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ABSTRACT

Credibility theory refers to the use of linear least-squares theory to approximate
the Bayesian forecast of the mean of a future observation; families are known
where the credibility formula is exact Bayesian. Second-moment forecasts are
also of interest, for example, in assessing the precision of the mean estimate. For
some of these same families, the second-moment forecast is exact in linear and
quadratic functions of the sample mean. On the other hand, for the normal
distribution with normal-gamma prior on the mean and variance, the exact
forecast of the variance is a linear function of the sample variance and the squared
deviation of the sample mean from the prior mean. Buhlmann has given a
credibility approximation to the variance in terms of the sample mean and sample
variance.

In this paper, we present a unified approach to estimating both first and second
moments of future observations using linear functions of the sample mean and
two sample second moments; the resulting least-squares analysis requires the
solution of a 3 x 3 linear system, using 11 prior moments from the collective and
giving joint predictions of all moments of interest. Previously developed special
cases follow immediately. For many analytic models of interest, 3-dimensional
joint prediction is significantly better than independent forecasts using the
"natural" statistics for each moment when the number of samples is small.
However, the expected squared-errors of the forecasts become comparable as
the sample size increases.

0. INTRODUCTION

In applications of Bayesian prediction, it is often difficult or extravagant to
compute the entire predictive distribution; for example, the underlying likelihood
and prior densities may be empirical, with only a few moments known with any
degree of reliability. Also, the decision structure may depend only upon the first
few moments, instead of upon the total shape of the predictive density. Finally,
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104 JEWELL AND SCHNIEPER

the need for repeated recalculation of forecasting formulae may argue for simple,
easy-to-compute results.

A case in point is actuarial science, where the fair premium (predictive mean)
is the point estimator of basic importance. To this may be added fluctuation
loadings, which are given functions of the predictive second moment, the variance,
or the standard deviation (see, e.g., GERBER, 1980). Credibility theory is the name
given by actuaries to approximations of Bayesian predictors by formulae that
are linear in the data, chosen to minimize quadratic Bayes risk. Thus, credibility
formulae are linear least-squares predictors, and are akin to the classical estimators
of that type, and to the linear niters used in electrical engineering.

The main emphasis of credibility theory thus far has been on approximating
the predictive mean, under a wide variety of different model assumptions (see,
inter alia, NORBERG, 1979; JEWELL, 1980). For many simple models used in
practice, the linear credibility predictor of the mean is exactly the Bayesian
conditional mean; in other situations, the credibility formula is usually quite
robust.

1. BASIC MODEL AND NOTATION

Consider the usual Bayesian setup, in which a random observable, x, depends
upon an unknown parameter, 6, through a (discrete or continuous) likelihood
density, p(x\6). In the experiment of interest, 0 is fixed at some unknown and
unobservable value 0, but the parameter has a known prior density, p(d). The
conditional moments of JC, given 6 are:

If we were to attempt to predict x prior to observing any data, and without
knowing 0, we would have to use the marginal density of x, p(x) = %{p{x\0)} =
jp(x\d)p(0) dd, which has prior-to-data (marginal) moments:

(1.2) mi=^{mi(d)}=n(x)i}.

For convenience in the sequel, we also define higher order cross-moments about
the origin, such as:

(1.3) mv=
<g{mt(e)mJ{e)}\ mijk=

<g{mi(e)mj(d)mk(e)}; etc.,

explicitly permitting the indices to be repeated, e.g., mn=^{(mt(6))2}. Thus,
from the four conditional moments {m^d); i = 1,2,3,4} we can form eleven
marginal moments of order four or less:

(1.4) M = {mx; m2, mu; m3, m21, mlu; m4, m31, m22, m2n, m l u l } .

Three central moments of order two deserve special symbols:

(1.5) e=%T{x\0} = m2-mn; d = Tg{x\0}=mll-m
2
1;
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BAYESIAN PREDICTIONS OF SECOND MOMENTS 105

where double operators and their corresponding operands are to be interpreted
"inside-out". Central moments of higher order can also be defined.

Now suppose that n independent observations, 2 = {xu x2,..., *„}, are drawn
from the same likelihood density, p(x\ 6), with 6 fixed, but unknown. From Bayes'
law, the posterior-to-data parameter density is:

(1.6) P(6\2))K ft P(xu\d)p(d),
u = l

and knowing this enables us to calculate the posterior-to-data predictive density
for the next observation, *„+,, as:

(1.7) P(xn+1\3) = j p(xn+1\0)p(O\2) dd.

This is, in fact, the predictive density for any future observation, assuming that
6 does not change, and that no more information is available. From our viewpoint,
given % the {*„+,, xn+2, xn+3,...} are exchangeable random variables; for example,
the joint predictive density of (xn+1, xn+2) is:

(1.8) P(xn+uxn+2\3))=\ P(xn+l\d)p(xn+2\e)p(e\2)) do.

(1.7) and (1.8) also have predictive moments analogous to (1.2), (1.3):

(1.9) m,(®) = %{xn+1\!2)}; m2{2)= ^{x2
n+l\3>};

mu(2>)=%{xn+lxn+2\2)}; etc.,

that can, in principle, be calculated exactly; however, analytic solutions almost
always require that p(x\0) and p(6) be chosen from among natural conjugate
families. We now consider how approximate results can be obtained for the
predictive moments in (1.9).

2. CREDIBLE MEAN FORMULAE

Consider first the problem of calculating or approximating m^Sb). For many
years, actuaries (in a different terminology) have been assuming that this
"experience-rated premium" was linear in the data, as summarized in the sample
mean, x = £ x u / n (it is clear from exchangeability arguments that each of the
samples, xu, should be weighted the same). Using heuristic reasoning, they argued
for the approximation:

i.e., the forecast, f*{3)), should be a convex combination of the "manual" (prior)
mean, m,, and the "experienced" mean, x. The "credibility factor", zu that
weights these two means is, they argued:

(2.2) Zl "
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106 JEWELL AND SCHNIEPER

where the "credibility time constant", nou was to be chosen empirically. This
heuristic formula, used for many years, was considerably strengthened by
BUHLMANN (1967), who showed that the best linear formula (in the least-squares
sense) to approximate the predictive mean mt(3i) was precisely the credibility
formula, f*{3>), but with the time constant computed explicitly from the prior
second moments:

, . , , e m2-mu m2-mx c
a mn — m\ mu — m\ a

Thus, a credibility predictor to approximate %{xn+1\3)} needs only the first three
components of (1.4), {ml; m2, mn}, instead of the complete shape of the prior
and likelihood densities.

In fact, Bailey, Mayerson, and others had already shown in the 1950s that
(2.1), (2.2), (2.3) was exactly mx{3)) for many "natural" p{x\8) and p(6) used
in Bayesian modelling. JEWELL (1974a) then showed that, if the likelihood were
a member of the simple exponential family (for which x is the sufficient statistic)
over some space x-

(2-4) p(x\e) = a{X^e
0)

0X, (xeX)

and p{8) were the natural conjugate prior to (2.4):

°l e~ex°>

over the maximal range © for which the normalization g{nou xm) is finite, then,
under a certain regularity condition (JEWELL, 1975), (2.1) is exact, with the
hyperparameters n01 in (2.3) and (2.5) identical, and with xOi = minOi.

A simple, argument also shows that, if the exponent 6x in (2.4) is replaced by,
say, 6t(x), then the credibility form (2.1) again provides an exact prediction for
${f(xn+1)|2)} as a linear combination of the prior mean of the statistic, %{t(x)},
and the sample mean of the statistic £ t(xu)/n, with appropriate redefinition of
(2.3). For this and other reasons that will become clearer below, we feel that
(2.1) is a robust formula in most cases.

3. EXACT RESULTS FOR SECOND MOMENTS

We now consider exact results that are known for the predictive moments, m^®),
m2(2>), and mu(3)), concentrating on the most-studied case, the simple exponen-
tial family.

It is well known that the combination (2.4), (2.5) is closed under sampling, so
that, posterior-to-data 2, the hyperparameters in (2.5) are replaced by:

( 3 . 1 ) Hoi *~ "o i ~^~ " » XQI <~ XOi + MX
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BAYESIAN PREDICTIONS OF SECOND MOMENTS 107

Since m, = XOI/MOI, it follows that the updated first moment is:

(3.2) 9{xH+l\ai}=

which is simply (2.1), (2.2). It is also clear that the marginal second moments
must also involve only n01 and x01, and that the predictive second moments must
be a function of only the sufficient statistic, x, but no further statement can be
made about dependencies in general. JEWELL (1974a) tabulates d = d(nou xm)
for six of the examples given below, whence one can easily get e = nold(nou x01),
c = (no+ l)d(nOi, xOi), and hence:

(3.3) m2(®) = (n0, +1 + n)d(n0l + n, x01

mu(2s) = d(nOi + n, x0l + nx)

and, from these, the updated versions of the central moments c and d;.

(3.4) 2

EXAMPLE 1. Let p(x\0) be Bernoulli (TT) and p(ir) be Beta (x01, «oi-^oi).
(6> = l n ( 7 r ' 1 - l ) ) , then:

( 3-5 ) < * ( H X ) =

EXAMPLE 2. Let p(x\0) be Geometric (IT), and p(ir) be Beta (xol, nol + l) ,
= lnir~1), then:

(3.6)

EXAMPLE 3. Let p(x\6) be Poisson (TT) and p(ir) be Gamma (xou n01), (6 =
In TT~l), then:

(3.7) (0U0l) f

EXAMPLE 4. Let p(x\6) be Exponential (6), andp(6) be Gamma (n0i + l,x0 1),
then:

(3-8) / 0 1

EXAMPLE 5. Let /?(x|0) be Normal (TT, si), si known, and p(n)~
Normal (xOi/nOi, *o/«oi), 0 = -ir/s%, then:

(3.9) d(n0l, xOi)=—^ (independent of x01).
"oi
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108 JEWELL AND SCHNIEPER

Thus, in these examples from JEWELL (1974a), d(nou x0l), m^Sd), m2{£b), and
mn(3)) are all linear, quadratic, or constant in x01 and hence in x as well.

MORRIS (1982) refers to simple exponential likelihoods (2.4) in which m2(0)
is at most a quadratic polynomial in m^O) as QVF-NEF; he shows that the only
members of this family are the five examples above, plus Example 6, below, plus
all of the related members found through linear translation and convolution
(Binomial, Pascal, Gamma, etc.).

EXAMPLE 6. The last member of this group is the Hyperbolic Secant density:

for which

(3.10) d(nol,xol) =

This likelihood seems to be useful only in certain random-walk problems.
We should mention also that it is easy to construct members of the simple

exponential family in which the mean is a complicated function of x, for example,
by truncating the range of any of the above distributions.

To obtain dependency on x and other statistics, we must turn to two-parameter
families, of which the most popular is the normal density with both the mean,
/I, and the precision, i3, as random quantities.

EXAMPLE 7. Let

p(x\d) = p(x\fi, ay) = Normal (/u., co'1)

p(w) = Gamma I

and

Ix \
p(fi\a>) = Normal I — , (n0lw)~l ,

\«oi /

with a, x01, x02, and n01 given hyperparameters. This family is closed under
sampling, with updating:

(3.11) a<-a+-; nol*-noi + n;

from which we find that (3.2) again holds, and that:

(3.12) d ( 0 1 , , o l , 0 2 ) ^ \ )
(2a-2)L\«oi / \noi

where c = e + d is the prior variance.
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BAYESIAN PREDICTIONS OF SECOND MOMENTS 109

For this example, we see that the updating jvill give exact second-moment
predictors that are quadratic in x and linear in x2 = £ x2j n. Because the normal
case is so important to least-squares approximations, we also give the exact results
corresponding to (3.4) in terms of the sample variance, s2= n"1 £ (xu — x)2, the
sample mean, x, the prior marginal variance, c, and the credibility factor, z,:

(3.13) nxn+1\2)}
2a -2+n

An important simplification occurs if the "natural" choice 2a = n0l + 3 is made;
note that this does not significantly restrict the choice of the 2-parameter Gamma,
but does mean that there are only three distinct hyperparameters in all. (3.13)
then simplifies to a generalized credibility formula:

(3.14) Y{xn+l\®} = («oi +1 + n)<€{xn+l; xn+2\9}

This result is not new, but rearrangement into credibility form first appeared in
JEWELL (1974a). The equivalent multidimensional formula appeared in JEWELL

(1974b, 1983).
(3.14) is, in fact, equivalent to:

(3.15) %{x2
n+m = m2(2) = (l-z1)m2+ z,72,

that is, the predictive second moment is exactly in credibility form with the same
credibility factor as in (2.2), with obvious adjustments to the prior mean and
sample mean.

4. LEAST-SQUARES THEORY AND MULTIDIMENSIONAL CREDIBILITY

We now take a temporary detour to display some general results from multi-
dimensional credibility theory that will be used in the next section. Suppose we
have a vector-valued version of the Bayesian model of Section 1, in which samples
® = {)>n )>2, • • •, yn} of a vector-valued random variable, y, are to be used to predict
a random vector, w. If we approximate ${M>|®} by a linear function of the
vector-valued sample mean, y=J,yn/n, least-squares theory then shows that the
best (vector-valued) predictor is:

(4.1)

where Z is a matrix of appropriate dimensions given by the solution of the normal
system of equations:

(4.2) zny;y} = n*;y}

{<€ is the matrix covariance operator).
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110 JEWELL AND SCHNIEPER

Now suppose w is actually a future observation of the same random vector,
y, say w = yn+1. Then these equations become:

(4.1')

where / is the nxn unit matrix, Z is the square solution of:

(4.2')

m is the prior mean vector, obtained from the conditional mean vector:

(4.3) m(6)=%{y\0};

and E and D are the two components of within-risk and between-risk covariance,
respectively:

(4.4) E=WV{y;y\S}; D = 8

Thus, the credibility formula of Section 2 extends directly to the multi-
dimensional case, with a credibility matrix, Z, mixing the prior mean, m, and the
experience mean, y. The analogy is complete if we assume D has an inverse and
rearrange (4.2'):

(4.5) Z=nD(E + nDyl = n(nI + Nyl; 1W = ED\

where JV is now a matrix of time constants. Further details on this extension may
be found in JEWELL (1974b).

The accuracy of any forecast / ( 2 ) for yn+l is measured by the diagonal terms
of the expected squared-error matrix:

(4.6) • *

note that the expectation is over all possible joint values of (yn+i; 3>). However,
since the latter are independent, given 0, <& can be decomposed into:

(4.6') *=WKyn+i-m(0)Iyn+1-m(5m+ £{[/(©)-m(0)][/(@)-m(0)]'}

= E + V, say,

where we see the portion of the mse due to the inherent fluctuation of the
observable, and the mse due to the approximation of the true mean, m(0), by
the approximation, f{3)).

We know that the minimum values of the diagonal terms for <I> and *P are
attained by picking the Bayesian predictive mean, m(3)) = ?{J7n+1|2>}, which, in
general, leads to a nonlinear regression on the data. With a linear forecast (4.1'),
(4.2'), it is easy to show that, for any n,

(4.7) * = E[E + nDT'D = [I - Z]D = D[I - Z'\
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In most eases of interest, all terms of ^ will approach zero as n approaches
infinity for any forecast, so that all forecasts are asymptotically equivalent; in
the linear case, it usually happens because Z approaches I (see also (8.6)).
Fortunately, a linear predictor also usually has small mean-squared-error also
for moderate n, even though f{3>) is not exactly the Bayesian predictive mean.

We now examine the use of (4.1'), (4.2') as an approximation for our original
one-dimensional problem of estimating second moments.

5. ORGANIZING THE LEAST-SQUARES COMPUTATIONS

We return to the main problem of organizing credibility approximations f2{3>)
and/ u (2)) for m2{2) and mn(3>) of arbitrary distributions. In view of the exact
results in Section 3, it seems reasonable to restrict the statistics to be used to
linear and quadratic functions of the data; however, there are several different
ways to select statistics of this type. After a great deal of experimentation, the
authors have found that the choices that give the simplest and clearest results
are the "natural" first and second moments about the origin:

( 5 . 1 ) ( 3 ) I ( 2 ) ) l ~2 ^I , ; 2 ( ) I l ; 1 1 ( ) 7n n n(n-

for «5*2. In other words, v/e set y = [t1(2});t2(3));tn(2))']' = t(2)) in (4.1). Note
that this choice implicitly includes (x)2 = [t2(3)) + (n - l)tu(2d)y n, as well as the
sample variance s2 = [(n-l)/nj_t2(3))- tu(2)~\.

As predictands, we can get all the forecasts of interest simultaneously by setting
w = [xn+l; x2

n+1; xB+1xn+2]'. Then, to get Z in (4.1), we need only to compute the
means in (4.1) and the two covariance matrices in (4.2). This approach is thus
similar to credibility regression modelling; see HACHEMEISTER (1974).

For the means, we find easily:

(5.2)

%{y}=%{w} = m=[ml; m2; mnj.

(Note that mu(6) = m2(6).) Computation of the covariance terms is straightfor-
ward, but tedious, as they involve all 11 moments of (1.4); we find, for n&2:

(5.3) {yy}
n

where D and E{n) are new matrices, analogous to the matrices in (4.4), but
otherwise unrelated. Explicitly, we find:

(5.4) D =
i~ nil m2\ —m2ni\ mm — nt

m22 —m2 m2\\ —YTI

(symmetric) >"i u 1 ~
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and

(5.5)

where

(5.6)

and

(5.7)

JEWELL AND SCHNIEPER

E,;

Eao =

n-\

m2 — mu m3 — m21

m4-m22 2(m31-m2n)
(symmetric) 4(m 2 n -wi i m )

0 0 0
0 0 0
0 0 2(m22-2m2,r

Once these have been computed, the credibility matrix Z is the solution of:

(5.8) z(D+-E(n))=D;

and the vector forecast /(2>)=[/i(2));/2(2>);/u(®)]' is given by:

which should be compared with (4.1'), (4.2').

6. INDEPENDENT FORECASTS USING NATURAL STATISTICS

Before examining the various aspects of the three-dimensional forecast (5.9), it
is of interest to consider first how the one-dimensional result (2.1) would general-
ize if second-moment forecasts were made only in terms of their "natural"
statistics, i.e., if the solution to Z were forced to be diagonal. We find:

(6.1) r,

z ,=
"02+«'

m4 - m22

m22 -m2

rim —"

and, for n 3= 2,

(6.2) m

4(m2n-mnil) +

n + nou(n)' i-m2u

These are to be compared with (2.1), (2.2), (2.3), which, of course, still hold for
the first-moment forecast. (Note that asterisks distinguish the independent
forecasts/f,/*, and/fi from the corresponding components of the joint forecast
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/ and that zu in (6.2) is not the (1, l)st component of Z in (4.2').) We will return
to analysis of independent forecasts in Section 9, after analyzing the asymptotic
behaviors of (5.8), (5.9).

7. LIMITING BEHAVIOR OF THE JOINT FORECAST

The analogy with (4.5) is complete if we can assume that D has an inverse (but
see Section 8), for then (5.8) can be rearranged into:

(7.1) Z=n(nl + N(n))-1; N(n) = E(n)D~K,

so that we now have a time-varying "time constant":

(7.2) J
n - 1

Because of the simple form of Eu it follows that N^ induces correction terms
only in the third row of Z, that is, in making a prediction of mn(2); furthermore,
this correction term vanishes rapidly with increasing n. In fact, one can easily
make the asymptotic expansion:

n n \n /

so that the correction term iVi introduces changes only of order n~2 or smaller.
More importantly, we see that, if D"1 exists, then Z^I as n-»oo; thus our

three-dimensional forecasts become "fully credible", that is, the forecasts/(2))
are ultimately given essentially by their own natural statistics, t,(3i) (i = 1,2,11).
Asymptotically, then, the joint predictions of Section 5 will be undistinguishable
from the independent forms of the last section.

8. REDUCED-RANK D MATRIX

It would be an unusual model for which Eoo did not have an inverse; however,
it is theoretically possible that D"1 does not exist. In several of the special cases
examined below, D is of rank two because of the close asymptotic relationship
between t2(3l) and tn(3>). Thus, to perform the inversion in (5.8), we must use
the well-known matrix inversion formula which states that, if a and b are n x k
matrices of rank k (fc«s n), then:

(8.1) [/„ + ab']1 = In- a[Ik + b'a]lb'.

If D is of rank two so that, for example, d3 = a^d1 + a32d
2, where d' is the ith

row of D = (i = 1,2,3), then D can be written:

(8.2) D =
1 0
0 1 12= AD12, say.
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114 JEWELL AND SCHNIEPER

We find from (8.1) that:

(8.3) Z =

where A(«) is the full-rank 2x2 matrix:

(8.4) S.(n) = D12E(ny1A.

The important implication of these results is that, when D is of rank two, the
limit of Z(n) as n •* oo is not I3, but is:

(8.5) Z(oo) = AA(oo)-1D12^-1.

Thus, in this case, the f;(S) are never "fully credible" for the^(®), and depen-
dence upon the prior means, m, (i = l,2,11), and other moments, persists. In
fact, Z(oo) is not even diagonal!

Nevertheless, from (8.3), (8.4), it is easy to show that:

(8.6) ( / -Z)O = A^/2-|^/2 + ̂ A-1(n)J Jo12,

so that, from (9.1), it follows that *P will vanish even in this case!

9. COMPARISON OF THREE-DIMENSIONAL FORECASTS WITH INDEPENDENT

FORECASTS USING NATURAL STATISTICS

One can show that the second term of (4.7):

(9.1) * = [ J -Z]D,

is still valid when using definitions (5.4) through (5.8). The diagonal terms of
this matrix are the mean-squared approximation errors of the (j°mt) forecasts,
call them mse(/(S)) 0 = 1,2,11).

However, there are several arguments in favor of replacing the forecasts (5.9)
with their independent counterparts (2.1), (6.1), and (6.2), such as avoiding the
numerical inversion of a 3x3 matrix, and requiring only seven moments from
the list (1.4). If we let du denote the diagonal terms of 3), we can show that
mean-squared approximation errors of the independent forecast are:

(9.2) mse(/f(S)) = ( l - z , ) 4 , (i = .l,2); mse (/,*,(3)) = (1 -zn)d

Each of these mse is larger, in general, than the corresponding diagonal terms
in (9.1).

However, by making asymptotic expansions for n -» oo, one can show that the
corresponding dominant terms in n"1 are identical, and that, in the limit,
mse (fi(3>)) and mse (/*(®)) differ only by terms of order n~2. Thus, for a large
number of samples, we expect little difference in the approximation errors of
joint and independent forecasts.
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10. PREDICTIVE VARIANCE AND FORECAST ERROR

There are two second-order central moments of special interest: the predictive
variance,

(10.1) »(3)= nxn+1\2} = %{[xn+1 - m,(2)f} = m2(2) - m\(a»

and the posterior-to-data mean-squared-forecast-error:

(10.2) 2

If the fi{2) and/2(2)) obtained previously are exact, then both of the expressions
are identical and equal to /2(®) —f\(3>). If credibility is only an approximation,
then this latter expression may still be a good approximation to v(2) (note that
we now may be using quadratic functions of the data in/f (®)). Comparing </>(2>)
and v{3>) requires knowing how closely the credibility for the mean approximates
the Bayesian predictive mean.

We can proceed a bit further if we rewrite the mean-squared-forecast-error as:

(10.3) 4,(3) = m2(2) - mn(3) +

and approximate the first two terms by/2(®)-/n(2>). The third term cannot be
estimated directly; however, by averaging once more over all prior values of 3,
we obtain ^{[/1(®)-m1(0)]2} = mse[/i(S')], which is a natural by-product of
our analyses. In summary, then, we would use the following estimators for (10.1)
and (10.2):

(10.4) v(3)°*f2(3)-j\(3)\

(10.5) 4,(3)

BUHLMANN (1970, p. 100) also considers the problem of estimating the predic-
tive variance. He breaks v(3>) into a "variance part" and a "fluctuation part",
which, in our notation, are:

(10.6) V(3) = [m2(3)-mn(3)-] + [mli(3)-m2
1(3)l

the posterior-to-data version of c = e + d (cf. (1.5)). He then approximates the
first part by a one-dimensional credibility forecast using the unbiased sample
variance, S2 = (n -1)"1 2 (xu-x)2 = t2(3) - tu(3), i.e.,

(10.7) e(®) = m2(S)-m1 1(®)«(l -z e ) (m2-m1 1) + ze22.

The credibility factor, zCT is a complicated function of n, but, by making the
simplifying assumption of a "normal excess" (e.g., the kurtosis of p(x\6) is that
of the normal density for every 6), he obtains a simplified form, ze =
(n — K)/(n—i), where K is a complicated ratio of marginal moments.

The second factor,

(10.8) d(3) = mu(3) -

is approximated by: first, replacing mi(3)by f*(3), and second, averaging over
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all prior values of 3), obtaining: d(S)«=mse [/*(©)], giving finally:

(10.9)

With our extended use of these statistics, we could presumably improve
Biihlmann's analysis by arguing in the same way that:

(10.10) oO)*/ 2 (®)- / 1 1 (S) + msc[ / ,0)] .

However, this is exactly the approximation (10.5) for <f>(2), which must be larger
than v(3)) if mean credibility is not exact! So, we would still prefer (10.4) for
the estimate of the variance.

The difficult-to-estimate term, d(3)), is, in fact, the posterior-to-data predictive
covariance, <£{[xn+1 - mi(®)][Jcn+2- mi(2i)']\2}, which we know must vanish with
n as the true value of 6 is identified. For instance, with the simple-exponential
family of Section 2, we have d(2)) = e(3))d/(e + nd) or v(2) =
e(3))[l + (d/(e + nd))l And, in the general case, if/t(2>) is close to m,(S), then
we know that the average (preposterior) value of d{3)) is mse[/i(2>)], which
probably vanishes like mse[/f(2>)] = ed/(e + nd).

So, in short, we doubt if the accuracy issues raised here are important in any
realistic application, and expect the errors in using (10.4), (10.5) to be of the
same order of magnitude as the errors in the underlying predictions f(3)).

11. NUMERICAL EXAMPLES

It should be remembered that important simplifications often occur in D and
E(n) for the usual analytic forms assumed for the likelihood and the prior. For
instance, where the likelihood is normal, with possibly random mean and variance,
we have:

where

m(6) = mx{0) and v{6) = m2{e)-m\{0).

From this, we see that all eleven moments in (1.4) can be expressed in terms of
moments and cross-moments of m{d) (up to order 4) and v{8) (up to order 2).

The likelihoods introduced in Examples 1 through 6 of Section 3 have been
characterized by Morris (1982) as the natural exponential families with quadratic
variance functions, i.e., the variance is at most a quadratic function of the mean.
From this, it follows that, for this family, the components of m{6) in (5.2) are
linearly-dependent functions of the parameter, and that D is singular. For
example, if the likelihood is Poisson(Tr), then m(7r) = [7r; TT+TT2; IT2]'.

We now consider three numerical examples that illustrate these ideas; in all
examples, the joint credibility forecasts are exactly the JJayesian mean forecast,
for all n. (However, we have not introduced this prior knowledge into the
numerical calculations below!)
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EXAMPLE A. Consider Example 7 from Section 3, the Normal (fi, w '), with
Normal-Gamma prior, and with the following hyperparameters: xOi = 10; «Oi = 10;
x02 = 21; a = 6.5. Note that we have chosen a = («01 + 3)/2 so that the predictive
second moment will be in credibility form (3.14), (3.15).

Numerically, we find the eleven marginal moments to be:

M = {1, 2.1,1.1,4.3,2.3,1.3,12.037, 5.0033, 5.1033,2.7589,1.6367},

and the variance components are:

The independent time constants of Section 6 are

«oi = "02 = 10, and nou(n) = 10.52 + (5.73/(n -1)).

For n = 2, 10, 100, and 10,000, Figure 1 shows the credibility matrix Z for the
three-dimensional forecasts of (4.2)', together with their corresponding mean-
squared errors, the diagonal terms from (9.1). Also shown are the corresponding
independent forecast factors of (2.2), (6.1), (6.2), arranged in matrix format for
easy visual comparison (and thus making (5.9) a general forecast formula, even
with Z diagonal); the corresponding mse's are from (9.2).

n

2

10

100

10,000

10.16667
0.00000
0.25641

0.50000
0.00000
0.47619

0.90909
0.00000
0.16380

0.99900
0.00000
0.00200

Joint

Z

0.00000
0.16667
0.02564

0.00000
0.50000
0.04762

0.00000
0.90909
0.01638

0.00000
0.99900
0.00020

Prediction

0.00000
0.00000
0.01282

0.00000
0.00000
0.21429

0.00000
0.00000
0.81081

0.00000
0.00000
0.99780

mse
/i(S)

fi(®)

/nO)

0.08333
0.57778
0.35840

0.05000
0.34667
0.21862

0.00909
0.06303
0.04061

0.00010
0.00069
0.00045

0.16667
0.00000
0.00000

0.50000
0.00000
0.00000

0.90909
0.00000
0.00000

0.99900
0.00000
0.00000

Independent Prediction

z, 0 0

0 z2 0

0 0 z u

0.00000
0.16667
0.00000

0.00000
0.50000
0.00000

0.00000
0.90909
0.00000

0.00000
0.99900
0.00000

\

/

0.00000
0.00000
0.10959

0.00000
0.00000
0.47265

0.00000
0.00000
0.90433

0.00000
0.00000
0.99895/

mse
/,*O)
/*(2>)

/?.(9)

0.08333
0.57778
0.37991

0.05000
0.34667
0.22500

0.00909
0.06303
0.04082

0.00010
0.00069
0.00045

FIGURE 1. Numerical results for Example A, Normal-Gamma-Normal.

We remark that:

(1) Because of previous results, wi,(®)=/,(2))=/1*(a)) and m2(Si)=/2(S) =
f*{3>), since a = nOi + 3. Thus, the upper part of Z is diagonal, with zu = z22
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equal to the independent prediction factors. We also know that mn(@)) =fu{3>)
(but not equal to fu(3>), in general); here it is of interest to see how long a
heavier weight is attached to f,(2i) instead of the natural statistic, tn(3s).

(2) The mse's for the first two components are, of course, the same for both
predictions. As might be expected, predicting second moments gives larger mse's
than the mse for/,(2>); however, the relative rate of decrease with n is about
the same. Furthermore, there is only about a 6% increase in mse for using/* (3))
over the exact fu(2).

(3) Both credibility factors approach the identity matrix as n approaches
infinity, as the statistics in t(2) become "fully credible".

EXAMPLE B. Consider Example 4 from Section 3, the Exponential (6), with
Gamma prior, with hyperparameters: x01 = 10; n01 = 10. The marginal moments
are:

M = {1,2.2222,1.1111, 8.3333,2.7778,1.3889,47.619,

11.905,7.9365,3.9683,1.9841}.

The hyperparameters were chosen to make m, = 1.0 and «Oi = 10.0, as in
Example A, but now, due to the change in distributions, we have no2 = 13.24,
and nou(n) = 10.59 + (5.29/(n-l)).

Figure 2 shows again the results for n = 2, 10, 100, and 10,000, in a format
similar to that of fig. 1.

Notice the following:

(1) As in Example A, ml(2))=fl(2))=f?(2>); however, now both/2(2>) and
/u(®) use all three statistics, particularly ti(2) and tu(2). Now, as n-»oo, we
find the surprising result that 2tn(2)) is the preferred predictor for m2{3)), rather
than the "natural" estimator, t2(2); they both have the same expectation, but
the former has smaller variance.

(2) In fact, we can make the following stronger statements. As a consequence
of the exponential assumption only, m2(6) — 2m\(0) for all 0, so that m2(2>) =
2mu{3>) for any prior. Assumption of a Gamma prior makes both predictions
linear functions of t{3i), and, in fact, we see from fig. 2 that z2j = 2z3j (j = 1,2,3),
so that /2(S) = 2/,,(2>) for all 2!

(3) The mse's for independent predictions of the two second moments are, of
course, larger than in the joint predictions, and worst for /^®) , as it is forced
into using t2(2), rather than tn(3>) as its sole predictor. This gives a relative
degradation which climbs about 20%, but, at the same time, all mse's are
decreasing with n at about the same relative rate. Substituting tn(2) for the
"natural" predictor off*(2) would, of course, reduce the mse to four times that
of fu(9>), which at its worst value (n = 2), is only about 5% larger than the joint
prediction.

(4) The non-convergence of Z to the identity matrix is the consequence of the
previously-discussed fact that D is singular. However, since m2 = 2mn, 2f,(®)
is ultimately "fully credible" as n -* oo, i.e., no dependence upon prior moments
remains in /2(2>) in the limit. We have already proven this directly in (8.6).

https://doi.org/10.2143/AST.15.2.2015022 Published online by Cambridge University Press

https://doi.org/10.2143/AST.15.2.2015022


BAYESIAN PREDICTIONS OF SECOND MOMENTS 119

EXAMPLE C. Consider Example 3 from Section 3, the Poisson (TT), with
Gamma prior, and hyperparameters: X01 = 10; nOi = 10. The marginal moments
are:

M = {1,2.1,1.1, 5.62,2.42,1.32,18.336,6.776, 5.456, 3.036,1.716}.

The hyperparameters were again chosen to make m, = 1.0 and n0l = 10.0, but
now nO2= 12.31, and nou(n) = 10.43 + (4.35/(n-l)).

Figure 3 tabulates the results for n = 2, 10, 100, and 10,000 in the same format
as previous examples.

n

2

10

100

10,000

0.16667
0.60606
0.30303

0.50000
1.05263
0.52632

0.90909
0.33361
0.16681

0.99900
0.00399
0.00200

Joint

Z

0.00000
0.03030
0.01515

0.00000
0.05263
0.02632

0.00000
0.01668
0.00834

0.00000
0.00020
0.00010

Prediction

0.00000
0.03030
0.01515

0.00000
0.47368
0.23684

0.00000
1.65138
0.82569/

0.00000
1.99601
0.99800

mse
/,(S>)

/2O)
fuiai)

0.09259
2.52525
0.63131

0.05556
1.54553
0.38638

0.01010
0.28728
0.07182

0.00011
0.00317
0.00079

1
0.16667
0.00000
0.00000

0.50000
0.00000
0.00000

0.90909
0.00000
0.00000

0.99900
0.00000
0.00000

Independent Prediction

z, 0 0

0 z2 0

0 0 Zn

0.00000
0.13127
0.00000

0.00000
0.43038
0.00000

0.00000
0.88312
0.00000

0.00000
0.99868
0.00000

\
•

/

0.00000
0.00000
0.11184

0.00000
0.00000
0.47222

0.00000
0.00000
0.90382/

0.00000
0.00000
0.99894

mse
/,*O)
/*(2>)

/?,(9)

0.09259
2.60465
0.66573

0.05556
1.70786
0.39560

0.1010
0.35044
0.07209

0.00011
0.00396
0.00079

FIGURE 2. Numerical results for Example B, Gamma-Exponential.

We notice that:

(1) As in Example A and B, the first moment uses only fi(2>), but the second
moments use all three statistics, with t2{3>) playing a decreasingly important role.
In contrast to Example B, however, we now find that, as n-»oo, fi(2)) + <n(20
is the preferred predictor for m2(2>), rather than t2(3>).

(2) This is a consequence of the assumption that the likelihood is Poisson, for
then m2(d) = mx(d) + m\(6) for all 6, so that m2(®) = m1(2)) + mn(®) for any
prior. It is the assumption of the Gamma prior that makes predictions using only
linear functions of t(3)) exact, and in fig. 3 we can see that, in fact, z2j = Zy + z3j

(j = 1,2,3), so that /2(9) =/1(®)+/u(@) for all 3)!
(3) The mse's follow the pattern of Example B, with the mse of/*(2>) becoming

progressively relatively worse than its joint counterpart. Here, however, to improve
the prediction error, one would probably have to include both tx{3>) and tu(3)),
as it is not clear that just one of the latter would be an improvement over using
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n

2

10

100

10,000

0.16667
0.45833
0.29167

0.50000
1.02500
0.52500

0.90909
1.08264
0.17355

0.99900
1.00110
0.00210

Joint

Z

0.00000
0.01389
0.01389

0.00000
0.02500
0.02500

0.00000
0.00826
0.00826

0.00000
0.00010
0.00010

Prediction

0.00000
0.01389
0.01389

0.00000
0.22500
0.22500

0.00000
0.81818
0.81818

0.00000
0.99790
0.99790/

mse

/.O)
/2O)
/11O)

0.08333
0.87472
0.42472

0.05000
0.52850
0.25850

0.00909
0.09691
0.04782

0.00010
0.00107
0.00053

/

\

0.16667
0.00000
0.00000

0.50000
0.00000
0.00000

0.90909
0.00000
0.00000

0.99900
0.00000
0.00000

Independent Prediction

zi 0 0

0 z2 0

0 0 z u

0.00000
0.13973
0.00000

0.00000
0.44816
0.00000

0.00000
0.89036
0.00000

0.00000
0.99877
0.00000

0.00000
0.00000
0.11917

0.00000
0.00000
0.47806

0.00000
0.00000
0.90515

0.00000
0.00000
0.99896

mse

ma»
f*(3>)

/,*,(2>)

0.08333
0.89985
0.44570

0.05000
0.57723
0.26410

0.00909
0.11468
0.04799

0.00010
0.00129
O.OOO53

FIGURE 3. Numerical results for Example C, Gamma-Poisson.

just t2{3>). Furthermore, neither of the other statistics would ever become "fully
credible" as n->oo, as they are not individually equal in expectation to m2, only
in sum. Clearly, the best single statistic to use for m2(2) in the Poisson case is

12. COMPUTATIONAL STRATEGIES; CONCLUSION

The last two examples show that some care must be exercised if one wishes to
make independent forecasts where p{x\6) is assumed-to be in the QVF-NEF
family, remembering that this also includes (fixed numbers of) convolutions of
Examples 1-6, such as the Negative Binomial with fixed shape parameter. One
can, of course, use the combination of "natural" statistics appropriate to the
assumed likelihood. This is particularly important when we also assume that the
natural conjugate prior is appropriate.

On the other hand, for an arbitrary prior, the moments will not be linear
functions of the statistics, so that all positions of Z would be non-zero anyway,
as would also be the case if all moments were from empirical studies. In these
cases, Z would approach the identity matrix as n-»oo, and we expect that the
independent forecasts (2.2), (6.1), (6.2) would be equally good (or equally bad)
as the joint forecasts. Clearly, more computational experience is needed in making
this decision.

The great advantage of the joint forecast is that it can always be used if n ^ 2,
and, if there is a tendency for certain combinations of statistics to dominate, it
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will be revealed automatically. Of course, if n = 1, we are forced to use only
ti(2fi) = xl and t2(2)) = xl; the predictive power will be weak anyway, in most
practical cases.

In summary, we have presented an easily implemented three-dimensional
credibility formula that simultaneously approximates the first and second
moments of the Bayesian predictive density. While this approach requires eleven
prior moments from the collective, this calculation is simplified when familiar
analytic forms are assumed for the likelihood. Previous work has shown that the
credibility mean is exact in tx(3>) for a wide class of likelihoods and priors in
which the sample mean is the sufficient statistic; here we have shown that the
second-moment credibility predictions are also exact for five widely-used likeli-
hoods and their natural conjugate priors, when using the three "natural" statistics
in t(3)).

For these and other reasons, we believe that these linear prediction formulae
will turn out to be robust in other cases where the distributions are empirical, or
where the exact predictions are known to be non-linear in the data. We suspect
also that, in most cases, it will also be reasonable to use the simplified, independent
forecasts, paying due attention to the remarks above. The authors look forward
to hearing from those who apply this approach to actual prediction problems.
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