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PROOF OF A CONJECTURE OF CHOWLA AND ZASSENHAUS 
ON PERMUTATION POLYNOMIALS 

BY 

STEPHEN D. COHEN 

ABSTRACT. The following conjecture of Chowla and Zassenhaus ( 1968) 
is proved. If f(x) is an integral polynomial of degree ^ 2 and p is a 
sufficiently large prime for which / (considered modulo p) is a permu­
tation polynomial of the finite prime field Fp, then for no integer c with 
1 ^ c < p is f{x) + ex a permutation polynomial of Fp. 

1. Introduction. A permutation polynomial (PP) of the finite field Fp of prime 
order p is one which, regarded as a mapping, permutes the elements of Fp. The 
conjecture of Chowla and Zassenhaus ennunciated in the abstract featured recently as 
Problem P8 in a list of open problems on PP by Lidl and Mullen [3]. We prove it 
here in the following more precise form. 

THEOREM 1. Let f(x) be a polynomial with integral coefficients and degree n ^ 2. 
Then, for any prime p > (n2 — 3n + 4)2 for which f (considered modulo p) is a PP of 
degree n of Fp, there is no integer c with 1 ^ c < p for which f(x) + cx is also a PP 
ofFp. 

A complete mapping polynomial (CMP) f(x) of Fp is one for which both f(x) and 
f(x)+x are PPs of Fp. In terms of CMPs, Theorem 1 can clearly be expressed in the 
following equivalent form. 

THEOREM 2. Ifn^2 and p > (n2 — 3n + 4)2, then there is no CMP of degree n 
over Fp. 

Partial results along the lines of Theorems 1 and 2 are known; usually these ex­
tend to PPs over general finite fields (not necessarily of prime order). For example, 
Niederreiter and Robinson [6, Theorem 9] proved that, if p > (n2 — An + 6)2, then 
axn + bx (n ^ 2, a ^ 0) cannot be a CMP of Fp. According to Mullen and Niederreiter 
[5], a similar conclusion applies, provided p > (9n2 — 21 n + 22)2, to any polynomial 
bDn(a,x) + ex (n ^ 2, ab ^ 0), where Dn(a,x) is the Dickson polynomial defined by 
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These results required the Lang-Weil theorem (equivalent to the Riemann hypothesis 
for function fields). By contrast, through an elementary discussion strictly applicable 
to Fp, Wan Daqing [8, Theorem 1.3] proved that axn + bx (n ^ 2, a ^ 0) is not a 
CMP of Fp whenever p > (n — l)2. 

In our proof, we not only rely on the Lang-Weil theorem, but appeal to a deep 
theorem of Fried [2, Theorem 1] used in his proof of the "Schur conjecture". Actually, 
in order to work solely with monic polynomials, we prove the following minor variant 
of Theorem 2. 

THEOREM 2!. If n ^ 2 and p > (n2 — 3n + 4)2, then there is no monic PP of Fp of 
degree n for which f{x) + ex is also a PP of Fp for some c (^ 0) in Fp. 

We note that, whenever/? > n, given a PP or CMP of Fp of degree n, by performing 
a suitable linear translation x: »—* x + c (c E Fp), we obtain another whose coefficient 
of xn~~x is zero. A polynomial with this last property is called normalised. We assume 
throughout that / is a monic, normalised polynomial of degree n ^ 2 and, where 
relevant, p > n. As regards references to the literature, instead of offering an extensive 
list of original sources, where possible we quote the relevant section of [4]. 

2. Classification of PPs of Fp. Given / , define 

(2) r^y) = mzM. 
x-y 

f is said to be exceptional over Fp if no factor of /*(*, y) in Fp[x, y] is absolutely irre­
ducible. It is well-known that there is a strong connection between PPs and exceptional 
polynomials over Fp [4, Section 7.4]. We summarise the relevant facts. 

LEMMA 3. If f is exceptional over Fp, then n is odd and f is a PP ofFp. Conversely, 
if p > (n2 — 3n + 4)2 and f is a PP of Fp, then f is exceptional (and consequently n 
is odd). 

PROOF. For the first implication see [4, Theorem 7.27 (and note on p. 385), Corol­
lary 7.32]. The converse comes from [4, Theorem 7.29 and the proof of Lemma 7.28 
with c(d) — d2 (p. 331)]. This yields the result provided/? > {n—\){n — 2)pxl2+n2+n, 
i.e. 

pl/2 > {(n2 -3n + 2) + (n4 - 6n3 + Yin2 - 8n + 4)1/2}/2. 

However, this is implied by the condition 

p1/2 > (n2 - 3n + 4) = {(n2 - 3n + 2) + (n4 - 6n3 + 2ln2 - 36n + 36)1/2}/2 

whenever n > 5. Special considerations could be applied when n ^ 5 but in any case 
all PPs of degree ^ 5 are known [4, Table 7.1] and none invalidate the lemma. • 

Fried [2, Theorem 1] showed, in essence, that exceptional polynomials which are 
(functionally) indecomposable over Fp are either cyclic polynomials xn or Dickson 
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polynomials having the form (1): by way of explanation here, we recall that / is 
decomposable if there are polynomials f\ and f2 of Fp of degree exceeding 1 such 
that / = /2C/1). To assist oiir statement of this result, we precede it by a simple lemma 
that applies to decompositions (as above) even when one of f\ and f2 is linear. 

LEMMA 4. Suppose that f is a monic, normalised polynomial over Fp of degree n, 
where p > n ^ 2 and that f decomposes as f = f2(f\) over Fp, where, for i = 1,2, 
rti = deg ft and n = n\ n2. Then f\ and f2 can also be regarded as monic, normal­
ised polynomials over Fp; if so and if f\(x) — xn] + axnx~l + ..., then f(x) — xn+ 
n2axn~f + . . . . 

PROOF. Suppose, in fact that /? (^ 0) is the leading coefficient of f\. Replacing f\(x) 
and f2(x) by (3~lf\(x) and f2((3x), respectively, yields f\ monic and hence f2 monic 
(because / is). Denoting the coefficient of xni~x in f2 by 7, we substitute f(x) for 
fi(x) + n2

xl and f2(x) for f2(x — n^l) and find that f2 is normalised. This being so, 
the final assertion of the lemma is an elementary calculation; in particular, certainly 
f\ must be a normalised polynomial. • 

A version of Fried's theorem follows: the reader should consult [7, Section 3] for 
a discussion which resolves some ambiguities in [2]. 

LEMMA 5. Suppose that f is a monic, normalised, indecomposable polynomial of 
degree n over Fp, where p > n ^ 2. Then, either 

(i) f(x) = xn + a, aeFp, 
(ii) f(x) = Dn(a,x) + a, a{£ 0), a G Fp, or 
(iii) f*(x,y) (defined by (2)) is absolutely irreducible over Fp[x,y]. 

PROOF. This is immediate from [2, Theorem 1] using Lemma 4 to ensure normal­
isation and to cope with linear composition factors; note that the monic polynomial 
b~nDn(a, bx), ab ^ 0, is the same as Dn(ab~2,x). • 

COROLLARY 6. Suppose that f is a monic, normalised PP of Fp of (odd) degree 
n ^ 3 and p > (n2 — 3n + 4)2. Then f — /2C/1) where, for i — 1, 2, f is a monic 
normalised polynomial of degree ni, n — n\ n2 and, for some integers m\,m2 with 
m\ m2 — n\ ^ 3, 

(3) fx{x) = Dm{a,xm*) + a, a&O), a G Fp. 

Moreover, in (3), if m\ — 1 (whence f\(x) — xnx + a) we can assume a ^ 0 unless 

m = x\ 
PROOF. Decompose / as / = fr o . . . o fu where each f (i ^ r) is a monic 

normalised indecomposable polynomial of degree > 1. (No question of uniqueness 
matters here.) Each f is evidently a PP and consequently is exceptional by Lemma 
3. Hence f has the form governed by Lemma 5. In particular, the result claimed is 
obtained by setting f = fs o . . . o fx for some s ^ r. • 
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3. Proof of theorems. Suppose, contrary to Theorem 2', / is a monic, normalised 
PP of Fp of odd degree n (^ 3), where p > (n2 — 3n + 4)2 and g(x) = f(x) + ex, c 
(T^ 0) G Fp, is also a PP of Fp. By means of Corollary 6, write / = fa(f\), g = g2(gi)> 
where fa and #2 are normalised and 

/1(jc) = D J t l(fl ,^ ) + a ? « ( ^ 0 ) , a e ^ , * ( = * ! * 2 ) ^ 3 , 1 

gi(x) = Dmx{b,x^) + (5, b& 0),/? G Fp, m(= /m m2) ^ 3. J 

Indeed, in (4) if k\ — 1, then a / 0 unless /(JC) = xn and there is a similar proviso 
for g. We consider three cases. 

CASE (i). k\ = m\ — \. Then, identically, 

(5) cx = g2(x
m+f3)-fa(xk + a). 

We derive from the fact that the coefficient of x on the right side of (5) is non-zero 
the conclusion that either m = 1 or k = 1, contrary to (4). 

CASE (ii). m\ > 1, k\ — 1. Lemma 4 yields 

(6) CJC = g2(x
m - mx bxm-lm + . . . + fi) - fa(xk + a) 

= -nm^bx"-1"12 + . . . - nk-laxn~k 

Because n — 2ra2 is odd and n — k is even, when a ^ 0, (6) implies that « — 2m2 — 1 
and ft — k = 0. Further, by assumption, when a — 0, k = n and again it must be 
that n — 2m2 = 1. Thus m2 (a divisor of n) equals 1 and hence n = 3 = m\. This 
contradicts the truth that Di>{b,x), b ^ 0, cannot be a PP [4, Theorem 7.16]. 

CASE (iii). m\ > 1, k\ > 1. Now we derive from Lemma 4, 

(7) ex = g2(x
m - mx bxm~2m2 + . . . ) - fa(xk - kx axk~2k2 +. . . ) 

= G(xm2)-F(xk2\ say, 

(8) = (-nm2
lbxn-2m2 + ...) + (/ i^W1 - 2*2 - . . . ) . 

Let d be the highest common factor of k2 and m2. By (7), x is a polynomial function 
of xd\ hence d = 1. On the other hand, since as in case (ii), neither n — 2m2 — 1 
nor n — 2k2 = 1, (8) implies that n — 2m2 — n — 2k2 > 1. Thus k2 — m2 and so 
k2 — m2 = 1. Hence k = k\, m = m\ and, crucially, by (8), a — b. Applying the 
identity 

a\ k a Dk[a1x + - \ =x K + ^ 
Jc 

[4, formula (7.8)] we deduce that 

(9) cxn~x<-2 tf + a)=x"g(x + ^ - x y ( x + ^ 

= G(xm)~F(xk) 
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for some polynomials F, G. Because the right side of (9) must contain the non-zero 
term cxn+l, either k or m must divide n + 1. Yet each of these is also a divisor of n. 
Thus either k or m — 1, contradicting (4). This proves Theorem 2' and Theorems 1 
and 2 follow. • 

Finally we remark that it would be possible to extend our theorems to include 
"tame" PPs over general finite fields. 
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