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STRONG SPATIAL MIXING AND RAPID MIXING WITH
FIVE COLOURS FOR THE KAGOME LATTICE

MARKUS JALSENIUS

Abstract

We consider proper 5-colourings of the kagome lattice.
Proper q-colourings correspond to configurations in the zero-
temperature q-state anti-ferromagnetic Potts model. Salas and
Sokal have given a computer assisted proof of strong spatial
mixing on the kagome lattice for q > 6 under any temperature,
including zero temperature. It is believed that there is strong
spatial mixing for q > 4. Here we give a computer assisted
proof of strong spatial mixing for q = 5 and zero temperature.
It is commonly known that strong spatial mixing implies that
there is a unique infinite-volume Gibbs measure and that the
Glauber dynamics is rapidly mixing. We give a proof of rapid
mixing of the Glauber dynamics on any finite subset of the ver-
tices of the kagome lattice, provided that the boundary is free
(not coloured). The Glauber dynamics is not necessarily irre-
ducible if the boundary is chosen arbitrarily for q = 5 colours.
The Glauber dynamics can be used to uniformly sample proper
5-colourings. Thus, a consequence of rapidly mixing Glauber
dynamics is that there is fully polynomial randomised approxi-
mation scheme for counting the number of proper 5-colourings.

1. Introduction

Proper colourings correspond to configurations in the zero-temperature anti-
ferromagnetic Potts model. In this paper we will show that the system specified
by proper 5-colourings of the kagome lattice has strong spatial mixing, and that the
Glauber dynamics is rapidly mixing. The previously best known result [20] on mix-
ing on the kagome lattice was for 6 colours. It is believed [20] that there is strong
spatial mixing for 4 or more colours, and hence our result is narrowing the gap
between what is believed and known. In Section 1.1 below we give an introduction
to mixing, and in Section 2 we state our results and discuss related work.

1.1. Definitions and background
The kagome lattice, Figure 1(a), is a natural lattice of interest in statistical

physics [20]. Instead of drawing graphs in the traditional way, with a vertex denoted
with a solid circle and an edge denoted with a line segment, we draw graphs such
that faces represent vertices. Two adjacent faces therefore represent two adjacent
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Strong spatial mixing and rapid mixing withfive colours for the kagome lattice
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Figure 1: (a) The kagome lattice, here drawn in a coordinate system. We illustrate
graphs such that a face represents a vertex. (b) A vertex (x, y) ∈ Vodd and its right
neighbour. (c) A vertex (x, y) ∈ Veven and its four neighbours.

vertices. Let G = (VG , EG) denote the kagome lattice with vertex set VG and edge
set EG . We have VG = Vodd ∪ Veven, where

Vodd = {(x, y) | x, y ∈ Z are both odd},
Veven = {(x, y) | x = 4k1 + r, y = 4k2 + r, k1, k2 ∈ Z, r ∈ {0, 2}}.

The edge set

EG = {((x, y), (x+ 2, y)) | (x, y) ∈ Vodd} ∪
{((x, y), (x+ k1, y + k2)) | (x, y) ∈ Veven, k1 ∈ {−1, 1}, k2 ∈ {−1, 1}}.

Note that both vertices in Figure 1(b) are in Vodd, and we see that two adjacent
vertices in Vodd differ by 2 in their x-coordinate. In Figure 1(c), the centre vertex
is in Veven, and we see that its four neighbours are in Vodd.

A region R ⊆ VG is a finite non-empty subset of the vertex set of the kagome
lattice. The subset ∂R ⊆ VG denotes the vertex boundary of R such that ∂R is the
set of vertices that are not in R but are adjacent to any vertex in R. The edge set
E(R) is the set of all edges (u, v) ∈ EG such that at least one of the vertices u and
v is in R. The edge boundary ER of R is the set of all edges (u, v) ∈ E(R) such that
exactly one of the vertices u and v is in R and the other one is in ∂R.

The set Q = {1, . . . , q} denotes the set of q colours, and the set Q0 = {0} ∪ Q.
The colour 0 represents “no colour”. A q-colouring of a region R is a function from
R to the set Q, and a q0-colouring of R is a function from R to Q0. A 0-colouring
of R is a function from R to the set {0}, which means that all vertices in R are
assigned colour 0. We often write only colouring when it is obvious from the context
if it is a q-, q0- or 0-colouring, or if any colouring will do. Let σ be a colouring of
a region R. If R′ is a subset of R then σ(R′) is the colouring of R′ induced by σ.
Furthermore, for a vertex v ∈ R, σ(v) is the colour of v under σ. Let Ω+

R denote the
set of all q-colourings of the region R. For two colourings σ, σ′ ∈ Ω+

R, the Hamming
distance between σ and σ′ is the number of vertices in R on which σ and σ′ differ.
A colouring σ of R is proper if no adjacent vertices receive the same colour. That
is, σ(u) 6= σ(v) for all adjacent vertices u and v in R. Let ΩR denote the set of
all proper q-colourings of the region R. Given a q0-colouring B of ∂R, a proper
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q-colouring σ of R agrees with B if σ(u) 6= B(v) for all (u, v) ∈ ER, where u ∈ R.
We let ΩR(B) denote the set of all proper q-colourings of R that agree with B. The
uniform distribution on ΩR(B) is denoted πB, and for any subregion R′ ⊆ R, let
πB,R′ denote the distribution on proper q-colourings of R′ induced by πB.

In this paper we will show that the system specified by proper 5-colourings of the
kagome lattice has strong spatial mixing. Informally, strong spatial mixing means
that if R is a region and B is a q0-colouring of ∂R, then the effect the colour of
a vertex w ∈ ∂R has on a vertex v ∈ R decays exponentially with the distance
between w and v. The effect is measured with the total variation distance. For two
distribution D1 and D2 on a set S, the total variation distance between D1 and D2

is defined as

dTV(D1, D2) =
1
2

∑
s∈S
|D1(s)−D2(s)| = max

A⊆S
|D1(A)−D2(A)|.

The following definition of strong spatial mixing is taken from [12] and is adapted
to the kagome lattice.

Definition 1 (Strong spatial mixing). The system specified by proper q-colourings
of the kagome lattice has strong spatial mixing if there are two constants α > 0 and
ε ∈ (0, 1) such that, for any region R, any subregion R′ ⊆ R, any two q0-colourings
B and B′ of ∂R which differ on exactly one vertex w ∈ ∂R and such that B(w) 6= 0
and B′(w) 6= 0,

dTV(πB,R′ , πB′,R′) 6 α|R′|(1− ε)d(w,R′),

where d(w,R′) is the minimal distance within R from w to some vertex of R′.

A distribution π on the set of proper q-colourings of the infinite kagome lattice
is an infinite-volume Gibbs distribution if, for any region R and any proper q-
colouring σ of the kagome lattice, the conditional distribution π(·|σ(VG\R)) on ΩR
(conditioned on the colouring σ(VG\R) of all vertices other than those in R) is πB,
where B = σ(∂R). It is known that there is always at least one infinite-volume Gibbs
distribution, and the question of interest is to determine whether it is unique or not.
This question is central in statistical physics because it corresponds to the number
of macroscopic equilibria for a given system. The phenomenon of non-uniqueness
corresponds to what is referred to as a phase transition. A consequence of strong
spatial mixing is that the infinite-volume Gibbs distribution is unique [8, 23, 24].
For more on Gibbs distributions, see for example [9] or [10].

Another question of interest is to determine how quickly the system converges to
equilibrium. The answer to this question is connected to the quantities α and ε in
Definition 1 above. From a statistical physics point of view, this question is impor-
tant for understanding phenomena such as how the system returns to equilibrium
after a shock forces it out of it. In this paper we consider a famous dynamical process
called the Glauber dynamics which models how the system converges. The Glauber
dynamics, defined next, is a Markov chain that performs single-vertex heat-bath
updates.

Definition 2 (Glauber dynamics). For any region R and any q0-colouring B of ∂R,
the Glauber dynamics is a Markov chain with state space ΩR(B), and a transition
is made from a state σ to σ′ in the following way:
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Figure 2: A 2-vertex region of the kagome lattice with different colourings. A ver-
tex is labelled with its colour. The two colourings in (a) are “frozen” and do not
communicate in the Glauber dynamics for q = 5. However, when restricting the
boundary to the 0-colouring in (b), the two colourings do communicate.

1. Choose a vertex v uniformly at random from R.

2. Let Qv be the set of colours which are assigned to the neighbours of v (either
in σ or B).

3. Choose a colour c uniformly at random from Q\Qv and obtain the new colour-
ing σ′ from σ by assigning colour c to vertex v.

A sufficient condition for the Glauber dynamics to be connected (that is, any
proper colouring can be obtain from another proper colouring by a series of transi-
tions) is to have q > 6. In general, with the Glauber dynamics defined similarly on
any underlying infinite graph of maximum degree ∆, having q > ∆+2 is a sufficient
condition for the dynamics to be connected. In this paper we focus on 5-colourings
and in order to guarantee that the Glauber dynamics is connected we will have
to restrict the colourings B of the boundary to the 0-colouring (see Figure 2). For
this reason, our 5-colour mixing result for the Glauber dynamics is restricted to
the 0-colouring of the boundary. It is worth pointing out that if we add moves to
the Glauber dynamics that allow swapping the colours of two neighbouring vertices
(when this move is allowed with respect to the colouring of the rest of the vertices)
then the new dynamics is connected for any region R and any q0-colouring of ∂R if
q > 5. This fact is true for any graph of maximum degree ∆ and q > ∆ + 1 colours.
This augmented Glauber dynamics can be simulated by the heat-bath dynamics on
edges which we define as follows: Choose an edge e = (v1, v2) uniformly at ran-
dom and simultaneously recolour v1 and v2 uniformly at random from the allowed
colourings.

If the Glauber dynamics is connected, and hence ergodic, then πB is the unique
stationary distribution. This follows from the fact that the Glauber dynamics is
reversible with respect to πB. For the same reason, πB is the unique stationary
distribution of the heat-bath dynamics on edges. The Glauber dynamics can be
used as a sampler to sample colourings from the uniform distribution on ΩR(B).
This can be done efficiently if the Glauber dynamics is rapidly mixing (see definition
below), which means that it quickly reaches its stationary distribution.

Definition 3 (Mixing time). Consider the Glauber dynamics on a region R with
boundary colouring B. Let P t(σ, σ′) be the probability of going from state σ to σ′

in exactly t steps. For any δ > 0, the mixing time

τ(δ) = max
σ∈ΩR(B)

min{t0 : dTV(P t(σ, ·), πB) 6 δ for all t > t0}.
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The Glauber dynamics is rapidly mixing if τ(δ) is upper-bounded by a polynomial
in the region-size |R| and log(1/δ).

It is a well-known fact that if the system has strong spatial mixing then the
Glauber dynamics is (often) rapidly mixing [8, 17, 23]. In Section 7 we will study
this fact and see how strong spatial mixing and rapid mixing are closely related.
For q > 6 colours (or q > ∆+2 in general) it is straightforward to apply Theorem 8
in [12] in order to infer rapid mixing from strong spatial mixing. However, with
q = 5 colours we cannot rely entirely on previous results. We will establish certain
properties of 5-colourings of the kagome lattice and show that the Glauber dynamics
is rapidly mixing for q = 5 under the 0-colouring of the boundary.

In [15] it is explained how approximate counting and almost uniform sampling
are related. If there is a method for sampling (almost) uniformly at random in
polynomial time from the set of proper colouring of a finite region R, then we
can construct a fully polynomial randomised approximation scheme, or FPRAS, for
counting the number of proper colourings of R. Thus, if the Glauber dynamics is
rapidly mixing then we could use it to construct (in a non-trivial way) an FPRAS
for estimating |ΩR|. For details on the topic of how sampling and counting are
related, see Jerrum [15] and Jerrum, Valiant and Vazirani [16].

2. The results and related work

We will prove the following theorems, which improve previously known results
on mixing for proper colourings of the kagome lattice.

Theorem 4. The system specified by proper 5-colourings of the kagome lattice has
strong spatial mixing.

Theorem 5. For any region R of the kagome lattice and q = 5 colours, the Glauber
dynamics is rapidly mixing on R under the 0-colouring of ∂R. The mixing time
τ(δ) ∈ O(n2 + n log 1

δ ), where n is the number of vertices in R.

Theorem 6. For any region R of the kagome lattice and q = 5 colours, the heat-
bath dynamics on edges is rapidly mixing on R under any q0-colouring of ∂R. The
mixing time τ(δ) ∈ O(n2 + n log 1

δ ), where n is the number of vertices in R.

The previously best known result on mixing on the kagome lattice is that of Salas
and Sokal [20]. They provided a computer assisted proof of strong spatial mixing
for q = 6 colours. It is believed [20] that there is strong spatial mixing for q > 4
colours.

It is worth mentioning some previous general results on mixing. Independently,
Jerrum [14] and Salas and Sokal [20] proved that for proper q-colourings on a graph
of maximum degree ∆ the Glauber dynamics has O(n log n)-mixing for q > 2∆,
where n is the number of vertices of the region. For q = 2∆, Bubley and Dyer [3]
showed that it mixes in O(n3) time and Molloy [18] showed that it mixes O(n log n)
time. Vigoda [22] used a Markov chain that differs from the Glauber dynamics
and showed that it has O(n log n)-mixing for q > (11/6)∆. This result implied
that the Glauber dynamics is rapidly mixing for q > (11/6)∆. Goldberg, Martin
and Paterson [12] showed that any triangle-free graph has strong spatial mixing
provided q > α∆ − γ, where α is the solution to αα = e (α ≈ 1.76322) and
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γ = 4α3−6α2−3α+4
2(α2−1) ≈ 0.47031. Note that their result cannot be applied to the

kagome lattice since its edge set contains triangles. However, for other 4-regular
graphs, such as the square lattice Z2, it follows that mixing occurs for q > 7
colours. The technique Goldberg, Martin and Paterson used in [12] is well suited
to be extended to involve special cases that depend on the particular graph under
consideration. Involving such special cases can improve the mixing bounds. In order
to deal with all special cases it might be helpful to incorporate computer assistance.
This has been done in [12] for the lattice Z3. The general result gives mixing for
q > 11 colours but by taking advantage of the geometry of the lattice it has been
shown that mixing occurs for q > 10. This proof is computer assisted. Another
computer assisted proof of mixing in [12] is given for the triangular lattice and
q = 10 colours. This result was improved by Jalsenius [13] to q = 9 by exploiting
the geometry of the lattice even further. Goldberg, Jalsenius, Martin and Paterson
used the technique from [12] and gave in [11] a computer assisted proof of mixing
for q = 6 on the square lattice Z2. This is an alternative proof of the result of
Achlioptas, Molloy, Moore and van Bussel [1] (who also used computer assistance).
In this paper we will refine the technique Goldberg, Martin and Paterson introduced
in [12] to show mixing on the kagome lattice for q = 5 colours. Both the square
lattice and the kagome lattice are 4-regular graphs, but the kagome lattice contains
triangles whereas the square lattice does not. An interesting observation is that
the presence of triangles seem to have a positive effect on the technique we use to
show strong spatial mixing. Attempts to prove mixing with 5 colours on the square
lattice with this technique has failed so far. The absence of triangles seem to be
one strong reason why (assuming the square lattice does have strong spatial mixing
with 5 colours).

3. The framework

When Goldberg, Martin and Paterson [12] derived improved mixing bounds
for spin systems consisting of proper colourings, they introduced the notion of a
vertex-boundary pair. A vertex-boundary pair is a data structure holding informa-
tion about a region R and colourings of ∂R. The idea is to derive certain properties
of the vertex-boundary pairs which can be easily translated into properties such as
whether there is strong spatial mixing or not. When Goldberg, Martin and Paterson
derived these properties, it turned out to be convenient to work with edge-boundary
pairs. An edge-boundary pair (defined in the next section) contains colourings of
the edge boundary ER rather than the vertex boundary ∂R.

Definition 7 (Vertex-boundary pair). A vertex-boundary pair X consists of
• a region RX ,
• a distinguished boundary vertex wX ∈ ∂RX , and
• a pair (BX ,B′X ) of q0-colourings of ∂RX that are identical on all vertices

except on wX , where they differ. The colour of wX is in Q for both BX and
B′X .

Note that the colour of the distinguished vertex wX has to be in the set Q. That
is, BX (wX ) 6= 0 and B′X (wX ) 6= 0. Definition 1 of strong spatial mixing can be
rephrased using the definition of a vertex-boundary pair. That is, in order to show
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strong spatial mixing, we will show that there are two constants α > 0 and ε ∈ (0, 1)
such that for every vertex-boundary pair X and every subregion R′ ⊆ RX ,

dTV(πBX ,R′ , πB′X ,R′) 6 α|R′|(1− ε)d(wX ,R
′).

One approach to show exponential decay of the total variation distance in the
distance between wX and R′ is to construct a suitable coupling (defined next)
of the distributions πBX and πB′X . For two distributions D1 and D2 on a set S, a
coupling Ψ of D1 and D2 is a joint distribution on S×S with marginal distributions
D1 and D2. If the pair (X1, X2) is a random variable drawn from Ψ then

dTV(D1, D2) 6 Pr[X1 6= X2].

Thus, in order to upper-bound the total variation distance, one can find some
suitable coupling Ψ and compute the probability of havingX1 6= X2. The aim here is
to construct a coupling ΨX of πBX and πB′X such that if the pair (σ, σ′) of colourings
is drawn from ΨX then the probability that σ and σ′ differ on R′ ⊆ RX decreases
exponentially with the distance between the discrepancy vertex wX ∈ ∂RX and
R′. For a vertex v ∈ RX we define the indicator random variable 1ΨX ,v for the
event that the colour of v differs in a pair of colourings drawn from ΨX . Hence, the
quantity

∑
v∈RX E[1ΨX ,v] is the expected number of vertices in RX on which the

colours differ in a pair of colourings drawn from ΨX . If E[1ΨX ,v] is small enough for
all vertex-boundary pairs X and vertices v ∈ RX then we can infer strong spatial
mixing (Section 6) and rapid mixing (Section 7).

4. Edge discrepancies

Similarly to the definition of a vertex colouring we define a q-, q0- and 0-colouring
of a set E ⊆ EG of edges to be a function from E to Q, Q0 and {0}, respectively.
If B is an edge colouring of E, and E′ is a subset of E then B(E′) is the colouring
of E′ induced by B. For an edge e ∈ E, B(e) is the colour of e under B. Given a
region R and a q0-colouring B of ER, a proper q-colouring σ of R agrees with B if
σ(u) 6= B(e) for all edges e ∈ ER, where u ∈ R is incident to e. We let ΩR(B) denote
the set of all proper q-colourings of R that agree with B. The uniform distribution
on ΩR(B) is denoted πB .

Let E be a set that contains the four edges that are incident to some vertex
v ∈ VG . Two edges e, e′ ∈ E are adjacent if there is a clockwise ordering around v
of the edges in E such that e′ follows immediately after e. Similarly to a vertex-
boundary pair X we define an edge-boundary pair X as follows. Note that this
definition is equivalent to the notion of a relevant boundary-pair in [12].

Definition 8 (Edge-boundary pair). An edge-boundary pair X consists of
• a region RX ,
• a distinguished boundary edge eX = (wX , vX) ∈ ERX with wX ∈ ∂RX ,
vX ∈ RX , and

• a pair (BX , B′X) of q0-colourings of ERX that are identical on all edges except
on eX , where they differ.

We require
• BX(eX) ∈ Q and B′X(eX) ∈ Q, and
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• any two adjacent boundary edges that share a vertex in ∂RX have the same
colour in at least one of the two colourings BX and B′X (and so in both of
BX and B′X except when edge eX is involved).

Suppose X is an edge-boundary pair. For a coupling ΨX of πBX and πB′X we
define 1ΨX ,v to be the indicator random variable for the event that, when a pair
of colourings is drawn from ΨX , the colour of vertex v ∈ RX differs in these two
colourings. For any edge-boundary pair X we define Ψmin

X to be some coupling
of πBX and πB′X minimising E[1ΨX ,vX ]. For every pair of colours c, c′ ∈ Q, let
pmin
X (c, c′) be the probability that C(vX) = c and C ′(vX) = c′, where (C,C ′) is a

pair of colourings drawn from Ψmin
X . For a vertex v ∈ RX , let d(eX , v) denote the

distance within RX from edge eX to v. Thus, d(eX , vX) = 1 and if v ∈ RX adjoins
vX then d(eX , v) = 2, and so on. We wish to construct a coupling ΨX of πBX and
πB′X such that E[1ΨX ,v] decreases exponentially in the distance d(eX , v). In order
to do this we use a recursive coupling. To aid the analysis we define a labelled tree
TX associated with each edge-boundary pair X. The notion of TX was introduced
by Goldberg, Martin and Paterson in [12].

Suppose X is an edge-boundary pair. We will now construct the tree TX . Start
with a node r which will be the root of TX . For every pair c, c′ ∈ Q of distinct
colours, add an edge labelled (pmin

X (c, c′), vX) from r to a new node rc,c′ . Let e1, e2, e3

be the clockwise ordering of the edges incident to vX (excluding edge eX) such that
eX appears between e3 and e1. The i-th neighbour of vX denotes the vertex that is
incident to ei. If the i-th neighbour of vX is not in RX then we define Xi(c, c′) = ∅.
If the i-th neighbour of vX is in RX then let Xi(c, c′) be the edge-boundary pair
consisting of

• The region RXi(c,c′) = RX\{vX},
• the distinguished boundary edge eXi(c,c′) = ei, and

• the pair (BXi(c,c′), B
′
Xi(c,c′)

) of q0-colourings of ERXi(c,c′) such that both
colourings are identical to BX on all edges in ERXi(c,c′)\{e1, e2, e3}. The
colours of the boundary edges in {e1, e2, e3} are assigned as follows.

– BXi(c,c′)(ei) = c′ and B′Xi(c,c′)(ei) = c.
– For the boundary edge ej ∈ {e1, e2, e3} such that j < i, both BXi(c,c′)(ej)

and B′Xi(c,c′)(ej) are c′.
– For the boundary edge ej ∈ {e1, e2, e3} such that j > i, both BXi(c,c′)(ej)

and B′Xi(c,c′)(ej) are c.

If the i-th neighbour of vX is in RX , recursively construct the tree TXi(c,c′) and
join it to TX by adding an edge with label (1, ·) from rc,c′ to the root of TXi(c,c′).
Note that if vX has no neighbours in RX then rc,c′ is a leaf. That completes the
construction of TX .

We say that an edge e of TX is degenerate if the second component of its label
is “·”. For edges e and e′ of TX , we write e → e′ to denote the fact that e is and
ancestor of e′. That is, either e = e′, or e is a proper ancestor of e′. Define the
level of an edge e of TX to be the number of non-degenerate edges on the path
from the root down to, and including, e. Suppose that e is an edge of TX with label
(p, v). We say that the weight w(e) of edge e is p. Also the name n(e) of edge e is
v. The likelihood l(e) of e is

∏
e′:e′→e w(e). The cost γ(v, TX) of a vertex v ∈ RX
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is
∑
e:n(e)=v l(e). If the region RX is not connected and vertex vX and a vertex

v ∈ RX belong to different connected components, then there will be no edge with
name v in TX and we define γ(v, TX) = 0. We have the following lemma, which is
proved in [12] as Lemma 12.

Lemma 9 ([12, Lemma 12]). For every edge-boundary pair X there exists a coupling
ΨX of πBX and πB′X such that E[1ΨX ,v] 6 γ(v, TX) for all v ∈ RX .

A key ingredient from the construction of TX that affects γ(v, TX) is the quantity
E[1Ψmin

X ,vX ], which we denote ν(X). Thus,

ν(X) = E[1Ψmin
X ,vX ] =

∑
c,c′∈Q,
c 6=c′

pmin
X (c, c′).

For an edge-boundary pair X and an integer d > 1, let Ed(X) denote the set of
level-d edges in TX , and define Γd(X) =

∑
e∈Ed(X) l(e). We define Γd(∅) = 0 for

d > 1. Equivalently, we can define Γd(X) recursively:

Γ1(X) = ν(X) =
∑

c,c′∈Q,
c6=c′

pmin
X (c, c′), (1)

and for d > 1 we have

Γd(X) =
∑

c,c′∈Q,
c6=c′

pmin
X (c, c′)

3∑
i=1

Γd−1(Xi(c, c′)). (2)

Lemma 10. Suppose X is an edge-boundary pair and R′ ⊆ RX . Then there is a
coupling ΨX of πBX and πB′X such that∑

v∈R′
E[1ΨX ,v] 6

∑
d>d(eX ,R′)

Γd(X).

Proof. By Lemma 9 there is a coupling ΨX of πBX and πB′X such that E[1ΨX ,v] 6
γ(v, TX) for v ∈ RX . Thus,∑

v∈R′
E[1ΨX ,v] 6

∑
v∈R′

γ(v, TX) 6
∑
v∈R′

∑
e:n(e)=v

l(e)

6
∑

d>d(eX ,R′)

∑
e∈Ed(X)

l(e) 6
∑

d>d(eX ,R′)

Γd(X).

5. Exponential decay of Γd(X)

Suppose X is an edge-boundary pair. Let B be the colouring of ERX such that
B(e) = BX(e) for e ∈ ERX \{eX} and B(eX) = 0. For i ∈ Q, we define ni(X) to be
the number of proper q-colourings σ in ΩRX (B) such that σ(vX) = i. For i, i′ ∈ Q,
we define Ni,i′(X) =

∑
j∈Q\{i,i′} nj(X) and

µi,i′(X) =
ni(X)

ni(X) +Ni,i′(X)
.
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Suppose c = BX(eX) and c′ = B′X(eX). Then µc,c′(X) is the probability that vX
receives colour c in πB′X , and µc′,c(X) is the probability that vX receives colour c′

in πBX . We now define µ(X) = max[µc,c′(X), µc′,c(X)].

Lemma 11. For every edge-boundary pair X, ν(X) 6 µ(X).

Proof. Let X be an edge-boundary pair and suppose without loss of generality
that BX(eX) = c and B′X(eX) = c′. Suppose first that µc,c′(X) > µc′,c(X). Then
nc(X) > nc′(X). We define a coupling ΨX of πBX and πB′X as follows. Let (C,C ′)
be a pair of colourings drawn from ΨX such that C is drawn from πBX and C ′

from πB′X . We have Pr[C(vX) = c] = 0, Pr[C ′(vX) = c′] = 0, Pr[C ′(vX) = c] >
Pr[C(vX) = c′] and Pr[C ′(vX) = i] 6 Pr[C(vX) = i] for i ∈ Q \ {c, c′}. We pair up
colourings in (C,C ′) such that C(vX) = C ′(vX) when C ′(vX) = i for i ∈ Q\{c, c′}.
Then C(vX) 6= C ′(vX) only when C ′(vX) = c. Thus, Pr[C(vX) 6= C ′(vX)] =
µc,c′(X) and ν(X) 6 µc,c′(X). Suppose second that µc′,c(X) > µc,c′(X). Similarly
to above, ν(X) 6 µc′,c(X). Thus, ν(X) 6 µ(X).

Suppose X is an edge-boundary pair and c = BX(eX) and c′ = B′X(eX). In
order to obtain sufficiently good upper bounds on ν(X) we use the previous lemma
together with Lemma 12 below, which we first describe in words. Suppose we want
to upper-bound µc,c′(X). The idea is to pick a subregion R′ ⊆ RX that contains
vertex vX . Then we compute the maximum value of µc,c′ for that subregion, where
we maximise over colourings of the boundary of R′ that are identical to BX on the
overlapping boundary edges ERX∩ER′. This maximum value is an upper bound on
µc,c′(X). Note that Goldberg, Martin and Paterson [12, Lemma 13] gave a similar
lemma in terms of µ(X). However, in this paper it is crucial to be precise about
the order of the colours c and c′ in µc,c′(X).

Lemma 12. Suppose that X is an edge-boundary pair and let c = BX(eX), c′ =
B′X(eX). Let R′ be any subset of RX which includes vX . Let S be the set of edge-
boundary pairs X ′ such that RX′ = R′, the distinguished edge eX′ = eX , and for the
boundary colourings BX′ and B′X′ we have BX′(e) = BX(e) and B′X′(e) = B′X(e)
on e ∈ ERX ∩ ER′. Then µc,c′(X) 6 maxX′∈S µc,c′(X ′).

Proof. Let X be an edge-boundary pair and let c = BX(eX) and c′ = B′X(eX).
For a subregion R′ ⊆ RX that contains vX , let H = RX\R′. For i ∈ Q\{c} and
θ ∈ ΩH , let ni,θ denote the number of colourings in ΩRX (BX) which colour vX
with colour i and H with colouring θ. For θ ∈ ΩH , let nc,θ denote the number of
colourings in ΩRX (B′X) which colour vX with colour c and H with colouring θ. Let
Nc,c′,θ =

∑
i∈Q\(c,c′) ni,θ. Then

µc,c′(X) =
nc(X)

nc(X) +Nc,c′(X)
=

∑
θ∈ΩH

nc,θ∑
θ∈ΩH

(nc,θ +Nc,c′,θ)

6 max
θ∈ΩH

nc,θ
nc,θ +Nc,c′,θ

6 max
X′∈S

µc,c′(X ′).

To see the last inequality, take any θ ∈ ΩH and construct the edge-boundary pair
X ′ in S with the following parameters: RX′ = R′, BX′ = BX on ERX ∩ ER′ and

204https://doi.org/10.1112/S1461157000001492 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001492


Strong spatial mixing and rapid mixing withfive colours for the kagome lattice

(a) (b)
e

(c)

Figure 3: (a) An extended region R. A non-shaded vertex is labelled “in”, and a
shaded vertex is labelled “out”. (b) A region R with a marked edge e ∈ E(R).
(c) We see that R matches R with respect to edge e in R.

(a) (b) (c)

vX

eX

e′
v

e
wX

Figure 4: (a) The extended region RM(1,2) . (b) The extended region RM(3,4) . (c)
Labelling of vertices and edges.

B′X′ = B′X on ERX ∩ER′. For each boundary edge e ∈ ER′ such that e /∈ ERX , let
BX′(e) = B′X′(e) = θ(v), where vertex v ∈ H is the endpoint of e in ∂R′. Now,

nc,θ
nc,θ +Nc,c′,θ

=
nc(X ′)

nc(X ′) +Nc,c′(X ′)
= µc,c′(X ′).

5.1. Extended regions
It will be convenient to introduce the notion of an extended region R, which is a

region with the following additional information: (i) Every vertex in R is labelled
either “in” or “out”, and (ii) one of the boundary edges of R is referred to as the
designated edge.

An extended region R and a region R are matching with respect to an edge
e ∈ E(R) if there is a way of overlapping R with R such that the designated edge
of R coincides with the edge e, and every vertex that is labelled “in” in R coincides
with a vertex that is in R, and every vertex that is labelled “out” in R coincides
with a vertex that is not in R. When illustrating extended regions in the figures,
we let non-shaded faces represent vertices that are labelled “in”, and we let shaded
faces represent vertices that are labelled “out”. We mark the designated boundary
edge with a short and thick line segment. Figure 3 illustrates how an extended
region R matches a region R with respect to an edge e. Note that the overlapping
takes place under any rotation or reflection of the regions.

SupposeR is an extended region. An extended regionR′ is an extended subregion
of R if R′ is obtained from R by removing vertices, except for the vertex that is
incident to the designated edge. The labelling of the vertices in R′ is identical to
the labelling of the same vertices in R.

5.2. A collection F of edge-boundary pairs
LetRM(1,2) be the extended region in Figure 4(a) and letRM(3,4) be the extended
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(a) (b) (c)

Figure 5: (a) The extended region RF . (a)–(c) Three of the extended regions
RF1 , . . . ,RF4720 . All vertices are labelled “in”.

region in Figure 4(b). Let M(1,2) be the set of edge-boundary pairs X such that RX
and RM(1,2) are matching with respect to eX . Let M4 be the set of edge-boundary
pairs X such that RX and RM(3,4) are matching with respect to eX . Let X be an
edge-boundary pair and suppose c = BX(eX) and c′ = B′X(eX). Let v be the vertex
that is a neighbour to both vX and wX , let e be the edge between wX and v, and
let e′ be the edge between v and vX (see Figure 4(c)). The three sets M1 ⊆M(1,2),
M2 ⊆M(1,2) and M3 ⊆M4 of edge-boundary pairs are defined as follows.

• X ∈M1 if v ∈ RX and either µc,c′ > µc′,c and BX(e) = c, or µc′,c > µc,c′ and
BX(e) = c′.

• M2 = M(1,2) \M1.

• X ∈M3 if v /∈ RX and either BX(e′) = c or BX(e′) = c′.

Let RF be the extended region in Figure 5(a). For f ∈ {1, . . . , 4720} we define
the extended region RFf such that it is an extended subregion of RF . Note that all
vertices in RFf are labelled “in”. The remark on page 209 explains why we define
exactly these 4720 extended regions. Due to the large number of extended regions
we only illustrate three of them here (Figure 5). For f ∈ {1, . . . , 4720}, let Ff be
the set of edge-boundary pairs X such that RX and RFf are matching with respect
to edge eX . For m ∈ {1, . . . , 4}, let Ff,m = Ff ∩Mm. Let F be the collection of all
sets Ff,m. One of the extended regions RF1 , . . . ,RF4720 is defined to contain only
the single vertex that is incident to the designated edge. Hence any edge-boundary
pair X is guaranteed to belong to at least one of the sets in F . Note that many of
the sets Ff,m are empty. For instance, if RFi is the extended region in Figure 5(b)
for some i ∈ {1, . . . , 4720} then obviously no edge-boundary pair X can belong to
both Fi and M4. Hence Fi,4 = ∅.

5.3. The constants µFf,m
For f ∈ {1, . . . , 4720} we define F ′f to be the set of edge-boundary pairs X

such that the vertices of RX are exactly those of RFf , eX is the designated edge
of RFf , BX(eX) = 1, B′X(eX) = 2, and the number of colours q = 5. For an
edge-boundary pair X ∈ F ′f , let v be the vertex that is a neighbour to both vX
and wX , let e be the edge between wX and v, and let e′ be the edge between v
and vX (see Figure 4(c)). Suppose first that RM(1,2) is an extended subregion of
RFf . Then we define F ′f,1 ⊆ F ′f to be the set of edge-boundary pairs X ∈ F ′f
such that BX(e) = 1, we define F ′f,2 ⊆ F ′f to be the set of edge-boundary pairs
X ∈ F ′f such that BX(e) = 2, and we define F ′f,3 = F ′f,4 = ∅. Suppose second that
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RM(1,2) is not an extended subregion of RFf . Then we define F ′f,1 = F ′f,2 = ∅, we
define F ′f,3 ⊆ F ′f to be the set of edge-boundary pairs X ∈ F ′f such that either
BX(e′) = 1 or BX(e′) = 2, and we define F ′f,4 = F ′f . Now, for f ∈ {1, . . . , 4720}
and m ∈ {1, . . . , 4}, we define

µFf,m = max
X∈F ′f,m

µ1,2(X)

if F ′f,m 6= ∅, and µFf,m = 0 if F ′f,m = ∅.
Lemma 13. Suppose q = 5, f ∈ {1, . . . , 4720}, m ∈ {1, . . . , 4} and Ff,m 6= ∅. Then
ν(X) 6 µFf,m for every edge-boundary pair X ∈ Ff,m.

Proof. Suppose f ∈ {1, . . . , 4720} and m ∈ {1, . . . , 4} such that Ff,m 6= ∅. Let X
be an edge-boundary pair in Ff,m. Let v be the vertex that is a neighbour to both
vX and wX , let e be the edge between wX and v, and let e′ be the edge between
v and vX (see Figure 4(c)). From Lemma 11 we have that ν(X) 6 µ(X). In order
to upper-bound µ(X) we may assume without loss of generality that BX(eX) = 1
and B′X(eX) = 2.

Suppose first that m = 1. Without loss of generality we may assume that
BX(e) = 1 and hence µ1,2(X) > µ2,1(X). Then µ(X) = µ1,2(X). Let R′ be the
subset of RX such that the vertices of R′ are exactly those of RFf . Let S be the set
of edge-boundary pairs X ′ such that RX′ = R′, the distinguished edge eX′ = eX ,
and for the boundary colourings BX′ and B′X′ we have BX′(e′′) = BX(e′′) and
B′X′(e

′′) = B′X(e′′) on e′′ ∈ ERX ∩ ER′. Note that S ⊆ F ′f,m. We have

µ1,2(X) 6 max
X′∈S

µ1,2(X ′) 6 max
X′∈F ′f,m

µ1,2(X ′) = µFf,m ,

where the first inequality is from Lemma 12.
Suppose second that m = 2. Without loss of generality we may assume that

BX(e) = 2 and hence µ1,2(X) > µ2,1(X). Proceeding as above we see that µ(X) 6
µFf,m . Now suppose m = 3. Without loss of generality we may assume that
BX(e′) = 1 or BX(e′) = 2 and µ1,2(X) > µ2,1(X). Proceeding as above we see
that µ(X) 6 µFf,m . Lastly, for m = 4 we make no assumption on the colour of edge
e′ and again we see that µ(X) 6 µFf,m .

5.4. A collection A of edge-boundary pairs
Let RA be the extended region in Figure 6(a). For a ∈ {1, . . . , 342} we define the

extended region RAa to be a subregion of RA. The extended regions are defined
such that for any edge-boundary pair X, the region RX matches exactly one of
RA1 , . . . ,RA342 with respect to edge eX . The remark on page 209 explains why we
define exactly these 342 extended regions. In Figure 6 we illustrate three of the
342 extended regions. For a ∈ {1, . . . , 342}, let Aa be the set of edge-boundary
pairs X such that RX matches RAa with respect to edge eX . Furthermore, for
m ∈ {1, . . . , 4} we define Aa,m = Aa ∩Mm, and define A to be the collection of all
sets Aa,m. Note that many of the sets Aa,m are empty.

5.5. Exponential decay
A set S ⊆ A×F×A×A×A is called an (A,F)-set if the following is true about

S: For every set Aa,m ∈ A, every edge-boundary pair X ∈ Aa,m, and every two
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(a) (b) (c)

Figure 6: (a) The extended region RA. (a)–(c) Three of the extended regions
RA1 , . . . ,RA342 .

distinct colours c, c′ ∈ Q such that pmin
X (c, c′) > 0, there is a 5-tuple (Aa,m, Ff,m,

Aa1,m1 , Aa2,m2 , Aa3,m3) in S, such that X ∈ Ff,m, and for i ∈ {1, 2, 3} the edge-
boundary pair Xi(c, c′) constructed recursively in the tree TX belongs to Aai,mi .
For values of i such that Xi(c, c′) = ∅, Aai,mi = ∅.

Suppose ε ∈ (0, 1) is a constant. An (A,F)-set S is good with respect to ε if the
following is true: For i ∈ {1, . . . , 342} and j ∈ {1, . . . , 4} there is a constant αAi,j
such that αAi,j > 1/(1 − ε) if Ai,j 6= ∅ and αAi,j > 0 if Ai,j = ∅, and for every
5-tuple (Aa,m, Ff,m, Aa1,m1 , Aa2,m2 , Aa3,m3) in S,

µFf,m(αAa1,m1
+ αAa2,m2

+ αAa3,m3
) 6 αAa,m(1− ε). (3)

Lemma 14. Suppose q = 5, ε ∈ (0, 1) is a constant, and S is an (A,F)-set that is
good with respect to ε. Then there is a constant α > 0 such that Γd(X) 6 α(1− ε)d
for all edge-boundary pairs X.

Proof. Since S is good with respect to ε, there are constants αAa,m , a ∈ {1, . . . , 342}
and m ∈ {1, . . . , 4}, such that Equation (3) is satisfied for every 5-tuple in S.
For Aa,m ∈ A, let Γd(Aa,m) denote the maximum of Γd(X) over all X ∈ Aa,m.
Remember Γd(∅) = 0 for d > 1. In order to show that there is a constant α
such that Γd(X) 6 α(1 − ε)d for every edge-boundary pair X, we will show that
Γd(Aa,m) 6 αAa,m(1 − ε)d for every non-empty set Aa,m ∈ A. Then we let α be
the maximum of αAa,m over all a ∈ {1, . . . , 342} and m ∈ {1, . . . , 4}. Note that any
edge-boundary pair X belongs to at least one of the sets in A.

Consider any non-empty set Aa,m ∈ A and any edge-boundary pair X ∈ Aa,m.
We are going to show that Γd(X) 6 αAa,m(1− ε) by induction on d. We start with
the base case d = 1. Since αAa,m > 1/(1− ε), we have

Γ1(X) = ν(X) 6 µ(X) 6 1 6 αAa,m(1− ε),
where the first inequality is from Lemma 11. Now consider the inductive step. We
repeat Equation (2):

Γd(X) =
∑

c,c′∈Q,
c6=c′

pmin
X (c, c′)

3∑
i=1

Γd−1(Xi(c, c′)), (4)

where Xi(c, c′) is the edge-boundary pair constructed recursively in the tree TX .
Here Q = {1, . . . , 5}. For every two distinct colours c, c′ ∈ Q such that pmin

X (c, c′) >
0, we know that there is a 5-tuple (Aa,m, Ff,m, Aa1,m1 , Aa2,m2 , Aa3,m3) in S such
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that X ∈ Ff,m and Xi(c, c′) ∈ Aai,mi , where i ∈ {1, 2, 3}. If the i-th neighbour of
vX is not in RX then we have Aai,mi = ∅. By the induction hypothesis we have

3∑
i=1

Γd−1(Xi(c, c′)) 6
3∑
i=1

Γd−1(Aai,mi) 6
3∑
i=1

αAai,mi (1− ε)d−1. (5)

Using Equation (4) with Equation (5) gives

Γd(X) 6
∑

c,c′∈Q,
c6=c′

pmin
X (c, c′)

3∑
i=1

αAai,mi (1− ε)d−1 = ν(X)
3∑
i=1

αAai,mi (1− ε)d−1

6 µFf,m

3∑
i=1

αAai,mi (1− ε)d−1 6 αAa,m(1− ε)d,

where ν(X) 6 µFf,m is from Lemma 13, and the last inequality follows from Equa-
tion (3).

The next lemma is proved by computer assistance and we will explain the details
in Section 8.

Lemma 15. Suppose q = and ε = 1/1000. Then Γd(X) 6 5(1 − ε)d for every
edge-boundary pair X.

Proof. In order to prove this lemma we use computer assistance. The computerised
steps are to first calculate all the constants µFf,m , then generate an (A,F)-set S that
is good with respect to ε = 1/1000. This last step is broken into the following steps.
First we generate an (A,F)-set S. Then, for every 5-tuple (Aa,m, Ff,m, Aa1,m1 ,
Aa2,m2 , Aa3,m3) in S, we add the inequality

µFf,m(αAa1,m1
+ αAa2,m2

+ αAa3,m3
) 6 αAa,m(1− ε)

to a linear program. The unknowns in this linear program are the variables αAa,m .
A solution to the linear program is found with αAa,m ∈ [2, 5] for Aa,m 6= ∅ and
αAa,m ∈ [0, 5] for Aa,m = ∅. Hence S is good with respect to ε. By Lemma 14 it
follows that Γd(X) 6 α(1 − ε)d for every edge-boundary pair X, where α > 0 is
a constant. From the proof of Lemma 14 we see that we can choose α to be the
maximum of all αAa,m , which is 5.

Remark. One probably asks why the sets in A and F are the sets we use to prove
mixing. The sets in A and F , or the extended regions RAi and RFi to be more
precise, have arisen from a lengthy process of trial and error and experiments. One
part of the proof of Lemma 15 above is to find a solution to a linear program. If the
values µFf,m are too large then there will be no solution to this linear program. In
order to obtain smaller values µFf,m we must increase the size of the regions RFi .
Small extended regions RAi contain only little information about which vertices
are in and not in the region RX for an edge-boundary pair X ∈ Ai. In particular,
with small regions RAi we quickly lose information about which vertices are in
and not in the regions RXi(c,c′) for the recursively constructed edge-boundary pairs
Xi(c, c′). Thus, too small extended regions RAi will result in a linear program that
is too small and has no solution. We started with a few small extended regions RAi
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and RFi and slowly increased the sizes of them until we obtained a linear program
that could be successfully solved. We let the regions grow in a way that seemed
reasonable based on experiments and intuition.

6. Strong spatial mixing

Lemma 16. Suppose ε = 1/1000 and q = 5. Suppose X is a vertex-boundary pair
and R′ ⊆ RX . Then there is a coupling ΨX of πBX and πB′X such that∑

v∈R′
E[1ΨX ,v] 6

30
ε(1− ε) (1− ε)d(wX ,R

′).

Proof. First suppose that wX has a neighbour y /∈ RX . Let k = |E| 6 3, where
E = {e1, . . . , ek} ⊆ ERX is the set of boundary edges incident to wX . Label the
edges in E clockwise around wX so that edge (wX , y) appears between edge ek and
e1 when traversing edges around wX in clockwise direction. This guarantees that
ei and ej are adjacent only if i and j differ by 1.

For i = 1, . . . , k, let Xi be the edge-boundary pair consisting of region RXi = RX ,
the distinguished edge eXi = ei, and boundary colourings BXi and B′Xi . For every
boundary edge e = (w, v) ∈ ERXi\E, where w ∈ ∂RX , we have BXi(e) = B′Xi(e) =
BX (w). The colours of the edges in E are assigned as follows.
• BXi(ej) = B′Xi(ej) = B′X (wX ) for j = 1, . . . , i− 1,
• BXi(ej) = BX (wX ) and B′Xi(ej) = B′X (wX ) for j = i, and
• BXi(ej) = B′Xi(ej) = BX (wX ) for j = i+ 1, . . . , k.

By Lemma 10 there is a coupling Ψi of πBXi and πB′Xi
such that∑

v∈R′
E[1Ψi,v] 6

∑
d>d(eXi ,R

′)

Γd(Xi). (6)

Let ΨX be the coupling of πBX and πB′X defined by composing the couplings
Ψ1, . . . ,Ψk. More precisely, in order to choose a pair (σ0, σk) of colourings from
ΨX , first draw the pair (σ0, σ1) from Ψ1. Say σ0 = x0 and σ1 = x1. Then choose
the pair (σ1, σ2) from the conditional distribution Ψ2, conditioned on σ1 = x1.
Say σ2 = x2. Then choose the pair (σ2, σ3) from the conditional distribution Ψ3,
conditioned on σ2 = x2, and so on. Hence, σ0 is drawn from πBX1

= πBX and σk
is drawn from πB′Xk

= πB′X . By the construction of the coupling ΨX it follows that
if the colour of a vertex v ∈ RX differs in a pair (σ0, σk) drawn from ΨX then it
must differ in at least one of the pairs (σi−1, σi) drawn from Ψi, where i = 1, . . . , k.
Using Equation (6) and Lemma 15 we have∑

v∈R′
E[1ΨX ,v] 6

∑
v∈R′

k∑
i=1

E[1Ψi,v] =
k∑
i=1

∑
v∈R′

E[1Ψi,v]

6
k∑
i=1

∑
d>d(eXi ,R

′)

Γd(Xi) 6
k∑
i=1

∑
d>d(wX ,R′)

5(1− ε)d

=
k∑
i=1

5
ε

(1− ε)d(wX ,R
′) 6

15
ε

(1− ε)d(wX ,R
′).
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Now suppose all neighbours of wX are in RX . Breaking the discrepancy at vertex
wX into edge-boundary pairs Xi as above is not possible because the induced edge-
boundary pairs are not valid with respect to the colouring of adjacent boundary
edges.

Let u ∈ RX be a neighbour of wX . Suppose u /∈ R′. Let RX ,u = RX \{u} be
the region RX after removing vertex u. For c ∈ Q, let BX ,c be the colouring of
the vertex-boundary ∂RX ,u such that for all v ∈ ∂RX ∩ ∂RX ,u, BX ,c(v) = BX (v),
and BX ,c(u) = c (if u ∈ ∂RX ,u). Similarly, for c′ ∈ Q, let B′X ,c′ be the colouring of
the vertex-boundary ∂RX ,u such that for all v ∈ ∂RX ∩ ∂RX ,u, B′X ,c′(v) = B′X (v),
and B′X ,c′(u) = c′. Note that the colourings BX ,c and B′X ,c′ can differ on up to two
vertices, namely on vertex wX and u. We break the difference in the (up to) two
vertices wX and u on the boundary ∂RX ,u into differences in the edges that bound
them.

Let k = |E| 6 6, where E = {e1, . . . , ek} ⊆ ERX ,u is the set of boundary edges
incident to wX or u. Label the edges in E clockwise around wX and u so that ek
and e1 are not adjacent. Such a labelling is always possible since wX and u are
neighbours. This guarantees that ei and ej are only adjacent if i and j differ by 1.

Let c ∈ Q and c′ ∈ Q be two (not necessarily different) colours. Similarly to
above, for i = 1, . . . , k, let Xi be the edge-boundary pair consisting of region RXi =
RX ,u, the distinguished edge eXi = ei, and boundary colourings BXi and B′Xi . The
colourings BXi and B′Xi are defined similarly to above, as a sequence of colourings
differing only on the distinguished edge ei. That is, for a boundary edge e = (w, v) ∈
ERX ,u, where w ∈ ∂RX ,u, we have BX1(e) = BX ,c(w) and B′Xk(e) = B′X ,c′(w). Let
Ψi be a coupling of πBXi and πB′Xi such that Equation (6) is satisfied, which possible
due to Lemma 10. We now construct a coupling ΨX of πBX and πB′X in the following
way.

Let Ψ′X be any coupling of πBX and πB′X . Let (C,C ′) be the random variable
corresponding to the pair of colourings drawn from ΨX (yet to be constructed). We
will choose the colour of u in C and C ′ according to Ψ′X . Let c and c′ be the colour
of u drawn from Ψ′X . Let ΨX ,c,c′ be a coupling of πBX ,c and πB′X ,c′ . To complete
the construction of ΨX we colour the remaining vertices in RX by choosing two
colourings from ΨX ,c,c′ . The coupling ΨX ,c,c′ is constructed by composing the k
couplings ΨXi as above. We have

∑
v∈R′

E[1ΨX ,v] 6
∑
v∈R′

k∑
i=1

E[1Ψi,v] =
k∑
i=1

∑
v∈R′

E[1Ψi,v]

6
k∑
i=1

∑
d>d(eXi ,R

′)

Γd(Xi) 6
k∑
i=1

∑
d>d(wX ,R′)−1

5(1− ε)d

=
k∑
i=1

5
ε

(1− ε)d(wX ,R
′)−1 6

30
ε(1− ε) (1− ε)d(wX ,R

′),

where the −1 in “d(wX , R′) − 1” comes from the fact that the distance from the
discrepancy edge eXi to R′ may be one less than d(wX , R′). Since we sum over all
distances greater than or equal to d(wX , R′)− 1, and (1− ε)0 = 1, we note that the
bound also holds when u ∈ R′.
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We now prove Theorem 4 of strong spatial mixing for q = 5 colours.

Theorem (4, repeated). The system specified by proper 5-colourings of the kagome
lattice has strong spatial mixing.

Proof. Consider the vertex-boundary pair X such that, from Definition 1 of strong
spatial mixing, we have RX = R, BX = B, B′X = B′ and wX = w. Let R′ be
any subregion of R. The total variation distance between πB,R′ and πB′,R′ is upper-
bounded by the probability that R′ differ under any coupling Ψ of πB,R′ and πB′,R′ .
This probability is upper-bounded by

∑
v∈R′ E[1Ψ, v]. Using the coupling ΨX in

Lemma 16, we have

dTV(πB,R′ , πB′,R′) = dTV(πBX ,R′ , πB′X ,R′) 6
∑
v∈R′

E[1ΨX , v] 6 α|R′|(1− ε)d(wX ,R
′),

where ε = 1/1000 and α = 30/(ε(1− ε)).

7. Rapid mixing

The implication from strong spatial mixing to rapidly mixing Glauber dynamics
is only known to hold for graphs of sub-exponential growth [25], meaning that the
number of vertices at distance d from any vertex v is sub-exponential in d. This is an
important property we make use of in the proof of rapid mixing in this section. For
further discussion on this topic in general, see [12], in particular [12, Section 7.5].

Lemma 17. Let v ∈ VG be any vertex in the kagome lattice and let nd(v) denote the
number of vertices at distance d from v. Then nd(v) ∈ Θ(d).

Proof. Recall the definition of the kagome lattice in Section 1.1, in particular Fig-
ure 1. First assume that v ∈ Vodd. In order to derive lower and upper bounds
on nd(v), we assume without loss of generality that v = (1, 1) is the vertex at
x-coordinate 1 and y-coordinate 1. Fix any positive integer d.

We first derive a lower bound on nd((1, 1)). For each odd value of y ∈ {1, . . . , d},
let (x, y) be the vertex at distance d from (1, 1) that is reached with the following
path: (1, 1), (2, 2), (3, 3), . . . , (y, y), (y + 2, y), (y + 4, y) . . . , (x, y). Note that vertex
(y, y) ∈ Vodd, and from (y, y) we go as far as possible to the right. Also note that
there is no path from (1, 1) to (x, y) that is shorter than length d. Thus, there are
at least bd/2c vertices at distance d from (1, 1), and we have nd((1, 1)) > bd/2c.

When deriving an upper bound on nd((1, 1)) we will use two claims:
Claim 1. For any two vertices (x, ylow) and (x, yhigh), where 1 6 ylow < yhigh, the

distance between (1, 1) and (x, ylow) is strictly smaller than the distance between
(1, 1) and (x, yhigh). We prove the claim by considering two cases:

Case (i). Assume that x is odd, and hence both (x, ylow) and (x, yhigh) are in
Vodd. Consider a shortest path from (1, 1) to (x, yhigh). The path must use a vertex
(xpass, ylow) ∈ Vodd at y-coordinate ylow. From (xpass, ylow) we can reach (x, ylow)
in exactly |x−xpass|/2 steps. The number of steps required to reach (x, yhigh) from
(xpass, ylow) is strictly greater than |x− xpass|/2 since some steps must be used to
increase the y-coordinate so it will eventually reach yhigh, and for each such up-
move the x-coordinate is increased/decreased only by 1. Thus, if x is odd then the
distance between (1, 1) and (x, ylow) is strictly smaller than the distance between
(x, yhigh).
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Case (ii). Assume that x is even, and hence both (x, ylow) and (x, yhigh) are in
Veven. We will use the same argument as for odd values of x, only with the difference
that we consider a vertex (xpass, ylow − 1) ∈ Vodd on a shortest path from (1, 1) to
(x, yhigh). From (xpass, ylow−1) we can reach (x, ylow) in at most b|x− xpass|/2c+1
steps, where the +1 comes from the fact that we need to go up one y-coordinate. The
number of steps required to reach (x, yhigh) from (xpass, ylow − 1) is strictly greater
than b|x− xpass|/2c+ 1 since some steps must be used to increase the y-coordinate
so it will eventually reach yhigh, and for each such up-move the x-coordinate is
increased/decreased only by 1. Thus, also for even values of x we have that the
distance between (1, 1) and (x, ylow) is strictly smaller than the distance between
(1, 1) and (x, yhigh).

Claim 2. For any two vertices (x, ylow) and (x, yhigh), where ylow < yhigh 6 1, the
distance between (1, 1) and (x, yhigh) is strictly smaller than the distance between
(1, 1) and (x, ylow). We prove the claim by using exactly the same reasoning as for
Claim 1.

Using Claim 1 and 2 we conclude that there are at most two vertices (x, y) and
(x, y′), with the same x-coordinate, at distance d from (1, 1). The leftmost vertex
that is at distance d from from (1, 1) is (1 − 2d, 1). It is reached by making d
consecutive left-moves. Similarly, the rightmost vertex at distance d from (1, 1) is
(1 + 2d, 1). Thus, the x-coordinate of any vertex at distance d from (1, 1) is in the
set {1− 2d, . . . , 1 + 2d}, and hence there are at most 2× (4d+ 1) = 8d+ 2 vertices
at distance d from (1, 1). That is, nd((1, 1)) 6 8d + 2. We have now showed that
for any vertex v ∈ Vodd, bd/2c 6 nd(v) 6 8d+ 2.

It remains to derive upper and lower bounds on nd(v) for v ∈ Veven. Without
loss of generality we assume that v = (0, 0) is the vertex at x-coordinate 0 and
y-coordinate 0. Fix any positive integer d.

We derive a lower bound on nd((0, 0)) in the same way as when v = (1, 1). For
each odd value of y ∈ {1, . . . , d}, let (x, y) be the vertex at distance d from (0, 0)
that is reached with the following path: (0, 0), (1, 1), (2, 2), . . . , (y, y), (y+ 2, y), (y+
4, y) . . . , (x, y). Thus, there are at least bd/2c vertices at distance d from (0, 0), and
we have nd((0, 0)) > bd/2c.

We now derive an upper bound on nd((0, 0)). Vertex (0, 0) has exactly four
neighbours: (1, 1), (1,−1), (−1,−1) and (−1, 1), which are all in Vodd. The shortest
path from (0, 0) to any vertex at distance d from (0, 0) must use one of these four
vertices. Thus, an upper bound on the number of vertices at distance d from (0, 0) is
nd((0, 0)) 6 nd−1((1, 1))+nd−1((1,−1))+nd−1((−1,−1))+nd−1((−1, 1)). From the
upper bound above we have that there are at most 8(d− 1) + 2 vertices at distance
d−1 from a vertex in Vodd. Hence there are at most than 4×(8(d−1)+2) = 32d−24
vertices at distance d from (0, 0), and we have nd((0, 0)) 6 32d− 24.

Finally, for any vertex v ∈ VG and any positive integer d we have shown that
bd/2c 6 nd(v) 6 32d− 24.

For a vertex v ∈ VG and an integer d > 0, let Balld(v) denote the set of vertices
that are at most distance d from v. Thus we have Ball0(v) = {v}.
Lemma 18. For any real number a > 0 there is an integer d > 0 such that

|∂Balld(v)|
|Balld(v)| 6 a,
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uniformly in v ∈ VG .

Proof. Let v be a vertex in VG and let a > 0 be a real number. For an integer d > 0,
let nd(v) denote the number of vertices at distance d from v. By Lemma 17, nd(v) ∈
Θ(d). We have |∂Balld(v)| = nd+1(v) ∈ Θ(d) and |Balld(v)| = ∑d

i=0 nd(v) ∈ Θ(d2).
Hence there is an integer d0 > 0 such that |∂Balld(v)|/|Balld(v)| 6 a for d > d0.

7.1. The Markov chain Md

In order to analyse the mixing time of the Glauber dynamics we first define a
similar Markov chain that corresponds to heat-bath dynamics on small subregions
instead of single vertices. For a region R, vertex v ∈ VG and integer d > 0, let
Rdv = R ∩ Balld(v). Let Rd = {v ∈ VG |Rdv 6= ∅}. For a region R, q0-colouring B of
∂R and integer d > 0, we define the heat-bath Markov chain Md as follows. The
state space is ΩR(B) and a transition from a state σ is made in the following way:
First choose a vertex v uniformly at random from Rd. Let Bdv be the colouring of
∂Rdv induced by σ and B. To make the transition from σ, recolour the vertices in Rdv
by sampling a colouring from πBdv , the uniform distribution on proper colourings of
the region Rdv that agree with ∂Rdv. As for the Glauber dynamics, the stationary
distribution of Md is πB. Since Ball0(v) = {v}, Glauber dynamics is M0. In order
to prove rapid mixing of the Glauber dynamics, we will use the mixing time of
Md for some constant d and use a Markov chain comparison method to infer rapid
mixing of M0.

To establish the mixing time of Md we use path coupling, due to Bubley and
Dyer [3]. Let σ1 and σ2 be two states of Md, where d is to be specified. Using
the path-coupling method, we only need to consider two colourings σ1 and σ2 that
differ on exactly one vertex, which we refer to as w. That is, the Hamming distance
between σ1 and σ2 is 1. Let Md make a transition from σ1 to σ′1, and from σ2 to
σ′2. We want to correlate (or couple) these two transitions such that the expected
Hamming distance between σ′1 and σ′2 is less than 1. If we can do this then we use
the path-coupling theorem (see for instance [3, 7]]) to infer the mixing time ofMd.
It is possible to construct such a coupling of the transitions provided d is sufficiently
large. The idea is that we update the same vertices Rdv in both the transition from
σ1 to σ′1 and σ2 to σ′2. If the vertices we update do not include w, and w is not
in ∂Rdv, then we choose the same colouring of Rdv in both transitions, and hence
the Hamming distance between σ′1 and σ′2 remains 1. If the vertices Rdv we update
contain w then again we choose the same colouring of Rdv in both transitions, and
the Hamming distance drops to 0. The only situation when the Hamming distance
can increase is when w is on the boundary ∂Rdv of the vertices Rdv we update. In this
case we use the coupling in Lemma 16 to colour the vertices in Rdv. This guarantees
that the expected Hamming distance between σ′1 and σ′2 will only increase by at
most a constant K = 30/(ε(1 − ε)). Due to Lemma 18 we can choose a radius d
such that the ratio of the probability of having w ∈ ∂Rdv and the probability of
having w ∈ Rdv is arbitrarily small. Thus, we choose d such that the probability of
decreasing the Hamming distance by 1 is so much bigger than the probability of
increasing it by K that the expected Hamming distance between σ′1 and σ′2 is less
than 1. The exact details of how to achieve this is explained in Sections 7.1 and 7.2
in [12]. In Section 7.2 in [12] a proof of the following lemma is found. Note that
the notation in [12] differ slightly and of course we make use of Lemmas 16 and 18
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as explained above rather than using equivalent lemmas in [12].

Lemma 19. Suppose q = 5. There is an integer d > 0 such that the Markov chain
Md is rapidly mixing on any region R under any q0-colouring B of ∂R. The mixing
time τMd

(δ) ∈ O(n log n
δ ), where n is the number of vertices in R.

7.2. Rapidly mixing Glauber dynamics
We will compare the mixing time of the Markov chain Md and the Glauber

dynamics M0 by using a method of Diaconis and Saloff-Coste [4]. Their method
has been used before by Goldberg, Martin and Paterson in [12] to compare the
mixing time of Md and M0 under the assumption that q > ∆ + 2, where ∆ is
the maximum degree of the lattice. Here we consider q = 5 on the kagome lattice
(∆ = 4) and therefore we cannot make direct use of the comparison in [12]. Next
we review the comparison described in [12] and provide a proof of rapidly mixing
Glauber dynamics with q = 5 colours. For a survey on Markov chain comparison
in general, see [6].

Let Pd and P0 denote the transition matrix for the chain Md and M0, respec-
tively. For i ∈ {0, d}, let Ei be the set of pairs of distinct colourings (σ1, σ2) with
Pi(σ1, σ2) > 0. The set Ei can be thought of as containing the edges of the transi-
tion graph ofMi, and hence we sometimes refer to a pair in Ei as an edge. For every
edge (σ1, σ2) ∈ Ed, let Pσ1,σ2 be the set of paths from σ1 to σ2 using transitions
of M0. More formally, let Pσ1,σ2 be the set of paths γ = (σ1 = θ0, θ1, . . . , θk = σ2)
such that

(1) each (θi, θi+1) is in E0, and

(2) each edge in E0 appears at most once on γ.

We write |γ| to denote the length of path γ. So, for example, if γ = (θ0, . . . , θk) we
have |γ| = k. Let P = ∪(σ1,σ2)∈EdPσ1,σ2 be the set of all paths for all edges in Ed.

A flow is a function φ from P to the interval [0, 1] such that for every (σ1, σ2) ∈
Ed, ∑

γ∈Pσ1,σ2
φ(γ) = Pd(σ1, σ2)πB(σ1).

For every (θ1, θ2) ∈ E0, the congestion of edge (θ1, θ2) in the flow φ is the quantity

Aθ1,θ2(φ) =
1

πB(θ1)P0(θ1, θ2)

∑
γ∈P:(θ1,θ2)∈γ

|γ|φ(γ).

The congestion of the flow is the quantity

A(φ) = max
(θ1,θ2)∈E0

Aθ1,θ2(φ).

Theorem 20 below describes how the mixing times of Md and M0 are related.
A proof of this theorem can be found in [6, Observation 13]. As pointed out in [12],
this theorem is similar to Proposition 4 of Randall and Tetali [19] except that [19,
Proposition 4] requires the eigenvalues of transition matrices to be non-negative.
Both results are based closely on the ideas of Aldous [2], Diaconis and Stroock [5],
and Sinclair [21]. Let τMd

(δ) be the mixing time of Md and let τM0(δ) be the
mixing time of the Glauber dynamics M0.
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Theorem 20. Suppose that φ is a flow. Let p = minθ∈ΩR(B) P0(θ, θ) and assume
that p > 0. Then for any 0 < δ′ < 1

2

τM0(δ) 6 ln
1

δ · πmin
·max

[
A(φ)

(
τMd

(δ′)
ln 1

2δ′

+ 1
)
,

1
2p

]
where πmin = minσ∈ΩR(B) πB(σ).

Lemma 21. Suppose that there is a flow φ such that the congestion A(φ) ∈ O(1).
Then the mixing time of the Glauber dynamics M0 on a region R is τM0(δ) ∈
O(n(n+ log 1

δ )), where n is the number of vertices in R.

Proof. From Definition 2 of Glauber dynamics, p = minθ∈ΩR(B) P0(θ, θ) > 1/q.
Suppose δ′ = 1/n. Then by Lemma 19 we have τMd

(δ′) ∈ O(n log n). With A(φ) ∈
O(1), Theorem 20 gives

τM0(δ) 6 ln
1

δ · πmin
·O(1) ·O(n) = O(n(n+ log

1
δ

)

since πmin > 1/qn and hence ln(1/πmin) ∈ O(n).

In order to establish the mixing time of the Glauber dynamics M0 by applying
Lemma 21 we have to construct a flow φ such that the congestion A(φ) ∈ O(1).
Given a q-colouring σ of a region R and a q0-colouring B of ∂R, a single-vertex
update of a vertex v ∈ R is a recolouring of v to a colour c ∈ Q such that no
neighbour of v has colour c in either σ or B. Suppose R is a region and σ1 and σ2

are two proper 5-colourings of R that differ on m vertices. The next two lemmas
tell us how a series of O(m) single-vertex updates applied to σ1 can transform σ1

to σ2. This sequence of single-vertex updates will be used when constructing the
flow φ.

Lemma 22. Consider the region in Figure 7(a). In every proper 5-colouring of this
region there is a vertex that has two neighbours with the same colour.

Proof. Suppose σ is a proper 5-colouring of the region in Figure 7(a) such that no
two neighbours of a vertex in the region have the same colour. We will show that
this leads to contradiction. Without loss of generality we may assume that five of
the vertices have the colours specified in Figure 7(b). A vertex is labelled with its
colour. It follows that the two vertices adjacent to the vertex coloured 5 must have
colour 3 and 4, otherwise there would be a vertex that has two neighbours with
the same colour. Similarly, the vertices adjacent to the vertex coloured 3 must have
colour 1 and 5, and therefore the two bottom left vertices must have colour 2 and
4 in σ. Figure 7(c) illustrates this fact, where a square contains the two colours of
the two vertices it is overlapping. From the two left squares we see that the colour
4 must be on the vertices that are as far apart as possible. Thus, σ must agree with
the colouring in Figure 7(d). Figure 7(e) illustrates how other vertices of the region
must be coloured in σ, and Figure 7(f) shows the necessary colouring of the four
rightmost vertices at the top. To finish the proof we note that it is impossible to
assign colours to the two leftmost vertices at the top without introducing a vertex
such that two of its neighbours receive the same colour.
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Figure 7: In every proper 5-colouring of the region in (a) there is a vertex that has
two neighbours with the same colour.

Lemma 23. Let R be a region of the kagome lattice and let B be the 0-colouring
of the boundary ∂R. Suppose that q = 5 and let σ1 and σ2 be any two proper q-
colourings of R that differ on m vertices. We can go from σ1 to σ2 by applying a
series of O(m) single-vertex updates.

Proof. Let v ∈ R be a vertex on which σ1 and σ2 differ. We will show how to
recolour v to the colour it has in σ2 by doing at most a constant number of single-
vertex updates. A vertex in R that has the same colour in both σ1 and σ2 will
not change colour after v has been updated. First we analyse situations where no
boundary vertices in ∂R are involved. We note at the end of the proof that if
boundary vertices are present, then it only makes it easier to recolour v. That is,
assume for now that all vertices we consider belong to the region R. The proof goes
through a series of cases.

If possible, simply recolour v to the colour it has in σ2. If this is not possible then
there must be one or two neighbours of v that have colour σ2(v) in σ1. It cannot
be more than two such neighbours since σ1 is a proper colouring.

Without loss of generality, assume that σ1(v) = 1 and σ2(v) = 2. If v has two
neighbours with colour 2 in σ1 then we will first recolour one of these two neighbours
to some other colour than 2. Let w be the neighbour of v with colour 2 that we are
going to recolour. Note that σ2(w) 6= 2 since σ2 is a proper colouring. If possible,
recolour w to some other colour than 2. If this is not possible then w is “locked”
and must have three neighbours coloured 3, 4 and 5, respectively. In this case, first
recolour v (which is possible since v has two neighbours with colour 2) and then
recolour w to colour 1. Now only one neighbour of v has colour 2. We deal with
this case next.

Without loss of generality, assume that σ1(v) = 1 and σ2(v) = 2, and exactly

217https://doi.org/10.1112/S1461157000001492 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001492


Strong spatial mixing and rapid mixing withfive colours for the kagome lattice

(a)

2a

1

3 4

b

c

v
w

(b)

2

1

3 4

v
w

5
3/4

(c)

2

1

3 4

v
w

5
3/4

(d)

c1

c2

c3

c4

c5

u

2

1

3 4

v
w

5
3/4

Figure 8: The colours 1 and 2 are going to swap place. Lemma 23 guarantees that
this can be done with a constant number of single-vertex updates.

one neighbour w of v has colour 2 in σ1. Note that σ2(w) 6= 2 since σ2 is a proper
colouring. If possible, recolour w to something else than 2 and then recolour v to 2.
If this is not possible then w is “locked” and must have four neighbours (including v)
with colours 1, 3, 4 and 5, respectively, in σ1. Without loss of generality, consider the
region in Figure 8(a), which is a subregion of R. Call this region R′. The vertices of
R′ are labelled with their colours in σ1. The vertex with colour 1 is v and the vertex
with colour 2 is w. We assume without loss of generality that the two neighbours
of v that are below v are the two neighbours with colour 3 and 4 in σ1.

Three of the vertices in R′ are given the colours a, b and c, which are to be
determined. Since w is “locked”, the colours a, b and c is any permutation of the
colours 3, 4 and 5. If a is 3 or 4 then we recolour v to 5 and then recolour w to 1, and
then recolour v to 2. If this is not the case then a must be 5, and hence the colours
b and c are 3 and 4 in any order. Figure 8(b) illustrates this. We now analyse this
case.

We will use Lemma 22 to show that we can recolour v to 2 without changing
the colour of any other vertex except w (which will be recoloured to 1). Consider
Figure 8(c) which illustrates the region R′ extended with vertices in R. The vertices
we extend R′ with correspond to the region that we used in Lemma 22. From
Lemma 22 we know that there must be at least one vertex u among the vertices
we extend R′ with such that u has two neighbours with the same colour. Let P be
a shortest path from v to u such that the path goes from v to the neighbour above
that has colour 5 and then is entirely inside the region we added to R′. Figure 8(d)
illustrates an example of such a path. The path is shaded in the figure. Suppose
that the vertex u is chosen such that all vertices on the path P (except from u
itself) are “locked” (have four neighbours of different colours). Note that if the
vertex coloured 5 above v does not have four neighbours of different colours then
we let u be this vertex and hence the path P consists only of the two vertices u
and v.

Suppose that the path P contains k vertices. Let c1, . . . , ck be the colours in σ1

of the vertices from u to v along the path. That is, σ1(u) = c1, ck−1 = 5 and ck = 1.
Since u has two neighbours with the same colour, we recolour u from c1 to another
colour c′1. Now the vertex after u on P has two neighbours with the same colour
(namely c′1), since all its neighbours had different colours before recolouring u. We
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recolour this vertex from c2 to c′2. We continue this recolouring procedure along the
path P all the way to vertex v, which will be recoloured to 3. Note that the vertex
above v which had previously colour 5 now must have colour 3 or 4. We can now
recolour w to 1 and then recolour v to 2. It remains to recolour the vertices on the
path back to their original colours in σ1. We do this by reversing the recolouring
procedure, starting with the vertex above v, which is recoloured back to 5. When
u is recoloured back to c1 we are done.

We have now shown how a constant number of single-vertex updates are applied
in order to recolour a vertex v to the colour it has in σ2 without changing the colour
on vertices that have the same colour in σ1 and σ2.

We note that if any vertices involved in the recolouring procedure of v are bound-
ary vertices then this will only make it easier. Note from the statement of the lemma
that we assume that a boundary vertex has colour 0. As we have seen, the tricky
situations arise when a vertex is “locked” with four neighbours of different colours
(excluding colour 0). Such a vertex is tricky because we cannot just change its
colour to another colour in Q = {1, . . . , 5}. A vertex that is adjacent to a boundary
vertex can never be “locked” since there is always at least one colour in Q that it
can be recoloured to. Thus, although the part of the proof above assumes that all
vertices are in R, we note that the presence of boundary vertices only makes the
recolouring procedure easier. Of course, depending on which vertex v we are going
to recolour, and which neighbour w is “locked”, the path P might go in a direction
that is different from the one in Figure 8(d). However, the same technique is applied
in order to successfully recolour v.

Finally, in order to transform σ1 to σ2, we recolour each vertex v at which σ1

and σ2 differ. For each such vertex it takes only a constant number of single-vertex
updates to do so. Since σ1 and σ2 differ only at m vertices, the total number or
updates is O(m). Notice that in recolouring a vertex v we might have changed the
colours of neighbours of v as well. However, we never change the colour of a vertex
whose colour agrees with the destination colouring σ2, a fact that ensures that the
process described above indeed terminates with the colouring σ2.

We are now able to show how to construct a flow φ such that A(φ) ∈ O(1)
for q = 5 colours. This only holds when the boundary colouring B of ∂R is the
0-colouring.

Lemma 24. Suppose q = 5. Consider any region R and let B the the 0-colouring of
∂R. There is a flow φ such that the congestion A(φ) ∈ O(1).

Proof. For every pair (σ1, σ2) ∈ Ed we know that σ1 and σ2 differ only on vertices
that are contained in the ball Balld(v) for some vertex v ∈ Rd. Let ≺ be a fixed
canonical ordering of the vertices in R. Let γσ1,σ2 ∈ Pσ1,σ2 be the path from σ1 to
σ2 constructed according to the proof of Lemma 23. We consider vertices in order
specified by ≺ to make sure that γσ1,σ2 is well defined.

Assign all of the flow from σ1 to σ2 to path γσ1,σ2 ∈ Pσ1,σ2 . That is, φ(γσ1,σ2) =
Pd(σ1, σ2)πB(σ1) and φ(γ) = 0 for all paths γ ∈ Pσ1,σ2\{γσ1,σ2}. Let θ1 and θ2,
where (θ1, θ2) ∈ E0, be two colourings that disagree on a vertex w. Then the
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congestion of edge (θ1, θ2) is

Aθ1,θ2(φ) =
1

πB(θ1)P0(θ1, θ2)

∑
(σ1,σ2)∈Ed:

(θ1,θ2)∈γσ1,σ2

|γσ1,σ2 |Pd(σ1, σ2)πB(σ1)

=
∑

(σ1,σ2)∈Ed:
(θ1,θ2)∈γσ1,σ2

|γσ1,σ2 | ·
Pd(σ1, σ2)
P0(θ1, θ2)

· πB(σ1)
πB(θ1)

6
∑

(σ1,σ2)∈Ed:
(θ1,θ2)∈γσ1,σ2

k1 · Pd(σ1, σ2)
P0(θ1, θ2)

6 k1 · k2 6 O(1),

where k1 and k2 are constants, specified next. Note that πB(σ1)/πB(θ1) = 1.
The path length |γσ1,σ2 | is upper-bounded by a constant k1 since σ1 and σ2

differ only on vertices inside a ball of fixed radius d. The path γσ1,σ2 is constructed
such that for each vertex v that is updated, we do at most a constant number of
recolourings of vertices that are within constant distance from v.

To see that the last sum is bounded by a constant k2, note that there are only
a constant number of pairs (σ1, σ2) in the summation. This is true since σ1 and σ2

agree with θ1 on all vertices in R except in a constant-sized ball around a vertex w
on which θ1 and θ2 differ. Let m be the number of vertices u such that Rdu contains
all vertices on which σ1 and σ2 differ. Note that m is bounded by a constant since
σ1 and σ2 differ only on vertices inside a ball of fixed radius d. We have

Pd(σ1, σ2) 6
m

|Rd| ∈ O(
1
|Rd| ).

Furthermore,

P0(θ1, θ2) >
1
|Rd| ·

1
q
∈ Ω(

1
|Rd| )

since 1/q is the smallest probability of making a transition in M0 from colouring
θ1 to θ2 once vertex w on which θ1 and θ2 differ has been chosen for an update.
Thus,

Pd(σ1, σ2)
P0(θ1, θ2)

∈ O(1)

and we have that the sum is bounded by a constant k2.
Now, Aθ1,θ2(φ) ∈ O(1) for all (θ1, θ2) ∈ E0 and it follows that the congestion

A(φ) ∈ O(1).

Finally we have the machinery for proving Theorem 5.

Theorem (5, repeated). For any region R of the kagome lattice and q = 5 colours,
the Glauber dynamics is rapidly mixing on R under the 0-colouring of ∂R. The
mixing time τ(δ) ∈ O(n2 + n log 1

δ ), where n is the number of vertices in R.

Proof. The theorem is proved by using Lemmas 21 and 24.

The proof of Theorem 6 is similar to the proof of Theorem 5. The implications
from rapid mixing ofMd to rapid mixing of the heat-bath dynamics on edges hold.
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(a)
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vX

v

(b)

z3

z4

z5 z6
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0

0

0

(c)

z7

z8

z9
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z11z12

z13

1/2

vX

v
0

0

0

Figure 9: The region RX of the edge-boundary pair X in (a) is split into two halves
(b) and (c). The split is along the vertices labelled v and vX .

Lemma 21 has to be stated withM0 replaced by the heat-bath dynamics on edges
(which slightly changes the proof) and Lemma 24 has be adjusted to deal with an
arbitrary q0-colouring of the boundary of the region, where q = 5. Showing that
the congestion is constant under any q0-colouring of the boundary is not difficult
since we are allowed to update two vertices at the same time.

8. The computational part of Lemma 15

The computational part of the proof of Lemma 15 consists of two tasks: calcu-
lating the values µFf,m and constructing an (A,F)-set S that is good with respect
to ε = 1/1000. These two tasks are explained in the next sections. Both tasks
are carried out using computer assistance. We have written programs in C, and the
source code can be found on the webpage http://www.csc.liv.ac.uk/∼markus/
kagome5colours/

8.1. Computing µf,m
Calculating the values µFf,m is a computationally challenging task. We are going

to to calculate µFf,m for f ∈ {1, . . . , 4720} and m ∈ {1, . . . , 4}. From the definition
of µFf,m in Section 5.3, µFf,m = 0 if F ′f,m = ∅. For every fixed f ∈ {1, . . . , 4720},
F ′f,m = ∅ for exactly two values of m ∈ {1, . . . , 4}. Thus, we will have to calculate
the value of 2× 4720 = 9440 constants µFf,m . We must be able to compute a single
value rather quickly, otherwise the total running time for all values will be too long.
A brute-force approach would result in a running time of several months, maybe
even years. We use a technique that is illustrated with the following example.

Suppose RFf is the extended region in Figure 9(a) and suppose m = 1. Hence
the set F ′f,m 6= ∅. The value µFf,m is obtained by maximising µ1,2(X) over all edge-
boundary pairs X ∈ F ′f,m. Let v′ be the vertex that is a neighbour to both vX and
wX . Since m = 1, the boundary edge between wX and v′ has colour 1 in every edge-
boundary pair X ∈ F ′f,m. An edge-boundary pair X ∈ F ′f,m is therefore uniquely
specified by the colour of its remaining boundary edges. Figure 9(a) illustrates an
arbitrary edge-boundary pair X ∈ F ′f,m, where boundary edges are labelled with
their colour (z1, . . . , z13). Thus, in order to maximise µ1,2(X) over all X ∈ F ′f,m, we
could loop through all combinations of the colours z1, . . . , z13 and compute µ1,2(X)
for each such combination. This process will take very long. Next we explain how
to speed up the process.
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By computing µ1,2(X) for many colourings of the boundary, one quickly makes
the observation that only some particular colourings of the boundary result in a
large value of µ1,2(X). For other colourings, µ1,2(X) tends to be rather small.
For example, it turns out that if z1, . . . , z6 are all colour 1, then µ1,2(X) will be
rather small regardless of the remaining colours z7, . . . , z13. Thus, setting the colours
z1, . . . , z6 to 1 is a “bad” choice if we want to maximise µ1,2(X). From this observa-
tion we conclude that if we can filter out certain “bad” colourings of the boundary
then we could speed up the process of finding the maximum value µ1,2(X).

We “split” the extended region RFf into two extended regions Rleft and Rright.
Figure 9(b) and (c) illustrate Rleft and Rright, respectively. The two regions share
the vertices in the split. In this case it is vertex vX and v, both labelled in the
figure. Let X left be the edge-boundary pair such that RXleft = Rleft, eXleft = eX
and the boundary edges receive the same colours as in X. Boundary edges that are
introduced from the split are given colour 0. Let Xright be the edge-boundary pair
defined similarly to X left but with RXright = Rright. Figure 9(b) and (c) illustrate
X left and Xright.

Let B be the colouring of ERX such that B(e) = BX(e) for e ∈ ERX\{eX} and
B(eX) = 0. Recall from Section 5 that for i ∈ Q, ni(X) denotes the number of
proper q-colourings σ in ΩRX (B) such that σ(vX) = i. For two colours i, i′ ∈ Q we
now define nboth

i,i′ to be the number of proper q-colourings σ in ΩRX (B) such that
σ(vX) = i and σ(v) = i′, where v is the second vertex in the split. Thus,

ni(X) =
q∑

i′=1

nboth
i,i′ .

Let Bleft be the colouring of ERXleft such that Bleft(eXleft) = 0 and Bleft(e) =
BXleft(e) for e ∈ ERXleft\{eXleft}. For two colours i, i′ ∈ Q we define nleft

i,i′ to be
the number of proper q-colourings σ in ΩR

Xleft (Bleft) such that σ(vX) = i and
σ(v) = i′. We define nright

i,i′ similarly for the edge-boundary pair Xright. It follows
that

nboth
i,i′ = nleft

i,i′n
right
i,i′ ,

and hence

ni(X) =
q∑

i′=1

nleft
i,i′n

right
i,i′ .

With q = 5 colours, we have

µ1,2(X) =
n1(X)∑

i∈{1,3,4,5} ni(X)
=

∑5
j=1 n

left
1,j n

right
1,j∑

i∈{1,3,4,5}
∑5
k=1 n

left
i,k n

right
i,k

=
5∑
j=1

nleft
1,j n

right
1,j∑

i∈{1,3,4,5}
∑5
k=1 n

left
i,k n

right
i,k

=
5∑
j=1

1∑
i∈{1,3,4,5}

∑5
k=1

(
nleft
i,k

nleft
1,j
× nright

i,k

nright
1,j

) . (7)

Note that the colours z1, . . . , z6 specify the quantity nleft
i,i′ , and z7, . . . , z13 specify
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the quantity nright
i,i′ . In order to maximise µ1,2(X) over edge-boundary pairs X, we

could consider all combinations of the colours z1, . . . , z13 and use Equation (7).
There are 513 ≈ 1.2× 109 such combinations, so considering them all will take very
long. Now, consider two different sets of the six colours z1, . . . , z6. For i, i′ ∈ Q, let
nleft-1
i,i′ be the value of nleft

i,i′ for the first set of colours, and let nleft-2
i,i′ be the value of

nleft
i,i′ for the second set of colours. Suppose

nleft-1
i,k

nleft-1
1,j

6
nleft-2
i,k

nleft-2
1,j

(8)

for all i ∈ {1, 3, 4, 5}, j ∈ {1, . . . , 5} and k ∈ {1, . . . , 5}. Then we have from Equa-
tion (7) that µ1,2(X) can only get smaller if we take nleft

i,i′ = nleft-2
i,i′ instead of

nleft
i,i′ = nleft-1

i,i′ . In other words, there is no point considering the colours specified
by the second set of colours z1, . . . , z6 when maximising µ1,2(X). This observation
suggests that we loop through all combinations of colours z1, . . . , z6 and compare
each pair of combinations like in Equation (8). We only keep the sets of colours that
cannot be ruled out in some pairwise comparison like the second set above. This
gives us a collection C left of colours z1, . . . , z6 that turns out to be much smaller
than the collection of all 56 = 15, 625 sets of colours. Similarly we obtain a collection
Cright of colours z7, . . . , z13 for the right part of the region. In order to find which
colours z1, . . . , z13 that maximise µ1,2(X) we combine C left with Cright. That is, we
use Equation (7) to compute µ1,2(X) for each set z1, . . . , z6 of colours in C left with
each set z7, . . . , z13 of colours in Cright.

The technique of splitting regions and filtering out boundary colourings that are
guaranteed not to maximise µ1,2(X) has a huge impact on the running time of the
program. On a fairly powerful home-PC as of year 2006, it takes about two days to
to obtain all 9440 values µFf,m .

8.2. Constructing an (A,F)-set
We describe how to construct an (A,F)-set. Let Rbig be the extended region in

Figure 10(a) with some combination of labels “in” and “out” on the vertices. From
Rbig we will derive 5-tuples that are added to a set S. By considering all possible
combinations of labels “in” and “out” on the vertices of Rbig, we construct the
(A,F)-set S. We describe the process by first giving a concrete example.

Fix an “in/out”-labelling of the vertices of the extended region Rbig. Let a ∈
{1, . . . , 342} be the value such that RAa is an extended subregion of Rbig. Note that
the extended regions RAi , i ∈ {1, . . . , 342}, are defined such that there is exactly
one value a ∈ {1, . . . , 342} for which this is true. Figure 10(b) shows the largest
possible RAa and Figure 10(c) shows the overlapping of Rbig and RAa . We see
from this figure that only some of the vertices of Rbig define RAa . Similarly to how
the extended region RAa is obtained from Rbig, let a1, a2, a3 ∈ {1, . . . , 342} be the
three unique values such that RAa1 is obtained from Rbig by the overlapping in
Figure 10(d), RAa2 is obtained from Rbig by the overlapping in Figure 10(e), and
RAa3 is obtained from Rbig by the overlapping in Figure 10(f). It is possible that
neighbours of vertex v in Figure 10(d)–(f) are labelled “out”, meaning that some
of the extended regions Rai might not exist. If this is the case we define ai = 0 and
A0 = ∅. For example, if the vertex to the left of vertex v in Figure 10(d) is “out”
then Ra1 cannot exist and hence a1 = 0.
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(a) (b) (c)

(d)

v

(e)

v

(f)

v

Figure 10: (a) The extended region Rbig (here all vertices are labelled “in”). Note
that the shaded vertex is not a part of the region. (b) The extended region RA
repeated. (c)–(f) Intersections of RA and Rbig.

Suppose X is an edge-boundary pair such that RX and Rbig are matching
with respect to edge eX . Then X ∈ Aa. For i ∈ {1, 2, 3} and any two distinct
colours j, j′ ∈ Q such that pmin

X (j, j′) > 0, suppose Xi(j, j′) is the extended edge-
boundary pair that is constructed recursively in the tree TX . If Xi(j, j′) = ∅ then
Xi(j, j′) ∈ Aai . We will now be more precise about the sets of edge-boundary pairs
and incorporate the sets M1, . . . ,M4.

Suppose without loss of generality that BX(eX) = c and B′X(eX) = c′, and
µc,c′(X) > µc′,c(X) for some c, c′ ∈ Q. Suppose the extended region in Figure 11(a)
is an extended subregion of Rbig. Suppose that the colour of the edge between
wX and v in Figure 11(a) has colour c in BX and B′X . Then X ∈ M1 and hence
X ∈ Aa,1. From Figure 11(a) we see that the extended region RM(3,4) in Figure 4(b)
is an extended subregion of RAa1 . Hence X1(j, j′) belongs to M3 or M4 (or both).
The crucial observation here is that pmin

X (j, j′) > 0 if and only if j′ = c. This follows
from the fact that µc,c′(X) > µc′,c(X) and hence there is a discrepancy at vX only
when the colour c is drawn from πB′X in the coupling Ψmin

X . We therefore conclude
that X1(j, j′) ∈ M3. Thus, X1(j, j′) ∈ Aa1,3. For X2(j, j′) and X3(j, j′) we see in
Figure 11(a) that these edge-boundary pairs belong to eitherM1 orM2. However, we
are unable to tell exactly to which of the two sets these edge-boundary pairs belong.
We therefore assume that any combination of the two sets is possible. The 3-tuples
listed in Figure 11(a) indicate to which possible sets M1, . . . ,M4 the edge boundary
pairs X1(j, j′), X2(j, j′) and X3(j, j′) belong. That is, a 3-tuple (m1,m2,m3) means
that X1(j, j′) ∈ Aa1,m1 , X2(j, j′) ∈ Aa2,m2 and X3(j, j′) ∈ Aa3,m3 .

Let F ′ ⊆ F be the set of edge-boundary pairs Fi,1 such that RFi is an extended
subregion of Rbig and i ∈ {1, . . . , 4720}. Then X ∈ Fi,1 for every Fi,1 ∈ F ′.
Remember that we have assumed above that X ∈ M1. Let f be the value such
that Ff,1 ∈ F ′ is the set that minimises µFi,1 over all Fi,1 ∈ F ′. If the minimiser
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(a)

vXv

c/c′c (e)

vXv

c/c′c′
(i)

vX

c/c′

v

(3, 1, 1), (3, 1, 2), (4, 1, 1), (4, 1, 2), (0, 1, 1), (0, 1, 2),
(3, 2, 1), (3, 2, 2) (4, 2, 1), (4, 2, 2) (0, 2, 1), (0, 2, 2)

(b)

vXv

c/c′c (f)

vXv

c/c′c′
(j)

vX

c/c′

v

(3, 4, 0) (4, 4, 0) (0, 4, 0)

(c)

vXv

c/c′c (g)

vXv

c/c′c′
(k)

vX

c/c′

v

(3, 0, 4) (4, 0, 4) (0, 0, 4)

(d)

vXv

c/c′c (h)

vXv

c/c′c′
(l)

vX

c/c′

v

(3, 0, 0) (4, 0, 0) (0, 0, 0)

Figure 11: Twelve cases which cover all possible combinations of the sets
M1, . . . ,M4 to which the recursively constructed edge-boundary pairs X1(c1, c2),
X2(c1, c2) and X3(c1, c2) belong. If X ∈ M1 then (a)–(d) apply. If X ∈ M2 then
(e)–(h) apply. If X ∈M3 ∪M4 then (i)–(l) apply.

is not unique, let f be the smallest i among the minimisers. Now, for each 3-tuple
(m1,m2,m3) in Figure 11(a) we add the following 5-tuple to the set S: (Aa,1, Ff,1,
Aa1,m1 , Aa2,m2 , Aa2,m2).

Summing it all up, we construct the set S as follows. First take an extended region
Rbig. From Rbig we uniquely derive the sets Aa, Aa1 , Aa2 and Aa3 . If RM(1,2) is an
extended subregion of Rbig then we consider two values of m: m = 1 and m = 2.
If RM(3,4) is an extended subregion of Rbig then we also consider two values of m:
m = 3 and m = 4. Now suppose X ∈ Aa,m. The twelve cases in Figure 11 cover all
possible combinations of the sets M1, . . . ,M4 to which the recursively constructed
edge-boundary pairs X1(j, j′), X2(j, j′) and X3(j, j′) belong. More precisely, if m =
1 then Figure 11(a)–(d) apply. if m = 2 then Figure 11(e)–(h) apply. if m = 3 or
m = 4 then Figure 11(i)–(l) apply. FromRbig and the value of m, we uniquely derive
the set Ff,m to which X belongs. For each 3-tuple (m1,m2,m3) in the relevant
case in Figure 11, we add the following 5-tuple to the set S: (Aa,m, Ff,m, Aa1,m1 ,
Aa2,m2 , Aa2,m2). If the value of mi in a 3-tuple is 0 then Aai,mi = ∅. By considering
every possible extended region Rbig and every possible value of m (two values per
region Rbig), we construct a set S that is an (A,F)-set.
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10. H.-O. Georgii, O. Häggström and C. Maes, ‘The random geometry of
equilibrium phases.’ Phase Transitions and Critical Phenomena 18 (2001)
1–142. 197

11. L. A. Goldberg, M. Jalsenius, R. Martin and M. Paterson, ‘Improved
mixing bounds for the anti-ferromagnetic potts model on Z2.’ LMS Journal
of Computation and Mathematics 9 (2006) 1–20. 200

12. L. A. Goldberg, R. Martin and M. Paterson, ‘Strong spatial mixing
with fewer colours for lattice graphs.’ SIAM Journal on Computing 35 (2005)
486–517. 197, 199, 200, 201, 202, 203, 204, 212, 214, 215

13. M. Jalsenius, ‘Strong spatial mixing and rapid mixing with 9 colours for
the triangular lattice.’ arXiv:0706.0489v1 [math-ph], (2007). 200

14. M. Jerrum, ‘A very simple algorithm for estimating the number of k-
colorings of a low-degree graph.’ Random Structures and Algorithms 7 (1995)
157–165. 199

15. M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity
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