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INTERTWINING SEMISIMPLE CHARACTERS FOR
p-ADIC CLASSICAL GROUPS

DANIEL SKODLERACK anpD SHAUN STEVENS

Abstract. Let G be an orthogonal, symplectic or unitary group over a non-
archimedean local field of odd residual characteristic. This paper concerns
the study of the “wild part” of an irreducible smooth representation of G,
encoded in its “semisimple character”. We prove two fundamental results
concerning them, which are crucial steps toward a complete classification of
the cuspidal representations of GG. First we introduce a geometric combinatorial
condition under which we prove an “intertwining implies conjugacy” theorem
for semisimple characters, both in G and in the ambient general linear group.
Second, we prove a Skolem—Noether theorem for the action of G on its Lie
algebra; more precisely, two semisimple elements of the Lie algebra of G which
have the same characteristic polynomial must be conjugate under an element
of G if there are corresponding semisimple strata which are intertwined by an
element of G.

81. Introduction

A major motivation for the study of the representation theory of p-adic
groups is, via the local Langlands correspondence, to understand Galois
representations. The arithmetic core of these representations, which is rather
mysterious on the Galois side, is encoded in restriction to wild inertia.
On the automorphic side, this restriction corresponds to looking at certain
representations of pro-p-subgroups.

For p-adic general linear groups, Bushnell and Kutzko [BK93] con-
structed, and classified, all cuspidal irreducible representations. At the
heart of this classification sit the so-called “simple characters”; these
are very particular arithmetically defined characters of pro-p-subgroups,
which exhibit remarkable rigidity properties (see below for details). These
properties were exploited, and extended, by Bushnell and Henniart [BH96],
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who defined the notion of an “endo-class” and hence proved a ramification
theorem [BHO3] for the local Langlands correspondence for general linear
groups: there is a bijection between the set of endo-classes and the set
of orbits (under the Weil group) of irreducible representations of the wild
inertia group. More recently, they have extended this, using the fundamental
structural properties of simple characters to prove a higher ramification
theorem [BH17].

For p-adic classical groups—that is, symplectic, special orthogonal and
unitary groups—in odd residual characteristic, analogous characters were
constructed by the second author [Ste05] as a fundamental step in the
construction of all cuspidal irreducible representations [Ste08]. This required
first extending the theory of simple characters to the case of “semisimple
characters” (see also the work of Dat [Dat09]). However, the rigidity results
which allowed Bushnell and Kutzko to obtain a classification were missing—
partly because some of them are false.

In this paper, we prove many of these rigidity results for semisimple
characters, which are new even in the case of general linear groups—in
particular, we prove “intertwining implies conjugacy” and Skolem—Noether
results (see below for details). In a sequel [KSS16], jointly with Kurinczuk,
we are then able to put this together with other work of Kurinczuk and the
second author [KS15], to turn the construction of cuspidal representations
into a classification, for both complex and ¢-modular representations, with
£ # p prime. More precisely, we establish the following conjugacy result for
cuspidal types in p-adic classical groups: if (J, A) and (J', \') are two types
from the construction in [Ste08] which induce to give equivalent irreducible
cuspidal representations, then they are conjugate.

We anticipate further work to come from these rigidity results. Semisimple
characters (or, more precisely, their endo-classes) will give a decomposition
of the category of smooth /f-modular representations of classical groups,
and each subcategory should be equivalent to the subcategory of depth zero
representations of some other (endoscopic) group, for which other techniques
are available. Current work of the first author (see [Skol7] for the start of
this) aims at generalizing the results proved here to proper inner forms
of classical groups, where additional problems arise, analogous to those
in the case of inner forms of general linear groups [BSS12]. One would
then expect that a Jacquet—Langlands correspondence between inner forms
would respect the decompositions of the categories by endo-class, as for
general linear groups [SS16], and that this would be a major step in making
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such a correspondence explicit. Finally, it would be interesting to explore
whether our results on semisimple characters for general linear groups can
be extended to semisimple types: suppose (J, \) and (J, \') are Bushnell-
Kutzko semisimple types for the same Bernstein component of a p-adic
general linear group, so that they intertwine; what extra condition on the
associated lattice sequences is required to be able to conclude that the types
are conjugate? The same question can also be asked in classical groups.

Now we state our results more precisely. Let F' be a non-archimedean
local field of odd residual characteristic. Let G be the isometry group of
an e-hermitian space with respect to some automorphism of F' of order at
most two, so that G is the group of fixed points under an involution on
the full automorphism group G of the underlying F-vector space V. We
similarly regard the Lie algebra of G as the fixed points of an involution on
A =Endp(V). Note that, when ¢ =1 and the involution on F' is trivial, we
are working with the full orthogonal group; however, the set of semisimple
characters for the full orthogonal group and for the special orthogonal group
coincide.

The starting point in the construction of semisimple characters is an
algebraic combinatorial object, a so-called semisimple stratum [A,q,r, (].
The principal data here are: an element 8 € A which generates a sum of
field extensions E = F'[3] = @, E;; and a rational point A in the (enlarged)
Bruhat—Tits building of the centralizer of 8 in G, which we think of as a
lattice sequence in V' (see [BL02]). Associated to A, we have a filtration
(ap)nez of A (which is the Moy—Prasad filtration) and the integer ¢ is defined
by € a_g\a1—q; this is required to be positive. Finally, r is an integer
between 0 and ¢ which is small enough in the following approximate sense:
the stratum [A, ¢, 7, 8] corresponds to the coset §+ a_, and r must be
small enough so that the formal intertwining of the coset has a nice formula
involving the centralizer of 5. (See Section 6 for more details, and a precise
definition.) A semisimple stratum [A, ¢, , 8] as above splits according to the
primitive idempotents 1% of E, giving simple strata [A?, ¢;, 7, B;] in Vi = 11V,
which are studied in [BK93]. In particular, a semisimple stratum is simple
if and only if its indexing set I has cardinality one.

Associated to any semisimple stratum [A, g, r, 5], and for any integer
m >0, we have a family C(A, m, ) of semisimple characters. We do not
recall the definition here (see Section 9) but note only that, by applying the
idempotents, we obtain from a semisimple character 6 a collection of simple
characters 6;, for i € I. For simple characters, the fundamental rigidity
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property proved in [BK93] for lattice chains (that is, sequences without
repetition), is the following:

Suppose 0 € C(A, m,B) and 0 € C(A,m, ') are simple characters which
intertwine in G. Then they are conjugate in the parahoric subgroup U(A).

In the case of semisimple characters, this result is false as soon as #1I > 1:
the essential reason is that one can have two lattice sequences (or even
chains) A, A’ which are conjugate in G but such that the separate pieces
A%, A’" are not (all) conjugate in Auty(V?). Equivalently, there are points in
the building of a proper Levi subgroup of G which are not conjugate under
the Levi but are conjugate under G. For similar reasons, the result would
remain false if one weakened the conclusion to only conjugacy under G. Thus
one needs an extra condition to ensure that intertwining implies conjugacy.
In order to describe this condition, we need a “matching theorem” for
semisimple characters which intertwine:

THEOREM. (See Theorem 10.1) Let 0 € C(A, m, ) and 6’ € C(A',m, 3)
be semisimple characters which intertwine in G and suppose that A and A’
have the same period. Then there is a unique bijection { between the index
sets I and I' such that the simple characters 0; and 02(1’) are intertwined by
an isomorphism in Homp(V?, V/C®),

This matching theorem allows us to describe a condition which is certainly
necessary for conjugacy: if 6,60’ as in the theorem are conjugate by an
element of the parahoric subgroup U(A) then, with ¢ : I — I’ the matching
given by the previous theorem, we have

(11)  dimg, Aj/AL = dime, AP /ASYD for all i € T and [ € Z.

Equivalently, the isomorphism in the theorem which intertwines the charac-
ters maps the point in the building corresponding to A’ to a point conjugate
to the point corresponding to AS@ Tt turns out that this condition is also
sufficient to obtain an “intertwining implies conjugacy” result:

THEOREM. (See Theorem 10.2) Let 8 € C(A, m, 3) and §' € C(A, m, )
be semisimple characters which intertwine in G, let ¢ : I — I' be the match-
ing given by Theorem 10.1, and suppose that the condition (1.1) holds.
Then 0 is conjugate to 0' by an element of U(A).

Now we turn to our results for classical groups. Suppose that our
underlying strata [A, ¢, r, 3] are skew—that is, 8 is in the Lie algebra
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of GG, the associated decomposition of V' is orthogonal with respect to
the hermitian form, and A is in the building of the centralizer in G of 3
(see [BS09]). Our first main result here is a Skolem—Noether theorem for
semisimple strata, which is crucial in the sequel [KSS16].

THEOREM. (See Theorem 7.12) Let [A, q,r, 8] and [N, q,r, '] be two
skew-semisimple strata which intertwine in G, and suppose that B and [’

have the same characteristic polynomial. Then, there is an element g € G
such that gBg~' = p'.

Note that, for 8 as in the theorem, the number of G-orbits in the Lie
algebra of G with the same characteristic polynomial as 3 is 2#1, 2#/~1
or 27172 depending on G and f3; thus some additional condition is certainly
necessary to conclude that 3, 3’ are conjugate.

Given a skew-semisimple stratum [A, g, r, 8], the set C_(A, m,3) of
semisimple characters for G is obtained by restricting the semisimple
characters in C(A, m, 8). Equivalently, one may just restrict those semisim-
ple characters which are invariant under the involution defining G. Our
final result is an “intertwining implies conjugacy” theorem for semisimple
characters for G.

THEOREM. (See Theorem 10.3) Let 6_€C_(A,m,B) and 6_¢€
C_(A,m, ) be two semisimple characters of G, which intertwine over G,

and assume that their matching satisfies (1.1). Then, 0_ and 0" are
conjugate under U(A) =U(A)NG.

This is the first step in an “intertwining implies conjugacy” result for
cuspidal types proved in the sequel [KSS16], which then completes the
classification of cuspidal representations of G.

Let us say a few words about the proofs of these results, beginning with
those for general linear groups. Since a semisimple character is defined
in terms of a semisimple stratum underlying it, we must first prove
similar results for strata. One major complication here is that, although
a semisimple stratum [A, g, 7, 3] determines the associated splitting V =
@D,V since it comes from the idempotents of E = F[f], one may have
equivalent strata with different splittings.

Thus we prove that, given two semisimple strata [A,q,r, 5] and
[A', q,r, '] which intertwine and such that A, A’ have the same period,
there is a canonical matching between the index sets I, I’ of their splittings
(see Proposition 7.1). The proof of this is by induction: when the strata
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are minimal (that is, r =¢— 1), we match the primary factors of the
characteristic polynomials of the strata (see Definition 6.6), which are equal
by intertwining. The inductive step requires a careful analysis of the derived
strata of a semisimple stratum. As a consequence of this, one sees that
if the initial strata are in fact equivalent, then there is an element of G
which normalizes the (equivalence class of the) strata and conjugates the
two splittings (see Lemma 7.18).

As is the case for simple characters, the fact that a semisimple character
does not determine the underlying stratum (even up to equivalence) presents
additional difficulties. First, when we have a semisimple character § which
can be defined relative to two different strata, we need a matching between
their associated splittings, which is given by conjugation by an element of
the normalizer of 6 (see Proposition 9.9). The key result, which allows one
to perform induction along defining sequences for semisimple characters,
is an analogue of Bushnell-Kutzko’s “Translation Principle” for simple
characters (see Theorem 9.16). A crucial step in this is to characterize
when a stratum of the form [A, ¢, ¢ — 1, 8] is equivalent to a semisimple
one (see Proposition 6.11). With these tools all to hand, we are able to
prove the main matching and “intertwining implies conjugacy” theorems
for semisimple characters.

Now we pass our attention to the skew-semisimple case. We begin
with an analysis of the Witt groups W, (FE) of finite field extensions E
of F. Given a non-zero equivariant form \: E — F, we get a trace map
from W.(F) and W,(F) and it is the understanding of this map that
allows us to make progress. In particular, the map takes hermitian F-
spaces of maximal anisotropic dimension to hermitian F-spaces of maximal
anisotropic dimension (see Theorem 4.4); moreover, outside the symplectic
case the map is injective on spaces of a given dimension. One deduces
from this that, again outside the symplectic case, when there is a self-dual
embedding of a field extension E into a hermitian F-space, it is unique
up to conjugation. In the symplectic case, this is not true but we prove a
Skolem—Noether for simple strata which intertwine (see Theorem 5.2); this
is proved by using the strata to twist the symplectic form into orthogonal
forms and then using a result on lifting approximate isometries.

With this to hand, the scheme of proof of “intertwining implies conju-
gacy” for skew-semisimple characters is formally very similar to the case
of G described above, beginning with the strata and then proceeding to
characters, but we must prove that the matchings obtained along the way
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give isometries between the spaces V? (which are all hermitian spaces). In
general the major difficulty occurs at the base step of an induction; for
example, the base case of Proposition 7.10—that the matching for skew-
semisimple strata which intertwine gives isometries—is proved using an
idempotent lifting result.

We finish with a brief description of the organization of the paper. After
setting up notation, we begin with some basic results on classical groups:
in Section 3 we prove results on the lifting of approximate isometries in a
hermitian space; in Section 4 we analyze the Witt groups W, (F) of finite
field extensions F of F' and trace-like maps from W, (E) to W,(F); and
in Section 5 we prove the first Skolem—Noether result, for embeddings of a
field (the simple case). Next we look at semisimple strata: in Section 6 we
recall the definitions and some fundamental results; in Section 7 we prove
that intertwining semisimple strata have a matching, and prove the Skolem—
Noether theorem above; and in Section 8 we prove an intertwining implies
conjugacy result for semisimple strata. Finally, we turn to semisimple
characters: in Section 9 we recall the definitions and recall or prove many
basic results, in particular the translation principles; and in Section 10 we
prove the remaining main results.

8§2. Notation

Let F' be a non-archimedean local field of odd residual characteristic with
valuation vz and equipped with an involution p (which may be trivial) with
fixed field Fy. We write op, pr and xp for the valuation ring, its maximal
ideal and the residue field of F', respectively, and we assume that the image
of the additive valuation v :=vp is Z U {oo}. We also denote by z +— Z the
reduction map op - kp = op/pp. We fix a symmetric or skew-symmetric
uniformizer @ € pp\p%: symmetric in the case F'/Fy is unramified and skew-
symmetric otherwise. We use similar notation for other non-archimedean
local fields. If F|F is an algebraic field extension then we write E*" for the
maximal unramified subextension of E|F.

Let h be an e-hermitian form (with e ==+1) on an F-vector space V of
finite dimension, that is, for all v1, v € V and x, y € F' the biadditive form h
is non-degenerate and satisfies

h(viz, vay) = p(x)ep(h(v2, v1))y.

We den(zte the ring of F-endomorphisms of V' by A~and its group of units
A* by G. Let G be the group of all elements g of G such that h(gvi, gvs)
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is equal to h(vy, va), for all vectors vy, vg; this is the group of points of a
reductive group over Fy, which is connected unless F' = Fjy and ¢ =41, in
which case it is the full orthogonal group. Let ¢ = o} be the adjoint anti-
involution of h on A. For a o-stable subset M of A, we write M for the set
of symmetric elements and M_ for the set of skew-symmetric elements.

An op-lattice in V is a free op-module M of dimension m. The dual M#
of M with respect to h is the set of all vectors v of V' such that h(v, M)
is a subset of pr. A lattice sequence in V is a map A from Z to the set
of op-lattices of V satisfying:

(i) As C Ay, for all integers s > t; and
(ii) Aswo = Asqe for some (unique) integer e and all integers s.

We call e =:e(A|or) the op-period of A. An injective lattice sequence is
called a lattice chain. For each integer s, we denote by x — Z the reduction
map As — Ag/Agy1. A lattice sequence A is called self-dual if there is an
integer u such that (As)# = Ay_s.

As usual, a lattice sequence A determines the following filtrations of A
and A_ (if A is self-dual): a;(A) is the set of all elements of A which map A
into Ag4; for all integers s and a; —(A) is the intersection of a;(A) with A_.
We skip the argument A if there is no cause of confusion and we write a} if
there is a second lattice sequence A’ given.

The sequence A also induces filtrations on U(A) := a by fJZ(A) =14+

and, when A is self-dual, on U(A):=U(A) NG by U(A)=U"'(A)NG for
1 € N. The filtration on A defines a “valuation map” v as follows: for 5 € A,
we put va(f) =sup{i| S € a;}, an integer or co. The normalizer n(A) of A
is the set of elements g € AX such that vp(g7!) = —va(g)-

The translation of A by s € Z is the lattice sequence (A + s); := A;_, and
we define the direct sum A @ A’ of two lattice sequences A and A’ of the
same period as (A; & A;) jez- The lattice sequence

ADA+1)D--- & (A+e(Aop) —1)

is always a lattice chain. By this construction, many theorems in [BK93]
proven for lattice chains are valid for lattice sequences (cf. [Ste05], and also
[KS15], where this is called a f-construction). If this is the case, or the proof
of a result for lattice chains is valid for lattice sequences without change,
then, in the following, we just refer to the statement for lattice chains.

Finally, for = a real number, we denote by |z]| the greatest integer not
greater than x.
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83. Lifting isometries

The isomorphism type of the hermitian space (V, h) is encoded in any self-
dual lattice sequence of V, as explained in this section. The main results
are Proposition 3.1 and Corollary 3.2, which explain how an approximate
isometry (for example, one which induces an isometry at the level of residue
fields) can be lifted to a genuine isometry. Let us state the main proposition:

PROPOSITION 3.1. Let F|F’ be a finite field extension. Suppose we are
given two finite-dimensional e-hermitian spaces (V,h) and (V', h') with
respect to (F,p), an F'-linear isomorphism f:V — V' and two self-dual
op-lattice sequences A and A" of (V, h) and (V', 1), respectively, such that,
forallieZ,

o f(Ai)=A,

o f((A)#) = f(A)F,

o W (f(v), f(w)) =h(v,w) € kp, for allve A;, we (Ai+l)# and

o floa) = f(0)2 € N wopyp(a)/ Mtite(nfopyvm (@) fOT allv € Aiy . € F*.

Then there is an F-linear isometry g from (V, h) to (V', k') mapping A to A’
such that (f — g)(A;) € Ay, for all integers i.

Later it will be useful to have a stronger approximation statement. For
that we introduce a generalization of the adjoint anti-involution. For two
finite-dimensional e-hermitian spaces (V,h) and (V',h’) with respect to
(F, p) there is a map oy, jy from Homp(V, V') to Homp(V', V) defined, for
f € Homp(V, V'), by the equation

R (f(v), w)=h(v,on,(f)(w)) forveV,weV'.

COROLLARY 3.2. Let (V' hy) and (V?, ha) be two e-hermitian spaces
over F' (for the same €), let A' be a self-dual lattice sequence and let f :
V1= V2 be an F-linear isomorphism such that A?:= f(A') is self-dual.
Suppose U; is a closed subgroup of INJI(Ai) which is invariant under oy,
fori=1,2, such that op, p,(f) € U f " Us. Then there is an isometry from
(V1 h1) to (V2 hy) contained in Us fU;.

Proof. The e-hermitian spaces (V1, h1) and (Va, hg) are isometric by a
map which sends A' to A2, by Proposition 3.1. Thus we can restrict to the
case where (Vi, hy1) = (Va, he) =: (V,h) and A; = Ay = A. By assumption,
the double coset Us fU; is invariant under the automorphism g~ oy, (g~ 1),
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and this double coset thus has a fixed point, by [KS15, 2.7(ii)(a)] and
[SteOla, 2.2]. [

We need a sequence of lemmas to prove Proposition 3.1.

LEMMA 3.3. Suppose that A is a self-dual lattice chain of period 1 such
that A# = Ay. Consider the form

BIAo/Al X Ao/A1 — RF

defined by h(v, w) = h(v, w). Then every Witt basis of (Ao/A1, h) lifts to a
Witt basis of (V, h) contained in Ao, under the projection Ay — Ag/A;.

Proof. Let B be a Witt basis of h. We have
B=Byu 61’71 o 82772 (GG Brﬁr,

where B; _; spans a hyperbolic plane, By spans an anisotropic space, and
all these spaces are pairwise orthogonal to each other in Ay/A;. Further we
have a decomposition

By 28071 UBOQ (G UBQt

into pairwise orthogonal sets of cardinality one. Take an arbitrary lift B/(*)
of B to Ag; for an element @ € B, we write v € B/ for its lift.

Step 1. Consider By = {vg}; put W := vy and define

B = {projy (v) | v € B\ {vo}} U {vo},

where projy, denotes the orthogonal projection onto W. We recall the

formula
h(vo, v)

h(vo, ’Uo)

and conclude that h(projy, (v), projy, (v')) is equal to

projy (v) =v — v

7 hvo, v)h(v, vo) — p(h(vo, v))h(vo, v') | p(h(vo, v))h(vo, v')
h(v,v'") — — +

h(vo, vo) p(h(vo, vo)) p(h(vo, vo))
and therefore equal to h(v,v’) for all v,v' € B ©O\{vy}. Thus, replacing
(V, h) by (W, hjyy) and A by its intersection with W and then repeating, we
can assume that By is empty.
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Step 2. Consider By 1 = {01, v-1} and define now W := {vy, v_1}*. Then,
as in Step 1, elements v and v of

B'W = {projyy(v) | v € BO\{v1,v1}} U{vr, v}

satisfy h(proj, (v), projy (v/)) = h(v, v'), because if v € B O\ {v1, v_1} then
v = projy (v) + v_1h(v1, v) + vieh(v_1,v) (mod Ay).

Thus we have reduced to the hyperbolic case that B is equal to By _;.

Step 3. We have B =B _1 = {0v1,0_1}. The sequence (w;);>1, defined by

w1 := v1 and

h(wi, wi)
2

has a limit v} which satisfies h(v], v]) =0 and 9] = 1, and analogously we

Wi4+1 ‘= W; — V-1 for 7 > 1,

find v’ ; with similar properties. Then

/
B .= {Ul vl }
p(h(v), v/ 1)) !
is a Witt basis of V' which lifts B. [

LEMMA 3.4. Suppose that A is a self-dual lattice chain of period 1 such
that A# = Ag. Consider the form
]_I : Ao/A1 X AQ/A1 — K

defined by h(v, w) = h(v, w)w=1. For every Witt basis B = By U B~ U BT of
(Ao/A1, h), with isotropic parts B~ and BT and anisotropic part By, there is
a Witt basis B' = By W Bt W B'~ contained in A_y of (V, h) such that Bj,, B'"
and B ~w are lifts of By, BT and B~ under the projection Ag— Ag/A1,
respectively.

Here we explicitly make use of the fact that p(w) € {w, —w}.

Proof. This follows directly from Lemma 3.3 if we substitute h by hww™!.
il

We need a third base case for period 2.

LEMMA 3.5. Suppose that A is a self-dual lattice chain of period 2 such
that A# = Ag. Then h has anisotropic dimension zero and for any basis By
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of Ao/A1 there is a Witt basis for h,
B =B, UB,

such that B] is a subset of Aj\ A1 for all i and such that By is a lift of By
under the projection Ao — No/A1. Further, h vanishes on B}, x Bj,.

Proof. First we prove that h is hyperbolic. Suppose for contradiction
that it has positive anisotropic dimension, that is, let v be an anisotropic
vector and part of a Witt basis for A which splits A. We can multiply v by
a scalar such that h(v, v) is a unit or a uniformizer of F'. We treat only the
second case, because the first one is similar. There is an index 4 such that
A; NoF is equal to vop, and then this is equal to Afﬁ NvF because h(v, v)
is uniformizer. Since, for all lattices in the image of A the homothety class is
invariant under dualization, we obtain that the index has to be zero. Thus,
A_1NoF =wpy! is equal to w~2(A; NvF), which is a contradiction.

Now let us construct the lift. We start with a Witt basis B” for h which
splits A. Let B{ be the set of elements v of B” such that

vENAg#AvF NAy,

and let Wy be the span of Bj. We prove that the restriction of h to W is
zero. We define, for v € B”, the element v* to be the element of B” such
that h(v, v*) is non-zero, that is equal to 1 or —1. If there is an element v €
B{ such that v* € Wy then A_; N (vF 4+ v*F) = Ao N (vF 4+ v*F) and thus
this coincides with (A_1)# N (vF +v*F). This is a contradiction because
(A_1)* is equal to A;. This shows that & is zero on Wy. Thus, multiplying
elements of B{] by scalars if necessary, we can assume that B is a subset of
Ap\A1. By the definition of Bj we have that, for all v € By, the intersection
of vF with A_; is vop for all v € Bj and thus taking duals we get that the
intersection of v*F with A; is v*pp, and thus B”\B] is a subset of A_1\Ay.
Thus, we have now found a basis B” satisfying all the conditions except
that Bj need not be a lift of By. Now a base change from Bj] to a lift of By
in Wy, together with the adjoint base change on the span of B”\B(, finishes
the proof. 0

COROLLARY 3.6. Under the assumptions of Lemma 3.5 there is a unique
k-basis B_1 of A_1/Ag such that, for all elements x of By, there is exactly
one element y of B_1 such that

- )1 dfz=ux,
h(y’z)_{o if = € Bo\{x},
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where h: A_1/Ag x Ag/A1 — K is the form induced from h. Further, there
1s a Witt basis for h which lifts By U B_1.

Proof. By Lemma 3.5 the form h is non-degenerate and thus identifies
the dual of Ag/A; with A_;/A¢ with o-twisted k-action. We take for B_;
the basis dual to By. The remaining part follows from Lemma 3.5. 0

We put together the two previous results to treat the general case.

LEMMA 3.7. Let A be a self-dual lattice chain of period e and set N =
(e —1)/2] if A# = Ao, and N = |e/2]| otherwise. Let B be a subset of V

satisfying the following conditions:

(i) (Ao)* € {Ao, Ar};

(i) B= U “N41—e Bi, with B; € Aj\Ajy1;

(iii) B;, the image of B; in N;/Aiy1, is a basis of A;j/Njv1;

(iv) for all i €{0,1,. ,N} with (A)* & {Aiy1, Aiy1_o} and all v € B;
there exists a unique v' € BN (Aj41)7\(A)* such that h(v,v') =1;

(v) if (Ao)* = Ay then By is a Witt basis for (Ao/A1, h);

(vi) if (AN)* = ANy1_c then By is a Witt basis of (An/Any1, hewo— 1 b,

Then there is a basis B' of (V, h) such that:

(a) B =Y Nii—e Bi, where B :=B' 0 (Ai\Aiy1), for all i;

(b) B';=B;, for alli; and

(c) B' is a Witt basis of (V,h) up to multiplication of some isotropic
elements of By by w™1.

Proof. The lattice chain A is split by a Witt decomposition; that is,
there are pairwise orthogonal e-hermitian spaces V*, i € {0,..., N} whose
sum is V such that

(VINA) 4+ Ay = Ay and VI (A )™ + (A7 = (A1) ™.

Counting dimensions we deduce that VN A; is a subset of Aj4; for all j
with A; & {Asa, (Aiy1)7a|a € F*}. Now consider, for 0 <i< N,

B; := {projyi(v) | v € Bj and A; € {Ay, (Ai11)7}}.

For each ¢, by removing repetitions we obtain from the lattice sequence
ANV%®in V? a lattice chain of period 1 or 2 with a self-dual lattice if 4 is
positive. Thus, after scaling, we can apply Lemma 3.3 or 3.4 or Corollary 3.6
o (Vi, ANV’ B;) to obtain B. [
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Proof of Proposition 3.1. We only have to prove that we can replace f
by an F-linear isomorphism, that is that we can reduce the argument to
F = F'. The rest follows directly from Lemma 3.7.

Since the statement depends only on im(A), without loss of generality
assume that A, and therefore A’ also, is a chain. Take a kp-basis (v;5); of
Ai/A;q1 and lift it to (vj);, for i=1,...,e(Alop). Then (v;;);; is an F-
splitting basis of A. Similarly we choose a lift (w;;);; for (f(vij))ij. The

F-linear map f which maps v;; to wj; satisfies the assumptions of the
Proposition and (f — f)(A;) € Ajt1, for all i € Z. Thus we can replace f
by f. [

84. Witt groups

In this section we fix a finite field extension E|F and an involution p
extending p and we denote by Ej the set of p/-fixed points in E. We fix a
non-zero p'—p-equivariant F-linear map

AN:E— F.

We heavily use in this section that the residue characteristic of F' is odd.
We will see that the map A induces in a natural way a map from the Witt
group Wy ((E) of (p', €)-hermitian forms over E to the Witt group W, ((F).

We recall that the Witt group W, ((F) is the set of equivalence classes of
(p, €)-hermitian forms over F', where we say two such forms are equivalent if
their maximal anisotropic direct summands are isometric. We write (h) for
the class in W, (F') of signed forms equivalent to h; similarly, for a (skew-)
symmetric matrix M, we write (M) for the class of signed hermitian forms
equivalent to the form with Gram matrix M under the standard basis.

The group structure on W, (F') is induced by the orthogonal sum. Let
us recall its structure:

THEOREM 4.1. The Witt group W, (F) is isomorphic to:

(i) the trivial group if p is trivial and e = —1;

(ii) Co x Cq if =1 € (F*)? and p is non-trivial;

(iii) Cy if p is non-trivial and —1 & (F*)?;

(iv) Cy x Cy x Oy x Cy if =1 € (F*)2, e=1 and p is trivial;
(v) CyxCyif =1 (F*)?, e=1 and p is trivial.

Proof. The proof is an easy conclusion of the classification of the
hermitian forms using Witt bases, given for example in [BT87, 1.14], and is
left to the reader. [
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When it is non-trivial, the group W), ((F') is generated by the classes of
one-dimensional anisotropic spaces. For example, if e =1 then: in the case
F #+ Fp, the one-dimensional anisotropic spaces are ((1)) and ((4)), with § €
Fy'\Np/p,(F*); in the case F' = Fp, the one-dimensional anisotropic spaces
are ((1)), ((w)), ((9)) and ((dw)), with § a non-square unit in op.

DEFINITION 4.2. We define Try . from W, (E) to W, (F) by
(R > (Ao Y =: Tra ((B)).
If E|F is tamely ramified and A\ = trgz then we write Trgp v . for Try .
For the remainder of the section we often skip the subscripts in Tr.

EXAMPLE 4.3. In general, the map Trg g  is not injective, even if € = 1.

For example consider E = Q3(v/3,V5), F =Qs3(v/5) and p'(v/5) = — /5.
Then
Ty (V) = (3 ) =0

so that Trg|p,y . is not injective. On the other hand, we have that

Teaie () =( (5 5)) 70

In particular, Trpp v . maps the class ((v/3) ® (1)) of maximal anisotropic
dimension to the class in W, (F) of maximal anisotropic dimension. We
will see that this is always the case.

There is a unique element X in W, (F) with maximal anisotropic
dimension, which we denote by X, . r. The main result of this section is
the following theorem:

THEOREM 4.4. TrA(Xp e p) =X, cr.

The following definition will be useful both in the proof of Theorem 4.4
and in several other proofs later.

DEFINITION 4.5. Let v be a non-singular (skew-)symmetric element of
Autp (V). We define the signed hermitian form

KV xV—=F
via
R (v, w) := h(v,yw), v,weW.
We call b7 the (skew-)symmetric twist of h by ~.
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Note that, if h is an e-hermitian form, then h” is e-hermitian when ~ is
symmetric, and (—e¢)-hermitian when ~ is skew-symmetric. Twisting by a
non-singular symmetric element 7 induces a permutation of W, (F') and
we observe that, by an easy check, the only classes in W, (F) which
are preserved by every symmetric twist are the trivial class and the class
X e, 7 of maximal anisotropic dimension. Indeed, twisting by all symmetric
elements gives a transitive action on the classes of spaces of fixed odd
(anisotropic) dimension.

PROPOSITION 4.6. If E|F has odd degree, then, Try is injective.

Proof. There is nothing to say in the symplectic case, so we assume € = 1
or F'# Fy. Moreover, we can assume that e =1 because, if F' # Fj then a
twist by a skew-symmetric element of F* induces bijections W, 1(E) —
Wy _1(E) and W, 1(F) = W, _1(F), commuting with Try. Now Try(((1)))
is a class of odd anisotropic dimension, all classes of this anisotropic
dimension are symmetric twists of Try(((1))) and they generate W, (F).
Thus Tr) is surjective and, moreover, bijective, since W, 1 (F') is isomorphic
to Wy 1(E) as groups. [

LEMMA 4.7. Suppose E|F is of degree 2 and F' = Fy. Then im(Trgp,y 1)
has at least four elements. Further:

(i) If E+# Eo then Trg gy is injective.
(ii) If E= Ey then the kernel of Trg g1 has eractly four elements and
they have anisotropic dimension at most 2.

Proof. Take an element § € E and a uniformizer « of E which is skew-
symmetric with respect to the generator 7 of Gal(E|F). Then Trgp 1 ((J))
has Gram matrix

< d+7(0) a(d —7(0)) )
+a(d —7(8) *a?(d+7())

with respect to the F-basis {1, a}, where we have + if p’ is trivial and —
if not. Its determinant is d := +40*N g|r(0) and we only have to choose &
such that —d is not a square in F' to get that Trgz v 1({((d))) is non-zero.

If —1 € (E*)? then, since p is odd, also —1 € N p(E*) and thus we can
find § € E such that —d = 4a?; this is not a square in F* because o € F.
If —1 ¢ (E*)? then E|F is ramified and vp(a?) =1 so we can take § =1 to
get —d & (F*)2.
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In either case, we have that Trgp, 1(((d))) is non-zero for a suit-
able J, and thus of anisotropic dimension 2. Taking symmetric twists of
Trg|ry,1(((6))) by elements of F' (which commute with Trg g, 1), we see
that the image of Trg|r 1 has at least two non-trivial elements and thus, as
a subgroup of a 2-group, at least four elements in total. This also shows (i).

We consider now the case E = Ey. Take y € o to be a non-square unit
if E|F is ramified and a uniformizer of F' if F|F is unramified. Then («)
and (ya) are not isomorphic and both are in the kernel of Tr E|F,id,1- Since
the kernel consists of at most four elements, it is the subgroup generated by
((ov)) and ((y«)), which is of order four and consists of classes of spaces of
anisotropic dimensions 0, 1, 1, 2. [

Proof of Theorem 4.4. Asin the proof of Proposition 4.6, we may assume
that e =1. We only need to prove the statement for one A, because given
two such maps Ai, Ao there is a symmetric element z of E such that
Ai(zx) = Aa(x) for all x € E. (We thank R. Kurinczuk for pointing this
out.) Moreover, we only have to prove that Try(X, 1 ) is non-zero for a
suitable A, since its image is invariant under any symmetric twist with an
element of F{), so must be trivial or X, p.

If E/F is of odd degree then the result follows immediately from
Proposition 4.6. Since the result is transitive in towers of extensions, this
means we can reduce to the case that E/F is quadratic; in particular, E|F
is at worst tamely ramified and we can take A =trgp. Moreover, we
may replace E|F by E|Fy since, if Trgg, »1(Xy 1,5) is non-zero then
Trgrp1(Xy 1,p) is non-zero also. But then, by transitivity again and
considering the extensions E|Ey and Ey|Fp, we reduce to the case E|F
quadratic with F' = Fy. Now Lemma 4.7 implies that X, 1 g is not in the
kernel of Trgp,, 1, as required. [

85. Skolem—Noether

In this section we consider Skolem—Noether-like theorems for classical
groups. We take the notation E,p/; A\ from Section 4. We fix two p'—o-
equivariant F-algebra embeddings

i (B, p)— (A o), i=1,2.
We attach to each ¢; an e-hermitian form

hg, :V xV = E
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with respect to p’ such that
h=X\ohg,.

For the proof that such a form exists and is unique, see [BS09]. Note that
the e-hermitian forms hy, may differ because the maps ¢; may induce
different E-actions on V. In particular, two such embeddings ¢1, ¢o are
conjugate by an element of G if and only if (V, hg,) is isomorphic to (V, hg,)
as a hermitian E-space.

We then get the following corollary of Theorem 4.4.

COROLLARY 5.1. Suppose that p’ is non-trivial and that e =1 or F # Fy.
Then ¢1, @2 are conjugate by an element of g € G, that is

gp1(x)g™ = ¢o(x) for allz € E.

Proof. We write Wy (E)° for the set of classes of W, (E) with even-
dimensional anisotropic part. Then I/I/p/7€(E)0 only consists of the trivial
element and X, . so, by Theorem 4.4, there is a map A such that Tr) is
injective on W, ((E)°. Since Try({hg,)) = (h), we deduce that (V, hgs,) and
(V, hg,) are isomorphic as hermitian E-spaces and the result follows. 0

In the symplectic case, the analogous result is false without further
hypotheses. The following theorem gives a sufficient additional condition
which will be useful.

THEOREM 5.2. Fori=1,2, let A* be a self-dual lattice sequence in V
normalized by ¢;(E)*. Let 5 be a non-zero skew-symmetric element gen-
erating E over F and write r; :== 1+ vpi(¢;(8)). Suppose that there is an
element g of G such that

97 H(01(8) + ary —(A1)g N ($2(B) + ay, — (A?)) # 2.
Then ¢1, @2 are conjugate by an element of G.

In the language of strata below (see Section 6), the hypotheses here say
that the pure skew strata [A?, —r; + 1, —7;, ¢; ()] intertwine. We will need
the following lemma, where we recall that h7 denotes the twist of h by a
(skew-)symmetric element 7 (see Definition 4.5).

LEMMA 5.3. Let A be a self-dual lattice sequence and let aq, as be two
non-zero symmetric or skew-symmetric elements of the normalizer of A such

that alagl € INJS(A), f0r~some s > 0. Then there is an F-linear isometry from
(V, 1) to (V, he2) in U°(A).
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Proof. We apply Proposition 3.1 for f=1idy to see that the spaces
(V, h%) and (V, h®?) are isometric. Now we apply Corollary 3.2, with f =idy
again, to finish the proof. 0

Proof of Theorem 5.2. By Corollary 5.1 we only need to treat the case
that F'=Fy and e= —1. By hypothesis, there are elements g € G and
ci € ¢i(B) + ar, —(A?) such that gc1g~! = co. Thus, by Lemma 5.3, we have
isometries

Bpo1(B) o pe1 o ez o h(bz(ﬁ)7

where the middle isomorphism is given by g. Let f be an isomorphism from
h*1B) to h?2(B) | Since h%(P) are orthogonal forms, Corollary 5.1 applied to
the embeddings = — f¢1(x)f~! and ¢ implies that there is an isomorphism
from h?1®) to h?2(A) which conjugates ¢ to ¢o. But any such isomorphism
is an isometry of (V, h), as required. 0

We will also need the following integral version of the Skolem—Noether
theorem:

PROPOSITION 5.4. [Skol4, Theorem 1.2]  Let ¢;: (FE,p') = (A, o) be
a p' —o-equivariant F-algebra embedding, for i =1,2. Suppose further that
(V, hg,) is isomorphic to (V, hg,) as hermitian E-spaces and that there is
a self-dual lattice chain A normalized by ¢;(E)*, i=1,2. Then ¢1, ¢2 are
conjugate by an element of U(A).

§6. Semisimple strata

We now turn to the notion of semisimple stratum for G. The background
can be found in [BK93, Ste02, Ste05], whose notation we adopt. However,
many of the results in the literature are only available for lattice chains,
while other results on semisimple strata were omitted in [Ste05] (jumping
directly to semisimple characters). Thus we gather together here various
results which we will need in our work.

A stratum is a quadruple [A, ¢, r, 5] consisting of an op-lattice sequence A,
non-negative integers ¢ > and an element b€ a_g(A). This stratum is
called strict if A is a lattice chain. The stratum is skew if € A_ and A is
self-dual, and it is called null if 5=0 and g =r.

Two strata [A,q,r, (] and [A, ¢, ', '] are equivalent if B+ a_,_;=
g4+ . ;» for all non-negative integers j. This is equivalent to saying
that A is a translate of A’, » =7’ and the cosets § 4+ a_, = §’ + a’_, coincide.

They intertwine under a subgroup H of G if there is an element g of H
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such that g(8+a_,)g~"! intersects 8’ +a’ . We denote the set of such
elements by Iy ([A, q,r, B], [N, ¢, 7', 5']). If both strata are equal we skip
the second argument and if H is G we skip H in the notation. The two
strata are conjugate under H if there is a g € H such that [gA, ¢, r, gBg~!] is
equal to [N/, ¢/, ', 5']. Two equivalence classes of strata are called conjugate
under H if there are representatives of either classes which are conjugate
under H.

DEFINITION 6.1. (Simple stratum) A stratum [A, ¢, r, §] is called:

(i) pure if F[f] is a field such that F[F]* Cn(A) and vy (B) = —q < —r;
(ii) simple if either it is null, or it is pure and the degree [F[f]: F] is
minimal among all equivalent pure strata.

This is equivalent to [Ste05, Definition 1.5], or [BK93] in the case of lattice
chains (see Proposition 6.4 below).

We now want to consider strata where F[3] is a direct sum of (not
necessarily separable) field extensions. Given a decomposition V =D, V"
we write A% for Homp(V7, Vi) and 1° for the projection onto V* with
kernel @#ivj . A stratum [A, ¢, r, (] is split by the decomposition if
1'817 =0 for i# j and if the decomposition splits A, that is, A is the
direct sum of the lattice sequences A’ := A N V?. We write §; := 1?51" and
gi '= —min{va(B;), —r}. We are now in a position to define a semisimple
stratum.

DEFINITION 6.2. [Ste05, Definition 3.2] A stratum [A, ¢, , 8] is called
semisimple if either it is null or vp(8) = —¢ < —r and there is a splitting
V =@,V? such that:

(i) for every i the stratum [A?, ¢;, r, 3;] in A% is simple;
(ii) for all i # j the stratum [A’ @ A7, max{q;, ¢;}, 7, Bi + 5;] is not equiva-
lent to a simple stratum.

A semisimple stratum is called skew-semisimple if the decomposition of V'
is orthogonal and all strata occurring in (i) are skew.

For later, to describe the intertwining of [A, g, r, 5], we need an integer
ko(8, A) which characterizes the semisimplicity of a stratum. Denote by
ag: A— A the map ag(xr) = Sz — x5 and put n; = a;l(al) N ag.
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If F[f] is a field we define, as in [Ste05, Definition 1.4]:

—00 if 6=0,
ko (/8 ) A) = .
max{va(B3),sup{l €Z |n; € by + a1}} otherwise,
and one writes kp(8) for ko(S, p%), where p% denotes the lattice sequence
i — p', the unique op-lattice chain in the F-vector space E whose normal-
izer contains E*. We have that

(6.3) ko(8, A) = e(Alog)kr(B),

by the remark after [SteOla, Lemma 5.6]. We now prove that Definition 6.1
is equivalent to that in [Ste05, 1.5]

PRrROPOSITION 6.4. Given a mon-negative integer s, a pure stratum
(A, q, s, B] is simple if and only if —s > ko(B, /}) Further, writing A =
oA = 1), with e = e(A|or), we have ko(5%, A) = ko(53, A).

Note that the lattice sequence A in the statement is in fact a lattice chain,
with the same period as A.

Proof. The second assertion follows directly from (6.3), and we thus
only concentrate on the first, which is true if A is a lattice chain by [BK93,
Theorem 2.4.1]. We compare the two notions of simple: a stratum which is
simple in the sense of Definition 6.1 is called degree-simple, and a stratum
which is either null or pure satisfying —s > ko(8, A) is called ko-simple.

If [A, q, s, 8] is ko-simple then so is [A, ¢, s, 39¢], by the second assertion,
and thus it is degree-simple, because A is a lattice chain. Thus A, q, s, (] is
degree-simple.

If [A,q,s,B] is degree-simple but not kg-simple, then the stratum
L, —vE(B), |s/(e(Alog))], B] is not ko-simple. But then, the latter is
not degree-simple, because p% is a lattice chain, and thus [A, ¢, s, 5] is not
degree-simple, using a (W, E)-decomposition as in [BK99, 5.3]. [

COROLLARY 6.5. [D{_l(A—1),q,s, 8% is simple if and only if
[A, q, s, (] is simple.

If F[B] is not a field we define for a semisimple stratum [A, ¢, r, 5], as in
[Ste05, (3.6)],

ko(B,A):=—min{s€Z,s >0][A, g, s, 5] is not semisimple}.
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Minimal strata

We begin now with an analysis of semisimple strata of the form
[A,q,q—1,B]. For the simple case, we recall that an element [ of an
extension F|F is called minimal if it satisfies the following two conditions:

(i) ged(ve(B), e(E|F)) =1;
(i) BeEIFM mve(B) L pp generates the extension kp|kp.

Then, by [BK93, 1.4.13(ii), 1.4.15], a pure stratum [A, ¢, ¢ — 1, 3] is simple
if and only if S is minimal. By a slight abuse, we call a semisimple stratum
of the form [A, ¢, ¢ — 1, 5] a minimal semisimple stratum.

For minimal semisimple strata, the characteristic polynomial is very
important for distinguishing the summands. For b an element of a finite-
dimensional semisimple algebra B over some field K, we denote the reduced
characteristic polynomial of b in B|K, defined in [Rei03, (9.20)], by xs 5k
and the minimal polynomial by p, p|x-

DEFINITION 6.6. Let [A,q,q—1,8] be a stratum with vp(8)=—¢q
and set yg 1= B¢/909/9, where g = ged(e, ), with characteristic polynomial
®(X) = Xy,,aF €0or[X]. We define the characteristic polynomial of the
stratum [A, ¢, ¢ — 1, 8] to be the reduction ¢4 := ® € kp[X]. It depends only
on the equivalence class of the stratum.

For a null stratum we define yg:=0 and ¢o(X):= X", where N =

REMARK 6.7. If [A,q,q—1,8] and [A,q,q¢—1,7] intertwine then
¢ﬁ = ¢'y-

PROPOSITION 6.8. If [A, q,q — 1, 5] is semisimple with associated split-
ting V = @ieIVi, then we have the following:

(i) ¢g is the product of the polynomials ¢g,, which are pairwise coprime
polynomials;

(ii) each polynomial ¢, is a power of an irreducible polynomial;

(iii) the F-algebra homomorphism induced by B+ Y, ; B is a bijection
from F[B] to the product of the E; := F[B;];

(iv) wrlys] is canonically isomorphic to [[;c; kr(yg,])-
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Proof. For all indices i, we have e = e(A|or) = e(Af|or) and ¢ = ¢; for all
indices i with f3; # 0. Since also =), §; with 3; € A we get

ys ZZ@?/QW‘]/Q =) s,

and ¢g is equal to the product of the ¢g,. That ¢g, is primary now follows
from the fact that [A?, q;, 7, 3;] is a simple stratum and the remaining
assertions are a consequence of [Ste05, Remark 3.3]. []

It will also be useful to have another criterion by which to recognize a
minimal semisimple stratum. Recall that a stratum [A, ¢, ¢ — 1, 8] is called
fundamental if the coset 3 + aj_, contains no nilpotent elements; in this
case, the rational number g/e is called the level of the stratum, where e =
e(Alor). We also define the level of the null stratum [A, g, g, 0] to be g/e.

PROPOSITION 6.9. A stratum [A, q, ¢ — 1, B] is fundamental if and only
if its characteristic polynomial is not a power of X. Two fundamental
strata which intertwine have the same level. A fundamental stratum cannot
intertwine a null stratum of strictly smaller level.

Proof. Suppose [A, ¢, ¢ — 1, 8] has characteristic polynomial X™ and put
e =e(Alop); then the element [ satisfies

B ew M = a1—gme-

Then, by [Bus87, Lemma 2.1], there is a nilpotent element in 5+ a;_,
so the stratum is not fundamental. (The proof of that Lemma is valid for
lattice sequences if one allows block matrices with block sizes 0 x [ or [ x 0.)
Conversely, if [A, ¢, ¢ — 1, 5] is not fundamental, then yg is congruent to a
nilpotent element modulo a;, and thus the characteristic polynomial of the
stratum is a power of X. The remaining assertions now follow easily, because
if one of them were false, then there would be a fundamental stratum whose
characteristic polynomial is a power of X. 0

We now give criteria for a fundamental stratum to be simple or
semisimple. We recall that a fundamental stratum is called non-split if
the characteristic polynomial of the stratum is a power of an irreducible
polynomial. Given a fundamental stratum [A,q,q—1,b] we define the
following kp-algebra

R([A,q,q—1,b]):={Z €ap/ar | b= bz (mod a;_,)}.
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The following result is stated in [BK93, 2.4.13] for strict strata but, because
the quotient ap/a; depends only on the image of A and the element b of
a non-split fundamental stratum normalizes A, is also valid for arbitrary
lattice sequences.

PROPOSITION 6.10. [BK93, 2.4.13] A non-split fundamental stratum
[A, q,q— 1,b] is equivalent to a simple stratum if and only if R([A, q,q —
1, b]) is semisimple.

To get a similar result for semisimple strata we need, for an element
be a_q(A) and an integer n, the map

Migb* G—ng/01—ng = O (n11)q/ 01— (n+1)q
induced by multiplication by b.

PROPOSITION 6.11. A fundamental stratum [A, q,q — 1, b] is equivalent
to a semisimple stratum if and only if R([A, q,q — 1,b]) is semisimple and,
for all non-negative integers n, the kernel of my, 1 4 and the image of my, 4
intersect trivially.

Proof. Since the algebra R([A, ¢, ¢ — 1, b]) and the maps m,, 4 depend
only on the equivalence class of the stratum, we are free to move to an
equivalent stratum at any point.

Suppose first that R([A, ¢, ¢ — 1,b]) is semisimple and, for all non-
negative integers n, the kernel of m,, 1 45 and the image of m,, ; intersect
trivially. We inductively find a splitting. For this, assume that ¢, is a
product of two coprime monic factors fy and fi. Let ® be the characteristic
polynomial of y, = w?9b¢/9, where ¢ is the greatest common divisor of
e =e(Alor) and ¢. Hensel’s Lemma implies that we can factorize ® as fyf1
where f; is a monic lift of f;. By Bézout’s Lemma, there are polynomials
ap, a1 € op[X] such that agfy + a1 fi =1. The map 1; = a;(ys) fi(yp) is the
projection onto the kernel of fi_;, and the sum ker(fy) @ ker(fi)=V
splits the stratum [A, ¢, ¢ — 1, b]. Moreover, we have R([A, ¢, q¢— 1,b]) ~
R([A% qo, ¢ — 1, b0]) ® R([AY, g1, ¢ — 1, b1]), by the coprimality of fo, f1, so
that both R([A%, ¢;, ¢ — 1, b;]) are semisimple.

Thus, by Propositions 6.10 and 6.8, we only have to show that strata
equivalent to null strata are the only non-fundamental strata for which
the kernel of my 4145 and the image of m,, 45 intersect trivially. Now let
us assume that [A, g, g — 1,b] is non-fundamental. Then without loss of
generality we can assume that b is nilpotent. The conditions on the maps
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imply that my, g5 © M(;—1),46 © - © M1 ¢ p 1S injective on the image of mg ¢
If n is big enough, the first product is the zero map, so the image of mg 4
is zero, that is, [A, ¢, ¢ — 1, b] is equivalent to a null stratum.

For the converse, suppose that [A, ¢, ¢ — 1, b] is a semisimple stratum with
associated splitting V' = @, ]V’i. Since the characteristic polynomials ¢,
are pairwise coprime, we have R([A, ¢, ¢ — 1,b]) =~ @, /R(IA", ¢, ¢ — 1, bi])
and, since each stratum [A’, ¢;, ¢ — 1, b;] is simple, this algebra is semisimple
by Proposition 6.10. (Note that the algebra is clearly semisimple for the null
stratum.)

The maps m, 4 preserve the decomposition A = @l in’j so we may work
blockwise. On the diagonal blocks A%%, the map M qp is either zero (in the
case b; =0) or bijective. On the non-diagonal blocks A%/, with i # j, the
map is bijective or zero by [BK99, 3.7 Lemma 4]. 0

Semisimple strata

Now we turn to the case of general semisimple strata [A, g, 7, 8]. A very
important tool to prove properties of semisimple strata by an inductive
procedure is the tame corestriction map, which was introduced in [BK93,
1.3.3] in the simple case.

DEFINITION 6.12. Let E|F be a field extension and B be the centralizer
of F in A. A non-zero B—B-bimodule map s: A— B is called a tame
corestriction (relative to E|F) if, for all op-lattice sequences A normalized
by E*, we have

s(a;(A)) =a;(A) N B,

for all integers j.

If E = F[y] we often write s, for a (choice of) tame corestriction relative
to E|F.

REMARK 6.13.

(i) By [BK93, 1.3.4], tame corestrictions exist: if ¥ and ¢g are additive
characters of ' and E, with conductors pr and pg, respectively, then
there is a unique map s: A — B such that

Y otryp(ab) =¢potrpp(s(a)b), a€AbeB.

This map is a tame corestriction and every tame corestriction arises in

this way. Moreover, tame corestrictions are unique up to multiplication
X

by an element of oF,.
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(ii) If - generates the extension E|F then, by [BK93, 1.3.2 (i)], the kernel
of s, is equal to the image of the adjoint map a-: A — A.

(iii) If F is o-invariant, we can arrange the additive characters ¢r and ¥ g
in (i) to be o-invariant also, and then the tame corestriction s is o-
equivariant.

Given a simple stratum [A,q,7+1,7] in A and an element cé€
a_,, the tame corestriction map allows us to define a derived stratum
[A,r+1,7,54(c)] in B,, the centralizer in A of vy, and we can ask whether
this derived stratum is (equivalent to) a fundamental or simple stratum.
The following theorem is particularly useful.

THEOREM 6.14. [BK93, Theorems 2.2.8, 2.4.1] Let [A,q,7+ 1, 8] be a
stratum equivalent to a simple stratum [A, g, + 1,7]. Then [A,q,r, (3] is
equivalent to a simple stratum if and only if the derived stratum [A,r +
1,7, sy(y — B)] is equivalent to a simple stratum.

As an immediate corollary, we get the following result on semisimple
strata.

COROLLARY 6.15. Let [A, q,r + 1, B] be a stratum equivalent to a simple
stratum [A, g, 7+ 1,7]. Assume that we have a decomposition V = @,V*
into B- and y-invariant F-subspaces. Then [A,r + 1,7, s, (v — B)] is equiva-
lent to a semisimple stratum with associated splitting V = @ivi if and only
if [A, q, 7, 5] is equivalent to a semisimple stratum with associated splitting

V=@,V

Suppose now that [A, g, 0, 5] is semisimple so that, for any 0 < r < g, the
stratum [A, ¢, 7 + 1, ] is equivalent to a semisimple stratum [A, ¢, 7 + 1, v].
Then we can realize the assumption on + in the previous corollary (that is,
we can find v such that the splitting associated to [A, ¢, 0, 5] is preserved
by ) by the following theorem.

THEOREM 6.16. ([Ste05, 3.4], [SteO1b, 1.10]) Let [A, g, r, (] be a (skew)-
stratum split by V =@,V (V = @,;V?) such that every stratum [A, g;, r, ;]
is equivalent to a simple stratum, and such that [A, q,r, f] is equivalent to
a simple stratum. Then [A, q,r, 5] is equivalent to a (skew)-simple stratum
[A, q,r,v] split by the same direct sum.

Proof. We observe only that, although this is not quite the statement in
[Ste05, 3.4], this is what the proof there actually demonstrates. The skew
case then follows immediately by applying [SteO1b, 1.10]. [
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In particular, if [A, g, 7, 8] is a semisimple stratum with splitting V =
@,V? and [A, g, v+ 1, B] is equivalent to a simple stratum [A, g, 7 + 1, 7]
such that yV? C V? for each 4, then Corollary 6.15 implies that the derived
stratum [A, 7+ 1,7, s,(y — B)] is equivalent to a semisimple stratum with
the same splitting V = @,V".

NoOTATION 6.17. For the rest of the article we use the following notation:
[A, g, 7, B] always denotes a stratum, and B the centralizer of 5 in A. If
[A, q,r, 3] is semisimple then V =P, ;V* is the associated splitting and
we have A=¢P, ;A" and B =P, B"", where B"" is the centralizer of
E; = F[f;] in A"". Further, we write b; for the intersection of a; with B. We
use analogous notations for a second stratum [A’, ¢/, v/, #'] but all with ()’.
If we want to specify the centralizer of v in A, for an arbitrary element -,
we write B,.

Let [A,q,r, 3] be a semisimple stratum. We define a tame corestric-
tion sg: A — B for B by sg(a) := ), si(a;i), where s; is a tame corestriction
for 5; as in Definition 6.12. If s; is defined relative to additive characters
Yr, Y as in Remark 6.13(i), then we put ¢p:i: = gi o trgii i and define
an additive character of B by

Yp() =] vpib), b= bibi€ B
iel el
Writing 14 = t¢F o tr 4, the map sg is then a non-zero (B, B)-bimodule
homomorphism satisfying
Ya(ab) =1¢p(sg(a)h), acAbeB,
and
sp(ap) = b]

for all lattice sequences A’ which are split by V = @ivi into a direct sum
of ogi-lattice sequences.

LEMMA 6.18. The sequence A 22 A8 B is exact and the kernel of 53 is
split by the decomposition A = @A .

Proof. By definition, the kernel of sg is the direct sum of the A%, for
i # 7, and of the kernels of s;, for i € I. The sequence is exact on the (3, 7)
components, by [BK93, 1.3.2], and it is therefore enough to prove that
for j#1i the restriction of ag on A% is bijective onto A%J. It has the
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form ag(ai;) = Biaij; — a;jB;, which is injective because §; and (; have no
common eigenvalue, because their minimal polynomials are coprime since
[A"@® A7, max{q;, q;}, 7, Bi + B;] is not equivalent to a simple stratum.  []

To describe the intertwining of a semisimple stratum [A, ¢, r, 5], recall
that we have defined the integer ko = ko(5, A) and the lattices n; = agl(al) N
ag, for I an integer. We will also need the unit subgroups 1+ m;, where
m; =Ny, Nag, for integers [ > 1. As the first of several intertwining results
we have:

THEOREM 6.19. (See [SteOla, 4.6], [BK93, 1.5.8] for simple strata) Let
[A, g, 7, B] be a semisimple stratum.

(i) I([A, g, B]) = (14 m_ (g ) B (14 Mg 40))-
(ii) If the stratum is skew then

I6(IA. 4.7, ) = (1 m_(1y4r)) N G)(BX N G)((1+m_(gy) N C).

The crucial ingredient for the proof is:

LEMMA 6.20. [Ste05, 3.7] For all integers s we have:

(i) ' Ca gy forij;
(ii) n_s=bog+n_sN a_(ko+s)-

In [Ste05], this lemma was formulated for s < —kg, but the case s > —ko
is trivial. From this we deduce

LEMMA 6.21. Take i # j. The restriction of ag to A% s an F-linear
homeomorphism and agl(as)i’j is equal to ng’ for all integers s > ky.

Proof. The map ag is a linear automorphism on A% by Lemma 6.18;
thus the image of an op-lattice contains an op-lattice and the restriction
of ag to A% is a homeomorphism. It follows that, for s big enough, we have
that a;l(as)"’j = a;l(as) N A% is contained in ag’ and is therefore equal to
ﬁjkm%s

we have that agl(as)i’j is contained in ai’]ko +s

is equal to agl(as)m for all integers s with s > ko. [

n’J: in particular, it is contained in a by Lemma 6.20(i). By periodicity

for all integers s and thus %’

Proof of Theorem 6.19. We follow the proof of [BK93, 1.5.8]. For a null
stratum there is nothing to prove, so we assume the stratum is non-null.
The main ingredients which have to be verified are the exact sequences of
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[BK93, 1.4.10], which hold by Lemma 6.20, and the analogue of [BK93,
1.4.16], which we prove now. We write d for —(r + ko) and put:

o M =0y jqir, NarjaN (yi(nop Nag) + (n_pr Nag)ye + (Nepja—r N
ﬂt+(j+1)d));
® L =0tjdtk, N (yia—r +a_y2 + atﬂdﬂ«);

for integers ¢ > 0, j > 1 and elements -1, 2 of B*. The sequence M ®rA
B is exact if all its restrictions on the A%/ are exact. For i =j the proof
is done in [SteOla, (5.2)] and for i # j it follows from Lemmas 6.20(i), 6.21
and 6.18. The same cohomology argument as in [SteOla, Corollary 4.14]
followed by the simple case in [SteOla, Theorem 4.6] proves (ii). [

A completely analogous proof using the exercise [BK93, 1.5.12] (or,
alternatively, using the f-construction as in [KS15, Theorem 3.9]) provides:

THEOREM 6.22. Let [A,q,r, 8] and [N, ', 7', B] be semisimple strata
i A. Then:

(1) I([Aa q, T, B]a [Ala q/a T/a ﬁ]) - (1 + m/_(]g(/)_HJ))BX (1 + m—(kg—i—r));
(ii) of both strata are skew then

IG([Aa q,T, 5]7 [Alv q,a ,,J’ ﬁ])
= (4 mL ) NG)B NG (1+m_(40)) N G).

87. Matching for intertwining strata

In this chapter we show that, if we have semisimple strata which
intertwine, then there is a canonical bijection between their associated
splittings. This will then allow us to deduce a Skolem—Noether theorem
for skew-semisimple strata which intertwine.

7.1 For general linear groups

We fix a pair of semisimple strata [A, ¢, r, 8], [\, ¢, 7', B'], with associated
splittings @,;c;V* and @, V", respectively. The main result of this
subsection is:

PROPOSITION 7.1.  Suppose that [A,q,r, (] intertwines [N, ¢, ', 5],
that r =1’ and that A, A’ have the same period. Then:

(i) if one stratum is null, then q=¢q' and the other stratum is null;
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(i) 4f both strata are non-null then q=q' and there is a unique bijection
¢:I— I such that [A* @ AC®) max{qg;, q/C(i)}7 r, B; + ﬁé(i)] is equivalent
to a simple stratum, for all indices i € I. Moreover, V' and V@ have
the same F-dimension.

Note that, in case (i), both splittings are trivial so we trivially have
a (unique) bijection ¢ as in (ii). We call the bijection ¢ a matching of
[A',’ q’? T? /8/] and I:A’ q? T’ 6]'

REMARK 7.2. If A, A’ do not have the same period then we can scale
them so that they do. In particular, the requirement in Proposition 7.1 that
they have the same period is not a genuine constraint.

To prove Proposition 7.1 (and, later, other results on semisimple strata),
we introduce the notion of a defining sequence for a semisimple stratum,
which allows us to prove properties of semisimple strata by an inductive
process (cf. [BK93] for the simple case). Let A =[A,¢q,r, §] be a (skew)-
semisimple stratum with associated splitting V =@, IVi. A defining
sequence for A is a finite sequence of (skew)-semisimple strata (Ak)k:07.,_’q,r
defined as follows:

o AV=A;
o for 0 < k< q—r, we have AF = [A, q,r + k, 7] a (skew)-semisimple stra-
tum equivalent to [A, ¢, + k, 8] with ~;, € [], A% (see Theorem 6.16).

Note that there is a significant degree of choice in producing a defining
sequence for a (skew)-semisimple stratum.

Suppose now we want to prove a statement P(A, A’) for all pairs of
semisimple strata A, A’. The inductive procedure, which we call strata
induction, to prove P is given by the following steps.

e The base case: Here one proves P for all minimal semisimple strata and
null strata.
e The induction step:

(i) The step 7+ 1 to r: from the induction hypothesis and possibly
an auxiliary statement (S1) we restrict to the case where the first
elements AM and A’(M of defining sequences of A and A’ have the
same element v, and hence the same associated splitting.

(ii) Taking a second auxiliary statement (S2), we show that the derived
strata s,(A) and s, (A’) satisfy the assumptions of P. In this article,
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(S2) will always be the description of the intertwining of A
with A’1) (see Proposition 7.3 below).

(iii) The base case shows P(sy(A), sy(A’)) and, together with a third
auxiliary statement (S3), provides P(A, A’). For (S3) we will use
Theorem 6.14.

Strata induction can be restricted to simple strata by substituting the
word semisimple by simple.

In the following, we use the notation for tame corestrictions as in the
previous section.

PROPOSITION 7.3. Suppose =" and we are given elements a € a_,
and o' €a’_, such that there is an element g of G which intertwines
A, q,r— 1,8+ a] with [A',¢,v" —1,8+d']. Using Theorem 6.22, write
g=(14+u)b(1+v), withbe B*,u € m/—(k(/)-i-r’) andv € m,(kOJrr). Then the
component b** intertwines [A,r,r — 1, s;(a*")] with [A', v 7" — 1, 5;(a’")],
foralliel.

Proof. Again we only have to consider a non-zero element S. This is
essentially the calculation in [BK93, 2.6.1] which we want to recall, to show
its validity for different semisimple strata.

Let (1 + w') be the inverse of (1 4 «’). By the intertwining property of g,
we have

g(B+a)=(B+d)g (mod gaj_,+aj_,.9g).

Multiplying by (1 4 w’) on the left and (14 v)~! on the right we obtain

b(1+v)(B+a)(l+v)™"
(7.4) =(14+uw)B+d)1+w)"tb (mod bay_, + a) .b).
We first consider the right hand side.
1+w)(B+d)=p—as(w)+d +w'd + su
= (B—ag(w)+d)(1+w)+w'd —dw +ag(w)w
= (B-apw) +a)1+w') (moday_,),

/

because a’ €’ ,, w’' € a] and ag(w') €a’ . A similar calculation for the
left hand side and equation (7.4) leads to

(7.5) b(B—ag(v) +a)=(B—as(w’) +ad)b (mod bay_, + a}_,.b).
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We apply sg to get
bsg(a) = sp(a’)b  (mod bby_, + b} _,.b)

and thus b* intertwines the derived strata [A,r,r —1,s;(a**)] and
[A 7' 7 — 1, 5;(a’t)], for all i € T. 0

ProprosITION 7.6. (Cf. [BK93, 2.2.1])  Suppose that [A,q,r, 5] and
(A, ¢, 7", B] are simple and that there are a € a_, and o’ € a’_, such that
sg(a) =sg(a’) (mod by, +b|_,). Then, there are elements w' € m/—(k6+r’)
and v € M_ (g, 1) such that

A+w)(B+ad)1+w) =1 +v)(B+a)(1+v)"" (moda_,+aj ).

Moreover, if the strata and the elements a and a' are skew and the strata
intertwine in G, then we can choose 1 +v and 1 +w' in G.

Before the proof let us recall that the Cayley transform of an element v
of (ay)_ is the element (1 + v/2)(1 —v/2)~L. It is an element of U(A) C G.

Proof. Let 3 be non-zero and write C' for the kernel of sg. Without loss
of generality, we can assume that sg(a) and sg(a’) are equal, since the map
sg:a1—p — b1, is surjective. The map

ag
m_, g, + m’fr,f% —CnN(a_,+ad )

is surjective because C' N (a_, +a’,) is equal to (CNa_,) + (CNd’,) by
[BK93, 1.3.17] and aj' (a_,) is a subset of B+m_,_j, by Lemma 6.20(ii).
Thus, we can find w' € m_,,_;, and v € m_,_, to satisfy (7.5) for b=1. We
now follow the calculation in the proof of Proposition 7.3 backwards to show
the desired congruence. In the skew situation we can find skew-symmetric
elements, say ¥ and w’, which satisfy (7.5) and we define 1+ v and 1 + v’

to be the Cayley transforms of ¥ and w’, respectively. 0

We need one final lemma before we can prove Proposition 7.1, which will
play the role of (S1).

LEMMA 7.7. Let [A,q,r, B] and [N, q,r, B'] be semisimple strata, with
lattice sequences of the same period, for which there is a (unique) bijection
¢:1— I’ such that [N ® A0, max{q;, q’c(i)}, r, B; + 6é(i)] is equivalent to a
simple stratum, for all indices i € I, and dimp V' = dimp V). Then there
are an element g of G and an element v € IL A¥ such that V= gV’e),
for all indices i € I, and:
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e [gN\', q, 7, gB'g™ Y is equivalent to [gN', q,7,7];

e [A, q,r O] is equivalent to [A, q,r,v]; and

e g\, q,7, 7] and [A, q, 7, 7] are semisimple strata with the same associated
splitting V = P, V".

Proof. Applying Theorem 6.16 to the strata [A* @ A“(), max{g;, qé(i)},
r, B + Bé(i)], for each 4, we find an equivalent simple stratum [A®@
ACO) max{g;, qé(i)}, T, Y + ’yé(i)]; in particular, 7; and ’yé(i) have the same
irreducible minimal polynomial, and the same characteristic polynomial
since dimp V¥ = dimp V¢,

Further, for i # j in I, the stratum [A*@® A7, max{q;, ¢;}, 7, vi + 4] is
equivalent to [A* & A/, max{q;, ¢;}, r, Bi + 3;], which is not equivalent to a
simple stratum, so that the stratum [A, g, 7, ] is semisimple, where v =
> icr Yi- The same applies to [A’, g, 7,v'], where /' =3"._; 72(1.). Finally,
since 7; and ’yé(i) have the same characteristic polynomial, we can find g € G
such that V¢ = ¢gV’¢() and ¢g7/¢g~' = ~, and the result follows. 0

Proof of Proposition 7.1. The equality ¢ =¢' in (i) follows from the
results on level in Proposition 6.9. The existence of ¢ in (ii) is proved by
strata induction, where we take Lemma 7.7 for (S1), Proposition 7.3 for (52),
and Theorem 6.14 for (S3). The base case follows because the characteristic
polynomials are equal, so we match the primary factors using [Ste05, 3.3(ii)].
The equality of dimensions follows from the fact that the degree of the ith
primary factor is the dimension of V*.

For the inductive step, suppose that A =[A, ¢, r, 8] and A" =[N/, ¢, r, ']
are semisimple strata as in the proposition which intertwine. Then the
stratum [A, ¢, 7 + 1, 3] is equivalent to a semisimple stratum A, = [A, ¢, r +
1,7] whose splitting is a coarsening of that of A, by Theorem 6.16;
similarly we have a semisimple stratum A’ =[A’, ¢, 7 +1,4']. Since the
strata A, Ag intertwine, we may apply the inductive hypothesis to them.
In particular, they satisfy the hypotheses of Lemma 7.7 and, replacing A’
by its conjugate gA’, we may assume ' =~.

Now we apply (S2)—Proposition 7.3—to the strata A, and A’V, with a =
B —~ and a’ = 3’ — 7. The conclusion is that the derived strata intertwine
so that the base case gives us a bijection between the index sets ¢ : I — I’
such that, for each i€ I, the stratum [A?@® ACC) r 4+ 1,7, 5, (8 — i) +
Sye (i (,82(1.) —¢@)] is equivalent to a simple stratum. (Here ~; =1'y1",
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where 1° is the idempotent corresponding to V?, and similarly Vel =
1€@~17¢® - corresponding to V/¢(): note also that ~; and Y¢(i) have the
same characteristic polynomial so that we can view both V% and V/¢()
as F[y;]-vector spaces.) But then [A? @A) max{g;, qé(i)}, r, B + Bé(i)} is
equivalent to a simple stratum, by (S3)—Theorem 6.14.

The existence of ¢ implies, in particular, that both strata have the same
number of blocks, that is, the sets I and I’ have the same cardinality.
Finally, we prove the uniqueness of (. Assume, for contradiction, that
there are two distinct indices 4, j € I and an index ¢/ € I’ such that [A? @
A" max{g;, ¢}, Bi+ Bl] and [A @ A max{q;, 4.}, Bj + B are both
equivalent to simple strata. From this (and the equality of periods) it
follows that the integers g;, ¢; and ¢, are all equal; we denote this integer
by 4 . .

By the proof of the existence, the spaces V* and V* have the same
dimension, and thus, by conjugating, we can assume that they are equal. By
Theorem 6.16, the strata [A?, ¢, r, 8;] and [A’i/, q, 7, By] intertwine. Then the
stratum [A* @ A7, g, r, B; + B;] intertwines with [A’i/ ® A, q,r, By + Bj] and
the latter is equivalent to a simple stratum. Thus the semisimple stratum
[A"® A7, q,r, Bi + B4], which has two blocks, is intertwined with a simple
stratum, which has only one block. This is a contradiction since the existence
shows that semisimple strata which intertwine have the same number of
blocks. []

As a useful consequence, we see that, given two semisimple strata which
intertwine, we can find equivalent semisimple strata with elements which
are conjugate.

COROLLARY 7.8. Suppose that the semisimple strata [A,q,r, 3] and
[N, q, r, B'] intertwine and that A, A’ have the same period, and let ¢ : T — I'
be the matching between their index sets. Then there are semisimple strata
A, g, B] and [N\, q,r, B/], equivalent to, and with the same associated
splitting as, [A, q,r, 8] and [N, q,r, B'], respectively, such that Bé(i) has the

same characteristic polynomial as Bi, for all indices i € I.

Proof. This follows immediately from Lemma 7.7 (whose hypotheses
are satisfied, thanks to Proposition 7.1) by putting, in the notation of the
Lemma, 8=~ and ' = ¢ 'vg. [
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If [A, q,r, B] and [A', ¢, v/, ] are strata in spaces V and V', respectively,
then we put

I([AY, q, 7, B, [ACD), q,r, B'])
={g|V >V |g(B+a_)g ' n(B +d_.)+#2}.

This generalizes the notion of intertwining and we say that any element of
this set intertwines [A, ¢, r, 8] with [A, ¢/, 7/, B'].

COROLLARY 7.9. Suppose that the semisimple strata [A,q,r, 5] and
[N, q,r, 8] intertwine and that A, A" have the same period, and let C:
I — I' be the matching between their index sets. Then the intertwining set

I([A7 q? r? /8}7 [A/7 q7 r? /Bl]) Zs equa’l to

(1+m r+k' (HI y 4, T, /81 [ >Q7 T, /82(1)])) (1+m—(7‘+k0))'

Proof. By Corollary 7.8 we may replace the strata with equivalent strata
such that there is g € G such that 8 = g~ !8g. The result now follows by
applying Theorem 6.22 to the strata [A, ¢, r, 8] and [gA’, q, 7, 3]. 0

7.2 For classical groups

We continue with the notation from the previous section but assume now
that all our strata are skew. We will prove the following strengthening of
Proposition 7.1 in this case.

PROPOSITION 7.10. Suppose that [A, q,r, B8] and [N, q,r, '] are two
skew-semisimple strata which intertwine in G and let (: I — 1" be the
matching given by Proposition 7.1. Then:

i) (Vi hly) = (VO Blyw), for all i € 1;
(i) the intertwining set I([A, q, 7, B], [N, q, 7, B']) is equal to

((1 + mL(r+k6)) N G) <<H Ii) n G> ((1 + m—(T+k0)) N G)a

where I; = I([Aia q, 7, Bil, [A/C(i)’ 47 62(1)])

REMARK 7.11. Part (ii) of Proposition 7.10 is a consequence of (i):
indeed, if (i) is true then, by conjugating, we can assume that V¢ = V"¢(),
for all i € I, and (ii) follows from Corollary 7.9 and a simple cohomology
argument as in [Ste0la, Corollary 4.14].
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As an immediate consequence of Proposition 7.10 and the simple Skolem—
Noether theorem 5.2, we get a Skolem—Noether theorem for semisimple
strata.

THEOREM 7.12. Let [A, q,r, 8] and [\, q,r, 5] be two skew-semisimple
strata which intertwine in G, and suppose that B and ' have the same
characteristic polynomial. Then there is an element g € G such that gBg~"
is equal to 3.

For the proof of Proposition 7.10 we need the following idempotent lifting
lemma.

LEMMA 7.13. Let (8),>0 be a decreasing sequence of op-lattices in A
such that €.t; C .1, for all r,s >0, and ﬂr>1 t, = {0}. Suppose there is
an element o of & which satisfies a® — o € €1. Then there is an idempotent
& € 8y such that & — a € €. Moreover, if o(a) =« then we can choose &
such that o(&) = a.

Proof. We define ep := a, and put e; := 3e2 — 2¢} € &. A straightforward
calculation shows that

3

e? —ep =4(ek —ep)® —3(e2 —ep)? € .

Continuing this process, we construct a sequence (e,)n>0 in € which
satisfies:

(i) en=-e; (mod £,); and
(ii) e, =e2 (mod £an),

for all non-negative integers ¢ < n. This sequence has a limit & in €y which
is, by construction, an idempotent congruent to & modulo £;. Moreover, by
construction the sequence (ey,) is symmetric if « is, in which case the limit &
is also symmetric. [

COROLLARY 7.14. Let (&),>0 be as in Lemma 7.13. Suppose that
ai, . ..,qp are elements of €y such that a? —a; €€ and oo € 8, for all
i # j. Suppose further that ), o; =1 (mod &1). Then there are idempotents
&; such that &; — oy € ¥y, with &;6; =0, fori#j, and Y, &; = 1. If further
o) =« , for all i, then we can choose the &; such that o(&;) =&, for
all 1.

Proof. We find a; by Lemma 7.13 and set & =1— a;. Consider
the space V) :=afV, the lattices g = ai€.a1 and the elements
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agl) = dllaidf for ¢ > 2. These satisfy the hypotheses of the corollary,
which now follows by induction. If o(aq) = a1 then we choose &; such that
o(@1) = a1, and V() is then the orthogonal complement of &;V so that the

result again follows by induction. U
We also need the classical group analogue of Lemma 7.7.

LEMMA 7.15. Let [A, q,r, 8] and [N, q,r, 5] be skew-semisimple strata
which intertwine in G and let ( : I — I’ be the matching given by Proposi-
tion 7.1. Suppose moreover that (V*, hlyi) = (VO h|.cqy), for all i€ 1.
Then there are an element g € G and a skew element vy € [, A% such that
Vi=gV"<W for all indices i € I, and:

e [gN\' q, 7, gB'g7 Y is equivalent to [gN', q,7,7];

o [A, q,r, O] is equivalent to [A, q,r,v]; and

o [gN,q,r,y] and [A,q,r,~y] are skew-semisimple strata with the same
associated splitting V = @ielvi.

Proof. The proof is the same as that of Lemma 7.7. We only need
to note that, once we have found ~; and 72(1‘) with the same irreducible
minimal polynomial then there is an element g € G such that Vi = gV"¢(),
since (V7 hlyi) =2 (VSO hlyew), and then the elements g’yé(i)g_l and 7;

are conjugate in G; = A** N G by Remark 7.11 and Theorem 5.2. U

Proof of Proposition 7.10. The case ¢ = r is trivial (since both strata are
then null) so we assume ¢ > r. It is sufficient to prove (i) by Remark 7.11.
We prove (i) by strata induction, giving first the inductive step. Suppose
that A=A, q,r, 8] and A" =[N, q, r, §'] are skew-semisimple strata as in
the proposition which intertwine in G. Then the stratum [A, g, + 1, 8] is
equivalent to a skew-semisimple stratum A, = [A, ¢, r + 1, 7] whose splitting
is a coarsening of that of A, by Theorem 6.16; similarly we have a skew-
semisimple stratum A’ =[A’,¢,r 4+ 1,7]. Since the strata A,, A’ inter-
twine, we may apply Lemma 7.15 and, replacing A’ by its conjugate gA’,
we may assume 7 = .

Now, if h € G intertwines the strata A, and Ai, then Theorem 6.22
allows us to write h = xby, with be B, NG (and z,y in certain compact
subgroups). Then Proposition 7.3, applied as in the proof of Proposi-
tion 7.1, implies that the derived strata [A,r + 1,7, s4(8 — )] and [A', r +
1,7, s4(8" —~)] intertwine (blockwise). Then we may assume that v is
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simple. On the other hand, these derived strata are equivalent to skew-
semisimple strata; moreover, either both are equivalent to a null stratum
or neither is, by Proposition 6.9. Take a o-equivariant non-zero form A
from F[y] to F. The base step (below) now implies that the bijection ( :
I — I' has the property that (V7 hy|yi) = (VSO hy|ew ), with h = Ao hs,.
But then we also have (V?, h|y:) = (V) hlvr¢(s))s as required.

It remains to show the base case r = ¢ — 1. Replacing [\, ¢,q — 1, 5] by
a conjugate if necessary, we may assume that the strata are intertwined by 1
so that

BHan (B +a_,) #2.

Thus there are elements a € a; and o’ € a such that
z:=ygt+a=ypg +ad.

By the bijectivity of ¢ we can assume that I = I’ and ( is the identity. Let
el

We show that there is an idempotent e such that e =1° (mod a1) and
e=1" (mod a}): there is a polynomial Q € op[X] such that Q(yz) =1’
(mod a1). Moreover, by replacing Q(X) by (1/2)(Q(X) + o(Q)(£X)), we
can choose @ such that, for all j, the coefficient of X7 is symmet-
ric (resp. skew-symmetric) if and only if ny is symmetric (resp. skew-
symmetric). We have a canonical isomorphism from «[ys] to £[ys] (mapping
Us to yg) so Q(yp) is congruent to some idempotent modulo af, and
indeed Q(yg)=1" (mod a}) since the matching ¢ is given by matching
minimal polynomials. By Proposition 7.13 applied with £. = a, N a, there is
a symmetric idempotent e € ag N aj, congruent to Q(z) modulo both radicals.

The idempotent e gives a new splitting V = V* @ (V) for both lattice
sequences.

Finally, we show that V* and Vi are isomorphic signed hermitian spaces.
We define the map : Vi — V' to be the restriction of e to V. We first
show that the map is injective. If v is a non-zero element of its kernel, then

there is an integer [ such that v € AJ\A7_ ;. But then

0zv=1v=ev=0 (mod A1),
where the third congruence uses that e = 1° (mod a;). Similarly, the restric-
tion of 1* to V? is injective and these maps induce pairwise inverse & p-

isomorphisms between Af/A} 41 and Ali / /~\f 41 where Af is the intersection
of A; with V. Thus ¥(A?) is equal to A’.
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We now compare the hermitian structures. For v € A} and w € (A} +1)#

we have

h(v, w) = h(v, 1'w) = h(v, ew) = h(v, e2w) = h(ev, ew) = h(Y(v), P(w)).
By Proposition 3.1 there is an F-linear isometry
B (V2 Bl = (7, Blg)
such that

e (A = A’ and

° 1; and 1) induce the same isomorphism on Ali / Al

141, for all integers [.

Thus, Vi, V*, and similarly V"%, are isomorphic signed hermitian spaces. [

7.3 Matching for equivalent strata
We need to understand the matching between two equivalent strata, and
for that reason we have the following three results.

LEMMA 7.16. Suppose that e is an idempotent in [ [, A such that every
non-zero element x of [[; A% satisfies vp(ex — xe) > vp(x). Then e is a
central idempotent of [ [, A that is, commutes with all elements of IL Abt

Proof. Let z be an element of [[; A% and put 2’ = a.(z) = ex — ze.
Then ex’e is zero and one checks a(ae(z')) = 2’. The condition on e now
implies 2/ = 0 and thus e is central. []

LEMMA 7.17. Let [A, g, m, 8] and [A, g, m, 8] be two semisimple strata,
such that . ;) ) .
U (a)BgU (a) =U (a)BgU (a)

then there are a bijection T:1 — I' and an element g of ﬁl(a) such that:

(i) 1'=1"® (mod a;); and
(11) glig—l — 17'(7L)’.

for all indices i € I. Moreover, the bijection T satisfies

dimye,. (A/A% ) = dim,, (AT /A7) for allie I, jeZ.

Proof. By the equality of the two sets and Lemmas 7.13 and 7.16, every

primitive central idempotent of Bg has to be congruent modulo a;(A) to a
sum of primitive central idempotents of Bg/, and vice versa. The first part
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follows from this. For the second part, take the map g which sends v € V' to
> 171y, Finally, the map v — 1% induces, for each j € Z, a linear map

A;(i)/A]T-J(g — Aé /A;'-Jrl whose inverse is induced by v — 170y, [

LEMMA 7.18. Let [A, q, m, ] and [A, g, m, 5] be equivalent semisim-
ple strata. Then there is an element g of 1+ m_g1m) (B, A) such that
[A, q,m, B8] and [A, q,m, gB'g~'] have the same associated splitting.

Proof. Note that we may replace [A, ¢, m, 5] by an equivalent stratum
with the same splitting (and likewise for [A, ¢, m, #']). Thus, by applying
Corollary 7.8, we may assume that 8 and ' have the same characteristic
polynomial and thus there is an element z of G such that z8z~! = 3.

Since the strata intertwine, Proposition 7.1 gives us a matching ¢ : [ —
I’ such that the minimal polynomials satisfy pug, = 8L and dimp V' =

dimp VSO, for each i € I. Note that this implies that 2V = V¢, We can
also compare the intertwining sets of the strata (which are equal) and then
Lemma 7.17 gives us a map 7: I — I’ such that 1 =17 (mod a;), for all
i € 1. Since the identity intertwines the two strata, Corollary 7.9 implies that
we can write the identity as uyv, with u, v € Gl (A) and y = [[;c; v such that
y; Vi = V<@ Moreover, we have y =u"1v1 e ﬁl(A) so that y; A% = AS(),
Thus
'=yl'y ' =10 (mod ay).

In particular, we get 170 =1¢0) (mod a;) so that (=7, and then
Lemma 7.17 also implies that ( satisfies the extra condition

dimy.,. (A/A% ) = dim,, (ASY/ASS)) forallie I, j e Z.

Now A? and 2 'AS®) are op(g;-lattice sequences in Vi with successive
quotients of the same dimensions so there is an element z; of Bgi such
that z A’ =2 'AS®. In particular, writing z =[]
conjugates 3 to 4 and lies in U(A).

Finally, since the strata [A, ¢, m, (] and [A,q, m, '] are equivalent,
the element zz also lies in n_,,(8, A) N U(A) which, by Lemma 6.20, is
(1 +m_(kgm) (B, A)bg. Hence we can write xz=gb, with b€ by and
gEL+m_(yim (B, A). i

We end this section with a criterion for a minimal semisimple stratum to
be equivalent to a skew-semisimple stratum, in terms of its characteristic

ier %i» the element w2z

polynomial.
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LEMMA 7.19. Suppose [A,m,m — 1, (] is a semisimple stratum such
that A is self-dual and o(B8)=—03 (mod a1_.,). Put ey =e(F|Fy), e=
e(Alor) and g=ged(m,e), and set n=(—1)Fmtec0)/9eo  Let ¢ be the
characteristic polynomial of [A, m, m — 1, B] and suppose that its primary
factors ¢; satisfy

($:)(X) = 0?5 g (nX).
Then the stratum is equivalent to a skew-semisimple stratum.

Proof. Let (1%) be the idempotents of the associated splitting of J3.
By hypothesis, the stratum [A,m,m — 1, 8] is equivalent to [A,m,m —
1, —o(B)], which is also semisimple, with associated idempotents (o(1%)).
Then Lemma 7.17 implies that there is a bijection 7 of I such that o(1%)
is congruent to 17 modulo a;, for all indices i. Recalling that ¢ is the
characteristic polynomial of (the reduction of) yg = 3¢/9t5™/9 and noting
that o(yg) is congruent to nyg modulo ay, it follows that o(¢;)(X) is equal
to ndeg(¢T<i))¢T(i) (nX), whence ¢; = ¢(;), by the hypotheses of the lemma.
However, the characteristic polynomials for different simple blocks (that is,
for different ¢) are coprime and thus 7(i) = for all 1.

Now we apply Corollary 7.14 to the elements (1° + o(1%))/2 (and & = a,.)
to obtain pairwise orthogonal symmetric idempotents e; with ) . e; = 1.
Then we conjugate the stratum by » e;1' to obtain a stratum equivalent
to [A, m, m — 1, 5] whose simple blocks are equivalent to skew-simple strata
by [Ste01b, 1.10]. This finishes the proof. [

§8. Intertwining and conjugacy for semisimple strata

In the case of simple strata on a fixed lattice chain, intertwining implies
conjugacy up to equivalence (see [BK93, 2.6.1]). The same result is true
for arbitrary lattice sequences and, as we prove here, for simple skew strata
(that is, G-intertwining implies G-conjugacy). However, the analogous result
is no longer true for semisimple strata. As well as giving some examples to
illustrate this, we give a useful sufficient additional condition to guarantee
that the strata are indeed conjugate.

8.1 For general linear groups

THEOREM 8.1. (Cf. [BK93, 2.6.1]) Suppose [A, q,r, 8] and [A,q,r, (]
are simple strata which intertwine. Then, up to equivalence they are
conjugate by an element of U(A).
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Proof. By Corollary 7.8, we can assume that $ and /3’ have the same
characteristic polynomial. By [BH96, Lemma 1.6], there is an element of
U(A) which conjugates 8 to 3. 0

In contrast to simple strata we cannot achieve intertwining implies
conjugacy for semisimple strata.

EXAMPLE 8.2. Let V be a 4-dimensional vector space over I’ with basis
v1,...,0s and let A be the lattice chain of period 2 such that

Ao =vi0F + v20F + v30F + V40F, A1 =v10F + v20F + V30F + V4P .
Then, with respect to the basis, ag(A) is

O OfF O OFf

OfF O OfF OF

O OfF OfF OF

PrF PFr PF OF
The two elements:

b:=diag(w !, w !, —w !, —w 1),

V:=diag(—w !, — o, w L, w )

give two semisimple strata [A, 2, 1, ] and [A, 2, 1, b'] which intertwine but
whose equivalence classes are not conjugate over Auty(V'). Indeed, suppose
for contradiction that the strata are conjugate under an element of G; then
this element has to be an element of the normalizer of A and thus by
Lemma 7.18 we can assume after conjugation that the associated splittings,
which are the same for both strata, are conjugated to each other. Note
that this splitting is given by V! = v F + v F and V2 =v3F + v4F. The
minimal polynomials of the strata force that the matching has to be given
by exchanging the two blocks V! and V2. But this is not possible, because
the image of A' =A N V! contains only one homothety class of lattices,
while the image of A2 = A N V2 contains two.

Thus we impose an extra condition in the following theorem.

THEOREM 8.3. Suppose that [A, q,r, B] and [A, ¢, r, B'] are two non-null
semisimple strata which intertwine and let ¢ be the matching between their
index sets. Suppose moreover that

(8.4) dimye, (AS/A% ) = dim,e, (ASY/ASY)  for allie I, j e .

Then the strata are conjugate by an element of U(A) N IL A,
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Proof. Fix an index i of I. By Corollary 7.9 there is an F-
linear isomorphism g; : V — V¢() such that [g;A?, ¢, 7, g;3g; '] intertwines
[ASO) g, r, B¢D)]. Now condition (8.4) implies that the lattice sequences
giA" and AC(i) are conjugate so, modifying g; if necessary, we may assume
giAé- :AE(Z), for each j€Z. Now we can apply Theorem 8.1 so that,
replacing g; by a translate by an element of U(AS(®), we can assume that
[giN?, g, 7, giB7g; Y] is equivalent to [ASD), g, 7, B<()]. Then

iel iel iel
so that [[;c; gi € U(A) conjugates the first to the second stratum. [

8.2 For classical groups
We give here the similar “intertwining implies conjugacy” statements for
skew-semisimple strata, beginning with the simple case.

THEOREM 8.5. Suppose [A, q,r, B8] and [A, q,r, 5] are two skew-simple
strata which intertwine in G. Then they are conjugate over U(A).

Proof. The proof is mutatis mutandis that of Theorem 8.1: we apply
Lemma 7.15, then Theorem 5.2, and then Proposition 5.4. [

As in the non-skew case, this is no longer true if one replaces simple by
semisimple.

EXAMPLE 8.6. Consider a ramified quadratic field extension F|F and
a skew-hermitian form on V = F* whose Gram matrix (h;;) with respect to
the standard basis is the antidiagonal matrix with entries

ha1 = h3o = —1 = —ho3 = —hyy4,

and write G for the isometry group of this form. Let @ be a skew-symmetric
uniformizer of F' and let z be a non-square unit in Fj. Let A be a self-dual
lattice chain corresponding to the hereditary order

oFp Pr PF PF
O OF Pfr PFr
OF OF OF PFr
o O O Op
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We define the skew-symmetric elements:

1 -1 1

b:=diag(w 'z, @ !, w !, 2w Y), V:=diag(w™, w2, w2, w ).
The minimal skew-semisimple strata [A, 4, 3,b] and [A, 4, 3, b'] intertwine
over (G because b is conjugate to b’ under G, but the strata are not conjugate
under G because they are not conjugate under U(A).

As an immediate consequence of Proposition 7.10, [Skol4, Proposi-
tion 5.2] and Theorem 8.5 (as in the non-skew case above) we have:

THEOREM 8.7. Suppose that [A,q,r, 8] and [A,q,r, 5] are two non-
null skew-semisimple strata which intertwine in G, with matching ¢, such
that (8.4) holds. Then the strata are conjugate by an element of U(A).

89. Semisimple characters

Associated to the semisimple strata studied in the previous sections, we
have sets of characters of certain compact open subgroups, which are called
semisimple characters. The purpose of this section is both briefly to recall
their definitions and properties (from [BK93] and [Ste05]) and to ensure
that all the results we need are available for arbitrary lattice sequences.

9.1 Semisimple characters for G

Fiz a non-null semisimple stratum [A, ¢, 0, 5]. Define r:= —ko(8, A) and
let [A, q,r,v] be a semisimple stratum equivalent to [A,q,r, 3] such that
v commutes with the projections 1° of the associated splitting of B. If
[A, q, 7, B] is minimal then we take v to be zero.

The rings of a semisimple stratum (cf. [BK93, 3.1])
We start with the orders h(3, A) and j(3, A), defined inductively by

e h(B,A)=bgo+ by, A) Nap 241,
L ](B, A) = bﬁ,O + ](77 A) N a\_r+1/2ja

with §(0, A) =3j(0, A) = ag. We define now the groups
H™(3,8) =58, A)n U™ A), (B, A) =i(8, ) n T (A),
for m > —1, and write H and J instead of H° and J°.

We now begin the proofs of the statements in [BK93, Section 3.1] for
semisimple strata. (Note that some of these are already in [Ste05].)
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ProposITION 9.1. (Cf. [BK93, (3.1.9)])

(i) For all =1 <t < r, the lattice f)L%J‘H(ﬂ, A) is a bimodule over the ring
n_¢ (ﬁ, A) .

(ii) Ifr <q, b*(B, A) is equal to h*(y, A) for k> |r/2] + 1.

(iii) For k>0, h*(B, A) is a bg-bimodule.

(iv) b(B,A) is a ring and in particular an op-order in A and H*(3, A) is a
two-sided ideal of h(B, A), for all non-negative integers k.

(v) Lett<r—1 andlet [A,q,t, 5] be a semisimple stratum equivalent to
[A, q,t, B3]. Then b*(B,A) is equal to H*(B', A), for all non-negative
integers k>t — [(r+1)/2].

(vi) The definition of h(B, A) does not depend on the choice of ~y.

Proof. In [BK93, (3.1.9)] the statement is proven for strict simple strata.
In the case of a non-strict simple stratum [A, ¢, m, 8], the stratum

e(A)—-1

@ (A - l)7 q,m, 5696

=0

is a strict simple stratum and, using the identity

1yb* (8%, @y(A — 1)1y = §*(B, A)
(where 1y denotes projection onto the first copy of V' in @7&)*1‘/) we get
the result for all simple strata. Thus we continue with the case of semisimple
strata.

We are going to prove the semisimple case via induction along /3, but (v)
only for the case where the strata in (v) have the same associated splitting;
we prove the general case after the next four lemmas. We start with the
inductive step and begin with (v). We use the idea of [Ste05, Lemma 3.9].
Assume that b¥(3, A) and h*(3’, A) are defined using the same v and that
[A, g, t, 5] has the same associated splitting as [A, ¢, t, 5]. In particular, we
immediately get that b*(8, A) N A =h* (5, A) N A%, for i+# j, because
b(v,A) is a bi-b,-module, while hE(B, A) N A% =bE(B', A) N A% follows
from the simple case. The proof of (ii) is similar, and (v) for v implies (vi).
Now (i) follows from [Ste05, 3.10(ii)], (iii) follows from (i) for t = —1, and
finally (iv) follows from (iii), (ii), and (iv) for ~.

For the base case (when v =0) (i) and (v) are shown as in the induction
step and the remaining assertions are obvious.
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To prove Proposition 9.1(v) in general we need the following sequence of
lemmas.

LEMMA 9.2. bmaX{O’Ht_L(HI)/%}(B, A) is an n_4(B, A)-bimodule for all
r>t>0.
For this we need the analogue of [Ste05, Lemma 3.10] for h instead of j

(see the sentence following loc. cit.).

LEMMA 9.3. (Cf. [Ste05, Lemma 3.10(i)])

(1) For all integers k> |r/2] + 1, we have ny_, Na, C h*(B, A).
(ii) For all integers k > | (r +1)/2], we have ng_, Nag Ci*(B, A).

Proof of Lemma 9.2. The proof is by induction on r = —ko(8, A). We
have the two important identities:

ht(ﬁy A) _ bﬁ,t + hmax{t,Lr/QJ—l—l}(,% A)
and
ny=bgo+n(8,A)Na,
We write to for max{0,1+t— [(r +1)/2]} so that

(9.4) t0+r—t>1—|—gJ and 2(r —t+1to) >

We have to show that n_;h'0 (3, A) is a subset of h (3, A). We have

o praxtiolr/2JH+1}(y A) = pmax{to.lr/2141} (5 A) is a bg g-module.
o (n_4(B,A)Nay,—4)bgy, is contained in ng,—¢(B, A) N agy4r—¢, which is a
subset of hmaxtto.lr/2141} (5 A) by (9.4) and Lemma 9.3.

The last containment we need, that (n_(3, A) N ar_t)bmax{to’V/QJ“}(fy, A)
is a subset of h!o(3, A), is proved by induction. The case of v=0 is
trivial, while the induction step is a result of the equality n_;(3, A) Na,_; =
n_¢(v, A) Na,—¢ and the induction hypothesis. [

Finally, we see that the proof of the general case of Proposition 9.1(v)
follows from Lemmas 9.2 and 7.18. N

Given now the preliminary results on semisimple strata that we have
obtained in previous sections and Proposition 9.1, we can follow the
definitions and proofs of [BK93, Section 3.1], from (3.1.3) to (3.1.21), to
see that if one makes the obvious substitution

e “replace bgn; by a; Nny”, for ¢t >0,
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then everything is true except possibly for the equalities in (3.1.9)(iii),
in (3.1.10)(iii) and in (3.1.11). (Some of these are already described in
[Ste05].) Thus, from now on, we will use these statements from [BK93] for
semisimple strata by referring to [BK93] (and giving the reference to [Ste05]
if there is one).

Characters (Cf. [BK93, 3.2])

Here we introduce the semisimple characters and their groups exactly the
same way as it was done in [BK93, Section 3.2] for simple characters. This
definition is equivalent to the definition given in [Ste05, Section 3]. We fix
an additive character ¥y of F' of level one (that is, trivial on pp but not
on op). We define ¢4 := 9 o try p and a character

~ q/2)+1
v U Q) e, a1+ 2) = ga(Ba).
The kernel of 93 contains Gq+1(A) because ¢ r has level one.

DEFINITION 9.5. Suppose 0 <m <r. If g=r then we define the set
C(A, m, B) to be the set of all characters § : H™*1(3, A) — C* such that:

(i) the restriction of  to H™*+1(3, A) N GLQ/QHI(A) is equal to ¥g;
(ii) the restriction of 6§ to H™L(5, A)N BE factors through the determi-
nant map detp, : By — F[8]*.

If ¢ > r then we define C(A, m, 8) inductively to be the set of all characters
0 : H™+1 (3, A) — C* such that:

(i) ¢ is normalized by n(A) N By
ii) the restriction of  to H™+1(3, A) N B} factors through the determi-
B
nant map detp, : BﬁX — F[B]*;
(iii) if m' = max(m, |[r/2]), then Ol pmr+1(g,) is of the form fot)e, for some
0o € C(A,m',v) and c=f — .

We also define C(A, m, 0) to be the set consisting of the trivial character on
6m+1 ( A)
REMARK 9.6.
(i) For m > |q/2] we have C(A, m, B) = {¢3}.
(ii) This definition of the set of semisimple characters is a priori different

from the one introduced in [Ste05, 3.13], which we temporarily call
C(A,m, B)pks:
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(a) If A is strict and the stratum is simple then C(A, m, 8)pks is
defined as in Definition 9.5, see [BK93, (3.2.1)(3.2.3)]. In [Ste05],
the set C(A, m,0)pks is defined to be the set consisting of the
trivial character on meH(A).

(b) If A is a lattice sequence and the stratum is simple then
C(A, m, B)pKs is defined in [BK94, Section 5] in the following way.
We take an op-lattice chain A? of the same period as A, in some
space VO and restrict all elements of C(A°® A, m, 83D B)pKs
to H™TY(B,A). The obtained restrictions form the set
C(A,m, B)BKs-

(¢) If A is a lattice sequence and the stratum is semisimple and
non-null with associated splitting V = @,V* then C(A, m, 8)pks
is defined to be the set of characters 6 such that 0;:=
Ol gm+1(,,a7) is an element of C(A*,m, Bi)prs and, for m' =
max(m, | (—ko(3,A))/2]), the restriction of 6 to H™ (5, A) is
equal to ¥g_~0y for some element 0y of C(A,m’,v)pks where
[A, q, —ko(B,A),v] is an element of a defining sequence of the
stratum with 3 (see [Ste05, 3.13]).

We write I(6,0") for the intertwining of two characters in a group H,
that is, g € H is an element of Iy (6,6") if and only if 69 : 2+ 0(grg™1)
and @ agree on the intersection of their domains. In the case H =G we
omit the subscript.

PROPOSITION 9.7. The sets C(A, m, B)prs and C(A, m, B) coincide. In
particular the definition is independent of the choice of .

Proof. Let us first remark that the definition of C(A, m, ) is independent
of the choice of v once we have established the equality for all possible strata
which can occur as a first member with respect to a jump sequence of (A, ),
by [Ste05, 3.14(ii)]. We prove the equality at first for simple strata. Note
that we fix here ¢ and that we do an induction on the critical exponent k.
If the stratum is null, then both sets only consist of the trivial character on
ﬁerl ( A)

Suppose now that ko> —¢: the set C(A,m,)pks is a subset of
C(A, m, B) because of [BK93, (3.2.1)(3.2.3)]. (The normalizing property is
also satisfied in the case of lattice sequences because the lattice chain A° in
Remark 9.6(ii)(b) can be chosen to be principal.)
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For the other containment in the case of m > |—ko/2] we have that
C(A, m, B) is contained in C(A, m, v)1g—, which is equal to

C(A,m,v)Brss—r =C(A, m, B)BKS

by induction hypothesis. In the case m < |—ko/2] we follow an induction
on m, where we use | —ko/2] as the start for the induction, which is known
by the first case.

Take an element 0 of C(A, m, ). Consider Case (ii)(b) in Remark 9.6.
Writing A=A°® A, we have to show that there is an element of
C(A,m,B® B)prs which restricts to 0. By the induction hypothesis
on m there is a character  in C(A,m+1,3@® B)Bks which restricts to

O] grm+2(8,4)- On the other hand, by definition e‘ﬁerl factorizes through

(AR)

the determinant, that is, has the form x o detp, with x a smooth character

of E*. We define # a character on

+1
(

H™ M (Bap,A)=U"""(Ag)H"2(B® 3, A)

via 0(bz) = x(detz(b))f(z). If this is well defined then it lies in
C(A,m, B® B)pKs and its restriction to H™1(3, A) is 6.

For 0 to be well defined we only need that y odetp |[~J7n+1 (ip) and 6

. . . . . ST 2, x .
coincide on the intersection of their domains, which is ot (Ag). The image

of detz on ﬁm+2(]\E) coincides with the image of detp on fjm+2(AE) (it

is equal to INJL(mH)/e(AE)JH(oE)) and the restriction of 8 to ﬁm+2(./_XE)

factorizes through detz. Thus this restriction has to be equal to the

corresponding restriction of x o det 5 because 6 and 6 coincide on I~Jm+2(A E)-
This finishes the proof in the simple case.

We consider now the semisimple case for kg > —q. We have that
C(A, m, B)pKs is a subset of C(A, m, 3) because the simple restrictions of an
element 6 of the first set satisfy the normalizing and the factorizing condition
and 6 is trivial on the unipotent parts of the Iwahori decomposition of
H™(3, A) with respect to 3 by [Ste05, 3.15]. For the other containment
the case m > | —ko/2] follows as in the simple case. If m < | —ko/2| then we
show by induction on m that the restriction #; of an element 6 of C(A, m, [3)
is an element of C(A*, m, B;)BKks. By induction hypothesis Oil frm+2(,,A0)
is an element of C(A',m+1,5;)pxs and the axioms for 6 imply the
factorization condition for ;. Thus 6; is an element of C(A?, m, 3;) because

it is normalized by n(Aj'Ei) (because 0;]gm+2(g, a1y and 01|0m+1(A%‘) are) and
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because 0;|gm+2(g, ps) is an element of C(A*, m + 1, 3;) by the simple case.
Thus 6; is an element of C(A?, m, 5;)pxs again by the simple case. This
finishes the proof. [

Let us recall the intertwining formula for a semisimple character:

PROPOSITION 9.8. ([Ste05, 3.16, 3.22], [BK93, (3.3.2)]) The intertwin-
ing of a semisimple character 0 € C(A, m, () is given by Sm(B)BESm(B)
where

Sm(B) = S(A,m, B) =14 m_gy_p +jLTFFD2 (5 A).

Moreover, the normalizer nw(0) of 6 contains Sy, ().

Reading the proofs of [BK93] from (3.2.1) to (3.5.9) we see that all
statements except the statements (3.3.17) and (3.5.1) are true for semisimple
characters (replacing bg,n; by a; Nngy throughout), after making the
following assumptions:

e For the statements (3.3.20) and (3.5.2) until (3.5.9) the elements f;, B2
and 1 need to be assumed to have the same associated splitting;
e The element b in (3.5.2) and (3.5.6) is assumed to be split by the splitting

of S.

However (3.3.20) is also true without the additional assumption, by
Lemma 7.18, and we will see that there are obvious modifications of (3.3.17)
and (3.5.1) which are still true.

PROPOSITION 9.9. (See [BK93, (3.5.1)]) Let [A, g, m, 5] and
[A, g, m, 8] be semisimple strata such that C(A,m,B)NC(A,m,p5") is
non-empty. Then there is a bijection 7:1—1' such that 1'=170
(mod a;), and:

(i) ko(B,A) =ko(B', A);

(i) the field extensions E;|F and E’T(i)]F have the same inertia degree and
the same ramification index;

(iii) the dimensions of V' and V@) qs F-vector spaces coincide;

(iv) there is an element g of Sp,(B) such that gV* is equal to V™® . In fact,
the element g=7), 1701 is an ezample.
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Proof. The existence of 7 follows from taking the topological closure
of the two descriptions of the intertwining of an element 6 € C(A, m, ) N
C(A,m, B),

I(G) - Sm(/B>BZ3< Sm(ﬁ) = Sm(ﬁl)BE/Sm(ﬁl)u

together with Lemma 7.17. We now follow the proof of [BK93, (3.5.1)] to get
that bg/bg 1 is isomorphic to bg o/bg 1, by an isomorphism of kp-algebras
which maps 1% to 17), We also have that (1%agl?)/a; = (17ag17®)/a; and
thus, as in the proof of [BK93, (2.1.4)], we get the desired equalities in (ii)
and (iii).

The equality of the additive closures of the intertwining set I(6) Nap in
terms of 8 and (' implies that, for each i € I, we can write 17() = b+ u
with 1 +u € 5,,(f) and b € bg. By Lemma 7.13 applied with €, = bgo and
&= (Sm(B) —1)Nbg, there is an idempotent e in Bz which is congru-
ent to b (mod S,,(3) — 1). Since, in particular, e=b= 17" = 1’ (mod a;),
Lemma 7.16 implies that e is a central idempotent in Bpg, in particular a
sum of primitive central idempotents of Bg. Since e =1 (mod ay), we see
that in fact e = 1°. Thus in fact 1° =17 (mod S,,,(8) — 1) and we deduce
that g =", 1717 is an element of S,,(/3) with the required property (iv).

We write kg and k{, for the corresponding critical exponents. By (iv) and
Proposition 9.8 we can suppose that 3 and ' have the same associated
splitting. Assume ko > k{, and take a semisimple stratum [A, g, —ko, 7]
equivalent to [A, g, —ko, 8] such that v € [, A%. We have C(A, —ko, /) N
C(A, —ko,v) # @ and thus v and S have the same associated splitting by
the existence of the map 7 for 8 and ~. Then the fact that ko(y, A) < kg
implies that there is an index ig such that [A%, — —kg, B;,] is not simple. Tt
is still either pure or equivalent to a null stratum. Since (ii) implies that

dimp F[v;,] = dimp F[B; ] = dimp F[B;],

it follows from simplicity that «;, =0 (see Definition 6.1). This forces the
restriction of an element 6 € C(A, m, ') NC(A, m, 3) to H_kOH(BZ’-O, Ao)
to be trivial and therefore i =0. (Otherwise ¢; :=—va(8;,) > —ko, by
simplicity of [A"O,qgo, —ko, B;,], and wﬁ;’o is not trivial on 0% (A) by
Proposition 6.9.)

Thus 6;, € C(A%, m,0) NC(A%, m, B;,) is trivial and by the same argu-
ment we obtain 3;, = 0. But this is a contradiction to the non-simplicity of

[AZ‘O’ ) _k076i0]' D
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REMARK 9.10. Recall that a semisimple character 6 is called simple
if there is a simple stratum [A, ¢, m, 5] such that 6 € C(A, m, §); then,
by Proposition 9.9, every semisimple stratum [A, ¢, m, 3’] such that 6 €
C(A, m, B") has to be simple.

PROPOSITION 9.11. (See [BK93, (3.3.17)]) For every element of 6 of
C(A,m, B) the intersection of the mormalizer n(0) with n(A) is the set
Sm(B)N(AE). In particular, the intersection of n(0) with Uy(A) is equal to

(9.12) L+ by +m gy (B, A) + LR34

and (Uy(A) Nn(8)) — 1 is a bo-bimodule and is closed under multiplication.

Proof. The set ¢:=m_p,_mn (8, A) + jl(=ko+1)/2] (8, A) is a bp-bimodule
and closed under multiplication by [BK93, (3.1.10)]. Thus (9.12) is equal to
(14+b1)(1+0).

An element of n(f#) Nn(A) intertwines 6 and normalizes A thus it is
contained in S,,(8)n(Ag) by the intertwining formula. The latter set is
contained in the normalizer of # because Sy, () and n(Ag) are. This finishes
the proof of the first statement. If we intersect the set n(6) Nn(A) further

with le(A) then we obtain the formula (9.12). [

By [BK93, Theorem 3.5.8], a non-trivial intersection of C(A, m, ) with
C(A, m, B') implies equality of the sets. We will generalize this theorem to a
blockwise version. If V =P ka is a splitting for V' which splits a semisimple
stratum [A, ¢, m, (], we write ), for the restriction of 6 to H™+1(8, AF).

LEMMA 9.13. Suppose that V = @kvk is a splitting which refines the
associated splittings of two semisimple strata [A, q, m, 8] and [A, ¢, m, B'].
Suppose further that the sets C(A,m + 1, ) and C(A,m + 1,5’") coincide
and that C(A*, m, By) is equal to C(A*, m, B), for all k. Let a € a_p,—1 N
[T, A**, 0 € C(A,m, B) and ' € C(A, m, B') be given such that O coincides
with 0)1q, for all indices k. Then [A,q,m,[ +a] is equivalent to a
semisimple stratum with the same associated splitting as B, and the sets
C(A,m, B) and oC(A, m, ') coincide and both contain 6 = 6"1),.

Note the abuse of notation here: If » =m + 1 we mean by C(A, m + 1, 3)
the set C(A, m + 1, 7).

Proof. The group H™ (3, A) is the same as H™(3’, A) by Proposi-
tion 9.1(ii) and [BK93, (3.5.9)]. More precisely, it is a combination of both
statements, where we apply (3.5.9) in the case that kg is equal to k{ and
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smaller than —(m 4+ 1). To do this, we must first show that, in this case, (
and ' have the same associated splitting.

The corresponding idempotents (1%); and (1°); of the associated split-
tings commute because the idempotents (1¥); commute with all of them and
are a refinement of both. By Proposition 9.9 there is a bijection 7 from [
to I’ such that 1™ is congruent to 1* modulo a;. The product 1717 is
congruent to zero for i’ # 7(i) and thus it is zero, because they commute
(take powers). Thus 1¢ and 17 coincide, that is, the splittings coincide.

We now go back to the general case and show that [A, ¢, m, ' + a] is
equivalent to a semisimple stratum [A, g, m, '] which is split by V = @, V'*.
Let s’ be a tame corestriction with respect to 4/, a parameter for a first
member of a defining sequence for [A, ¢, m, §']. Since 0,9 _,, € C(AF, m, b))
we have that the coset s'(ay) + b’7 ! —m is intertwined by the centralizer of 7;,
and thus s'(ay) is congruent to an element of F[y;] modulo a_,,. Further,
the stratum [A¥, m + 1, m, (8, — ;)] is equivalent to a simple stratum
because [A¥, g, m, B;] is simple. Thus the stratum [A¥, m +1,m, s'(3), +
ar — ;)] is equivalent to a simple stratum and it follows that [A¥, ¢, m, B}, +
ax] is equivalent to a simple stratum by Corollary 6.15. By coarsening the
splitting €, V* we find a semisimple stratum [A, ¢, m, 3”] equivalent to
[A, ¢, m, B’ + a] and by Theorem 6.16 we can choose the desired stratum to
be split by @, V*.

Since [A,q,m, ' +a] is equivalent to the semisimple stratum
[A, g, m, 5"], it follows that C(A, m, 8") is equal to C(A, m, )1, (see for
example [Ste05, Remark 3.14(ii)]) and intersects C(A, m, 3) non-trivially.
Following the same argument as earlier, we see that 8 and " have the
same associated splitting, and it now follows from [BK93, Theorem 3.5.8]
that the sets C(A, m, 8”) and C(A, m, 3) coincide. 0

COROLLARY 9.14. Let [A, q, m, 8] and [A, q, m, '] be semisimple strata.

(i) Suppose that V = @ka is a splitting which refines the two splittings
associated to [A, q, m, 8] and [A, g, m, 3’|, and suppose that there are
semisimple characters 8 € C(A, m, B) and 6’ € C(A, m, 8) such that for
every index k the characters 0y and 0} coincide. Then C(A,m, ) =
C(A,m, ") and both contain 6 =6'.

(ii) Suppose that the sets C(A, m, 8) and C(A, m, 8') intersect non-trivially.
Then they coincide.

(iii) Suppose C(A,m,B)=C(A,m,s) and m>0. Then H™(S,A)=
H™(B',A) and Sp(B) normalizes them.
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Proof. The first assertion follows inductively from Lemma 9.13 with
a =0 and the second follows from the first one by using Proposition 9.9(iv)
and Proposition 9.8. The group S,,(5) normalizes H™ (3, A) by Proposi-
tion 9.1(i) and [BK93, (3.1.15)(iii)]. Then (iii) follows in a similar way
to (ii) by applying [BK93, (3.5.9)] to the case where the associated splittings
coincide. [

9.2 The transfer principle for G
We would like to be able to get an analogue of strata induction for
semisimple characters, for which we need:

e the “translation principle” initially introduced for simple characters in
[BK94, 2.11], and
e a result on “derived characters” (see Proposition 9.17 below).

From now on the element v can be arbitrary, that is, we free v from the
requirements of the beginning of the previous section.

In the following we use the notation m(A) for the set m_ 4 (5,4)4m) (5, A)
for a stratum A =[A, ¢, m, 8]. Equivalent strata A and A’ give coinciding
sets m(A) =m(A).

LEMMA 9.15. Suppose A =[A, q, m, 3] is a semisimple stratum split by
V= @iVi and [A, g, m, '] is a semisimple stratum equivalent to A. Then
there is an element u of 1 +m(A) such that uf'u=1 is split by V =@, V".

Proof. By the intertwining formula, taking the intersection with a and
then the additive closure, we get

m(A) + bg = m(A) + bs.

Thus for every index ¢ there is an element o; € by congruent to the
idempotent 1 modulo m(A). Corollary 7.14 provides idempotents 1 € b
congruent to 1° which sum to 1. The element v =), 191" has the desired
property. [

THEOREM 9.16. Let A:=[A,q,m+1,7] and A" :=[A,q,m +1,7'] be
semisimple strata with the same associated splitting V = &P jVj such that

CA,m+1,7)=C(A,m+1,7).

Let [A,q,m, ] be a semisimple stratum with associated splitting V =
EBZ»E[Vi such that A is equivalent to [A, g, m + 1, 5] and ~y is an element of
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[Lics A% Then there exist a semisimple stratum [\, q, m, 3'] with associated
splitting V =@, cp V" and an element u € (1 + m(A’)) N H AJJ such that

/ -/

[A, q,m+1, ] is equivalent to A, with wy'u™" € [],c;y A™" and

C(A,m, B) =C(A,m, ).
Proof.

(i) Let us first remark that, given a semisimple stratum A” =[A, ¢, m +
1,~"] with the same associated splitting as v, once we know the
assertion for (A, A’) and for (u.A’; A”), for every u € (1+m(A"))N
I1; AJJ | then we know it also for (A, A”).

(ii) The case where A and A’ are equivalent follows directly from
Lemma 9.15 applied (blockwise) to A, A’ taking u to be as there and
p'=p.

(iii) We now reduce to the case that A is simple so assume that the result

has already been proven in this case. Then applying this to the strata
[A7, q, m, Bj], for each j, we can find [A7, g, m ,ﬁ | and elements u; €
1+ m(A%) such that C (A, m, Bj) is equal to C’(AJ, m, B;) and ujvg-ujl
is split by the associated splitting of ﬁ}. Moreover, by conjugating [3;
with an element of S, (3;) we can assume that ; and B; have the same
associated splitting, see Proposition 9.9(iv). The stratum [A, ¢, m, ']
is semisimple, where 3’ =} 7, using Theorem 6.16, and [A, g, m, ]
and [A, ¢, m, 8] have the same associated splitting.
Take 6 € C(A, m, 8). Although we know that, for each i, the restriction
of 6 to block i lies in C(A?, m,3!), it does not follow that 6 €
C(A, m, ), since the definition of semisimple character entails a certain
compatibility between the blocks. However, there is an element a €
[T, A% Na_,,_1 such that 6_, is an element of C(A, m, 8’). Then, by
Lemma 9.13, the stratum [A, ¢, m, 8’ + a] is equivalent to a semisimple
stratum with the same associated splitting as 3, and thus as 8/, with
the same set of semisimple characters as the stratum with entry 3. This
finishes the proof of this case.

(iv) Finally, we assume that A is simple, so that A’ is simple too, by
Proposition 9.9. By [BK93, (3.5.9)] there is a simple stratum [A, ¢, m +
1,~v"], equivalent to A’ such that C(A,m,~) is equal to C(A, m,~").
Thus by (i) and (ii) we can assume 7' =~". As in [BK94, 5.2(iii)], we
take two tame corestrictions s and s’ for v and 4/ such that s(z) = /()
(mod a;41), for all elements = of a; and all integers ¢.
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We put ¢ = — . Then [A, m + 1, m, s(c)] is equivalent to a semisim-
ple stratum by Corollary 6.15. As in [BK94, 5.3], the fact that
[A,m+1,m, s(c)] is fundamental implies that [A,m + 1, m, s'(c)] is
fundamental too; however, we need that the latter stratum also satisfies
the criterion on the maps my, ;;,41,5(c) of Proposition 6.11. Note that
the same proposition implies that the maps my, ;11 5(¢) do satisfy this
criterion.

The tame corestrictions s and s’ are surjective as maps from a; to
b, and to b, ;, respectively, and thus we obtain an isomorphism of
rp-vector spaces ¢; from by /by 1 to by /by gy, for all integers ¢,
by sending the class of s(z) to that of s'(z); note that this is well
defined by the choice of s and s’. Then My m1,s'(c) 15 €qual 10 ¢pp—1 ©
My m41,s(c) © ¢, and thus, varying n, the maps My mi1,s'(c) Satisfy the
additional criterion of Proposition 6.11.

The arguments after [BK94, (5.4)] show that the algebras R([A, m +
1,m, s(c)]) and R([A, m + 1, m, s'(c)]) are isomorphic, which implies,
by Proposition 6.11, that [A, m + 1, m, s'(¢)] is equivalent to a semisim-
ple stratum, say with associated splitting (11/). By Corollary 6.15 the
stratum [A, ¢, m, v + >, 1i/cli/] is equivalent to a semisimple stratum
[A, g, m, "] with the same splitting and by Proposition 7.6 there is an
element u of 1 + m(A’) such that uf”u~! is equivalent to 4" + ¢ modulo
a_n,. Thus, setting 8’ =uB"u~!, the stratum [A, g, m, 3] satisfies the
desired properties, as

C(Aa m, B) = Q;Z)CC(A’ m, r)/) = wCC(Aa m, 7/) = C(Av m, B/)v

where the last equality follows from [BK93, (3.3.20)]—see the remark
after Proposition 9.8. N

PROPOSITION 9.17.  Suppose m<q—1 and let [A,q,m,B] and
[A, q,m, B'] be semisimple strata which have defining sequences with a
common first element [A,q, m+1,7]. Suppose 8 € C(A,m,3) and 0" €
C(A,m,B") are semisimple characters which agree on restriction to
H™2(~, A), s0 that we can write §' = Oovg—y and 0 = O0gtpg_~tc, for some
0o € C(A,m,7) and c € a_(p41)- Let sy be a tame corestriction with respect
to 7.

(i) Foranyge1(8,0") there are elements x,y € Sm41(7y) and g’ € By such
that g = xg'y; moreover, ¢’ intertwines Vs (B—rte) With Ps ().
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(ii) For any ¢’ € IB’;< (Vs (B=ry+e)s Vs, (8'—) ), there are elements x,y of 1 +
Mg (y,0)—m—1 Such that xg'y intertwines 6 with 0.

(iii) If the characters Vgg—yc) and Yg—-) are equal, then there is z €
L+ mM_po(y,0)—m—1 Such that 0* =0'.

REMARK 9.18. The strategy of the proof of Proposition 9.17(ii) is
as follows: we take z and y such that z¢'y intertwines the stratum
[A, g, m, 5] with [A, g, m, 8+ ¢] (see also Proposition 7.6) and prove that
zg'y intertwines @ with 6. Thus, if ¢ is an element of [[; A%® and ¢’ maps
the splitting associated to 4’ to that of 3, then we can choose = €[], A
and y € [, A”" which satisfy the assertions of Proposition 9.17(ii).

Proof. We have H™1(3,A) = H™TY(8', A) = H™ (v, A) by [BK93,
(3.1.9),(3.5.9)], so we just write H™*+1,

(i) The decomposition g = xg'y follows directly from Proposition 9.8. The
elements z and y normalize H™*! by Corollary 9.14(iii). Thus ¢’ €
I(6%, 0" "). By [BK93, (3.3.9)] we have

z -1
0° = 90@%—1%—71/)[3—%(:, and 0 = eowy'yy—l—'yq/)ﬁ’—’y-

We have 9,15y =Va () and ¢y, -1, =v%_4 () (as characters
of H™*1) and thus their restrictions to o (A) N B} are trivial. Thus,
n meH(A) N B, we have

0% =0 = 00Yp—y+c = b0t (5—y+c)»

and analogously for Y™ . Since ¢’ intertwines 6% with ¥~ and 6, with
itself, it also intertwines s (3_~1c) With ¢, (5.

(ii) If some element ¢ € BY intertwines v, (g_yi¢ Wwith g (3,
then it intertwines the stratum [A,m+1,m,s, (8" —~)] with
[A,m+1,m,s,(8—~v+c) and thus, by Proposition 7.6, there
are elements z,y of 1+m_g (yA)—m—1 such that ¢ intertwines
[A, g, m, yB'y~t] with [A, ¢, m, 27 (B + ¢)z]; that is, ¢’ is an element
of I(13-1(84c)ws Yypry—1). Now we have

¢x—1(,3+c)x = ¢ﬁ+c—7¢x—1’yx—'ﬂ/}77

and an analogous equation for 4),g,-1. Since ¢ intertwines each
of Oy and 1| gm+1 with themselves, we deduce that ¢’ intertwines 6*
with 6%
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(iii) This follows immediately from (ii) applied to the identity element by
putting z = zy, which normalizes H™ !, 0

COROLLARY 9.19. Let [A, ¢, m, 8] and [A, q, m, B'] be semisimple strata
which have semisimple approzimations [A,q, m+ 1,7] and [A, ¢, m + 1,7/
from defining sequences respectively with a common associated splitting
V= @jVj. Suppose that H™2(B, A) is equal to H™2(B', A) and let 6 €
C(A,m,B) and 6 € C(A,m, ") be two intertwining semisimple characters
which coincide on H™2(3, A). Then there is an element in I1; (AT3)* which

intertwines 0 with 0'.

Proof. By the translation principle, Theorem 9.16, there are [A, g, m, 8"],
a semisimple stratum which has [A, ¢, m + 1, 7] as an approximation, and
an element u € (1 +my) N[ A% such that C(A, m, ") =C(A, m,8') and
uyu~! is split by the associated splitting of 3”. Replacing 8’ by u~'5"u, we
reduce to the case where v/ = ~.

Now set 6y =1,_g0 € C(A, m,y). Then there is an element c € EBjAj’j
such that 6’ = 6ytpg ¢, because Oypz_, and 0 are trivial on the lower
and upper unipotent parts of the Iwahori decomposition with respect to
V= @jVj. As we know that 6 and @' intertwine, Proposition 9.17(i)

provides an element of Hj(B%"j )* which intertwines the corresponding
derived characters. Now fix a block j, then Proposition 9.17(ii) provides
an element g; of (A7)* which intertwines 6; with 0;. Thus g=(g;)
intertwines 6 with 6’ because both characters are trivial on the unipotent
parts of the Iwahori decomposition with respect to V =& jVj . [

9.3 Semisimple characters for G

Suppose now that [A, g, m, 8] is a skew-semisimple stratum and continue
with the notation of the previous subsection. The adjoint anti-involution o
of the signed hermitian form A acts on C(A, m, 5) via

(0-0)(9):=0(c(g™"), geH™ (B, A).

DEFINITION 9.20. We define the set of semisimple characters
C_(A,m, ) to be the set of all restrictions 0|gm+1(5 g)ne Where 6 run
through all elements of C(A, m, 3)?, the set of o-fixed points.

We call an element of C_(A, m, 8) a semisimple character for G.

REMARK 9.21. ([Ste05, 3.6], [SteOlb, 2.5])
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(i) The restriction map from C(A, m, )7 to C_(A, m, 3) is bijective, in
particular injective.

(ii) For two skew-semisimple strata [A, ¢, m, 3] and [A, ¢, m, ('], g€ G,
and characters § € C(A, m,3)° and 0 € C(A,m,")? the following

conditions are equivalent:

e gclz(0,0);
e g€ Ig(0lgm+igane Ol (s a)na)-

We have an analogous description to that of Proposition 9.8 of the
intertwining of a semisimple character for G.

PROPOSITION 9.22. [Ste05, 3.27] For 6_€C_(A,m, ) a semisimple
character of G, we have

16(0-) = (Sm(B) N G)(Bs N G)(Sm(8) N G).

For two skew-semisimple strata giving the same set of semisimple
characters we have a stronger version of Proposition 9.9.

PROPOSITION 9.23. Let [A, g, m, 8] and [A, q, m, B'] be skew-semisimple
strata such that the intersection C_(A, m, 3) NC_(A, m, ') is non-empty.

(i) The sets C(A, m, B) and C(A, m, B") coincide.

Let 7: 1 — I be the bijection given by Proposition 9.9, such that 1° =17
(mod ay).

(ii) The spaces V¢ and V™ are isomorphic as hermitian spaces, for all
indices i € 1

(iii) There is an element of UY(A) which normalizes every element of
C(A,m, ) and sends V' onto V™,

Proof. We prove the first statement by induction on m. If m = ¢ then
B=p"=0 and both sets only contain the trivial character on fJ(A), that
is, they coincide, so we suppose m < ¢. Let v and 7/ be entries of a first
member of defining sequences of the skew-semisimple strata [A, ¢, m, ] and
[A, g, m, '], respectively. Then by the induction hypothesis we can assume
that C(A,m +1,7) and C(A, m + 1,~") coincide so, by Proposition 9.1(ii)
and Corollary 9.14(iii), we have

H™(B,A) = H™ (v, A) = H™ (v, A) = H™ (B, A),
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a group which we denote by H™T!. There is, by Glauberman’s corre-
spondence, then a unique o-invariant lift of an element 0_ € C_(A, m, 5) N
C_(A,m, ') to H™"1 and this lies in both C(A, m, 3) and C(A, m, B'). The
result now follows by Corollary 9.14(ii).

The second statement follows directly from Proposition 3.1 applied to
the map f:vm—3 ; 1717y, which lies in U'(A). We are left to prove the
third statement. We write the map f as a tuple f = (f;) where f; = 17017,
We write S,,,(8); for 1°S,,(8)1%. Then o(f;)f; = 111701 € S,,(B); so the
double coset Sy, (') (i) fiSm(B): contains an isometry, by Corollary 3.2. We
can write this isometry as (17() + Ury) (1 + v5), since f; = 171" can be
absorbed into the other terms. We define g = >_,(17® + ury) (1" +v;) € G
so we have to show that g is an element of n(f) N ﬁl(A).

By Proposition 9.11 the set (n(6) N ﬁl(A)) — lis a bp- and a bjj-bimodule,
and is closed under multiplication. Thus the products u,;)v;, uT(i)li, 170y,
and (17 — 19)17 are all elements of (n(#) N le(A)) — 1, and ¢ is an element
of n(6) N [NII(A) as required. [

We also get an analogue to [BK93, 3.5.9] for semisimple characters for G.

PROPOSITION 9.24.  Suppose [A,q,m, '] and [A,q,m, ] are skew-
semisimple strata with the same associated splitting, such that m >0 and

C(A,m,B)=C(A,m, 3.

Then H™(B) = H™(B') and there is a skew-semisimple stratum [A, ¢, m, 5]
equivalent to [A, q, m, B], with the same associated splitting, such that

CA,m—1,8"Y=C(A,m—1,3).

Proof. Corollary 9.14(iii) gives H™(3) = H™(/3’). Now we take a char-
acter 6 in C(A,m — 1, 3)? and a skew-symmetric element b of a_,,(A) in
[, A% such that 61 is an element of C(A,m —1,3'). The same proof
as in the second part of [BK93, 3.5.9] shows that there is a semisimple
stratum [A, n, m — 1, 8”] equivalent to [A,n,m — 1, 8+ b] such that 5" €
[1, A% Since 8+ b is skew-symmetric, 3" can be chosen skew-symmetric,
by [SteO1b, 1.10]. Then

C(A,m—1,8")=C(A,m—1,B)y

has a non-trivial intersection with C(A, m — 1, 8’), and thus they are equal
by Corollary 9.14(ii). [
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Next we obtain an analogue of the translation principle, Theorem 9.16,
for which we need the following lemma.

LEMMA 9.25. Suppose A =[A, q, m, ] and [A, g, m, 3] are equivalent
skew-simple strata and suppose that A is split by the orthogonal sum EBZVZ
Then there is an element u of (1+m(A))NG such that uBu~' is an
element of T]; A%

Proof. As in the proof of Lemma 9.15 we find elements o; € bg' congruent
to 1* modulo m(A). We can replace ; by (a; + o(;))/2 to ensure that the
elements «; are symmetric. By Corollary 7.14 we obtain pairwise orthogonal
symmetric idempotents 1" congruent to o; who sum up to 1. As in the
proof of Proposition 9.23(iii) we see that (1" + 1"m(A)1")(1? 4+ 1'm(A)1%)
contains an isometry, say u,u;. Then g := )", u;u; has the desired property.

i

THEOREM 9.26. Let A=[A,q,m+1,7] and A'=[A,q,m+1,7'] be
skew-semisimple strata with the same associated splitting V = @jvj such
that

C(A,m+1,7)=C(A,m+1,7).

Let [A, g, m, (] be a skew-semisimple stratum, with associated splitting V =

@ieIVi, such that [A, g, m + 1, 5] is equivalent to A and v is an element of
. A% Then, there exists a skew-semisimple stratum [A, q, m, B'], with
el

splitting V = @i'el’vli/ and an element u € (1 +m(A")) N []; A NG, such

that [A, g, m + 1, 8] is equivalent to A', with uy'u™ € [T,cp A" gnd

C(A,m,B)=C(A,m, 3.

Proof. The proof is analogous to the proof of Theorem 9.16, following
the same four steps. Step (i) is the same (with the added requirement that
u € G), while step (ii), the case where A, A" are equivalent, follows from
Lemma 9.25. Step (iii), the reduction from the semisimple to the simple case,
is line by line the same because we can take the element a blockwise skew
and Theorem 6.16 ensures that the stratum [A, ¢, m, 5’ + a] is equivalent
to a skew-semisimple stratum with the same associated splitting as 3’; the
splitting of 3; is conjugate in G to that of ﬂ;- by Proposition 9.23(iii).

There is more to say in step (iv), the case where A is simple. We
can modify +' by Proposition 9.24 to assume C(A, m,~y)=C(A, m,~"). We
choose s a o-equivariant tame corestriction relative to 7, and likewise s’

relative to /. The proof of [BK94, 5.2(iii)] shows that there is A € k;[v] such
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that s(z) + arr1 = A8’ (x) + ag1), for all z € a; and all integers ¢. Since s, s’
are o-equivariant, we deduce that X\ is symmetric, that is, A = \. Then,
choosing a symmetric lift X of A to 0; Y and replacing s’ by As’ , we see that
we may assume that s(x) = s'(z) (mod a;41), for all z € a; and all integers t.

We put ¢=/—+, so that the derived stratum [A, m + 1, m, s(c)]
is equivalent to a skew-semisimple stratum by Corollary 6.15 and
[SteO1b, 1.10]. In particular, denoting by ¢; € kpj,(X) the primary fac-
tors of its characteristic polynomial, we have o(¢;)(X) = nde(®)¢,(nX),
where 7= (—1)@(m+h)+eco)/geo for ¢ = e(Aloppy), eo=e(F[v]|F[v]o) and
g=ged(m+1,e).

Now the strata [A, m + 1, m, s(c)] and [A, m + 1, m, §'(c)] have the same
characteristic polynomial, by the choice of s, s’, and the duality o acts in the
same way on the residue fields kp[,|, kp},/), since they have the same image
in ag/a; by [BK94, 5.2]. Hence [A, m + 1, m, s'(c)] satisfies the hypotheses of
Lemma 7.19 and is equivalent to a skew-semisimple stratum. The argument
now finishes as in step (iv) of Theorem 9.16. [

Finally, we get an analogue of Proposition 9.17, with the same proof
(replacing the reference to Proposition 9.8 by Proposition 9.22).

PROPOSITION 9.27. Suppose m < q — 1 and let [A, ¢, m, 5], [A, g, m, (]
be skew-semisimple strata which have defining sequences with a common
first element [A,q,m+1,v]. Let € C(A,m,3)? and ' € C(A, m, 3')? be
semisimple characters which agree on H™2(A, v), so that we can write §' =
Ootbg—y and 0 =Oothg_~yc, for some 8o € C(A,m,v)? and c € a_(py1),—-
Let s, be a o-equivariant tame corestriction with respect to ~y.

(i) For any g€ 1g(0,0") there are elements x,y € Spr1(y) NG and ¢’ €
B, NG such that g =xg'y; moreover, g’ intertwines Yy (B—ryte) With
ws’y(ﬁ'—ﬂ‘

(ii) For any g/eIB“/OG(wS'y(/B_'Y"FC)’wsv(ﬁ/_')’))’ there are elements x,y €
(1 +m_po(y,0)—m—1) NG such that xg'y intertwines 6 with ¢'.

(i) If s, (B—y4c) = Vs, (g1—~) then there is z € (1 +m_pyA)-m-1) NG
such that 6% =0'.

COROLLARY 9.28. Let [A,q,m,B] and [A,q,m,B] be two skew-
semisimple strata such that we can chose elements [A,q,m+1,7] and
[A, g, m+ 1,7'] in defining sequences (with skew strata) such that vy and ~'
have a common associated splitting, say (V7), and such that H™2(3, A)
is equal to H™2(B',A). Let § € C(A,m, B)° and §' € C(A, m, B')° be two
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semisimple characters which are intertwined by an element of G and which
coincide on H™2(B, A). Then there is an element in I1; (A3 N G which
intertwines 6 with 6'.

Proof. The proof is the same as that of Proposition 9.19, where we use
Theorem 9.26 in place of Theorem 9.16 and Proposition 9.27 in place of
Proposition 9.17. Note that the element ¢ in the proof of Proposition 9.19
can be chosen to be skew-symmetric by Pontrjagin duality. 0

§10. Matching and conjugacy for semisimple characters

In this final section we prove that there is an analogue of the matching
Proposition 7.1 for semisimple characters which intertwine. One might think
that this matching could just come from that for the underlying semisimple
strata, but these do not necessarily intertwine so this is not possible. Then
the sufficient condition (8.4) for an “intertwining implies conjugacy” result
for semisimple strata is also sufficient for semisimple characters, also in the
case of semisimple characters for G.

10.1 For general linear groups

For a semisimple character 6 € C(A, m, ), with decomposition V =
EBiGIVi associated to [A, ¢, 0, 5], we write ; for the restriction of 6 to
H™L(B;, A = H™ (B, A) N A% for each index i € 1.

THEOREM 10.1. Let 6 € C(A,m, ) and 6’ € C(A', m, B") be semisimple
characters which intertwine and suppose that A and A’ have the same period.
Then there is a unique bijection ¢ : I — I' such that there is an element g € G
with

1) gVi=V"0 foralliel;
(ii) 09" and 0 intertwine, for alli€ 1.

)

Moreover, all elements of G which satisfy (i) also satisfy (ii).

Proof. First we prove the uniqueness of { under the assumption that
the existence statement is proven. If there are two bijections from I to I’
satisfying the assertions of the theorem then there are indices i1, 49 € I and
i" € I' such that 6;, and 6;, intertwine with #/,. By (i), we can conjugate ¢,
to V and to V2, and afterward 6/, ® 6/, is the Levi-part (under an Iwahori
decomposition) of a simple character, which intertwines with 6;, ® 6;,. The
index set of the latter two semisimple characters has different cardinalities
and we obtain a contradiction.
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To prove the final assertion of the statement let us assume that ¢’ is
another element of G which satisfies (i). Then the characters 9;?71 and
Gf/_l are conjugate by the restriction of ¢’¢~! to V<), Thus Gf/_l and
92(1‘) intertwine, because 9;‘771 and 02@) do.

We now turn to the existence proof. First we reduce to the case of lattice
chains, in fact to the case where both lattice chains are blockwise principal
lattice chains—that is, for each index i the dimension dim, Af/AL 41 18
independent of k. For that we repeat the f-construction AT := @;;(1] (A — ),
where e is the period of A (which we assume coincides with that of A’), and
At similarly. Let us remark that A' is the direct sum of the (A%)T. We will
also need to use the notion of endo-equivalence of simple characters, for
which we refer the reader to [BH96] and [BSS12].

By assumption, # and @’ intertwine and thus ' and 6'f intertwine.
Assume that we have proven the existence of ¢ for the case of blockwise
principal lattice chains. In particular we find an element g which maps,
for each index 4, the vector space (V) to (V<) and then (93)9_1
and 92(1.) intertwine. In particular, this implies that V¢® and V' have

the same dimension and that 93 and Qg(i) are endo-equivalent. (More

precisely, they are realizations of endo-equivalent ps-characters.) Thus there

is an isomorphism g; : V¢ — V¢() and, for any such, the simple characters
1

91.91' and ‘92‘(1‘) intertwine, since they are realizations of endo-equivalent ps-
characters on the same space. Thus the element ) ;; g; has all the required
properties. This finishes the proof of the reduction to the blockwise principal
case.

Now we assume we are in the blockwise principal case and prove the
existence of (. We proceed via induction on m, with the case m > |q/2]|
following directly from Proposition 7.1. For m < [¢/2], let [A, ¢, m + 1, 7]
be a semisimple stratum equivalent to [A, g, m + 1, 3] with v €[], A%,
and similarly for [A’, g, m + 1,+]. We write J for the index set of the
splitting of [A, ¢, m + 1,~], and similarly J’. We have the character 6, =
Olgrm+2(y,0) € C(A,m +1,7), and similarly 0;,, and these characters inter-
twine. In particular, by induction, there are a bijection ¢y : J — J' and g € G

i — V76 G) 97! ; /
such that gV’ = V") and ij intertwines 97’,9

0y =064 Hm+2(y;,AT)- Since gAJ and A’“(9) are then principal lattice chains

) for all j € J, where

of the same period in the same space, they are conjugate so, changing g, we
may assume they are equal; that is, g € U(A).
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In particular, conjugating everything by g, we may assume that the strata
[A, g, m+1,~] and [A, ¢, m + 1, +'] have the same associated splitting, ¢y is
the identity and 6., ; intertwines 6, .. Since then AJ = A", for all indices j,
[BK93, Theorem 3.5.11] implies that 6,; and 0 are conjugate by an

element of U(AJ ) so, by conjugating, we can assume they are equal. By
Corollary 9.14(i) this implies that 6, is equal to 6.,. Corollary 9.19 provides
an intertwiner for § and ¢ which preserves every V7. Now, since we can
then prove the existence of ¢ separately for each block V7, we may assume
that 6, = 6/ is simple. By Corollary 9.14(iii) we then have that

H™(B,A)=H™ (v, A) = H™ T (+/,A) = H™ (B, A).

Thus we abbreviate H™*!, and similarly H™*2. By the translation principle
Theorem 9.16, we can find a semisimple stratum [A, ¢, m, "] with splitting
V=@, V™" and an element u € (1 +m./) N I, A7J such that

e [A,q,m+1,5"] is equivalent to [A, ¢, m + 1,7'];
. C(A m, 3") =C(A, m, B); and
o uy'ut € [ A7
Note that [A, g, m + 1, 8"] is then also equivalent to [A, g, m + 1, uy'u™1].
Since C(A, m, ") =C(A, m, ), Proposition 9.9 implies that we have a
bijection 7:1 — I" and y € Sy,(3) such that yV?= V"7 Moreover, the
element y normalizes 0, thus 9?71 =0 In particular, we may replace
the pair (3,7) by (8", uy'u™1), since we can then compose the bijection
¢: 1" = TI' that we obtain with 7 (and right multiply the element g we
obtain by y). Thus we may assume that v = uy'u~!. Now conjugating back
with u (that is, replacing (3,7, 0) by (u='Bu, u=tyu, %)), we may assume
that v=+/.

Now let s, be a tame corestriction with respect to v. We write 6 and ¢’
as in Proposition 9.17,

0= 90w,377+07 and 0/ = 901/)6’—’77

with 6y € C(A,m,~) and ¢ € a_(,,41). Moreover, by Remark 9.18, we can
assume that ¢ is decomposed by the splitting V' =&,.;V"*. Since 6y and
by are both elements of C(A, m, «y), both are intertwined by every element
of BY; in particular, we deduce that the derived stratum [A,m+1,m,s,(c)]
is intertwined by every element of B and thus s,(c) is an element
of F[y]+by_m, by [BK93, Lemma 2.4.11]. Then, since ¢, 3 are both
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decomposed by the splitting V =P, IVi, there is a semisimple stratum
[A, m + 1, m, 0] equivalent to [A, m + 1, m, s(8 — 7 + ¢)] with splitting V =
Dic ;V*. Similarly, there is a semisimple stratum [A, m + 1, m, §’] equivalent
to [A, m+1,m, s(8 — )] with splitting V = @, V"

By Proposition 9.17 there is an element of B,f which intertwines
[A,m+1,m, s(8 —~)] with [A, m+ 1, m, s(8 —~ + ¢)], so intertwines the
semisimple strata [A, m + 1, m, ] and [A, m + 1, m, 6’]. Then the matching
for semisimple strata, Proposition 7.1, implies that there is g € B} which
matches their splittings; indeed, since we are in the blockwise principal
case, we may choose such g efJ(A) N B,. In particular, conjugating by
this element (which centralizes ), we may assume that I =1" and the
strata [A, m + 1, m,d] and [A, m + 1, m, §'] are intertwined by an element
of By NI, A% But then, by Proposition 9.17 again, 6; intertwines with 9,
for all 4 € I, which finishes the proof. 0

THEOREM 10.2. Let 8 € C(A, m, B) and 0’ € C(A, m, 8") be semisimple
characters which intertwine, let ( : I — I' be the matching given by Theo-

rem 10.1, and suppose that condition (8.4) holds. Then 0 is conjugate to 6’
by an element of U(A) N, A<,

Proof. We first remark that the result is transitive: that is, if the
hypotheses are also satisfied for a pair (6',6”) of semisimple characters
then the conclusion for the pairs (6, 6’) and (8, 6”) implies that for (6, 6").
Similarly, if (8", 8”) is conjugate to (¢, §') by an element of U(A), then the
result for (6, 6’) is equivalent to that for (6, 6”).

We need to consider three steps.

(i) Suppose first that 6 is equal to 6. Then, by Proposition 9.9(iv) we
can find an element of S,,(3) which maps V? onto V<), This element
normalizes 6.

(ii) Suppose ¢>m and that [A, ¢, m, (] and [A,q, m, '] have simple
strata [A,q,m+ 1,~] and [A, ¢, m + 1,~'] in their defining sequences,
respectively, and suppose that 0|gmi2(, )y and 0'|gm+2(, 2y coincide;
in particular the sets of simple characters for the strata for v and +/
coincide. Then the translation principle Proposition 9.16 provides a
semisimple stratum with element 3”, such that 3” — « is an element of
a_m—1 and C(A, m, ") =C(A, m, B'), and an element u of 1 + m, such
that uyu~" is split by the associated splitting of 5”.

Now we can apply part (i) to (6, 5") and (¢, 8”) so, by transitivity, we
reduce to the case where 7/ = u~yu~'. Then, by conjugating by u, we
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reduce to the case where v = v/. Now writing 6, # as in Proposition 9.17,
we get that the derived strata intertwine so, by Theorem 8.3, are
conjugate by elements of U(A) N B,. But then Proposition 9.17(iii)
gives us an element of U(A) which conjugates 6 to #'. Part (i) enables
us to modify the conjugating element such that V* is mapped to V<@
for all indices q.

(ili)) We now prove the general case by induction on m. If the strata are
null strata (m = ¢), then we can take the identity as the conjugating
element. Suppose now m < ¢. Take for the strata first members of the
defining sequences with entries v and ~/, respectively. By the induction
hypothesis 0] grm+2(4,2) is conjugate to 6| gm+2(y 5y by an element which
conjugates the splittings; thus, by conjugating, we may assume that
these restrictions are equal, and further that v and 4’ have the same
associated splitting, say V = @jVj. Now Corollary 9.19 provides an
intertwiner of 6 with @’ which preserves V7, for all indices j. We apply
Part (i) for each j to obtain an element g = (g;) of U(A) N ][; A%<
which conjugates 0; to ¢ for all indices j. Finally, Corollary 9.14(i)
applied to 9~ and @ and the splitting @,V gives that 09" and ¢’
coincide, and the element ¢ is as required. 0

10.2 For classical groups

If two characters 6_ € C_(A, m, §) and 6" € C_(A, m, ') intertwine then
their lifts 8 € C(A, m, 8)? and 6’ € C(A, m, ')? intertwine and we get a
matching ¢ : I — I’ from Theorem 10.1. Let us state the main theorem:

THEOREM 10.3. Let 6_€C_(A,m,[) and 0" €C_(A,m, ") be two
semisimple characters of G, which intertwine in G, and assume that their
matching satisfies (8.4). Then, 6_ and 0" are U(A) N (], A%")-conjugate.

Proof. The proof is completely the same as for Theorem 10.2 by using
o-fixed lifts of the characters and the relevant results for G in place of those
for G. Specifically: in step (i), we use Proposition 9.23(iii). In step (ii), we
use the translation principle for G, Theorem 9.26, to reduce to the case of
a common 7 and we use Proposition 9.27(i) to reduce to the derived strata,
the case of minimal strata is done in Theorem 8.7. In step (iii), we use
Corollary 9.28 to reduce to the case where the stratum with + is simple. []

We also conjecture a more natural version of the matching Theorem 10.1
for G.
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CONJECTURE 10.4. Let [A, q, m, B] and [\, q, m, 8'] be skew-semisimple
strata and 6 € C(A, m, 8)° and 6’ € C(A', m, 8')? two semisimple characters
which are intertwined by an element of G. Let (: I — I' be the matching
from Theorem 10.1. Then, there is an element g € G such that gV = V¢,
foralliel.
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