because each term in the product (1) is not greater than one, we may
obtain an upper bound by estimating a single term. In fact

^(x+2" TT) < cos2^-"-1 x+\n)+rn s in 2 ^"- 1 x+%n)

and this gives the required upper bound.
In the other direction, note that

li~(x+2n TT) = COS2(|TT+2-"-1 x)+rn S\VL\\TT+2""-1 x)

> rncos2(Tr/4).
Moreover, if A: is a positive integer strictly less than n,

while, for k = n + l,n+2,...,

2 W - f e - 1 77 ± 2 - * - 1 77)

The proof of (4) is now an easy consequence of the remark that the infinite
product, II cos4(2~fe-177), converges.

The estimates in the previous lemma apply only to a subset of values of the
transform. Now we obtain some extra information. Let us write

P*(x) = ft (cos2(2-'-1 x)+r, s in^-' - 1 *)) = ft !<(*), (5)
3=1 j=i

and

(6)
\r=0

LEMMA 2. For any xe[—TT,TT], pe[l,oo[, n = 1,2,...,

S Pn(x+wy<na+rf). (7)
iveW, 3=1

PROOF. Because Pn-i(x+w) = Pn_1(x+w+2nn), we see that the term on the
left-hand side of (7) equals

S Pn

However, writing dn = 2~n~\x+w), we have

H2(x+w) = cos2 0n+rBsin2 8n,

Hn(x+w+2n 77) = sin2 6n+rn cos2 dn.

It follows, from the convexity of the map t-+tp, that

iKfc + W)P+P2(
and the rest is clear.
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Lemma 2 will be used in direct fashion for an integral estimate, but we also use
it in obtaining a more elaborate result of the same type.

LEMMA 3. Suppose that p^ 1 and that tfi is a nonnegative nondecreasing measurable
function which satisfies

j f ? (8)
Then

r°V (9)

PROOF. Since i**(x) = fi^(-x), we may as well restrict attention to positive
values of x. Define

F(x) = I tfi(f)t»-idt (x^O). (10)

Jo

It is easy to see from (10) that F is convex nondecreasing and that

XP<P(X)4:F(X)^(2X)PI/>(2X) (x^O). (11)
In order to obtain (9), we need only show that F(fj.^(x)) is integrable over [0, oo[.
Moreover

F(jx~(x))dx^ 2 F(Pn(x+w))dx.
Jo Jo weWn

Accordingly the task is reduced to showing that (8) implies the uniform bounded-
ness of

Sn= 2 F(Pn(x+w)).

Arguing as in the proof of the previous lemma and using convexity of F, we
see that

(12)

However (12) and (11) combine to give

(13)

Because Pn-i(x+w) does not exceed one and tfi is nondecreasing we deduce that

V)eWn-l

and the proof may now be completed by an application of Lemma 2 and the
hypothesis (8).
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Although the formula p = */*„ allows us to regard fi as the distribution of the
sum 2 X n °f independent random variables, with distribution fin, we cannot
apply the standard theorems in a useful way. This is because the canonical map
from Rw (on which 2 Xn is denned) to R loses information in this particular case.
In plainer (but looser) language the nth digit of the binary expansion of a typical
element of the support of /x. is not determined by /xn alone. This forces us to use
Proposition 2, or something of the sort, but the next lemma guarantees that the
added difficulty is not large.

LEMMA 4.

£ sup | n~(2n TX + 2n+k TT) - n~(2n TT) (i~(2n+k TT) | < oo.
fc=i »

PROOF. If Up Vp Wj all have modulus not greater than one, then

We see therefore that

| n~(2n n + 2n+k TT-) - ixT(2n

= £ |
j=n+k

| |^()|
}=n+k

Writing Mk for the majorant just found, and changing the summing index
to i =j—n—k, we have

Mk *S £ {| cos2(.yf+ti) - cos\st) |+1 si
t=0

t=0

where st = 2~1-i7r and tt = 2-k-1-in.
It is now easy to see that EfcLi-Mt is finite, as required.

PROOF OF MAIN THEOREM FOR THE LINE (AND CIRCLE). Suppose that p e [1, oo[ has
been given together with the function <p. We choose ap, rp to be measures JU. of the
type discussed in this section, taking rn = sn (given by Proposition l(i)) for /* = ap,
and rn = tn (given by Proposition l(ii) )for yn = TP. Before we determine the
choice more precisely we note that this process must lead in any case to an ergodic
probabiTity measure whose transform lies in C£(R) and whose support is [-1,1J.
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Let us consider ap first. Guided by Lemma 1, we specify the sequence (an),
appearing in Proposition 1, to be an = 41~n. We note further that there is no loss
of generality in supposing that <p is decreasing in the wide sense and demanding
that <p approaches oo so slowly that 2 s£ = oo whenever r <p. (We can, for example,
replace (p by O as in the proof of Proposition 1.) Let us assume then that (sn) has
been chosen according to these rules and immediately relabel (sn) and ap by (rn)
and n, respectively, so that we may apply the lemmas of this section. The first
observation is that Lemma 2 ensures finiteness of J"/x%c)p dx. In fact the argument
parallels part of the proof of Lemma 3, since we simply note that

^{xYdx^ 2 Pn(x+wydx^2nU(
Jo J0 weWH j=l

The other integral estimate follows from Lemma 1. In fact

L~(xy<p(fi*(x))dx> £ ["
J n=l J -

n=l

because <p is nonincreasing. It now follows from Proposition l(i) that

, f/A = oo.

It remains to consider the comparability of /J, and Lebesgue measure. The easy
case is when p ̂  2 because then 2 r% < °°» and the lack of independence operates
in our favour to ensure the appropriate absolute continuity properties. The point
is that m, the restriction of Lebesgue measure to [—1,1], can be expressed as the
weak * limit, m = *'%=1mn, where mn = JS(0) + KS(2-n) + S(-2~n)). (In other
words, m is the special case of /x with rn=0.) It is easy to see from Proposition 3
that the product measure ®/xn belongs to Lr(®/«^ for r ^ l (hence r>0), and
a fortiori y. belongs to Lr(m). For a direct argument, one may note that, for r ^ 1,

hdn'jdp'j^ h
J J

where

•>rn ~ Ah®.. .<S> f i n ,pn = mx® ...®mn, n'n = ^*...*/*„*/

Pn = mi * • • • * mn * mio»-*y

This is the sort of argument used in Saeki (1977).
When p > 2 then our choice ensures that 2 r% = °°» aQd we must deduce that //.

is singular to Lebesgue measure. In this case the lack of independence tends to
work against us but we can appeal to Proposition 2 with the choice
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Px = [i, P2 is Lebesgue measure. Lemma 4 ensures (i) for expectation with respect
to Px and the corresponding formula for E2 is trivial in view of orthogonality.
The same orthogonahty reduces (ii) of Proposition 2 to the statement

n=l

and, of course, this follows from Lemma 1 and the fact that (rn) is not square
summable. We have now verified all the assertions concerning the measure ap.

In choosing rp, we find it convenient to relabel the reciprocal of (pipe) as if/(x) and
assume that ifi is nondecreasing. In addition we ensure as before that 2™=i 'n<°°»
whenever r<p. Then we take rp to be /x with rn=tn. Since we have ensured that
21% < °o if and only if p < 2, arguments identical with those just given for ap

show that rp is singular for p ^ 2 and has a Radon-Nikodym derivative (with
respect to Lebesgue measure) in rir>oA- when p<2. Accordingly we need only
address our attention to the integral estimates given in (ii) of the theorem. The
second of these is nothing more than Lemma 3, so we need only check that, in the
case presently under discussion,

J'
Because 2 r% ~ °° an(* V-^ *s nonnegative this is an immediate consequence of
Lemma 1, so the theorem is proved for the line. It is clear that virtually the same
arguments give the corresponding result for the circle.

4. General LCA groups

(4.1) Products of cyclic groups. In this subsection we prove the main theorem for
the case where G = Iln=i Z(mn), where (mn) is an arbitrary sequence of positive
integers greater than or equal to two. (It is the possibility mn->ao which prevents
us from dismissing this case in a few words.)

As in the last section we take a parameter sequence (rn) of positive real numbers
which do not exceed one and focus attention on measures /* which are infinite
convolutions of discrete factors, each determined by a single rn. Formally we
write

f »= */*»» 0 )
n=l

- O 8fc)], (2)
where g is summed over Z(/wn)\{0}. Observe that, if we allowed the special case
where rn=0, then /x would equal Haar measure A on G. It is a convenience to
introduce the additional notation Gn as an alternative to Z(wn), to write An for
Haar measure on Gn, and to write Xn = G* for the dual group.
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A typical character ^ in J is a finite product, Xn(i>Xn(2> •••Xn<ft>> w n e r e

Xn«)eAr
n ( i ) , i = 1, ...,k. If each Xnii)1S non-trivial then we have

f<X) = II'•«>• (3)

(The simplest way to derive (3) from (1), (2) is to note that fin = rn 8(0)+(1 - r j An.)

It is now obvious, under our restriction that rn e ]0,1], that /x is an ergodic proba-

bility measure whose transform belongs to C£(X) if and only if rn^-0. We shall,

of course, demand that rn->0, in which case we clearly have the further property

that the support of /x is G itself.

Let us now consider, on the measure space (G, ® An), the random variables Xn

corresponding to dfijd\n. Note that

m-i[(l +(mn- l ) r n y+( l -rj(mn-1)]. (4)

We see from (4) that E(Xn) = 1 and that HEiX^ converges for r>\ when

S ^ I K - 1 ) ' ' B < 0 0 - It follows from Proposition 3 that dnldXeft^LXG) when

the latter hypothesis holds. On the other hand, we may also apply Proposition 3

(with T = 2 and Xn replaced by X*,) together with (4) for r = \ to see that /x is

singular if that hypothesis does not hold. In fact we can prove the following:

LEMMA 5. !f%%=1(mn— l)/-£ <oo then fi is absolutely continuous with respect to A,

anddfi/dXe f)p>0Lp(G). Otherwise \L is singular to A.

Let us now suppose that p e [1, oo[ and <p, as in the statement of the main theorem,

are given. Choose as in Section 3 sequences (sn), (fn) as guaranteed by Proposition 1

and take ap to be the measure [i with parameters rn = sn(ntn— l)1/p; rp to be the

measure /x with parameters rn = tn(mn— \)~1/p.

Observe that, f o r p > 2 , we have r\(mn— \)~&s\ or t\ as the case may be. Hence

<JP is singular for p > 2 and rp is singular for p > 2, in view of Lemma 5. The

appropriate statements about the Radon-Nikodym derivatives of ap, p < 2, and

rp,p<2, also follow simply from Lemma 5.

We complete the proof of the theorem for G = Hp=1 Z(mn) by verifying the

integral formulae (i), (ii) in the statement. In what follows it will be convenient

to use the symbol S n to denote summation over those characters which are

trivial on each of Gn, Gn+1 In fact we deduce from (3) that

( ( ^ ) ? ) (5)

Of course it follows immediately from (5) that

oo. (6)
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To obtain the remaining inequalities we elaborate (5). In fact let us write

Sn = VnfWMSW), (7)

where ifi is nondecreasing as before. We have

~ Sn-1 < («• - 1) *n # " / i I O + K " 1) '?)• (8)

To check (8), note that

and use (5).
In the special case where /* = rp we have rm = tn(mn— l)~1/p, so that (8) yields

sf (9)
Taking (9) together with (ii) of Proposition 1, we deduce that

Replacing tfi by the non-increasing function <p and reversing all the inequalities
in the proof of (8), we find

Sn ~ Sn-i >(mn-\)rl ?(rn)
Wn (1 + (m, -1) rf). (11)

In fact, when /z = ap, all we need from (11) is the statement that

SnSn.&S'lVSn), (12)

because this leads via (i) of Proposition 1 to the estimate

«>- (13)

The combination of (6), (10) and (13) completes the proof for the groups presently
under consideration.

(4.2) The q-adic integers. Here we prove the main theorem for the case where
G = \ , where q is a prime. In other words, we have

G = lim Z(qn), X = h

where A denotes dual, and

G/qnG~Z(qn), qnG = {qnx: xeG). (15)
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In fact we write Xn for Z(qn)*, regard this as a subgroup of X and write 0n for
counting measure on Xn. We write elements of Xn as rational numbers, so that

* • = ( S1**?-*: **e{0,l, ...,*-1}), 06)

and elements of G as formal sums of the form

x=Yixiq
i, (17)

where xte{0,1, ...,q— 1}. In particular, if \e Xn and JC in G is given by (17), we have

l. for all m sufficiently large. (18)( mm

Although the first statement in (14) appears unhelpful because all our methods
relate to direct limits we avoid the problem by working on a dense countable
subgroup of G which can be realized in a useful way as a direct limit (though not
in the category of groups). The group in question is generated by all finite sums
appearing in (17).

Once again we take a parameter sequence (/•„) of positive real numbers not
exceeding one, and work with an infinite convolution, p. = * fin, where each /*.„
depends only on rn. In fact we define the measure />„ on G, by

/»» = ?-1S1S0?»-1), (19)

and set
Mn = O-'-n)0>»*Pn)+rnS(0). (20)

It is of some interest to note that this is the same pattern as used in both Section 3
and (4.1). (Observe that, in (4.1), An * A~ = Am.)

From (16), (19) and (20) we see that /*£ is determined on Xn, by

:n_1 = O.

It is now clear that, when rn->0, p is an ergodic probability measure with full
support such that /x" e C£(X). However, we shall require estimates of the transform
of n which are more far-reaching than (21). Accordingly let us note for future
reference that

("T") = q-Kl ~ e(aq^)) (1 - ^a r" ) ) " 1 , (22)

where a,n,m are positive integers, n^m, and the right-hand side is taken to be
zero when qm is a factor of a.

As before we assume that <p is nonincreasing and, for each p, choose sequences
(*n)»(fn) as guaranteed by Proposition 1. In this case we may as well set an=0
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in (i) of the statement of that proposition, but we take C = q in (ii). Once again ap

is obtained by setting rn = sn in the definition of fi and TP is obtained by setting
rn = tn in that definition.

The rest of the proof parallels the discussion in Section 3, so let us set about
obtaining an analogue of Lemma 1. Observe, from (21) and the definition of p,
that for every positive integer n > 2,

A^fo1-) = v n ( l - 0 - 0 ) 0 - 1 P?(^-n)\2))- (23)

From (22), (23), we see, in particular, that

^(qx~n) >rnm\(\ -eCqL-*))l(l - e(q-«)) | V 2 ) - (24)

The only information we require from (23) and (24) is the conclusion that there
exists a positive constant A (independent of «) such that

(25)

and it is a simple matter to deduce from (25) that

(X))de(x) = co. (26)

The remaining integrability assertions in (i), (ii) of the theorem for G = A9 will
follow from an analogue of Lemmas 2 and 3, which we now establish.

LEMMA 6. Suppose that F: [0,oo]-*[0,oo] is nondecreasing and convex. Then

f F^(x))den(x)-\ JVXx))«w»-i<x)<? f *K/^
J -3Tn J XH-i J Xn-i

PROOF. Note first that, for any x e X and any positive constant B,

< 0 - I PXx)T)F{rnB) + \ P:(x)\2F(B). (27)
We may write

Xn = ix+kq1-'1: xe4-i , * = 0,1, ...,q-1}, (28)

and note that, for each x in •X'n-i.

S1 |p;(x+^1-") | 2<1- (29)
fc=0

(To check (29) consider the measure induced by x-Pn on Z(q) and apply Parseval's
formula.)

Now, for each x belonging to Xn^, let B = B(x) = /*̂ (x)> recalling from (21)
that B(x) is independent of rm, m>n— 1. Using (27) and (29) we find, for each x
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in * » - i ,

fc=O

^qF(rnB(x))+F(B(x)), (30)

and, in view of (28), we may complete the proof of the lemma by summing both
sides of (30) with respect to \-

It is a simple consequence of Lemma 6 that, for p^ 1,

x)< n o +qrf)- (31)

Moreover, by choosing Fas in Section 3, we can obtain from (31) and Lemma 6
the estimate

[C+^qrf ^(2r*) IJ (1 +9^)» (32)

where C is some positive constant. Of course (31) and (32) ensure the remaining
estimates required for (i), (ii) of the theorem.

To complete the proof for G = A5 we need only check the analogue of Lemma 5
with mn = q (or, for that matter, any constant greater than one). Let us write
K = Pn*Pn aQd n°te that *$£=1 Am equals A, the Haar measure of G. That makes it
obvious that the arguments of Lemma 5 would be effective if we could replace the
convolution operation by the measure product operation. In fact this is not possible
but we can certainly handle the absolutely continuous case in the manner used
for the corresponding problem on R. (Here the auxiliary tail measure, corresponding
to /M(02-», in the previous argument, is Haar measure on qn G.) In the singular case
we appeal once more to Proposition 2, and take Px = A, P2 = /x. Evidently we
should choose the random variable Xn(f) to be e(q~n t), because (ii) of Proposition 2
is then obvious from (25) and orthogonality. Thus the final step of the verification
of the case where G = Aq becomes the next lemma.

LEMMA 7.

S sup | ̂ (q-n+?-»-*) - ^(q~n) fi~(q-n-k) \ < oo.
k=O n

PROOF. It is a convenience to introduce the function g, defined by

g(x) = sin {iiqx)jq sin (irx), 0 < x < 1, (33)
and to write

G(rn,k) = 2\g(q^-k+q^)-g(q-™)\+2\g(q-™-k)-11. (34)
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In fact, we show first that, for n = 1,2,..., k = 1,2,...,

\^(q-n+q-n~k)-^(q-n)^(a-n-k)\^lG(m,k). (35)
m=l

(Observe that the right-hand side of (35) is independent of n.)
The first step in proving (35) is to write the left-hand side as an infinite product,

n \uj-viWj\, where «,- = fi~(q-n+q-n-k), Vj = ̂ (q-% w, = ̂ (q-n~k). Then the
quantity to be estimated becomes £|Mj — *v| + £ | 1~wi\> w n e r e DOtn sums are
actually finite. In fact we have from (19) and (20) the estimates

|«, - v, | ^ 21 P;(q-«+«-"-*) - p?(q-n) I. (36)

| l - W , | < 2 | P ; ( ? - * - * ) - l | . (37)

Summing (36) and (37) in the reverse direction and applying (22) we arrive at (35).
To complete the proof of the lemma we must show that the sum of G(m, k) over

all positive integers m and k is finite. There is no difficulty with the second term
on the right-hand side of (34), because 11 — g(x)\ = O(x2) as x->0. In similar vein
we note that for 0<y<x, \g(x+y)—g(x)\ = O(xy), as x->0, so the result will
follow as soon as we have proved that, for fixed m,

?:\g{q-m-k+q-m)-g{q-m)\«v- (38)
fc=i

However it is easy to see (for example by the Mean Value Theorem) that the
summand in (38) does not exceed 2nq~k, and this proves the lemma.

(4.3) Combination of cases. Now that we have proved the theorem for all the
special cases enumerated in (2.4) it remains to show that Proposition 4 can be
applied to give the general result. We merely sketch the (standard) arguments.

Suppose first that the theorem holds for the group H and that H is an open
subgroup of G. We simply regard the measures on H as measures on G, and note
that the annihilator, H^, of H is a compact subgroup of X. Weil's formula then
ensures the validity of all the statements concerning the transforms (including
the fact that the transforms vanish at infinity).

Now consider the case where the theorem holds for the group G/K where K
is a compact subgroup of G. Writing, as usual, /* to stand for either ap or TP, we
lift fx, to the (unique) measure v in M(G) * XK such that TT(̂ V) = /x. (This process
is discussed in Reiter (1968, 8.2.7), and Brown (1973, 2.5).) In other words,

f f(t)dn(t)= f fo*K(x)dv(x), (39)
J G/K J a

where / runs through continuous functions on G/K with compact support, and
TTK: G^-GjK is the canonical projection. Because the Haar measure XK of K is a
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factor of v, we see that v*(x) is zero unless x belongs to Kx, in which case
X = x'o'rg:. for some x m (G/K)^. It is then clear from (39) that v^(x) equals
pi*(x') and the several assertions concerning the Fourier-Stieltjes transforms
follow. We have denned ergodicity in such a way that v is ergodic. Moreover
n*K: ^K*M(G)->M(G/K) is an isometric ~-algebra isomorphism so that v is
singular. The statement concerning the Radon-Nikodym derivative of v can be
deduced from Weil's formula, that is, the analogue of (39) which links the Haar
measures.

Finally, let us consider the case where the theorem holds for a group G1 and
we require it for the product, G = Gxy.G2. The argument is similar to (9.11) of
Hewitt and Ritter (1977) and what we need is an auxiliary measure p on G2.
We require that p be an ergodic probability measure whose support is a compact
neighbourhood of zero and whose Radon-Nikodym derivative with respect to
Haar measure, A2, belongs to f|r>o^r(^2)' Further we insist that p A ^0 and that

f '
(Despite such a formidable list of demands, p is rather easy to find. For example,
if G2 is compact then we may take p = Ag!) Yet again using /x to serve for ap or
TP on Gx, we define v on G as the product measure, /x ® p. The various properties
are easily checked. In particular, note that

where <p is nonincreasing, ifi is nondecreasing.

(4.4) Ergodic measures. Although it is not a strictly necessary part of the proof of
the theorem as stated, it remains to show that our use of the word "ergodic" is
reasonable. We made the definition in such a way that the canonical measure
obtained by lifting a D-ergodic measure from G/K, K compact, to G is again called
ergodic. Now suppose that we consider a different compact subgroup H of G and
take the canonical quotient of our lifted measure. If G/H is a group on which we
have an explicit realization of Haar measure as an infinite convolution (for example,
all the special groups considered above) then we would certainly expect that the
quotient measure under discussion should be D-ergodic for a suitable choice of D.
The next proposition shows this in an explicit way.
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PROPOSITION 5. Let G be a locally compact abelian group and suppose that H, K
are compact subgroups of G. Suppose further that [i is a probability measure on G
and that

(0 «!(/*) is Dx-ergodic in M(G/K),
(ii) ^ ( A ^ ) is D2-ergodic in M(G/H),

where XK denotes Haar measure on K. Then, if D is any countable subgroup of
G/H which contains D2 and TTH(C1), where Cx ( £ G) is a set ofcoset representatives
for Dv

(iii) •T'jjip. * XK) is D-ergodic in M(G/H).

PROOF. We have

•7T%Qj. * XK) = TT^Qj. *XK* XH) = TT^ip. * XH) n^Xz; * XH), (40)

and the problem is to show that

"&G* * XK) (E+ DZ+"H(CJ) = 1, (41)

whenever E is a Borel set in G/H which is not rfjfa * A^)-null. In fact we see,
from (40) and (41), that the problem may be reformulated as that of proving

«%(ii**K)(A + B+Da+VH(Cj)=l, (42)

whenever A and B are Borel sets in G/H such that •*%(}*•) (A), TTH(XK) (B) are both
non-zero. Let us choose a countable set C2 of coset representatives of D2 (with
respect to H). Equation (42) becomes the requirement that

/* * ^K^HKA) + «£(B) + C2 + CO = 1. (43)

Writing F for the set on which p * XK is evaluated in (43), we note that, for all

-k, (44)
for some k in K.

By the translation invariance under K of the Haar measure XK, we see from
(44) that

XK{F- g) 2s XK(njf(B) + Q) , (45)

with g as previously restricted. However, B is not ^ ( A ^ - n u l l and TT%(XK) is a
£>2-ergodic measure. Therefore the right-hand side of (45) equals one. Accordingly

ft * XK(F) = XK(F—g) dfi(g) 55 n{Tr~g(A)+K+ Cj). (46)

However, the set 7r^(A)+K+C1 contains njf(A) and hence is not /x-null (because
). Therefore the inequality (46) becomes

1, (47)

because TT^ ft is D^ergodic. j |
Because (47) gives the desired equality (43) the proof is complete. •
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