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USER-OPTIMAL STATE-DEPENDENT ROUTEING
IN PARALLEL TANDEM QUEUES WITH LOSS
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Abstract

We consider a system of parallel, finite tandem queues with loss. Each tandem queue
consists of two single-server queues in series, with capacities C1 and C2 and exponential
service times with rates µ1 and µ2 for the first and second queues, respectively. Customers
that arrive at a queue that is full are lost. Customers arriving at the system can choose
which tandem queue to enter. We show that, for customers choosing a queue to maximise
the probability of their reaching the destination (or minimise their individual loss
probability), it will sometimes be optimal to choose queues with more customers already
present and/or with greater residual service requirements (where preceding customers are
further from their final destination).
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1. Introduction

We consider a collection of parallel, finite tandem queues with loss. Each tandem queue
consists of two single-server first-in–first-out queues in series, with capacities C1 and C2 and
service rates µ1 and µ2 for the first and second queues, respectively. The results below hold for
C1 both finite and infinite, but we always have C2 < ∞. Customers that arrive at a queue that is
full are lost. Customers arrive at the system at rate λ, and on arrival can choose which tandem
queue to join. Once they have joined a tandem queue, they progress through it, obtaining
an exponentially distributed service at each stage. The interarrival and service times are all
independent of one another. If, when a customer completes service, the next queue in the
tandem series is full, then the customer is lost to the system. We will assume that, at the point
when the customer chooses which tandem queue to join, it has full knowledge of the number of
customers in each queue and chooses a route that will minimise its individual loss probability
over the whole route. Figure 1 illustrates a system with three tandem queues. Although, to
fix our ideas, we think of customers choosing a tandem queue upon arrival to the system, the
results below also apply to situations in which jockeying is permitted, that is, customers are
free to switch queues after arrival.

Two natural heuristics for parallel tandem queues, when trying to minimise sojourn times,
might be that (i) a customer should choose a tandem queue with the fewest total number of
customers in it; and that (ii) if there is a choice of two routes, with the same number of customers
on both but with one or more customers on the second route being closer to their destination
than any of those on the first, then the new arrival should choose the second route. We show
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Figure 1: Three parallel tandem queues.

that, in general, neither of these heuristics gives the lowest individual loss probabilities. When
minimising loss probabilitites, it may be optimal for customers to choose routes with a greater
number of customers, or on which preceding customers are further from their final destination
(i.e. have greater residual service requirements). Indeed, we show that, given a route with i

customers ahead of the marked customer in queue 1, and j customers in queue 2, a lower loss
probability is always obtained by travelling via a route with i + l customers in the first queue
and j − l in the second, for l ≤ min(j, C1 − i − 1). Thus, paradoxically, beyond a certain
point, increased congestion can actually decrease loss for the marked customer, by delaying its
exposure to it. If there is the potential to be lost, then it is best to delay service (see, e.g. [9]
and [16] for examples of other situations in which it may be optimal to delay customers).

Tandem queues, with both infinite and finite capacity, have received considerable attention
in the literature (see, e.g. [1], [9], [14], and the references therein). Queues with finite capacity
have the problem of how to treat customers that finish service at one queue but find the next
queue full. The common assumption is that customers are never lost within the system, but
block the server at their current queue until they are ready to move – see [5] and the more
recent work [14] for a general framework for such blocking. However, for networks such as
the Internet, a model that assumes customers to be lost if the receiving queue is full is more
appropriate (see, e.g. [3]). Files or messages sent over the Internet are broken up into smaller
components, called packets, before being transmitted. Each packet travels separately (possibly
on a different route) and they are then reassembled into the complete file or message at the
destination. As transmission proceeds, the destination node sends confirmation that packets
have arrived. If the source fails to receive such a confirmation then packets are re-sent from
the source. Thus, in the Internet, it is the source node that re-sends packets if they are lost,
or delayed for too long, en route – not any intermediate node. Very little work has been done
on tandem queues with loss – below we discuss [9], in which a two-stage tandem queue with
parallel servers was studied.

In this paper we characterise some properties of the individually optimal route for an arriving
customer presented with a choice of disjoint tandem routes, such as might be present in the
Internet. This problem is an extension of the classical ‘choice of parallel queues’problem, which
has also received considerable attention in the literature, beginning with Winston [20], who
showed that the ‘join the shorter queue’ policy is globally (or socially) optimal. Walrand [17,
pp. 260–264] gave a nice introduction to this area. The ‘join the shortest queue’policy has been
found to be globally optimal under various criteria and in various settings for both infinite and
finite queues ([7], [8], [10], [12], [13], and [18] are just a small selection of the many papers
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that have appeared). There are, however, interesting exceptions to the optimality of the shortest
queue policy – for instance, Whitt [19] showed that it may not be optimal if service times are
not exponential.

Optimal routeing to separate tandem queues has not been previously considered. Hordijk
and Koole [9] considered a two-stage tandem queue with multiple servers at each stage and
finite buffers with loss. In their model, routeing decisions for customers are made at both the
first and the second stages (whereas our model only allows a routeing decision to be made at
the first stage). They found that the shortest queue policy is optimal at the second stage, and
showed that it is optimal or close to optimal for the first stage.

In this paper we consider only individually optimal routeing policies; there are many
examples of such policies not being socially (globally) optimal. Bell and Stidham [2] gave
a nice discussion of this, and other examples can be found in, e.g. [6], [4], and [19]. The
unusual feature of the individually optimal policies in this paper is that individuals may find
it optimal to choose routes that are more congested (whereas usually the individually optimal
policies select routes that are less congested, and may thereby induce worse overall performance
in the system).

We state and prove our main result in Section 2. In Section 3 we give some illustrative
examples and a brief concluding discussion.

2. Optimal routeing

Consider a single tandem queue. Let ni, i = 1, 2, be the number of customers in the
ith queue, including any customer being served. Let n = (n1, n2) and let e1 = (1, 0) and
e2 = (0, 1) be the unit vectors.

We wish to characterise the probability that a marked customer entering a tandem queue
when it is in a given state is lost en route. Instead of studying this directly, we will instead
consider the probability that a marked customer reaches the destination – we call this the success
probability. More precisely, let pd(n) (the success probability) be the probability that a marked
customer reaches the destination when there are n1 +n2 −1 customers ahead of it in the tandem
queue. If n1 > 0 then there are n1 −1 customers ahead of the marked customer in queue one. If
n1 = 0 then the marked customer is in queue two and there are n2 − 1 customers ahead of it in
queue two. Note that, once the marked customer has entered queue two, its successful arrival at
the destination is assured; hence, we need only concern ourselves with the situation in which the
marked customer is still in queue one. Since the queues are first-in–first-out, whether a marked
customer reaches the destination depends only on the customers already in the system when it
arrives, and is not affected by arrivals after the marked customer. The latter arrivals are thus not
included in the notation for the success probability. This also means that the calculations below
for the success probability hold for any arrival process that is independent of the service times.
The success probabilities, pd(n), satisfy recursion equations similar to those for the hitting or
reaching probabilities of a Markov chain (see, e.g. [15, p. 13]).

Lemma 2.1. When n1 ≥ 1,

pd(n) = α1pd(n − e1 + e21{n2<C2})(1 − 1{n1=1, n2=C2}) + α2pd(n − e21{n2>0}), (2.1)

where
α1 = µ1

µ1 + µ2
, α2 = µ2

µ1 + µ2
,

and 1{·} is an indicator function. The initial conditions are pd(n) = 1, 0 < n1 + n2 ≤ C2.
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Proof. These equations are found, similarly to those for the hitting/reaching probabilities of a
Markov chain, by conditioning on the next service transition. If both queues contain customers,
then the next service transition is a departure from queue i with probability µi/(µ1 + µ2).
Whether a departure from queue one is accepted at queue two depends on whether or not queue
two is full. If queue two is empty then no departure from that queue can occur, and there is a
null transition into the same state, n. Particular attention needs to be given to queue one, which
contains the marked customer. If n1 = 1 then the marked customer is currently in service. If
also n2 = C2, and the next transition is a departure from queue one, then the marked customer
is lost and its success probability is 0. Since arrivals after the marked customer do not affect
its success probability, λ does not appear in these equations. Observe also that, for n such that
0 < n1 + n2 ≤ C2, we trivially have pd(n) = 1, since in this case there is no possibility of the
marked customer being lost in the transition from queue one to queue two.

The inclusion of a possible null transition in the recursion is a device useful in the proofs of
the results below. We note that it of course makes no difference to the values calculated for the
success probabilities.

In the results below we will use the following order relation.

Definition 2.1. We write m ≺ n if either

(a) m1 + m2 < n1 + n2 or

(b) m1 + m2 = n1 + n2 and m1 < n1.

We will also write m � n if either m ≺ n or m = n. The relation ‘≺’ uniquely determines an
ordering on all possible nonnegative vectors n ∈ Z

2+.

Before stating and proving our main theorem, we need a preliminary lemma.

Lemma 2.2. When n1 ≥ 1, 0 ≤ n2 < C2, and n1 + n2 ≥ C2, we have pd(n) ≥ pd(n + e2)

with the inequality being strict if C2 > 1.

Proof. We begin by showing that pd(1, C2 − 1) > pd(1, C2). This follows from the fact
that pd(1, C2 − 1) = 1, while pd(1, C2) = α2pd(1, C2 − 1) = α2 < 1. We now use a proof
by induction on the order relation in Definition 2.1. We have shown that the hypothesis holds
for the ‘lowest’ element in the set of states {n : pd(n + e2) < 1}. Now fix n such that n1 ≥ 1
and 0 ≤ n2 < C2, and assume the hypothesis to hold for all m ≺ n with m satisfying m1 ≥ 1
and 0 ≤ m2 < C2. Then, by applying the recursion (2.1), we obtain

pd(n) ≥ pd(n + e2)

⇔ α1pd(n − e1 + e2) + α2pd(n − e21{n2>0})
≥ α1pd(n − e1 + e2 + e21{n2+1<C2}) + α2pd(n).

Now, since n− e1 + e2 ≺ n, we have pd(n− e1 + e2) > pd(n− e1 + 2e2) when n2 + 1 < C2,
by the induction hypothesis. Similarly, when n2 > 0 we have n − e2 ≺ n and, again by the
induction hypothesis, pd(n − e2) > pd(n). If n2 + 1 = C2 or n2 = 0 then, respectively, the
coefficients of α1 or α2 in the inequality are equal. If C2 > 1 then at least one of the conditions
n2 + 1 < C2 and n2 > 0 must be satisfied; in this case the inequality is thus strict.

Corollary 2.1. For n1 ≥ 1, 0 ≤ n2 < C2, and n1+n2 ≥ C2, with C2 ≥ 2 and 2 ≤ i ≤ C2−n2,
i ∈ Z+, we have pd(n) > pd(n + ie2).
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Proof. The statement follows immediately by repeated application of Lemma 2.2. The
inequality is now strict, since C2 ≥ 2.

We are now ready to state and prove the main result.

Theorem 2.1. Consider a tandem queue consisting of two single-server queues with capacities
C1 and C2 < ∞ and service rates µ1 and µ2. For (2, C2 − 1) � n � (C1, C2) exactly one of
the following relations holds:

(a) pd(n) > pd(n − e1 + e21{n2<C2}) if n1 > 1 and 0 < n2 ≤ C2.

(b) pd(n) = pd(n − e1 + e2) if n1 ≥ 1 and n2 = 0.

Proof. As in Lemma 2.2, we use an inductive proof on n under the ordering ‘≺’. Observe
that (b) follows immediately from (2.1), so that we need only consider (a). We begin by
checking that n = (2, C2 − 1) satisfies the relationships given in the theorem. If C2 = 1 then
n satisfies (b). If C2 > 1 then we need to check that n satisfies (a). This holds because

pd(2, C2 − 1) > pd(1, C2) ⇔ α1pd(1, C2) + α2pd(2, C2 − 2) > pd(1, C2)

⇔ pd(2, C2 − 2) > pd(1, C2),

while pd(1, C2) = α2 < 1 = pd(2, C2 − 2). Now consider n = (2, C2). We need to check
that this satisfies (a). We have

pd(2, C2) > pd(1, C2) ⇔ α1pd(1, C2) + α2pd(2, C2 − 1) > pd(1, C2)

⇔ pd(2, C2 − 1) > pd(1, C2),

since α1 + α2 = 1, and we have already shown (immediately above) that this holds. Thus, the
hypothesis holds for the lowest n satisfying the conditions in (a) and for all n satisfying the
conditions in (b). Therefore, the result holds for any n 	 (2, C2 − 1) such that n1 = 2. In
particular, the theorem holds for all cases with C1 = 2.

Now consider any n such that n 
 (2, C2) with n1 > 2, n2 > 0, and C1 > 2. Assume that
the induction hypothesis holds for all m such that (2, C2 − 1) ≺ m ≺ n (any such m satisfies
one and only one of the relationships given in (a) and (b) – whichever one of them holds). If
n2 < C2 then (a) holds for n if pd(n) > pd(n − e1 + e2), which holds if and only if

α1pd(n − e1 + e2) + α2pd(n − e2) > α1pd(n − 2e1 + e2 + e21{n2+1<C}) + α2pd(n − e1).

Since n−e1+e2 ≺ n, by the induction hypothesis we have pd(n−e1+e2) > pd(n−2e1+2e2)

if n2 + 1 < C2 and pd(n − e1 + e2) > pd(n − 2e1 + e2) if n2 + 1 = C2. Similarly, since
n − e2 ≺ n, by the induction hypothesis we also have pd(n − e2) > pd(n − e1). If n2 = C2
then (a) holds for n if

pd(n1, C2) > pd(n1 − 1, C2)

⇔ α1pd(n1 − 1, C2) + α2pd(n1, C2 − 1) > pd(n1 − 1, C2)

⇔ pd(n1, C2 − 1) > pd(n1 − 1, C2),

since α1 +α2 = 1. However, the final inequality follows from (a), by the induction hypothesis,
since (n1, C2 − 1) ≺ (n1, C2).

Thus, the hypothesis holds for n and, so, by induction, the theorem holds.
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Corollary 2.2. Consider a tandem queue consisting of two single-server queues with capacities
C1 and C2 < ∞ and service rates µ1 and µ2. The following inequalities hold for n 	
(2, C2 − 1), i ∈ Z+:

(a) pd(n) > pd(n− ie1 + ie2) if n1 > 1, 0 < n2 < C2, and 1 < i ≤ min(n1 − 1, C2 −n2),

(b) pd(n) > pd(n − ie1) if n1 > 1, n2 = C2, and 1 < i < n1.

Proof. The statements follow by repeated application of the inequalities of Theorem 2.1.

A natural heuristic when choosing a route, given two routes with the same total number
of customers in each, might be to choose that route on which the customers ahead of you are
as close to the destination as possible. However, this theorem shows that a customer may do
better by choosing a route on which other customers ahead of them are closer to the source
and further from the destination. The reason for this is clear once the phenomenon has been
observed: the presence of other customers in a queue delays the expected completion of service
of the marked customer, and its subsequent loss, and so has a protective effect for the marked
customer. Hordijk and Koole [9] gave an example showing that it may be best to delay the
choice of routes in a parallel system when they are both equally busy.

It is tempting to conjecture that a more general result holds for longer series of queues. Let
ni, 1 ≤ i ≤ K , now be the number of customers in the ith queue, where queue one is the first
queue after leaving the source, and queue K is the last queue before reaching the destination.
Let n = (n1, n2, . . . , nK) and let the operators

Tijn = (n1, n2, . . . , ni − 1, . . . , nj + 1, . . . , nK),

Ti·n = (n1, n2, . . . , ni − 1, . . . , nK),

T·jn = (n1, n2, . . . , nj + 1, . . . , nK)

respectively denote a customer moving from queue i to queue j , moving from queue i out of
the system, and moving into queue j from outside the system (see [11, p. 40, p. 48]). Then we
might conjecture that pd(n) > pd(T1jn) or even pd(n) > pd(Tijn) might hold. Somewhat
surprisingly, there are many choices of i, j , C, and n for which these inequalities do hold, but
counterexamples show that neither holds in general. For instance, with Ci = 2 and µi = 1,
i = 1, 2, 3, we have

pd(2, 1, 0) = 0.667 < 0.833 = pd(1, 1, 1),

pd(2, 1, 0) = 0.667 < 0.917 = pd(2, 0, 1).

3. Examples and conclusion

In this section we give two examples that illustrate the results derived above.

Example 3.1. C1 = C2 = 10 and µ1 = µ2.

The success probabilities, calculated using the recursion formula of Lemma 2.1, are plotted in
Figure 2. They satisfy the inequalities of Theorem 2.1. Note, for instance, that pd(1, 10) = 0.5,
while pd(10, 1) = 0.99; the success probability is almost doubled, while n1+n2 stays constant.
Note also that pd(1, 10) is considerably less than pd(n) for any other choice of n; thus, a route
in any other state will be better for the customer, including those on which there are more
customers in total.
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Figure 2: The success probabilities, pd(n), for a marked customer when C1 = C2 = 10 and µ1 = µ2.
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Figure 3: The success probabilities for a marked customer when C1 = C2 = 50, µ1 = 1.0, and
(a) µ2 = 0.75, (b) µ2 = 1.00, (c) µ2 = 1.25.

Example 3.2. C1 = C2 = 50 and µ1 = 1.0, with µ2 varying.

In this example, µ1 = 1.0 is fixed and µ2 is allowed to vary. In Figure 3, the plots show
the success probabilities for µ2 = 0.75, 1.0, 1.25. The most marked increase in the success
probability occurs as n1 increases, close to its minimum value.
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User-optimal routeing in parallel tandem queues can lead to apparently paradoxical
behaviour, with users choosing routes that are busier, in the sense that either more customers are
already present in the tandem queue or customers have greater remaining service requirements.
This could have practical implications for routeing strategies in networks such as the Internet.
In future work, we intend to examine the socially optimal policy and consider longer series of
queues, queues with cross-traffic, and other service disciplines, such as processor sharing.
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