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Wave impact on solid structures is a well-studied phenomenon, but almost exclusively for
the case that the impacting liquid (e.g. water) is surrounded by a non-condensable gas
(such as air). In this study we turn to wave impact in a boiling liquid, a liquid that is
in thermal equilibrium with its own vapour, which is of key relevance to the transport
of cryogenic liquids, such as liquified natural gas and liquid hydrogen in the near future.
More specifically, we use the Atmosphere facility at MARIN, NL, to prepare water/water
vapour systems at different temperatures along the vapour curve. Here, we perform wave
impact experiments by generating a soliton in a flume contained within the autoclave of
the facility. A bathymetry profile interacts with the soliton, leading to a breaking wave
that impacts onto a vertical wall, where we measure the pressures occurring during impact
by means of 100 embedded pressure sensors. In boiling liquids, we report wave impact
pressures that are up to two orders of magnitude larger than those measured in comparable
water–air experiments. We trace these pressures back to the collapse of the entrapped
vapour pocket, which we semi-quantitatively describe using a simplified hemicylindrical
vapour bubble model, which is in good agreement with the experimental findings. Finally,
this allows us to predict the relevance of our findings for the transport of cryogenic liquids
in huge overseas carriers where wave impact due to sloshing is the dominant cause of
hydrodynamic load of containment systems in cargo tanks.
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1. Introduction
Liquid–solid impact is an ubiquitous and often awe-inspiring phenomenon, which is
frequently observed in nature, e.g. when ocean waves crash against a harbour quay
(Peregrine 2003), a stone lands in a lake (Truscott et al. 2014) or seabirds catch their prey
(Chang et al. 2016). Similar phenomena can be seen during the operation of ocean vessels,
connected to hull slamming (Abrate 2013), (re-)entry of a ship into water (Kapsenberg
2011), the landing of sea planes or spacecraft (Seddon & Moatamedi 2006), wet-deck
slamming in ships or off-shore structures (Smith et al. 1998; Faltinsen 2000; Faltinsen
et al. 2004), or sloshing (Faltinsen & Timokha 2009). The pressures that are generated
during wave impact are often large and short lived, and may have severe detrimental effects
on the stability of the structures impacted upon.

One of the key examples of sloshing is found in the huge containers of liquid natural
gas (LNG) carriers, where almost the entire load experienced by the structure is connected
to sloshing wave impact (Bogaert et al. 2010; Dias & Ghidaglia 2018). Although at first
sight the above example looks similar to all of those mentioned previously, there is one
crucial difference: whereas all previously mentioned examples deal with impact of a liquid
(water) surrounded by a non-condensable gas (air), in LNG carriers we are dealing with a
liquid (LNG) that is kept at its boiling point, in thermal equilibrium with its own vapour.
For brevity, we will refer to this situation as a boiling liquid. This immediately raises the
fundamental question of whether phase change may influence the behaviour of the boiling
liquid during wave impact.

Since such a system is on, or at least very close to, the vapour curve, even small changes
in temperature or pressure may cause condensation or evaporation, which in turn may
change the usually mitigating response of the intermediate phase, in this case the vapour.
Here, we refer to intermediate phase as the fluid in between water and the solid structure.
When this surrounding phase is air, the intermediate phase may have a very non-trivial
influence on the generated load, and its distribution on the solid structure (Bogaert et al.
2010; Dias & Ghidaglia 2018). One way this may occur is through aeration of the liquid
phase (Bredmose et al. 2015; Ma et al. 2016), but more often, the gas that is trapped in
between the liquid and the solid affects the shape of the liquid surface (Hicks et al. 2012),
and also plays a crucial role in affecting the loading on the solid phase (Hattori et al. 1994;
Peregrine & Thais 1996; Wood et al. 2000; Ermanyuk & Ohkusu 2005; Bredmose et al.
2009).

This immediately raises the question of what will happen to this intermediate phase
in the case of impact of a boiling liquid in the presence of vapour bubbles (Plesset
& Prosperetti 1977; Prosperetti 2017). Or more precisely, under what conditions will
condensation occur and possibly cause violent collapse of vapour cavities inside the liquid,
that may in turn cause damage to the structure, similar to the many studies of cavitation
at, e.g. naval propellers (Brennen 2013; Peters et al. 2018; Reuter et al. 2022). This is
what we investigate in the current work, where water–water vapour systems are created
in the unique Atmosphere (ATM) facility at MARIN for several different temperatures
on the vapour curve, and in which we will create large-scale wave impacts on a vertical
wall instrumented with pressure sensors. Subsequently, we explain our findings with a
simplified model that makes use of the Rayleigh–Plesset equation (Brennen 2013), the
Plesset–Zwick solution of the convective heat equation (Plesset & Zwick 1952) and an
energy-mass balance equation at the liquid–vapour interface allowing for phase change.
Aside from a few explorative numerical studies on model systems (Calderón-Sánchez et al.
2018; Braeunig et al. 2010; Ancellin et al. 2012), to date no one has investigated the role
of phase change in a boiling liquid in a controlled experiment.
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This work is structured as follows. In § 2 we give a brief review of the experimental
setup, the ATM facility at MARIN, followed by a short description of how breaking
waves are created in the flume. Subsequently, we discuss the experimental results in § 3
where, as an example, a wave impact under boiling liquid conditions at low temperature is
compared with a similar impact in air, showing enormous differences in the behaviour of
the entrapped vapour or air pocket. This is followed by a discussion of the characteristic
pressures occurring during wave impact as a function of wave shape and temperature,
exploring the full parameter range studied in this work. In § 4 we present a simplified
theoretical model for the vapour pocket dynamics based on the two-dimensional Rayleigh–
Plesset equation, which is subsequently compared with experimental findings and written
in dimensionless form to show that the observed phenomena are essentially governed by a
single dimensionless parameter. The work is concluded in § 5.

2. Experimental setup
The experiments were carried out in the ATM facility located in MARIN. This new large-
scale facility consists of a cylindrical autoclave (2.5 m in diameter and 15 m in length),
shown in figure 1(a), in which we can control and monitor independently the ambient
pressure p0 from 0.02 to 10 bar, the liquid (water) and gas temperature T0 from 15 to
200 ◦C and the gas composition to any mixture of non-condensable gases (e.g. He, N2,
Ar) and condensable gases (water vapour). For the purpose of this work, especially the
latter feature is used, creating – at any desired, physically attainable temperature – an
atmosphere of water vapour in equilibrium with the liquid (water) that is contained in
a horizontal flume (12 m in length, 0.60 m in width) positioned inside of the autoclave
with a piston-type wavemaker. (Although the thermodynamics of a liquid and its vapour
in thermal equilibrium is considered textbook knowledge, we provide the vapour curve of
water with the temperature set points used in – and some essential relations needed for –
the current work in Appendix C.) The instrumentation of the ATM includes an encoder
that measures the position of the wavemaker in time, three wave gauges (provided by three
Manta G235-B cameras) at various positions along the flume to extract the wave elevation
and monitor the travelling wave shape, two Photron SAX high-speed cameras located near
a vertical wall opposite to the wavemaker (the so-called impact wall), several pressure and
temperature sensors in the gas phase, as well as temperature sensors in the liquid phase,
a sensor that measures the water depth and, finally, 100 dynamic pressure sensors that
measure the wave impact pressures. For more information on the ATM facility, we refer
the reader to Novaković et al. (2020) and Ezeta et al. (2023).

In figure 1(d) we show a sketch of the flume along with the relevant control parameters
and measurement systems. We create a breaking wave in two steps. Firstly, a repeatable
solitary wave is produced from a single stroke of the wavemaker using the procedure
outlined in Guizien & Barthélemy (2002), where the asymptotic solutions of Grimshaw
(1971) are used to calculate the wavenumber, free surface elevation at rest and the
propagation speed. For a comprehensive review of the wave generation, we refer the
reader to Ezeta et al. (2023). The shape of the wave is quasi-two-dimensional, since the
wavemaker spans the entire channel width and the side effects at the channel walls may be
neglected, noting that in the propagation time of the wave (<10 s) the viscous boundary
layer at the channel walls may have grown to a width of <3 mm in the impact area, which
is negligible compared with the width of the flume (60 cm). Secondly, to subsequently
induce the breaking of the solitary wave, a bathymetry profile has been installed in front
of the impact wall, which we called the ‘beach’. This ‘beach’ is made of stainless steel and
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Figure 1. (a) The autoclave of the ATM facility at MARIN. (b) Impact wall with sensor array on the metal plate
in the left of the picture (note that the right structure is a window). (c) Arrangement of the pressure sensors
on the impact wall, when looking from the flume. (d) Sketch of the flume inside the autoclave along with the
control parameters for both the liquid and gas. (e) Sketch of the metal beach located in front of the impact wall,
with main dimensions.

its dimensions can be seen in figure 1(e). This procedure results in reproducible breaking
waves, as discussed in great detail in Ezeta et al. (2023).

The impact wall is equipped with 100 Kistler piezoelectric pressure sensors (type
601CAA) that measure the impact pressures at an acquisition rate of 200 kHz. Each sensor
has a circular pressure sensitive area with a diameter of Ds = 5.5 mm. The amplification,
digitization and scaling of the signals in units of bar are done by 25 Kistler amplifiers
(LabAmps, type 5165A) (i.e. four pressure sensors per LabAmp) that are connected to
the acquisition system of the ATM. The 100 pressure sensors are mounted onto a vertical
metallic plate on the impact wall. The sensitive membranes of the sensors are all flush with
the impact wall and their locations can be found in figure 1(b,c). The pressure sensors are
arranged in three linear arrays that are slightly shifted with respect to one another such
that they form a densely packed array. When looking from the flume, and when sensors
are ordered along their increasing vertical position, each subsequent sensor has a vertical
distance of �z = 3.3 mm to the previous one, and a horizontal distance of �y = 9.4 mm
to the left. For the sensors in the rightmost vertical linear array, however, the horizontal
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distance is �y = 18.9 mm to the right (see figure 1c). Most importantly, the vertical
positions of the sensors are distributed evenly over the measurement range.

3. Experimental results
Before turning to the discussion of the main experimental results, we first take some time to
introduce the measurement procedure and the parameter settings used in this work in some
greater detail. After that we compare a single experiment in the water–vapour thermal
equilibrium conditions (i.e. in a boiling liquid) with a corresponding one in water and air.
This section ends with a comparison of the wave impacts at different parameter settings
for our boiling liquid system.

3.1. Experimental protocol and parameter settings
The main goal of this series of experiments is to investigate the role of condensable gases
(vapour) during the impact of a boiling liquid (water), i.e. a liquid that is in thermal
equilibrium with an environment that consists of its own vapour. This necessarily implies
that once the equilibrium temperature is chosen, the equilibrium pressure follows directly
from the vapour curve of the liquid. We have used six different temperatures, namely T0 =
20, 30, 40, 50, 60 and 70 ◦C. After setting the temperature in the autoclave, we allow the
system (typically for a period of 12 h) to equilibrate to the corresponding vapour pressures
p0 = pV,0 = 23.3, 42.3, 73.6, 123.0, 198.6 and 310.8 mbar, respectively. Subsequently, we
perform approximately 10 experimental runs for three different wave shapes, characterised
by the parameter α introduced in Ezeta et al. (2023), which corresponds to the wave
steepness of the solitary wave before it reaches the beach, defined as α = A/hl , where
A is the amplitude of the solitary wave and hl the (quiescent) liquid height inside the
flume. For the purpose of this work, the liquid height was fixed to hl = 365 mm, and
measured as hl = 365.0 ± 0.3 mm over the entire experimental series of approximately
180 experimental runs, where the error has been taken equal to the standard deviation of
the sample. The chosen values for the wave steepness are α = 0.350, 0.385 and 0.420,
which correspond to a cross-sectional area of the entrapped vapour or gas pocket of
Across = 2.7 ± 0.7, 9.5 ± 0.9 and 17.4 ± 1.0 cm2, respectively. Note that the relatively
large error is mainly due to inaccuracies in tracing the pocket shape from the high-speed
recordings.

The impact of the wave onto the impact wall is recorded with two high-speed cameras,
located outside of the autoclave and imaging through two windows with backlighting from
the other side, recording at 4000 frames per second at a resolution of 1024 by 1024 pixels2.
The side walls of the flume are made out of glass such that the wave can be imaged
from the outside. One of the cameras captures a side view of the impacting wave, which
allows us to reconstruct the shape of the wave, and the size of the captured vapour pocket
as a function of time, making use of the quasi-two-dimensional shape of the wave. The
other camera takes an oblique view of the impact, which serves to verify the quasi-two-
dimensional character of the impact and in addition allows us to appreciate the dynamics
of the entrapped vapour pocket in greater clarity.

The views from the two high-speed cameras allows us to verify that, for each value of α

used, the wave shape is repeatable, and that they are reproducible for the different values
of T0 used. This is shown in more detail in Appendix A.

3.2. Comparison of a boiling liquid versus a water-air wave impact
In figure 2 we show two snapshots from a water-wave impact with wave steepness
α = 0.385 in air under atmospheric conditions at T0 ≈ 20 ◦C and p0 ≈ 1.0 bar in
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Water & air, ∆t = –0.25 ms Water & vapour, ∆t = –0.25 ms

Water & air, ∆t = +7.5 ms Water & vapour, ∆t = +7.5 ms

Side view:
(e) ( f )

(c) (d )

(a) (b)

Beach
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l Wave,

visible through
transparent side
windows of the

flume

Oblique view:

Figure 2. Two snapshots from an experiment in water and air (a,c) at T0 ≈ 20 ◦C and atmospheric pressure
patm = 1 bar, taken just before impact and 7.8 ms later, compared with snapshots from a similar experiment
with the same wave shape in a boiling liquid (i.e. water and water vapour at equilibrium); (b,d) at T0 ≈ 20 ◦C
and p0 ≈ pV (T0) = 23.3 mbar. Note that the images are taken from an oblique viewpoint, looking through
the wave at the wall of impact, which allows for good observation of the shape of the entrapped cavity, the
free surface of which appears as the brightest object in the pictures. In both cases, a solitary wave with wave
steepness α = 0.385 has been used. Clearly, the wave shapes just before impact (a,b) are very similar, whereas
7.8 ms later there is an entrapped air pocket visible in the air case (c), whereas the vapour pocket in the boiling
liquid case has nearly completely vanished. (d). A sketch of the side view of the wave just before impact is
provided in (e), and the oblique view – looking from the flume towards the impact wall – that is also taken
in (a–d) is sketched in (f ). Note that the wave can be observed through small windows in the autoclave since
the side panels of the flume are made of glass. For a better visual comparison, see supplementary movie 1
comparing the impact in air and vapour available at https://doi.org/10.1017/jfm.2025.110.
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comparison with two snapshots at comparable times for a water-wave impact of the same
wave shape in boiling liquid conditions at T0 ≈ 20 ◦C and p0 ≈ pV (T0) = 23.3 mbar. Note
that the measured values of liquid and air temperature and air pressure were Tl = 18.4 ◦C,
Tg = 20.9 ◦C and p0 = 1.015 bar, respectively, in the atmospheric case and Tl = 20.1 ◦C,
Tg = 19.9 ◦C and p0 = 26.1 mbar, respectively, for the boiling liquid case. For
T0 ≈ 20 ◦C, p0 = 25.9 mbar was the closest we could get to the nominal vapour pressure
pV,0 = 23.3 mbar, which is probably due to a combination of thermal inhomogeneities
in the system and some residual non-condensable gas present in the system. Note that,
although the smallest pressure that can be reached by our vacuum pump is about 4 mbar
(in a system devoid of water), the pump is pumping continuously for several hours, with
water continuously supplied to the flume to keep the liquid height hl constant, such that the
remaining partial pressure of non-condensable gases is likely much smaller than 4 mbar.
Throughout this work, we use p0 for measured values of the ambient pressure and pV,0
whenever referring to the expected vapour pressure, computed from the temperature T0,
i.e. pV,0 = pV (T0). See Appendix C and figure 19 for an overview of these set points.
Wherever we denote a pressure in capitals, it stands for the gauge pressure as it is measured
by the pressure sensors, i.e. P = p − p0, where p0 is the ambient pressure inside the
autoclave.

In figures 2(a) and 2(b) we observe the two waves just before impact (at �t =
t − timpact ≈ −0.25 ms, with timpact the time of impact and t time), where we take the
oblique view from the flume towards the impact wall that is also sketched in figure 2(e,f ).
It is clear that there are no obvious visual differences between the two snapshots, owing
to the very good reproducibility of the wave shape, even with the greatly varying ambient
pressures in the two systems (1 bar vs 26 mbar). So, just before impact the wave shapes are
very similar and, as a result, the size of the gas/vapour pocket that is about to be entrapped
in the two cases is very similar as well. At �t = 7.5, i.e. 7.8 ms later, things look very
different in the two cases. Whereas in the water–air case (figure 2c) an air pocket has
been entrapped, which at that time has reached its typical size; for the boiling liquid, one
observes in figure 2(d) that the entrapped vapour pocket has almost completely vanished.
This could partly of course be due to the large difference between the air (p0 = 1015 mbar)
and vapour pressure (p0 = 26.1 mbar), which – for similar driving pressures generated by
the impact – would allow the vapour pocket to contract much more than the air pocket,
namely approximately a factor 4 in radius. However, when looking at the pressure signals,
it becomes clear that the picture is more complex than this.

In figure 3(a) we plot the time evolution of the pressure measured in the 32nd sensor,
located at a height z = 455 mm, in the air case. (The 32nd sensor is the one that is first
hit by the wave in the vapour case. In the air case, the first sensor to be hit is in fact the
34th sensor, and the measured pressure (≈ 0.7 bar) is marginally higher than that in sensor
32.) At the moment of impact, the pressure rises steeply (the sharp peak at t ≈ 410 ms)
to a value denoted as Pmax , which is approximately 0.6 bar, and which is subsequently
followed by an oscillating signal with a frequency of approximately f = 86 Hz. Even if we
measure it at the crest impact location in the liquid, i.e. at some distance from the entrapped
pocket, this oscillating signal can be traced back to the oscillation of the air pocket that
is entrapped below the impact point. Using Minnaert’s relation for the eigenfrequency
of a cylindrical bubble of radius R, namely R f = 1.10 m s–1 (Ilinskii et al. 2012), this
frequency corresponds to a cylindrical bubble radius of R = 1.28 cm. This is about a factor
two smaller than the actual effective radius of the entrapped cavity, defined as the radius
of a hemicylindrical cavity with the same cross-sectional area (see also Appendix B),
which was measured to be 2.45 cm. (For comparison, Minnaert’s relation a f =
3.26 m s–1 for a spherical bubble with radius a would have given a = 3.79 cm.) Note that
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Figure 3. Pressure signals measured for a wave with α = 0.385 in the air case (left plots) and the boiling liquid
case (right plots). (a,b) Time evolution of the pressure P measured by the 32nd sensor at z = 455 mm in the
impact wall for (a) the air case and (b) the boiling liquid case. The moment timpact at which the wave crest
impacts is indicated by a vertical dashed line in both plots. (c,d) Maximum pressure Pmax measured in each of
the sensors, as a function of its height in the array for (c) the air case and (d) the boiling liquid case. The vertical
location zimpact at which the wave crest impacts is indicated by a vertical dashed line in both plots. (e,f ) Time
tmax at which the maximum pressure was measured for (e) the air case (red dots) and (d) the boiling liquid case
(blue dots). The black crosses indicate the moments in time that the crest impact pressures were measured. Note
that pressures are reported as they are measured by the sensors, i.e. as gauge pressures P = p − p0 (denoted
with a capital), with p0 the ambient pressure in the autoclave. This is true for all experimental figures in this
work.

the impact pressure is the highest pressure in this time series, which is not surprising, since
we are measuring in the point that was first touched by the wave crest, which in air or other
non-condensable gases usually gives the largest pressure in a wave impact time series. The
surprise is however that when we turn to the equivalent series for the boiling liquid case
(figure 3b) we immediately observe that this is no longer true. In fact, the impact is still
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visible as the first peak in the time series, at t ≈ 406 ms, and with Pimpact ≈ 2 bar is even
considerably larger than that in the air case, but after that the pressure drops back to a
very small value, indicating the absence of pressure building up in the entrapped vapour
pocket. That is, until a second, higher peak (Pmax ≈ 4.6 bar) is observed at t ≈ 413 ms.
Since no clear oscillation follows, or possibly extremely rapid ones, this suggests that the
vapour pocket has collapsed and that at least a large part of it must have condensated
in the process, leaving small gas or vapour fragments that regrow and subsequently
collapse in a second, smaller event, or even series of events, starting at t ≈ 426 ms.
See supplementary movie 1 comparing the impact in air and vapour corresponding to
figure 2.

The sequence of events suggested above is confirmed in figure 3(d), where the maximum
pressure Pmax observed in the time series of each of the pressure sensor channels is
plotted as a function of the sensor height z. Here it becomes clear that the maximum
pressure measured at the impact height is completely dwarfed by the maximum pressure
measured in the system, which occurs at z = 388 mm and equals Pmax (zmax ) = 78.1 bar.
This location nicely corresponds to the location of the collapse of the vapour pocket in the
high-speed imaging recordings, available in the supplementary movies. Comparing this
value to those obtained in the air case (figure 3c), it is clear that pressures obtained in the
boiling liquid case are up to two orders of magnitude larger than in the air case. In fact, in
the latter the pressure that can be attributed to the wave crest impact is globally the largest
in the system, and the pressure oscillations in and around the air pocket are smaller, even if
they are quite uniformly spread over a larger area (corresponding to the size of the vapour
pocket) and a larger time span. This is in sharp contrast to the boiling liquid case where
the crest impact pressure corresponds not even to the maximum in its own time series
(figure 3b), and therefore, not even discernable in figure 3(d).

It is instructive to look at the times tmax at which the pressure maxima are reached
in the different sensors, which are plotted in figures 3(e) and 3(f ), where we restricted
ourselves to heights <480 mm, since sensors above that height are in the gas or vapour
phase where insignificant signals are obtained. For the air case, we observe that, for small
heights (i.e. within the air pocket), the maximum pressure occurs at t = 413 ms, whereas
around the crest impact point, the first maximum already occurs at t = 409.9 ms (red
dots in figure 3e). For the boiling liquid case, all pressure maxima occur at t = 412.8 ms
(blue dots in figure 3f ), but due to the separation of the crest impact event and the vapour
pocket collapse event in time, it is feasible to determine the impact pressure maxima
by restricting the search to the time interval before the collapse. This yields the black
crosses that indicate the time timpact when the crest impact pressures were recorded. In
the air case, timpact coincides with tmax , but for the boiling liquid case, timpact = 405.6
ms, which is earlier than tmax . Note that in air, the time span between impact and
maximum air pocket compression (which can be equated with the maximum pressures
measured in the area below the impact) is timpact − tmax ≈ 3.1 ms, which is considerably
smaller than the corresponding time span in the boiling liquid case (timpact − tmax ≈ 7.2
ms). This is because the time it takes for the air pocket to reach its minimum size is
smaller than the time the vapour pocket needs to collapse to an almost vanishing length
scale.

At this point it is good to stress that the origin of absolute time has no special
significance since it depends on a rather arbitrary triggering of the cameras determined
by the wavemaker stroke. The fact that the absolute bubble collapse/compression times
are close in this case is therefore purely coincidental and has no physical significance.

To finalise our discussion of the impact of a single wave in the water–air and boiling
liquid cases we turn to the so-called pressure map, a space–time plot of the signal in the
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Figure 4. (a) Pressure map P(z, t) of the impact of the same breaking wave in water–air conditions at
T0 = 20 ◦C, with α = 0.385 also reported in figures 2(a,c) and 3(a,c,e), focusing on the time span from
t = 400 − 460 ms, containing crest impact, pressurisation of the air pocket and oscillations. Note that pressure
is denoted by a logarithmic colour scale, where patm = 1 bar. Also note that all pressures smaller than 0.01 bar
are denoted by the same colour as P = 0.01 bar, to avoid the noise level. (b) Pressure map P(z, t) of the impact
of the same breaking wave, but now in boiling liquid conditions (as reported in figures 2(b,d) and (3b,d,f )),
in the same time interval, containing crest impact and vapour pocket collapse. (c) Same data as in (b), but
now horizontally zoomed in on impact (ELP1), jet propagation along the walls (ELP2) and the main vapour
pocket collapse event (ELP3). The white dashed line, with approximately the same slope as the propagating
downward jet, corresponds to a velocity v jet = 6.7 m s–1. (d) Same data as in (c), but now zoomed in on the
vapour pocket collapse event. The slope of the white dashed line in this plot corresponds to the sound speed
in water, c = 1.5 × 103 m s–1. Note that the vertical axis is the same in all four plots and zooming was done
exclusively along the time axis.
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pressure sensor array in our impact wall, provided in figure 4. The upper plot shows the
air water case: first, the direct impact of the wave crest as the leftmost point in which
high pressures are observed in figure 4(a). This is the point that in wave impact literature
has become known as ELP1, where the abbreviation ‘ELP’ is short for elementary
loading process (Lafeber et al. 2012; Dias & Ghidaglia 2018), and is associated with the
combination of the incompressible, and even compressible, impact of the liquid mass onto
the wall (Wagner 1932; Lesser 1981; Korobkin 2004). Generally, due to its short duration
in time and localisation in space, ELP1 is sometimes hard to resolve, but in this case we
verified that, owing to the time resolution of our sensors (5 μs), we indeed have. From
that point onwards, liquid jets start spreading upwards and downwards along the impact
wall, a pressure signal known as ELP2, of which the upward one is clearly visible in
the upper figure. The downward one is a bit obscured by the pressure build up in the air
pocket, which in recent wave impact literature (Lafeber et al. 2012; Dias & Ghidaglia 2018)
became known as ELP3, a name that is also associated with the gas pocket oscillations in
the air case. These are very visible in the pressure map, although one can only see the
positive part of the oscillations due to the fact that for the logarithmic colour scale used,
pressures below a threshold of P = 0.01 bar are cut off to this value.

The second plot shows the corresponding boiling liquid case (figure 4b). Again, the
leftmost point in which high pressures are observed corresponds to the crest impact, but
then the plot is very different from the water–air case. First, there is no pressurisation of
the vapour pocket, which remains at a low pressure, which in turn makes the downward jet
very visible. A bit more faint, but definitely also discernible is the motion of the lower
three-phase-contact line of the entrapped vapour pocket (the so-called run-up), which
culminates at the meeting point of the downward jet and run up in a vertical band of very
large pressures throughout the entire system at t = 412.8 ms connected to the collapse of
the vapour pocket. Visible at later times are a second collapse at t ≈ 426 ms after a first
rebound of the vapour pocket (or rather its fragmented remnants after regrowing in the
rarefaction period that follows after collapse), and even a third one in the lower part of the
system at t ≈ 440 ms, both of which are also visible in the time series of figure 3(b). Most
importantly, the oscillations that dominate the water–air case are absent.

When we zoom in onto the region between impact and vapour pocket collapse
(figure 4c), we clearly observe the high speed with which the liquid jet moves downwards
along the impact wall, with a velocity v jet ≈ 6.7 m s–1 (white dashed line) that exceeds the
impact speed of the wave (vimpact ≈ 2.1 m s–1) by a factor of 3, a factor that depends on the
radius of curvature of the wave crest. The estimation of vimpact is shown in Appendix B.
Very different from what is observed in the air case, where the entrapped air pocket is
pressurised as soon as the wave impacts the wall, the pressure inside the vapour pocket
remains negligible during collapse, which is a strong indication that the vapour present
in the pocket is in fact condensating instead of compressing. Following the signal in a
single pressure sensor, e.g. at height z = 420 mm, the pressure remains small and close
to the background noise level of the sensor until t ≈ 409.5 ms. After this time, the sensor
becomes wetted and the pressure suddenly rises to a level of about 0.2 bar, where it remains
until the vapour pocket collapses and the pressure rises to 10 bar.

Finally, we zoom in even more in figure 4(d), where we focus on a time span of about
700 μs around the collapse of the vapour pocket. The first thing to notice in this plot are
the diagonal lines that radiate out from the collapse point, which is approximately located
at z = 388 mm in space and at t = 412.85 ms in time. These diagonal lines have a slope
that is consistent with the speed of sound in water c = 1500 m s–1 indicated by the white
dashed line in this plot. Therefore, we may conclude that these diagonal lines correspond
to pressure waves emanating from the collapse point. Having said this, one may wonder
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why there are diagonal lines in the same plot that seem to originate at a point in time
before the collapse of the cavity. To understand their origin it is good to realise that the
system has a third dimension and that due to slight but unavoidable asymmetries along
the horizontal axis parallel to the wall (the y axis of our system), the collapse does not
necessarily happen at the same point in time along that axis. So some nearby part of the
cavity may already have collapsed, where the pressure is generated by the inertial collapse
of the liquid onto part of that axis, which may induce large pressure signals already slightly
before the collapse takes place in the region of the pressure sensor array. In fact, the one
structure close to the dashed line with a larger slope than c may be due to an event having
taken place at some distance, such that the signal arrives at the pressure sensors more
simultaneously as it would when the event had taken place on the sensor array.

In addition, we highlight other remarkable features in this plot. Firstly, when looking
at subsequent sensor heights, i.e. subsequent horizontal lines in the diagram, one often
observes a pattern that seems to repeat itself every third sensor and in both directions
(upwards and downwards). This is likely connected to the threefold structure of the sensor
arrangement (cf. Figure 1c), where every third sensor is located exactly above (or below)
the sensor from which one started, whereas distances in the y direction are slightly
larger. Secondly, there are clear oscillations in the signal, for which we may estimate the
frequency to be of the order of 40 kHz, i.e. considerably smaller than the acquisition rate
of the pressure sensors (200 kHz). This may be due to structural oscillations in the impact
plate in which the sensors are embedded or small gas/vapour bubbles.

To conclude this subsection, we find that pressures measured in boiling liquid breaking
wave impact may be up to two orders of magnitude larger than those in air. This enormous
difference can be traced back to the collapse of the entrapped vapour pocket. Condensation
of vapour is likely to strongly contribute to this phenomenon, since condensation depletes
the vapour pocket of content, which facilitates its violent collapse.

3.3. Comparison of pressure characteristics for different temperatures and wave shapes
We now turn to the description of the dependence of the vapour pocket and impact
pressures on temperature and wave shape in figure 5, where we plot the maximum
value Pmax (z) of the measured pressure time series for each of the pressure sensors,
as a function of the vertical sensor position z, and for each of the approximately 10
experiments performed for every parameter setting (blue-shaded dots). Note that the data
from figure 3(d) is also one of the 10 experiments plotted in figure 5(a), and that we
removed the data above z = 550 mm since those are in the vapour phase for each wave
shape and not measuring anything worth showing. In each of the panels in figure 5 we also
present the average of the approximately 10 experiments, indicated by the black lines.

In addition, in the analysis below we make use of the fact that pressures caused by the
crest impact and those caused by entrapped vapour pocket dynamics are temporally and
spatially separated (cf. Figure 3e,f ), such that we can define the maximum vapour pocket
pressure 〈Ppocket 〉 as the maximum pressure associated with the vapour pocket dynamics
(due to collapse or compression), averaged over all 10 experiments performed at a single
parameter setting and the maximum crest impact pressure 〈Pcrest 〉, obtained by first
averaging the three largest pressures measured during the impact stage for each experiment
and subsequently averaging over the 10 individual experiments for each parameter setting.

We start with the discussion of the temperature dependence of the maximum vapour
pocket pressure and maximum crest impact pressure for a breaking wave with wave
steepness α = 0.385, under boiling liquid conditions. In figure 5 we show the results for the
maximum pressure Pmax (z) measured in each of the pressure sensors on the impact wall,
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Figure 5. Maximum pressure Pmax (z) measured as the maximum in the time series of each sensor and plotted
as a function of the vertical sensor location z at the impact wall under boiling liquid conditions, for a breaking
wave with wave steepness α = 0.385 and for six different ambient temperatures ranging from T0 = 20 ◦C to
70 ◦C, corresponding to (a) to (f ), respectively. For each experimental setting, there were approximately10
repetitions of the experiment. In each panel, the blue-shaded dots correspond to the individual experiments,
whereas the solid black line corresponds to their average. Note that the pressure range (vertical axis) is largest in
(a,b) and decreases for (c,d) and (e,f ). Movies comparing the wave impact in boiling liquid conditions for these
six temperatures are available for α = 0.385 (corresponding to this figure) and α = 0.420 in the supplementary
movies.

as a function of their height z, for temperatures increasing from T0 = 20 ◦C to 70 ◦C. At
T0 = 20 ◦C, with vapour pressure pV,0 = 23.3 mbar, the pressures are clearly the largest,
with an average maximum value of 〈Ppocket 〉 = 60 bar (maximum of the black curve)
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and individual measurements reaching up to 88 bar (blue-shaded dots). While the largest
pressure occurs at the height where the pocket collapses, namely zcoll ≈ 388 mm, nothing
can be discerned at the location where the wave impact is expected, at zimpact ≈ 455 mm.
This is consistent with the fact that even there the recorded maximum pressures,
with Pmax (zimpact ) ≈ 4−5 bar, are much larger than the crest impact pressures (Pimpact <

2 bar).
Increasing the ambient temperature in liquid and vapour to T0 = 30 ◦C, corresponding to

a vapour pressure pV,0 = 42.3 mbar, the average maximum vapour pocket pressure clearly
decreases to 〈Ppocket 〉 = 27 bar, but otherwise the data are similar as in the T0 = 20 ◦C
case, with pocket collapse being the dominant feature in the plot and no visible signal
from the direct impact of the wave crest. Remarkable in both plots are the multiple peaks
that are visible in the collapse region. Since these are both present in the average and in the
individual data series (e.g. as in figure 3d), this cannot be due to variability of the height
at which the vapour pocket collapses: the collapse seems to occur at the same location
(zcoll ≈ 388 mm) for all repetitions of the same conditions. In fact, the multiple peaks
reveal again the apparent ‘threefoldness’ due to the sensor arrangement that we previously
pointed out. This further supports the idea that the collapse pressures are not uniform in
the spanwise (y) direction along the impact wall.

At T0 = 40 ◦C, corresponding to a vapour pressure pV,0 = 73.6 mbar, in figure 5(c) we
see drastic changes: overall pressures are much smaller (note the change in the pressure
scale from 0−90 bar down to 0−10 bar). In contrast to lower temperatures, the crest impact
pressure is now discernible as a very clear peak at zimpact ≈ 455 mm, where the maximum
pressures reach up to about Pimpact ≈ 2 bar. Furthermore, looking at the collapse region,
one sees a diversified picture: whereas in some experimental realisations hardly any
collapse pressure is measured (lower blue-shaded data points), in other ones maximum
collapse pressures reach up to 8 bar thus revealing a large variability near the collapse
region. The average maximum vapour pocket pressure decreases to 〈Ppocket 〉 = 3.8 bar.

This trend continues in the data of T0 = 50 ◦C, corresponding to a vapour pressure
pV,0 = 123.0 mbar, where the impact pressure is now even better discernible. Although
the vapour pocket collapse is still a clear feature in most experimental realisations, with
an average maximum pressure in the collapse region of 〈Ppocket 〉 = 1.3 bar, it is now
for the first time smaller than the average maximum crest impact pressure, which equals
〈Pcrest 〉 = 1.5 bar. Interestingly, this suggests the existence of a transition temperature in
which both the collapse and impact pressure are nearly the same. For this wave shape, this
temperature lies within T ∈ [40, 50] ◦C. Note in addition that there is a very large crest
impact pressure of approximately 7 bar, which (without clear evidence) we tentatively
attribute to the presence of a small entrapped vapour pocket during impact that upon
implosion is responsible for the extreme impact pressure. It is good to note that such a
large crest impact pressure has only been recorded in 1 out of the total of 181 impact
experiments we conducted in boiling liquid conditions during this campaign.

Finally, figure 5(e,f ), at T0 = 60 ◦C (with pV,0 = 198.6 mbar) and T0 = 70 ◦C (pV,0 =
310.8 mbar), provides a similar picture: in these plots, where the vertical axis now only
ranges from 0 to 2 bar, it is observed in both cases that the impact pressure is dominant,
with average maximum crest impact pressures of 〈Pcrest 〉 = 1.2 bar. In the region where for
lower temperatures a vapour pocket collapse was observed (z ≈ 360–410 mm), pressures
are of the order of a few tenths of a bar, without the prominent peak that was observed for
T ≤ 30 ◦C.

It is good to stress that pressures measured in the boiling liquid case are so large that,
when comparing the similar plot for the water–air impact (figure 3c) to the data in figure 5,
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Figure 6. Maximum pressure Pmax (z) measured in each sensor as a function of the sensor location z
at the impact wall under boiling liquid conditions at an intermediate ambient temperature T0 = 40 ◦C
(pV,0 = 73.6 mbar), for three breaking waves with wave steepness α = 0.35, 0.385 and 0.42, corresponding
to (a), (b) and (c), respectively. For each experimental setting, there were 10 repetitions of the experiment. In
each panel, the blue-shaded dots correspond to the individual experiments, whereas the solid black line
corresponds to their average. Note that the pressure range is largest in (a) and decreases towards (c).

the data would almost coincide with the horizontal axis in figure 5(a,b), would reach up to
7 % of the height of the figure 5(c,d) and would only be clearly visible in the figure 5(e,f ).

Now, a first conclusion one can draw is that, as temperature and vapour pressure
increase, the entrapped vapour pocket collapses in a less violent manner, leading to
strongly decreasing collapse pressures as the temperature increases. This is however not
yet the complete story. As soon as one considers the wave shape in the analysis, it becomes
clear that the latter also plays a significant role.

In order to evaluate the wave shape dependence, we show in figure 6 the measurement
of Pmax (z) at a fixed temperature (T0 = 40 ◦C) and for all three wave shapes (α = 0.350,
0.385, 0.420). Here, we observe an extremely strong vapour pocket collapse for the
α = 0.350 case, with an average maximum vapour pocket pressure of 〈Ppocket 〉 = 56 bar,
of the same order as that observed at the lowest temperature for α = 0.385. For the
intermediate case (α = 0.385), we find a very clear presence of both vapour pocket
collapse and wave crest impact pressures, as already discussed above. In contrast, for
α = 0.42 in figure 6(c), the impact pressure is dominant, with an only very moderate
but nevertheless clearly distinguishable average maximum vapour pocket pressure of
〈Ppocket 〉 = 0.45 bar. It is also worth noting that the crest impact and vapour pocket
collapse locations are clearly changing, namely from zimpact = 439 mm through 455 mm
to 464 mm, and from zcoll = 407 mm through 388 mm to 390 mm, respectively, from
α = 0.35 through 0.385 to 0.42.

In figure 7 we compare the average maximum vapour pocket pressure 〈Ppocket 〉 for all
three investigated wave shapes as a function of ambient temperature, where the pressure
axis is logarithmic. For the wave shape that entraps the smallest vapour pocket (α = 0.35),
collapse pressures remain very high (≥50 bar) up to T0 = 50 ◦C, and only start to drop
for the highest two ambient temperatures in our sample, where vapour pocket collapse
pressures reach values below 10 bar. From the very large error bars for these last two
points one can conclude that there is quite a bit of variation between single realisations,
and indeed for some experiments we observe collapse pressures close to 10 bar, whereas
in others a vapour pocket collapse appears to be completely absent (not shown).

For the intermediate vapour pocket case (α = 0.385) at the lowest ambient temperature
(T0 = 20 ◦C), the average maximum vapour pocket pressure 〈Ppocket 〉 is of the same order
of magnitude as that for α = 0.35, but then almost exponentially decays with temperature,
until a minimum value of ≈ 0.25 bar is reached, where it subsequently remains. For
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Figure 7. Maximum vapour pocket pressure 〈Ppocket 〉, averaged over all 10 experiments performed at a single
parameter setting, plotted as a function of ambient temperature T0 for all three investigated wave shapes
α = 0.35 (blue), 0.385 (red) and 0.42 (yellow). The symbols represent the average over the individual
experiments (data not shown), and the error bars are twice the standard deviation of the sample and would
be symmetric on a linear scale.
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Figure 8. Average maximum crest impact pressure 〈Pcrest 〉 as a function of ambient temperature T0 for all
three investigated wave shapes α = 0.35 (blue), 0.385 (red) and 0.42 (yellow). The quantity 〈Pcrest 〉 has been
obtained by first averaging the three largest pressures measured during the impact stage for each experiment
(represented by grey dots) and subsequently averaging over the 10 individual experiments for each parameter
setting, denoted by the coloured stars. Note that we have horizontally shifted the data for the three wave shapes
for clarity of presentation.

the largest pocket (α = 0.42), the largest pressures are not even reached for T0 = 20 ◦C.
Here, the decay with temperature is similar to the other two wave steepnesses, but the
minimal value is reached earlier and sustained up to the largest ambient temperature in our
measurements.

For completeness, in figure 8 we also present the average maximum crest impact
pressures 〈Pcrest 〉, measured during the crest impact stage. To define those, for each
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experiment, we first identify the three pressure channels containing the largest pressures
measured during the crest impact stage, and subsequently average those three maximum
pressures. These are represented by the grey dots. The coloured, star-shaped symbols in
turn constitute the averages of those values for each experimental setting (α, T0). Note
that we discarded the one instant of a very large impact pressure measured at α = 0.385
for T0 = 50 ◦C discussed above in the average. As becomes clear from the data, 〈Pcrest 〉
shows much less variation with temperature as the maximum vapour pocket pressure,
indicating that it is less affected by phase change. For all experiments, the averages lie
between 0.8 and 1.3 bar. There may be a slight decreasing trend with temperature, but it
is only convincing for the average data for α = 0.385, and it is clear that the spread in the
individual data points is too large to reliably corroborate the trend.

To conclude the section, we want to stress that in this work we have focused on the
experimental characterisation of the pressure, instead of other parameters such as the force
or the impulse during impact, which are also relevant parameters in many applications
involving impacts. Nevertheless, we did numerically integrate the measured pressures
over the height of the wall and multiplied with the width of the flume to obtain the
force time series F(t), for which we could determine the maximum Fmax , the timing
of which coincides with the vapour pocket collapse in the case such a collapse occurs. For
T0 = 20 ◦C, this leads to Fmax ≈ 20-50 kN, and by integrating F(t) around the maximum
over a time period corresponding to the duration of the peak, we obtain an estimate for
the associated impulse I ≈ 3–5 N s. Here, the ratio I/Fmax ∼ 80–120 µs provides an
estimate for the duration of the force peak (or an estimate for twice the rise time). This
can be contrasted to the values observed for the water–air system, where the maximum
in the force signal corresponds to the first pressurisation of the air pocket, leading to an
order of magnitude smaller Fmax ≈ 3–5 kN, but slightly larger I ≈ 5–13 N s, owing to the
larger duration (rise time) of the air pocket pressurisation (I/Fmax ≈ 1–4 ms). One could
say that (at small T0) the slow momentum transfer occurring during the first air pocket
pressurisation in the vapour case is postponed due to condensation and the corresponding
momentum change is suddenly imparted onto the wall at the moment the vapour pocket
collapses. Note that in all cases the crest impact is too localised in space to contribute
significantly to the force.

4. Comparison to a simplified model of the vapour pocket collapse
In the previous section we found that the pressures measured during the collapse of the
vapour bubbles in our experiment were varying over two orders of magnitude, both as a
function of temperature and as a function of wave shape. In this section we now formulate
a simplified model for the vapour bubble dynamics, which we subsequently compare to
the experimental observations.

4.1. A simplified model for the vapour pocket dynamics
Inspired by the seminal work of Prosperetti and many others in this field (Prosperetti &
Plesset 1978; Prosperetti 2017; Bergamasco & Fuster 2017), we assume that in our case the
heat transport into the liquid is the factor that limits phase change for the vapour pockets
observed in the experiments. We assume that the vapour bubble is homogeneous for all
relevant time scales, which is reasonable given the fact that the heat diffusivity in water
vapour is typically at least two orders of magnitude larger than the heat diffusivity in the
liquid. In addition, we assume that the bubble is in thermal equilibrium at all times, which
stands to reason since the vapour density ρV is much smaller than the liquid density ρL ,
such that the heat capacity per unit volume cp/ρ is much larger for the liquid than for
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TV

TV
pV

pV,0 + ∆p0

½V

½L

R (t)
Rsensor

pV (t)

pL (t)

(b)(a)

ϕ (r, t)
vr (r, t)

R (t)

T0

±th

T0

Figure 9. (a) Sketch of the simplified model of the vapour pocket. A hemicylindrical bubble of radius R(t)
and length W filled with vapour of density ρV , temperature TV and pressure pV is in contact with a liquid of
constant density ρL and temperature T0. The pressure in the liquid is the sum of the equilibrium vapour pressure
pV,0 corresponding to the liquid temperature T0 and the hydrodynamic pressure �p0 = ρL V 2

wave in the liquid.
The pressurisation of the vapour bubble triggers condensation, the latent heat of which will be transported into
the liquid according to the temperature difference TV − T0. (b) Sketch of the situation where the bubble is only
partially covering the pressure sensor and the pressure pL in the surrounding liquid needs to be taken into
account in addition to the vapour bubble pressure pV to estimate the measured pressure from the model; see
also Appendix F.

the vapour. If the bubble is pressurised, it will then strive to attain back to equilibrium by
condensation, where the heat is to be conducted away into the liquid.

Assuming the bubble to be of hemicylindrical shape in an infinite medium with radius
R and length W , as sketched in figure 9(a), neglecting the proximity of the free surface of
the wave, we may thus write an energy-mass balance equation as

L
dmV

dt
= SwkL

∂T

∂r

∣∣∣∣
r=R(t)

, (4.1)

where mV is the vapour mass contained in the bubble, Sw = π RW the surface area of the
hemicylindrical bubble, L the latent heat of evaporation and kL the heat conductivity of the
liquid. Here, we choose to neglect the volume changes in the liquid due to phase change,
since the vapour density was assumed to be much smaller than that of the liquid. Also
neglected is the sensible heat of the vapour bubble, in view of the expected smallness of
the Jacob number Ja = cp,V �T/L , which is of order 8 × 10−3 or smaller for temperature
changes below �T = 10 ◦C. Here, cp,V is the heat capacity of the vapour.

In addition, by writing down (4.1), we neglected the heat transport into the impact wall,
which is assumed to be adiabatic in the model. This can be shown to correspond to the
condition that the wall is dry (i.e. not wetted by the liquid phase) before impact. This
assumption is discussed more extensively in Appendix D.

Writing mV = VρV = (1/2)π R2WρV , where V = (1/2)π R2W is the volume of the
bubble, in (4.1) leads to(

∂ρV

∂pV

)
dpV

dt
= −2ρV

R

dR

dt
+ 2kL

L R

∂T

∂r

∣∣∣∣
r=R(t)

. (4.2)

Physically, there is a competition between the two terms on the right-hand side: suppose,
for example, because of a wave impact, that the bubble compresses, the first term states
that the pressure will rise when the radius becomes smaller (noting that dR/dt < 0). Since
the temperature then rises as well, the second term states that condensation heat will be
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transported away from the bubble, allowing some of the vapour to condensate and the
pressure to decrease. Consequently, if the first term is dominant, the vapour bubble is
expected to behave similar to a non-condensable gas bubble, which starts to oscillate
after the wave impact, whereas dominance of the second term would lead to effective
condensation and, hence, a collapse of the vapour bubble. We will return to this point in
more detail in § 4.3.

Since the bubble is assumed to be on the vapour curve at all times, this implies we may
choose any thermodynamic state variable to describe the other two, i.e. we may choose
ρV = ρV (pV ) and TV = TV (pV ). Using the Clausius–Clapeyron equation and the ideal
gas law, the density and temperature of the gas may be expressed in terms of the bubble
pressure pV together with the thermodynamic state variables at equilibrium, pV,0, ρV,0
and T0, which for convenience is summarised in Appendix C.

The energy-mass balance equation (4.2) is complemented by an equation of motion
for the hemicylindrical bubble, for which we take the two-dimensional Rayleigh–Plesset
equation (Bergmann et al. 2006; Ilinskii et al. 2012)

d
dt

(
R Ṙ

)
log
[

R∞
R

]
− 1

2
Ṙ2 + pV,0 − pV (t)

ρL
= 0, (4.3)

which can be derived by integrating the axisymmetric, incompressible Euler equations
from a point far away at a radial distance R∞, where the velocity is assumed to be
negligibly small, to a point on the bubble surface R(t), using a flow field that obeys
the continuity condition vr (r) = R Ṙ/r . Here, Ṙ = dR/dt denotes the time derivative of
the bubble radius R(t) and pV (t) is the pressure inside the bubble. Note that viscous
and capillary effects can be included straightforwardly into (4.3) by adding the terms
+2νL Ṙ/R and +σ/(ρL R) on the left-hand side of (4.3), respectively, where νL and σ

are the water kinematic viscosity and the surface tension of the water–vapour interface.
Given the large Reynolds and Weber numbers of the problem we study, where with initial
conditions R0 > 1.0 cm, |Ṙ0| > 1.0 m s–1 we find that Re0 = |Ṙ0|R0/νL > 104 and We0 =
ρL Ṙ2

0 R0/σ > 102, we chose to neglect them here to not unnecessarily complicate the
description. (Using the fact that R(t) ∼ (tcoll − t)0.5 for the collapse of the hemicylindrical
bubble, one may easily verify that Re(t) ≈ Re0 and We(t) ∼ We0(tcoll − t)−0.5, i.e. the
local Re is approximately constant and We diverges during collapse.)

Finally, we need a closure that relates the unknown quantity in (4.2), namely
(∂T/∂r)r=R in the liquid, to the other variables of the problem. The easiest way of
formulating such a closure is to just write

∂T

∂r

∣∣∣∣
r=R(t)

≈ −TV − T0√
παL t

, (4.4)

where we divide the temperature difference �T = TV − T0 between the vapour bubble and
the liquid far away from the bubble by a thermal boundary layer thickness δth = √

παL t
that starts growing at the moment the vapour bubble is entrapped at t = 0. Note that
αL = kL/(ρLcp,L) is the thermal diffusivity of the liquid. Such an approach would be
analytically correct in the limit of a constant temperature difference and for thin thermal
boundary layers (δth � R(t)). Whereas the second condition is probably satisfied during
most of the time evolution of the bubble, the first most certainly is not, and therefore,
(4.4) can be a crude approximation at most. Fortunately, there is an approach that was
proposed for the three-dimensional case by Plesset and Zwick (Plesset & Zwick 1952),
who formulated an integral equation relating �T to (∂T/∂r)r=R by formally integrating
the spherically symmetric convective heat equation in the limit of a thin thermal boundary

1008 A22-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

11
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.110


R. Ezeta and others

layer, an algebraically quite complex analysis that can, however, straightforwardly be
reformulated for the axisymmetric case (Appendix E), leading to

TV − T0 = −
√

αL

π

∫ t

s=0

R(s) ∂T
∂r

∣∣
r=R(s)√∫ t

w=s R(w)2dw

ds. (4.5)

4.2. Results from the vapour bubble collapse model
The set of equations (4.2), (4.3) and (4.5) can be solved numerically, using the appropriate
initial value conditions for the wave impact problem studied here, given by

R(0) = R0; Ṙ(0) = −V0; pV (0) = pV,0 + ρL V 2
wave. (4.6)

Here, R0 and V0 are obtained by determining the time evolution of the cross-sectional area
S(t) of the entrapped vapour bubble, where R0 is the effective radius of the entrapped
bubble at the moment of impact, i.e. when it becomes entrapped, defined as R0 =√

2S(timpact )/π , consistent with the approximately hemicylindrical shape of the bubble,
and V0 is determined from the time rate of change of the cavity as V0 = −Ṡ/

√
2π S, also

determined at timpact . The final condition follows from the fact that the bubble is also
pressurised by the water mass moving towards the wall. Although the wave impact is a
highly unsteady process, the dynamics of the entrapped bubble are likely to be fast as
compared with the overall pressurising motion of the wave towards the wall, such that we
model it as the constant pressure inside a steady jet of velocity v jet hitting a wall, namely
p jet = ρLv2

jet . If Vwave is defined as the average horizontal velocity in the neighbourhood
of the cavity, one may consequently estimate the pressure as �prise ≈ ρL V 2

wave. The way
in which these quantities are measured from the movies and the resulting values are
further discussed in Appendix B, where we also argue that the inertial pressure scale is the
appropriate scale to take.

Regarding V0 and Vwave it is worth noting that, although they are caused by the
same physical phenomenon and have a similar magnitude, they are nevertheless causing
distinctly different effects, that each of them separately may cause a cavity to collapse: if a
quiescent cavity is created inside a liquid at a slightly higher pressure than the equilibrium
vapour pressure, it will cause the cavity to shrink. If on the other hand a cavity is present
in a liquid at equilibrium pressure but the cavity walls are given an initial inward velocity,
the cavity will continue to shrink due to the converging action of the inertia present in the
surrounding liquid. The first effect is connected to a diffuse, undirected pressure rise inside
the liquid as a whole, whereas the second is the result of the already existing converging
motion of the liquid.

Taking the case α = 0.385, we find from the experiment that R0 ≈ 2.45 cm,
V0 ≈ 1.8 m s–1 and Vwave ≈ 1.7 m s–1 (Appendix B). In figure 10(a) we plot the bubble
radius as a function of time, as obtained by the solution of the model system for four
different values of the temperature T0. Here we observe that, for the lowest temperature
(T0 = 20 ◦C), there is a full collapse of the vapour bubble. For T0 = 40 ◦C, the bubble
almost fully collapses but subsequently rebounds, whereas for the largest two temperatures
(T0 = 60 and 80 ◦C), the bubble appears to perform a damped oscillation. It is good
to note that the latter is not due to viscous dissipation in the liquid phase, since this is
neglected in (4.3), and of course also would be way too small to cause such a substantial
dissipation. Instead, it is connected to condensation/evaporation cycles, where heat needs
to respectively be stored in and retracted from the liquid.
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Figure 10. Solution of the model system using the parameters observed for a wave of steepness α = 0.385
(R0 ≈ 2.45 cm, V0 ≈ 1.8 m s–1 and Vwave ≈ 1.7 m s–1) and R∞ = W = 0.60 m. (a) The vapour bubble radius
R(t) as a function of time t for four different temperatures, T = 20, 40, 60 and 80 ◦C. The horizontal dashed
line indicates the radius of the pressure sensors used, Rsensor = 2.75 mm. (b) Same data as in (a) but zoomed in
on the region until the first minimum occurs. The inset shows the same radius data but now as a function of the
time tmin − t remaining until the first minimum is reached, in a doubly logarithmic plot. (c) The corresponding
vapour mass mV (t) divided by the original mass present in the bubble mv,0 = mV (0), again as a function of
time t . (d) Same data as in (c) but zoomed in.

Zooming in on the first 10 ms of the collapse (figure 10b) it is clear that at first all
bubbles follow the same path, which of course can be traced back to V0 and Vwave being
the same in all cases, but soon the lowest temperature bubble appears as the fastest.
Nevertheless, it is not the first to reach a minimum, which in fact is the highest temperature
bubble. The T0 = 20 ◦C bubble collapses as if no vapour was present in the bubble and
the curve virtually overlaps with the one from an empty cavity using the same initial
conditions, condensing all vapour present in the bubble in the process. The T0 = 40 ◦C
bubble collapses to an almost negligible radius of Rmin = 260 μm, corresponding to
0.011 % of the original volume, but as can be seen in the corresponding time evolution
of the vapour mass in figures 10(c) and 10(d), defined as the product of the bubble volume
and density, mV (t) = (1/2)πW R(t)2ρV (t), the minimum vapour mass is still substantial,
at about 10 % of its initial value, and consequently, pressure and density at the minimum
are high.
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The two largest temperature bubbles however do not collapse but oscillate. The one
at T0 = 60 ◦C reaches its first minimum even slightly after the 40 ◦C one, but that of
T0 = 80 ◦C even before the lowest temperature bubble has collapsed. This is remarkable,
but can be traced back to the fact that these highest temperature bubbles oscillate very
similar to a gas bubble, at an equilibrium pressure equal to pV,0 + ρL V 2

wave, which is
highest for the 80 ◦C one and, therefore, leads to the largest oscillation frequency, i.e.
the smallest period. Finally, comparing the time at which the minimum radius is reached
with that at which the vapour mass is minimal, there is a clear shift: the minimum in
the vapour mass is reached later than the minimum in radius. This can be traced back
to the behaviour of the thermal boundary layer: as the minimum radius is reached, the
vapour temperature becomes maximal and there is a thermal boundary layer transporting
condensation heat into the liquid. This continues as the bubble starts to expand because the
vapour temperature will still be higher than the far-field liquid temperature T0. In principle
this could continue until the vapour temperature becomes equal to T0, but due to the fact
that in the Plesset–Zwick formula the history of the thermal boundary layer is taken into
account, this will happen earlier. The phase shift between the time evolution of the bubble
and the structure of the thermal boundary layer in the liquid is ultimately also responsible
for the damping of the oscillation.

Figure 11(a,b) shows the pressure pV (t) inside the vapour bubble as a function of
time, again for the four ambient temperatures considered in figure 10. For the lowest two
temperatures, the model pressures can reach highly unphysical values of thousands of bar
(not shown), which are well beyond the critical point of water at p = 220.64 bar, where
the difference between vapour and liquid disappears and the model has lost its validity.
For the highest temperatures, the vapour pressure remains very moderate with values of
the order of 1 bar maximally. This is also true for the first rebound of the T0 = 40 ◦C case,
where the maximum pressure equals 0.3 bar.

Clearly, the computed vapour pressure would be only then equal to what is measured
with the pressure sensors that we are using in the experiments, if the sensor is completely
immersed inside the vapour bubble. As soon as the pressure sensor is partly covered by
vapour and partly by liquid, the situation changes as sketched in figure 9(b) and more
care needs to be taken. This case is treated in Appendix F, where an expression for the
average pressure on the sensor area psensor is derived, which is subsequently reported in
figure 11(c,d), where we also take into consideration that the sensor has a finite response
time of ≈ 5 μs (corresponding to the 200 kHz acquisition rate), such that we report a time
average over 5 μs. Here, we see that the maximum pressures reached on the sensor area
for the lowest two temperatures are of the order of 100 bar, i.e. of the same order as those
measured in the experiment, especially for the 40 ◦C case. For the higher temperatures,
the sensor pressure is equal to the vapour pressure, as expected.

At this point it is good to ask how much of the observed high pressures in the model at
lower temperatures are due to condensation and how much is just due to the fact that the
equilibrium vapour pressure rapidly decreases with temperature? Clearly, also an adiabatic
compression model would predict an increase of the pressure in the vapour pocket at lower
ambient vapour pressures. Therefore, we numerically solved the Rayleigh–Plesset equation
(4.3) with an adiabatic model for the vapour in the pocket (i.e. excluding phase change)
and compared the result with the phase-change model presented in this section, using the
same input parameters in both cases. The results, which are presented in more detail for
the case α = 0.385 in Appendix G, show that indeed there is a small effect, raising the
pressure from 0.62 bar at T0 = 70 ◦C to 2.46 bar at T0 = 20 ◦C. Evidently, this effect is
small and is dwarfed by the very large pressures (∼ 100 bar) predicted by the phase-change
model.
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Figure 11. Pressures in the model system using the same parameters as used in figure 10. (a) The vapour
pressure pV (t) as a function of time t . (b) Same data as in (a) but zoomed in on the region until the first
minimum occurs. (c) The pressure psensor (t) averaged over the sensor area and response period, again as a
function of time t . (d) Same data as in (c) but zoomed in. The inset in (c) shows the increase of psensor towards
the first minimum in R (corresponding to the first maximum in pV ) in a doubly logarithmic plot. Note that in the
experiment one may expect the sensor to measure Psensor = psensor − pV,0 rather than psensor itself. The inset
in (d) shows a sketch of the pressure intensity (blue) on the sensor when the bubble radius is smaller than the
sensor radius. The dashed square indicates the region taken to determine an estimate for the measured pressure
in Appendix F. Note that in this theoretical figure absolute pressures are reported (in contrast to the gauge
pressures of the experimental figures) to better separate the curves corresponding to different temperatures
from one another.

Finally, although in certain aspects the model agrees reasonably well with the
experiments, there are clear dissimilarities as well. The most obvious ones have to do with
the surface instabilities that occur on the surface of the vapour pocket, which essentially
causes it to break up into a large bubble cloud rather than a single bubble after the
first compression. This is clearly not captured by the model and will cause even more
dissipation during oscillations. Nevertheless, the main features of the dynamics connected
to phase change appear to be reasonably well captured.

4.3. Non-dimensionalisation of the model
To obtain additional insight, we non-dimensionalise the model of (4.2), (4.3) and (4.5)
using the initial bubble radius R0 as the length scale, the initial velocity −V0 as the
velocity scale and the equilibrium values pV,0, ρV,0 and T0 as reference scales for the
thermodynamic state variables. This leads to R̃ = R/R0, t̃ = V0t/R0, ˙̃R = Ṙ/V0 (where
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for the dimensionless case the dot is understood to indicate a derivative with respect
to dimensionless time t̃), p̃V = pV /pV,0, ρ̃V = ρV /ρV,0 and T̃V = TV /T0. In addition,
to simplify the discussion we use the approximate expression (4.4) for the temperature
gradient at the bubble interface. The same conclusions can be drawn from the full set of
equations, but the analysis is obscured by the complexity of (4.5).

The non-dimensionalised set of equations becomes

(
d

dt̃

(
R̃ ˙̃R

))
log

[
R̃∞
R̃

]
− 1

2
˙̃R2 − p̃V − 1

Eu0
= 0, (4.7a)

d p̃V

dt̃
= 2

(
∂ρ̃V

∂ p̃V

)−1
[

−ρ̃V

˙̃R
R̃

− Λ
T̃V − 1

R̃
√

t̃

]
, (4.7b)

with initial conditions

R̃(0) = 1,
˙̃R(0) = −1, p̃V (0) = 1 + Euwave, (4.8)

where we have defined the dimensionless groups

Eu0 = ρL V 2
0

pV,0
, Euwave = ρL V 2

wave

pV,0
, Λ = kL T0

ρV,0L
√

παL R0V0
= β√

π

ρL

ρV,0

cp,L

Rs

√
αL

R0V0
.

(4.9)
The first two groups represent Euler numbers based on the velocity scales V0 and Vwave,
respectively, whereas the last one contains β = Rs T0/L , the Péclet number Pe−1/2 =
(R0V0/αL)−1/2, the density ratio ρL/ρV,0 of liquid and vapour and the ratio of the specific
heat of the liquid and the specific gas constant of the vapour, cp,L/Rs .

By construction, all the dimensionless variables in (4.7) (namely R̃, ˙̃R, p̃V and T̃V ) are
of order unity, at least shortly after the beginning of the dynamics, close to t = 0. Note that,
for our experiments, since the Euler numbers are typically (considerably) smaller than 1,
the initial condition for the pressure (4.8) is also of order one. This implies that we need to
give special attention to the terms p̃V − 1 and T̃V − 1 in (4.7). Starting with the last one
we may estimate

T̃V − 1 = TV − T0

T0
≈ β

pV − pV,0

pV,0
= β( p̃V − 1), (4.10)

where we have used the linearised Clausius–Clapeyron relation (C4). For the term p̃V − 1,
one may estimate

p̃V − 1 ∼ p̃V (0) − 1 = pV (0) − pV,0

pV,0
= ρL V 2

wave

pV,0
= Euwave ∼ Eu0, (4.11)

such that a new order-one variable Δ̃ can be introduced to replace p̃V − 1 as

Δ̃ ≡ p̃V − 1
Eu0

. (4.12)
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With this definition our set of equations with initial conditions becomes(
d

dt̃

(
R̃ ˙̃R

))
log

[
R̃∞
R̃

]
− 1

2
˙̃R2 − Δ̃ = 0, (4.13a)

d�̃

dt̃
≈ 2

Eu0

(
∂ρ̃V

∂ p̃V

)−1
[

−ρ̃V

˙̃R
R̃

− Π
Δ̃

R̃
√

t̃

]
, (4.13b)

R̃(0) = 1,
˙̃R(0) = −1, Δ̃(0) = Euwave

Eu0
=
(

Vwave

V0

)2

≡ κ, (4.13c)

where the term ∂ρ̃V /∂ p̃V = ρ̃V / p̃V − β ≈ 1, using (C5), could be further simplified. With
respect to our discussion below (4.2), there is one key dimensionless parameter in this set
of equations that determines the quality of the behaviour of the vapour bubble, namely Π ,
defined as

Π = βΛEu0 = β2
√

π

ρL

ρV,0

cp,L

Rs
Pe−1/2Eu0. (4.14)

If Π � 1, the second term in the dimensionless energy-mass balance equation is dominant,
and a violent vapour bubble collapse is expected, similar to that predicted from the
Rayleigh equation for an empty cavity. For the examples provided in figures 10 and
11, this would correspond to the T0 = 20 ◦ case, for which Π = 4.0. The second-lowest
temperature (T0 = 40 ◦C) is with Π = 0.52 in the crossover region, whereas the two
highest temperatures (T0 = 60 and 80 ◦C), for which Π = 0.089 and 0.020, respectively,
are in the region where oscillations of the vapour bubble are dominant, similar to those of
an oscillating non-condensable gas bubble that is entrapped during impact.

The other two dimensionless parameters in (4.13), namely Eu0, which has influence on
the overall time scale but not on the balance between the two terms on the right-hand side
of (4.13b), and the order-one parameter κ = V 2

wave/V 2
0 , which appears in the initial value

for the pressure variable Δ̃ in (4.13c), are of smaller (although not negligible) consequence
for the dynamics of the vapour bubble.

4.4. Measured maximum pressures in the light of model results
Now that we have identified a single dimensionless parameter, Π , to characterise the
qualitative behaviour of the entrapped vapour bubble, we may use this knowledge to re-
examine the maximum vapour pocket collapse pressure data from figure 7. To this end,
we compute the value of Π for each temperature and wave steepness and plot the result in
the inset of figure 12. In this doubly logarithmic plot, we see, for each α separately, that
the data shows the behaviour we expect: for small values (Π � 1), the measured average
maximum vapour pocket pressure 〈Ppocket 〉 is small, of the order of 0.1–1 bar, connected to
a relatively small amount of condensation (or evaporation) and close to non-condensable
gas pocket behaviour, whereas for intermediate values (Π ∼ 1), the pressures suddenly
rise until, for large values (Π � 1), we find that the very large pressures connected to a
full vapour pocket collapse, in the regime where the latent heat of condensation can be
easily transported into the liquid. The intermediate region is clearly visible for α = 0.385,
whereas the vapour pocket collapse region is particularly strong for α = 0.35 and the small
pressure response is dominant for α = 0.42. Unfortunately, the data for the three wave
steepnesses seem shifted with respect to one another, such that the data collapse of the
plot is unsatisfactory. Let us now look into the origin of this discrepancy. Note that Π

decreases monotonically, but nonlinearly with temperature.
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Figure 12. Average maximum vapour pocket pressure 〈Ppocket 〉 data for all three investigated wave shapes
α = 0.35 (blue), 0.385 (red) and 0.42 (yellow), i.e. the same data as plotted in figure 7. When the data are
plotted as a function of the key dimensionless parameter Π , which characterises the qualitative behaviour
of the entrapped vapour bubble, the data collapse between the different wave steepnesses α is unsatisfactory
(inset), but when the modified parameter Π∗ is used the data collapse is convincing (main plot). As in figure 7,
the symbols represent the average over the individual experiments (data not shown), and the error bars are
twice the standard deviation of the sample and would be symmetric on a linear scale. The vertical dashed blue
lines indicate the condition Π = 1 (and Π∗ = 1), marking the boundary between the regions in which non-
condensable gas-like behaviour (oscillations, Π, Π∗ < 1) and vapour-like behaviour (collapse, Π, Π∗ > 1) is
expected.

The first cause is the fact that the entrapped vapour pockets are assumed to be
hemicylindrical, whereas in fact they are rather flattened, especially in the case of small α.
This means that the thermal contact in the experiment is larger than in the model. It is in
fact straightforward to evaluate the consequences, if �(t) is the measured wetted length of
the vapour pocket, and S(t) = (1/2)R2

e f f is its cross-sectional area, then we can write the
energy-mass balance (4.1), with mV = S(t)WρV (t), as

1
2
π R2

e f f
dρV

dt
= −π Ref f Ṙe f f − kL�

L

∂T

∂n

∣∣∣∣
∂S

, (4.15)

where ∂T/∂n is the normal derivative at the liquid–vapour interface ∂S. Writing this
equation in the form of (4.2) we obtain(

∂ρV

∂pV

)
dpV

dt
= −2ρV

Ṙe f f

Re f f
+ 2kL

L Ref f

[
�

π Ref f

]
∂T

∂n

∣∣∣∣
∂S

. (4.16)

Note that if one replaces Ref f by R, we exactly retrieve (4.2), with the exception of
the factor between square brackets in the second term, �/(π Ref f ) = �/

√
2π S, which

multiplies the heat flux, and in the process of non-dimensionalisation leads to an additional
mutliplicative factor �/(π Ref f ) in Π , that is not present in the analysis of the previous
subsection. Here, it is good to note that the multiplication factor represents the ratio of the
wetted length to that of a hemicylindrical cavity of the same area.

The second cause is due to the presence of κ in the initial value condition (4.13c) on the
pressure variable Δ̃. If we compare our experiments to the ideal case κ = 1, corresponding
to Vwave = V0, then we see that in the first stages of the dynamics Δ̃(t) ∼ κ , i.e. different
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from 1. To at least initially regauge the dynamics to the κ = 1 case, we may simply
introduce an effective value for Π by dividing Π by κ .

Consequently, if we introduce a modified version Π∗ of our key parameter, defined as

Π∗ ≡ 1
κ

�0

π Ref f ,0
Π, (4.17)

we may hope for a better collapse of the data. And, indeed, this is corroborated from our
experimental data, when looking at the very good collapse of the data in the main figure
of figure 12, where we plot 〈Ppocket 〉 as a function of Π∗ as defined in (4.17). Note that the
subscript 0 in �0 and Ref f ,0 indicate that these quantities are evaluated at the impact time
timpact .

In conclusion, the model defined in this section is capable of capturing the essential
physics of breaking wave impact in a boiling liquid. This is remarkable, since the large
scale of the dynamics creates many additional dynamics already during vapour pocket
compression or collapse, such as the development of surface instabilities; and definitely
after reaching the first minimum, where the vapour pocket has broken up into a bubble
cloud, the dynamics is expected to be significantly different. Also, even when taking
utmost care in controlling the pressure inside the autoclave, we cannot exclude the presence
of small amounts of non-condensable gases (air), especially that dissolved into the liquid
phase, that may alter the dynamics of our system, e.g. in the form of small gaseous bubbles
that may act as nuclei for vapour bubbles in the rarefaction stage that follows a complete
collapse and will cause a secondary vapour bubble cloud to be created and collapse,
forming the observed rebound.

Finally, since the data collapse observed in figure 12 is the result of dimensional analysis,
one may argue that also the average maximum vapour pocket pressure 〈Ppocket 〉 needs to
be non-dimensionalised, most specifically using the vapour pressure pV,0. This, however,
is only applicable for pressures smaller than a few bar, since the larger ones are all
diverging and, therefore, crucially determined by the finite sensor size and response time
(cf. the integration procedure outlined in Appendix F). These additional scales do interfere
with the theoretically expected pressure scaling, but do not interfere with the qualitative
behaviour of the vapour pocket, which is solely determined by the value of Π (or Π∗), as
becomes clear from (4.13b). As a consequence, the value of 〈Ppocket 〉 is a good measure
of this qualitative behaviour.

5. Discussion and conclusion
To summarise the findings in this work, we performed large-scale wave impact
experiments in water and water vapour under boiling liquid conditions, that is, where
water and vapour are in thermodynamic equilibrium at a controlled temperature on the
vapour curve. We used the ATM facility at MARIN, in which the equilibrium temperature
was varied from 20 ◦C to 70 ◦C in steps of 10 ◦C. The waves were produced as solitons
by a single stroke of a wavemaker in a flume contained inside the setup, which were
subsequently turned into breaking waves by a slope immersed in the flume. We used waves
with three different steepnesses (α = 0.35, 0.385 and 0.42), where the main difference
lies in the size of the entrapped vapour pocket that increases nonlinearly with α, and the
secondary difference is formed by the rate at which it is compressed.

Our main experimental findings are that pressures occurring during the impact of a
wave under boiling liquid conditions can be up to two orders of magnitude larger than
those in comparable wave impacts of water in air. This can be traced back to the very large
pressures occurring during collapse of the vapour pocket. We created a simplified model,
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Property Units H2O at 20 ◦C H2O at 100 ◦C LNG LH2

ρL kg m−3 998 958 423 70.4
αL mm2 s−1 0.14 0.17 0.12 0.14
T0 K 293 373 112 20.4
pV,0 bar 0.023 1.01 1.01 1.01
L MJ kg−1 2.45 2.26 0.51 0.45
ρL/ρV,0 1 5.8×104 1.6×103 244 59.2
cp,L/Rs 1 9.1 9.1 6.8 2.4
β 1 0.05 0.08 0.11 0.19
Π1,1 s3/2 m−1 0.15 1.9×10−4 1.8×10−5 7.3×10−7

Table 1. Relevant transport properties and dimensionless groups for water at 20 ◦C and 100 ◦C, LNG and liquid
hydrogen (LH2). Tabulated are the liquid density ρL , liquid thermal diffusivity αL , equilibrium temperature
T0, equilibrium vapour pressure pV,0 and latent heat L . These are followed by the liquid to vapour density
ratio ρL/ρV,0, the ratio of the liquid isobaric specific heat and the vapour specific gas constant cp,L/Rs , the
parameter β =Rs T0/L and finally the quantity Π1,1 introduced in the text.

treating the vapour pocket as a hemicylinder, that is in reasonably good agreement with
the experiments. From this model we distilled a single dimensionless parameter, Π , the
value of which determines the character of the vapour pocket dynamics. If Π < 1 then
vapour cannot sufficiently condense and the dynamics resemble the oscillations of a non-
condensable gas bubble, but more strongly damped, whereas if Π > 1, the condensation
heat can be efficiently transported into the liquid leading to a collapsing vapour bubble.
The two regimes are clearly visible in our experiment, and can be classified using the value
of Π , or rather its modified version Π∗.

A secondary experimental finding is that the pressures exerted during the impact of the
crest at boiling liquid conditions appear to be slightly larger than those experienced during
a similar wave impact in air. Due to the fact that the effect on the pressure is maximally a
factor of 2, i.e. much smaller than that in the vapour pocket, this observation has not been
investigated in greater detail and would call for further study.

The fact that the dynamics of a vapour pocket can be classified using Π allows us
to evaluate whether vapour bubble collapse could occur in the industrially relevant case
of transport of cryogenic liquids. To that end, in table 1 we summarise values of some
key transport properties and dimensionless groups occurring in Π for LNG and liquid
hydrogen (LH2), where for definiteness, we use the boiling point under atmospheric con-
ditions, which for LNG is one of the most common ways in which it is transported overseas.
For comparison, we also provide the corresponding values for water at its boiling point,
together with the lowest temperature used in our experiments, T0 = 20 ◦C. It should also be
noted that a similar derivation can be made for spherically symmetric bubbles entrapped
in the liquid, provided in Appendix H, which leads to exactly the same form of Π , such
that this discussion is not limited to axisymmetrically collapsing cylindrical bubbles.

Once the thermal equilibrium state is set, the two control parameters that remain in Π

are the bubble radius R0 and the velocity scale V0. Noting that these values are contained
in the Péclet and Euler numbers, Pe = R0V0/αL and Eu0 = ρL V 2

0 /pV,0, we may rewrite
the definition (4.14) as

Π = β2
√

π

ρL

ρV,0

cp,L

Rs

ρL
√

αL

pV,0
R−1/2

0 V 3/2
0 ≡ Π1,1 R−1/2

0 V 3/2
0 . (5.1)

Clearly, Π increases when the velocity scale V0 increases, but also when the bubble
radius R0 decreases. The first can be traced back to the driving force, namely the pressure
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Figure 13. Phase diagram showing the condition Π = 1 for the main control parameters bubble radius R0 and
velocity V0 along the vertical and horizontal axis, respectively, for water at room temperature (20 ◦C, dashed
blue line), water at 100 ◦C (blue line), LNG (red line) and liquid hydrogen (LH2, black line), all three at their
respective boiling points. For each line, the region to the top left of it is where Π < 1 and non-condensable
gas-bubble-like oscillations are expected, whereas the region to the bottom right is where collapsing bubbles
are expected.

difference (and therefore temperature difference) between vapour and liquid, becoming
larger and the second one to the area-to-volume ratio becoming larger, which makes heat
transport of the condensation heat into the liquid easier. In figure 13 we now plot, for the
four substances discussed above, the transitional condition Π = 1, or, with (5.1),

R0 = Π2
1,1V 3

0 . (5.2)

These demarcation curves appear as straight lines in the doubly logarithmic plot, and the
region to the top left of each plot corresponds to relatively benign oscillations, whereas
the region to the bottom right corresponds to violent collapse. Furthest to the left is the
demarcation line for water and vapour at an equilibrium temperature of T0 = 20 ◦C, which
lies in the middle of the region of interest for wave impact on a large, industrial scale, with
radii of the order of decimetres and metres and velocities of the order of 10 m s−1.
However, the demarcation line for water at its boiling temperature lies considerably to
the right, that of LNG further to the right and LH2 even further to the right. This implies
that as long as vapour bubbles are large and compact (i.e. close to spherical or cylindrical),
there is little risk for a violent collapse as observed during our relatively low-temperature
experiments, except for very small bubbles. This statement is already true for water and
vapour at its boiling point, but even more true for LNG and LH2.

We can also see from our experiments, however, that shape plays an important role, and
that the differences as observed in the inset of figure 12, where the non-spherical bubbles
corresponding to α = 0.35 cause collapse already at relatively small values of Π , the situa-
tion may rapidly change for these non-cylindrical (or non-spherical) bubbles. This suggests
that thin layers of vapour, with good thermal contact to the liquid, may be subject to rapid
condensation also in the case of LNG and LH2, and certainly need closer investigation.

Finally, there is another way in which a relatively large bubble may be in good thermal
contact, and that is when it is present in the form of a bubble cloud, which is known to
dynamically behave similarly to a large bubble of similar gas/vapour content, but where
the condensation heat can be much more easily transported into the liquid, which may lead
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to a violent collapse long before the demarcation line from figure 13. Since such a bubble
cloud may easily be formed as a consequence of instabilities that are observed to occur
during oscillations or (partial) collapse, this case also deserves further study.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2025.110.
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Appendix A. Repeatability of the wave shape
In order to evaluate the repeatability of the wave shape in the experiments, we show in
figure 14 the wave shape in the frame just before the impact moment (at t = timpact ) for all
temperature settings T0 and for all three wave shapes (reflected in the wave steepness α)
used in our experiment. Here, we find a good degree of repeatability of the wave crest as
a function of T0 for all three values of α. When inspecting the shape of the vapour pocket
that is enclosed below the crest impact point for varying T0, we find that there is very good
agreement for α = 0.385 and α = 0.420, but for the smallest vapour pocket (α = 0.350),
we observe small differences in both shape and volume. This is likely due to the fact that
the smallest α = 0.35 in our experiments is close to the limit of a flip-through wave (Ezeta
et al. 2023), where the reproducibility of the wave shape is often found to be challenging,
as reported by others (Lugni et al. 2006; Hofland et al. 2010).

A second observation is that in some cases small vapour bubbles are randomly entrapped
along the moving liquid interface, as are visible for α = 0.385 at T0 = 70 ◦C and for α =
0.420 at most temperatures. These, however, likely arise from the interaction of the wave
with the side wall and are therefore of little consequence to the collapse in the region
where the pressure sensors are located, since they do not appear to influence the overall
shape of the wave.

To further investigate repeatability, we turn to the least repeatable case, namely
α = 0.35, and compare the wave shape for all 10 repetitions of the experiment at T0 =
20◦C in figure 15. We may conclude that even for these worst case settings, repeatability
is good. Further evidence of the good degree of repeatability is provided in Appendix B,
where the wave shape is characterised in greater detail for the individual experiments
performed in this study.

Also from a more theoretical perspective, for the density ratios ρL/ρV,0 used in this
experiment, which are all larger than 103, the effect of the vapour/gas density on the
motion of the wave in the flume is expected to be negligible. This has been verified in
the experimental setup as well (Ezeta et al. 2023).

A final note is that, for each experimental setting, the individual experiment reproduced
in figure 14 constitutes an arbitrary selection from the 10 repetitions that have been made
for each setting.

Appendix B. Analysis of the shape of the entrapped vapour pocket
From the side view high-speed imaging recording we determine the major wave
characteristics that are used in this work. In figures 16(a)–16(c) we show snapshots of
three wave shapes upon impact. These correspond to three values of α that are explored in
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Figure 14. We compare the wave shape in the frame just before impact (at t = timpact ) for all settings of the
temperature T0 (horizontal direction) and wave shape (vertical direction) used in the experiment.

this work. For α = 0.35, we observe the entrapment of a slender and thin vapour pocket.
In contrast, for the largest α = 0.42, we find a similar wave shape albeit with a larger
curvature at the wave crest and what appears to be a hemicylindrical vapour pocket.
Clearly, the shape of the vapour pocket of the intermediate case α = 0.385 lies between the
two extremes. In figure 16(d) we show how some key wave shape parameters are extracted.
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Figure 15. Wave shape just before impact (at t = timpact ) for all 10 repetitions of the experiment at α = 0.35
and T0 = 20 ◦C, showing the degree of repeatability.

(a)

α = 0.35 α = 0.385 α = 0.42

zcrest

zrunup

Vx (z)

S (t)

`

(b) (c) (d)

Figure 16. (a,b,c) The three wave shapes used in this experiment, with wave steepness (a) α = 0.35, (b) α =
0.385 and (c) α = 0.42. (d) In the α = 42 case we indicate how the surface area S(t) (light blue) and wetted
length �(t) (orange curve) of the entrapped vapour pocket were determined. Also indicated is the horizontal
liquid velocity Vx (z) on the vapour pocket wall, from which the average wave velocity Vwave is determined,
together with the vertical positions zcrest and zrunup of the wave crest and the run-up point, respectively.

Firstly, we determine the time evolution of the area S(t) of the vapour pocket, starting
from the impact moment at t = timpact . From this quantity, the effective radius Ref f (t) is
determined by assuming that the cavity can be approximated as hemicylindrical, i.e. S(t) =
(1/2)π(Ref f (t))2 or Ref f (t) = √

2S(t)/π . Next to the effective radius, we also determine
the compressional velocity V0 from the time rate of change of the surface area. This is
done by identifying V0 = −(d/dt)Ref f (0), or, by differentiating S(t) = (1/2)π(Ref f (t))2

as

dS

dt

∣∣∣∣
t=0

= π Ref f ,0
dRef f

dt

∣∣∣∣
t=0

⇒ V0 = − 1
π Ref f ,0

dS

dt

∣∣∣∣
t=0

= − 1√
2π S(0)

dS

dt

∣∣∣∣
t=0

,

(B1)

where Ref f ,0 ≡ Ref f (0) and the minus sign has been inserted to make V0 a positive
quantity.

The second quantity that we determine from the images is the wetted length �(t). This
quantity is defined as the length of the liquid free surface that is in contact with the vapour
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Figure 17. Horizontal velocity component Vx along the shape of five repetitions (different colours) of a wave
with α = 0.385 and T0 = 40 ◦C, as a function of the vertical coordinate z. The two dashed horizontal lines
indicate the top (wave crest, at position zcrest ) and the bottom (run-up point, at position zrunup) of the breaking
wave just before impact. These are the positions between which the average Vwave has been calculated.

pocket in the cross-section. Clearly, since �(t)W is the area over which the heat that is
produced during condensation can be transported into the liquid, this is an important
quantity to know – especially at the moment of impact, where we define �0 ≡ �(0).

The final quantity that we extract from the images is the horizontal velocity Vx (z) along
the cavity interface. This quantity is responsible for pressurising the region entrapped by
the vapour pocket as expressed by �p = ρL V 2

wave, which is derived from the pressure
exerted by a jet hitting a surface. In figure 17 we show Vx (z) for five repetitions of an
experiment at T0 = 40 ◦C with a wave shape of steepness α = 0.385. We find that the data
largely overlaps for the different repetitions, and that there is a clear, almost linear decrease
of the magnitude of the velocity as one goes from the position zcrest where the crest of
the wave impacts (upper horizontal dashed line) to the position zrunup of the bottom of the
vapour pocket, where the liquid tends to rise (run up) due to conservation of mass. This is
expected for a breaking wave, as the wave crest is in the process of overtaking the lower
part of the wave. To determine an average wave speed Vwave, we average the data over the
vertical coordinate

Vwave = − 1
zcrest − zrunup

∫ zcrest

zrunup

Vx (z)dz, (B2)

where, again, the minus sign is inserted to make Vwave a positive quantity.
Now, one may ask which pressure scale to take. Even if Vwave is much smaller than

the speed of sound in water, it is known that the latter could reduce considerably in the
presence of vapour bubbles, when it could become as small as approximately 10 m s−1.
However, due to the preparation of our experiments and the waiting time between them
(15 mins), we are confident that there will be no vapour bubbles left in the flume at the
moment that we start a new wave impact experiment. Therefore, compressibility effects
are negligible at the impact speeds used in our experiments and the inertial pressure scale
ρL V 2

wave is the appropriate one to take.
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Figure 18. Wave shape parameters measured from the side view images of the waves, for all analysable
experiments, as a function of temperature T0 (horizontal axes) and wave steepness α (colours, see legend).
(a) Effective vapour pocket radius Ref f ,0 upon impact. (b) Compressional velocity V0 of the vapour pocket
upon impact. (c) Wave velocity Vwave. (d) Surface area S0 of the vapour pocket upon impact. (e) Wetted length
�0 of the vapour pocket upon impact. ( f ) Multiplication factor �0/(π Ref f ,0) upon impact.

α Ref f ,0 S0 V0 Vwave �0 �0/(π Ref f ,0)

(cm) (cm2 ) (m s−1) (m s–1) (cm)

0.35 1.29 2.65 2.59 1.69 6.14 1.53
0.385 2.45 9.46 1.80 1.66 9.42 1.22
0.42 3.32 17.4 1.54 1.74 11.4 1.09

Table 2. Temperature-averaged wave shape parameters for the different values of the wave steepness α. Here, S0
is the cross-sectional vapour pocket area, Ref f ,0 the effective radius, �0 the wetted length, V0 the compressional
velocity, Vwave the wave speed and �0/(π Ref f ,0) a multiplication factor representing the ratio of the wetted
length to that of a hemicylindrical cavity of the same area.

In figure 18 we report the above quantities for all cases where the analysis provides
unambiguous results, as a function of both α and T0. In figure 18(a) the effective radius
Ref f ,0 upon impact is plotted versus T0 for the three different α. Here, the dots represent
values measured for individual experimental runs, whereas the star-shaped symbols
indicate the average for each (T0, α) pair. The horizontal dashed lines in turn show the
temperature-averaged values, which are also reported in table 2. Similar to other quantities
reported, we find little spreading of the data with respect to different repetitions and with
respect to average quantities. Moreover, the average values of Ref f ,0 are nearly constant
and, thus, appear to be independent of T0, which suggests that Ref f ,0 is predominantly
dependent on α. In contrast, Ref f ,0 monotonically increases with α for all T0. The same
can be said for the cross-sectional area S0 of the vapour pocket, which is trivially related
to Ref f ,0, but reported for completeness in figure 18(d).
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T0 = 20°C: pV,0 = 23.3 mbar

T0 = 30°C: pV,0 = 42.3 mbar
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Figure 19. Vapour curve of water, representing the vapour pressure pV,0 as a function of temperature T0
(blue curve). Also indicated are the temperature set points used in this study (vertical dotted lines) and the
corresponding vapour pressures (horizontal dotted lines), which are also tabulated next to the plot. Finally,
the black curve largely hiding behind the vapour curve is the expression (C2) computed using (T0, pV,0) =
(40.0 ◦C, 74.6 mbar).

In figure 18(b) we plot the compressional velocity Ṙ(0) = −V0. In contrast to the
effective radius, V0 becomes larger for decreasing α, and also appears to be less constant as
a function of temperature. Especially for α = 0.35, the magnitude of the velocity becomes
significantly larger than average for intermediate values of T0 and subsequently decreases
with increasing T0 – however, we note that the spread in the data for a given T0 is rather
large. We note that when a small and slender cavity is formed, it is challenging to obtain a
reliable tracing of the wave shape. As a consequence, this will yield errors in determining
the boundary and, consequently, in S(t). As V0 explicitly depends on both S and Ṡ (see
(B1)), we expect large errors when the cavities are small, as is the case for α = 0.35. This,
we believe is the main source of the data spread in figure 18(b) for T0 > 40 ◦C and for
α = 0.35.

Figure 18(c) contains the wave speed Vwave, where the data has been obtained in a
slightly different way, namely by taking all data for a certain (T0, α) pair, removing outliers
and subsequently determining the average over height z consistent with (B2). A very
different picture emerges, where there is hardly any variation of Vwave, neither in α nor in
T0 and Vwave ≈ 1.7 m s−1 throughout, where very small differences can be discerned in
the second decimal.

Finally, figure 18(e) contains the wetted length �0 = �(0) at the moment of impact and
figure 18(f ) reports the multiplication factor �0/(π Ref f ,0), which represents the ratio of
the wetted length to that of a hemicylindrical cavity of the same area. In this case, we
find a larger degree of variability as compared with the other reported quantities. This is
presumably due to this quantity being the result of two measured quantities. We note that
the detected boundary of the vapour pocket (through edge detection) is smoothed using a
polynomial fit of ninth order to obtain �0. The temperature-averaged quantities represented
by the horizontal dashed lines are summarised in table 2.

Appendix C. Thermodynamic state variables on the vapour curve
In figure 19 we plot the vapour curve of water using the Antoine equation with coefficients
provided by the NIST Chemistry WebBook. Also indicated are the temperature set
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points used in this study (vertical dotted lines) and the corresponding vapour pressures
(horizontal dotted lines), which for reference, are also provided in numerical form to
the right of the plot. In our experiments the vapour pressure ranges from 23.3 mbar
(at 20 ◦C) to 310.8 mbar (at 70 ◦C). Note that a closed system that contains both a liquid
and its vapour in contact through phase change will move towards a thermal equilibrium
state where the temperature of the system and the (partial) pressure of the vapour lie on
the vapour curve.

For a vapour described by the ideal gas law, the Clausius-Clapeyron equation, which
locally describes the vapour curve far away from the critical point, states that

dpV

dTV
= LpV

Rs T 2
V

, (C1)

with L the latent heat of vaporisation and Rs the specific gas constant of the vapour.
Starting from an equilibrium point pV,0, T0 on the vapour curve this equation can be
directly integrated using separation of variables as

TV (pV )

T0
=
[

1 − β log
(

pV

pV,0

)]−1

(C2)

where β ≡ Rs T0/L . Using the ideal gas law, pV = ρV Rs TV , one may subsequently
express ρV in terms of pV :

ρV (pV )

ρV,0
= pV

pV,0

[
1 − β log

(
pV

pV,0

)]
. (C3)

Here ρV,0 = pV,0/(Rs T0) is the vapour density at the equilibrium point pV,0, T0.
For small changes δpV = pV − pV,0, δTV = TV − T0 and δρV = ρV − ρV,0 from the
equilibrium point, one may linearise the above expressions to give

δρV

ρV,0
≈ δpV

pV,0
and

δTV

T0
≈ β

δpV

pV,0
, (C4)

that is, relative changes in density and pressure are similar, whereas relative changes in
temperature are smaller by a factor β. Also useful may be the following expression for the
derivative of the density with respect to the pressure:

∂ρV

∂pV
= ρV

pV
− 1

L
. (C5)

Expression (C2) gives a very accurate expression of the vapour curve in a sizeable
neighbourhood of a starting point (T0, pV,0) on the vapour curve. As an example, we take
(T0, pV,0) = (40.0 ◦C, 74.6 mbar) in figure 19 and use (C2) to compute the temperature as
a function of the vapour pressure, leading to the black curve in the plot, that is for largest
part coinciding with the vapour curve.

Appendix D. The boundary condition at the impact wall
In the main text we adopted an adiabatic boundary condition at the impact wall for our
vapour pocket dynamics model (cf. § 4 and figure 9). In this Appendix we discuss this
boundary condition in more detail. In general, one may distinguish two quite different
situations.

(i) Prior to impact the wall is dry: in this case there is no two-phase contact at or near
the wall and no condensation can take place. The vapour can be locally supercooled in
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this case (until reaching the spinodal curve where spontaneous phase separation will take
place), which also remains true if the temperature of the wall is lower than the ambient
temperature T0. In the dry wall case, there may however be a parasitic heat flux q ′′

par in the
vapour, from the liquid–vapour interface to the wall, which, for simplicity, we take to be
a perfectly conducting heat sink at the ambient temperature T0. The latter approximation
stands to reason, since the heat conductivity of steel is at least an order of magnitude
larger than that of the water, and also constitutes the worst case scenario where the wall
is perfectly conducting. Now we may estimate the magnitude of the parasitic heat flux as
q ′′

par ∼ kV �T/R, where kV is the heat conductivity of the vapour and we used the fact that
the typical size of the bubble should scale as the bubble radius R. For the regular heat flux
into the liquid, we may estimate q ′′

reg ∼ kL �T/
√

παL t , which is a lower estimate for the
heat flux into the liquid (since, in general, the temperature inside the vapour bubble is not
constant but will go up during the impact, which will partly erase the thermal boundary
layer in the liquid as it is being formed). The ratio between parasitic and regular heat flux
now becomes

q ′′
par

q ′′
reg

∼ kV

kL

√
παL t

R
≈ 1 × 10−4 � 1 (D1)

where we estimated kV ≈ 0.016 W m–1K–1, kL ≈ 0.6 W m–1K–1, αL ≈ 1.5 × 10−7 m2s–1,
R ≈ 2 cm and t = ti,0 ≈ 10 ms as the typical duration of the (first) compression phase
(cf. Figure 10) to arrive at the numerical estimate. Note that the use of a quasi-steady
approximation for the heat flux in the vapour phase can be motivated from the observation
that the heat diffusivity in the vapour phase is typically one to two orders of magnitude
larger than that in the liquid phase: αV � αL . Clearly, the parasitic heat flux through the
vapour bubble is negligible compared with the heat flux into the liquid and the wall can be
assumed to be adiabatic in this case.

(ii) Prior to impact the wall is wetted: in this second case, we may assume that a liquid
film is present on the wall and has a micrometric thickness h0. Now, condensation can in
principle occur at the wall, and there will be an initial time ti at which the condensation
heat will penetrate the liquid film until it reaches the wall, which can be estimated by
equating the thermal boundary layer thickness δth ≈ √

παLt with h0:

ti ≈ h2
0

παL
. (D2)

Now, in the situation that ti is longer than the duration of the first compression phase in
our experiment, δth remains smaller than the film thickness and the surface area of our
hemicylindrical bubble in the energy-mass balance equation (4.1) is simply extended by
the contact area of the bubble and the liquid film, i.e. one needs to substitute π RW →
(π + 2)RW in the last term on the right-hand side of (4.2), leading to a multiplicative
factor (2R(t) + π R(t))/(π R(t)) ≈ 1.64 before that term. As stated above, the typical
duration of the first compression phase is smaller than ti,0 = 10 ms, such that the above
condition will be met for film thicknesses larger than h0,min ∼ √

παL ti,0 ≈ 70 µm.
What is the situation that is most likely to occur in our experiments? Although this is a

hard question to answer since we have no direct evidence of the presence of a water film on
the impact wall, we may have a look at the possible options. If the wall would be dry (e.g.
because its temperature turns out to be slightly higher than the environment), the boundary
condition taken in the model would be correct and no modifications would be necessary.
This is definitely the case that is expected to occur during cryogenic liquid transport, since
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due to the fact that the surroundings are at a much higher temperature, walls are expected
to be slightly hotter than the liquid, preventing the formation of a liquid film on the walls.

If a liquid film is deposited on the impact wall, then it will be done so by the liquid
moving down along the impact wall, just prior to the impact, where it needs to be noted
that the vapour pocket dynamics (collapse) is occurring below the quiescent water level
in the flume. Since this then will happen with a velocity of the order of the impact speed,
we may estimate the film thickness using the Landau–Levich–Derjaguin (LLD) equation
h0 = √

σ/(ρL g)Ca2/3 with Ca = μLUr/σ , with μL ≈ 1.0 mPa s the dynamic viscosity of
water, which for a (small) rise speed of Ur = 0.73 m/s, equals Ca = 0.01, which is also
on the upper validity boundary of the LLD equation. Inserting Ca = 0.01 we find a lower
limit h0 ≈ 120 μm, which is larger than h0,min . Therefore, taking the presence of a liquid
film into account, we have to multiply the second term on the right-hand side of (4.2) with
a factor of 1.64, which needs to be done in all subsequent steps leading to a redefinition of
Π multiplying with the same multiplicative factor 1.64. This will lead to a slight but equal
right shift of all data points in figure 12, which will leave our conclusions unaltered.

Appendix E. An axisymmetric version of the Plesset-Zwick relation
Following the same procedure outlined in Plesset & Zwick 1952, where a solution to the
spherically symmetric convective heat equation was derived in the limit of a thin thermal
boundary layer, we start from the axisymmetric, convective heat equation

∂�T

∂t
+ ur

∂�T

∂r
= αL

r

∂

∂r

(
r
∂�T

∂r

)
, (E1)

with �T = T (r, t) − T0, and where, for an incompressible liquid, the radial velocity
component can be written as ur = R Ṙ/r . Now, if we transform r and t to the so-called
Lagrangian coordinates h(r, t) = (1/2)(r2 − R(t)2) and t , we transform (E1) into

∂�T

∂t
= αL

∂

∂h

(
r2 ∂�T

∂h

)
= αL

∂

∂h

([
2h + R(τ )2

] ∂�T

∂h

)
, (E2)

where �T now needs to be read as a function of h and t , i.e. �T (h, t) = �T (r(h, t), t).
The next step is to define a quantity U with �T = ∂U/∂h, or

U (h, t) = −
∫ ∞

h′=h
�T (h′, t)dh′. (E3)

If we now take the derivative of U with respect to t and make use of (E2), we obtain

∂U

∂t
= −

∫ ∞

h′=h

∂�T (h′, t)

∂t
dh′ = αL

[
2h + R(t)2

] ∂�T

∂h
= αL

[
2h + R(t)2

] ∂2U

∂h2 , (E4)

and defining a new time variable κ with ∂κ/∂t = R(t)2 as

κ =
∫ t

t ′=0
R(t ′)2dt ′ (E5)

we obtain, using ∂U/∂κ = (∂U/∂t)/(∂κ/∂t) = (∂U/∂t)/R(t)2 from (E4),

∂U

∂κ
= αL

[
1 + 2h

R(τ )2

]
∂2U

∂h2 . (E6)

At this point we invoke the assumption that the boundary layer is thin, namely, δ � R, with
δ the boundary layer thickness. Now the only place where �T = ∂U/∂h is non-zero is in
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the boundary layer, i.e. in R ≤ r ≤ R + δ. Squaring this inequality we find that R2 ≤ r2 ≤
(R + δ)2, or subtracting R2, that 0 ≤ r2 − R2 ≤ 2Rδ + δ2. Noting that the middle quantity
is equal to 2h and dividing by R2, we obtain

0 ≤ 2h

R2 ≤ 2
δ

R
+ δ2

R2 � 1, (E7)

where the last inequality follows from the thinness of the boundary layer. We thus find
that 2h/R2 � 1 and, consequently, in the thin boundary layer limit (E6) reduces to the
one-dimensional, purely diffusive heat equation

∂U

∂κ
= αL

∂2U

∂h2 . (E8)

This equation must be supplemented by an initial condition and two boundary conditions.
The initial condition follows directly from �T (r, t = 0) = 0 for all r ≥ R, which directly
leads to ∂U/∂h(h, κ = 0) = 0 for all h ≥ 0 (since κ = 0 corresponds to t = 0). From this
we find that U (h, κ = 0) must be constant. Since the physics lies in the derivative of
U , we may, however, without loss of generality, take this constant to be zero, leading to
U (h, κ = 0) = 0.

The boundary condition at infinity follows from limr→∞ �T (r, t) = 0, which leads
directly to limh→∞ U (h, κ) = 0. For the last boundary condition, we realise that we want
to relate the (known) temperature inside the bubble �T (R(t), t) ≡ f (t) to the (unknown)
temperature gradient at the bubble wall inside the liquid, [∂�T/∂r ](R(t), t) ≡ g(t), which
are both functions of time t only. Translated to U (h, κ) this becomes

∂U

∂h

∣∣∣∣
h=0

= f (κ) and
∂2U

∂h2

∣∣∣∣
h=0

= g(κ)

R(κ)
≡ J (κ), (E9)

where f (κ) = f (t (κ)), etc. Now, to solve (E8), we perform a Laplace transformation L[ ]
in the time variable κ , defined as

u(h, λ) ≡ L[U (h, κ)] ≡
∫ ∞

κ=0
e−κλU (h, κ)dκ. (E10)

The Laplace transform of (E8) leads to

λu(h, λ) − U (h, κ=0) = αL
∂2u

∂h2 , (E11)

which with the initial condition U (h, κ=0) = 0 leads to the general solution

u(h, λ) = A exp

(
−
√
λ

αL
h

)
+ B exp

(
+
√
λ

αL
h

)
, (E12)

with A, B unknown integration constants. The Laplace transformed boundary condition at
infinity (limh→∞ u(h, λ) = 0) leads to the conclusion that B = 0, whereas A follows from
the Laplace transform of the second condition in (E9). Defining L[J (κ)] ≡ j (λ) we thus
find that

∂2u

∂h2

∣∣∣∣
h=0

= j (λ) ⇒ A = j (λ)
αL

λ
⇒ u(h, λ) = j (λ)

αL

λ
exp

(
−
√
λ

αL
h

)
,

(E13)
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with which we have found the solution of our boundary value problem in Laplace space.
Computing the quantity of interest ∂u/∂h at h = 0 we obtain

∂u

∂h

∣∣∣∣
h=0

= − j (λ)

√
αL

λ
, (E14)

which can be formally transformed back to the κ domain as

∂U

∂h

∣∣∣∣
h=0

= L−1
[

∂u

∂h

∣∣∣∣
h=0

]
= −L−1[ j (λ)

]
�L−1

[√
αL

λ

]
, (E15)

where L−1[ ] represents the inverse Laplace transform and � denotes a convolution of
the two functions. The first inverse is just J (κ) and the second one can be found in any
Laplace transform table to give

√
αL/(πκ) such that

∂U

∂h

∣∣∣∣
h=0

= −J (κ)�
√

αL

πκ
= −

√
αL

π

∫ κ

ξ=0

J (κ)√
κ − ξ

dξ, (E16)

Now, using the definition of κ in (E5) and calling the time integration variable s, i.e.
ξ = ∫ s

w=0 R(w)2dw, we find that dξ = R(s)2ds and

√
κ − ξ =

√∫ t

w=0
R(w)2dw −

∫ s

w=0
R(w)2dw =

√∫ t

w=s
R(w)2dw, (E17)

with which (E15), remembering from the definition of U in (E3) that [∂U/∂h]h=0 =
�T (r=R, t) = TV − T0 and that J (κ) = g(κ)/R(κ) = (1/R)(∂�T/∂r)r=R as defined
earlier (E9), directly leads to the axisymmetric version of the Plesset–Zwick formula

TV − T0 = −
√

αL

π

∫ t

s=0

R(s) ∂T
∂r

∣∣
r=R(s)√∫ t

w=s R(w)2dw

ds. (E18)

Appendix F. Average model pressure on the sensor area
When we want to connect the measured pressures with the pressures predicted by the
model, we need to take into account that as long as the sensor is completely covered by the
bubble it will measure the vapour pressure pV (t) in the bubble, but as soon as it becomes
smaller than the sensor radius, the sensor signal is partly caused by the pressure in the
vapour bubble and partly by the pressure of the surrounding liquid. To analyse this, we
start from the idealised situation where the vapour bubble and the sensor share the same
horizontal symmetry axis (as sketched in figure 9b) and where the sensor area is assumed
to be square instead of circular, as sketched in the inset of figure 11(d).

Let us start by computing the pressure inside the liquid surrounding the bubble in the
context of potential flow, including surface tension. The flow field in the liquid can be
computed from the continuity equation giving vr (r, t) = R Ṙ/r . The defining equation for
the flow potential, vr = ∂ϕ/∂r , can be directly integrated to

ϕ(r, t) = R Ṙ log
[
r/Rsensor

]+ f (t) ⇒ ∂ϕ

∂t
= d

dt

(
R Ṙ

)
log
[
r/Rsensor

]+ ḟ (F1)
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where f is an arbitrary function of time. Using the unsteady Bernoulli equation from a
point r = R+ just outside the bubble, where pL(R+, t) = pV (t) − σ/R, to a point r we
obtain

pL(R+, t) + 1
2
ρLv(R+, t)2 + ρL

∂ϕ

∂t

∣∣∣∣
r=R+

= pL(r, t) + 1
2
ρLv(r, t)2 + ρL

∂ϕ

∂t

∣∣∣∣
r=r

(F2)

Using the above expressions for vr and ∂ϕ/∂t , we thus find an expression for pL(r, t),

pL(r, t) = pV (t) − σ

R
+ 1

2
ρL Ṙ2

(
1 − R2

r2

)
+ ρL

d
dt

(
R Ṙ

)
log
[
R/r

]
(F3)

with which

p(r, t) =
{

pV (t) if r ≤ R ,

pL(r, t) if r > R .
(F4)

To determine the average pressure on the sensor, we need to integrate the above pressure
p(r, t) over the sensor surface and divide by the latter. Using the abbreviation Rs ≡ Rsensor
for convenience,

psensor (t) = 1
Rs

∫ Rs

r=0
p(r, t)dr = 1

Rs

[
pV (t)R +

∫ Rs

r=R
pL(r, t)dr

]
(F5)

where it is understood that this expression holds only for R < Rsensor as for R ≥ Rsensor ,
we have psensor (t) = pV (t). It is now straightforward, albeit a bit tedious, to carry out the
integration, which ultimately leads to

psensor (t) = pV (t) − σ

R

[
1 − R

Rs

]
+ 1

2
ρL Ṙ2

[
1 − R

Rs

]2

+ ρL
d
dt

(
R Ṙ

)[
1 − R

Rs
− log

Rs

R

]
.

(F6)

To calculate psensor (t) using the numerical solution from (4.2), (4.3) and (4.5) with initial
value conditions (4.6), it is practical to eliminate the acceleration term d(R Ṙ)/dt using
the Rayleigh–Plesset equation (4.3). Also note that, for completeness, we have included
the surface tension term, both in this appendix and in the numerical calculations reported
in this paper, but it can of course be neglected, given the large value of the Weber number.

Appendix G. Comparison of results from the phase-change model of § 4 with a
non-condensable gas model
Since an adiabatic compression model would also predict an increase of the pressure in the
vapour pocket at lower ambient vapour pressures, one of the questions raised in the main
text was how much of the observed high pressures in the model at lower temperatures
are due to condensation and how much is just due to the fact that the equilibrium vapour
pressure rapidly decreases with temperature. In this appendix we directly compare the
results obtained from our model for the vapour pocket dynamics (figures 10 and 11),
with those obtained from the numerical solution of the two-dimensional Rayleigh–Plesset
equation (4.3), supplemented with an adiabatic model for the ‘vapour’ in the pocket,
namely

pV (t) = pV,0
V γ

0
V (t)γ

= pV,0 R2γ

0
R(t)2γ

(G1)
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where V (t), V0 are the volume of the pocket at time t and t = 0, respectively, and γ is the
adiabatic constant (specific heat ratio) for water vapour. This implies that we are solving
the adiabatic model from exactly the same initial conditions as the vapour pocket dynamics
model, but without including phase change, such that the ‘vapour’ would behave as a
non-condensable gas with exactly the same properties as water vapour.

The results of this calculation are found in figure 20. We first turn to the time evolution of
the radius R(t), where figure 20(b) contains the same data as (a) but zoomed in to the first
10 ms, highlighting the first compression of the pocket. From the latter plot, it appears that
the adiabatic-model curves for all temperatures initially follow the same path as those of
the phase-change one, but subsequently compress less, with R(t) larger than in the phase-
change case. This stands to reason since condensation will decrease the vapour content
inside the vapour pocket, making it easier to compress than in the adiabatic case. This is
consistent with the corresponding time evolution of the pressure plotted in figure 20(d),
where we indeed find that, at least initially, the pressure for the adiabatic case is larger than
that for the phase-change case.

Another difference that is clearly visible in figure 20(b) is that the minimum radius
attained for the phase-change model is much smaller than that reached in the adiabatic
model: in the latter case, the radius never becomes smaller than the sensor radius indicated
by the horizontal dotted black line, whereas for the phase-change model the radius can
become very small, especially for the lowest two temperatures due to an almost complete
condensation of the vapour contents of the pocket. This reflects in the behaviour of the
pressure (figure 20d), where it is seen that the pressure in the phase-change model shoots
up to very large values for the lowest two temperatures (20 ◦C and 40 ◦C), much surpassing
the maximum values observed in the adiabatic case, whereas the behaviour for the largest
two temperatures (60 ◦C and 80 ◦C) is opposite: here the maximum values for the phase-
change case remain smaller than those of the adiabatic case. This last observation is
connected to the value of the parameter Π (see 4.14): if Π is larger than 1, the condensation
rate is strong enough to overpower compression of the vapour contents inside the pocket,
and essentially provoking a Rayleigh collapse of the pocket, whereas when Π < 1, this
is not the case and sufficient vapour is remaining to create oscillatory behaviour of the
vapour pocket.

Turning to the longer time series (figures 20a,c), the main difference that catches the
eye is that the adiabatic oscillations are undamped. The reason is clear, since – with the
exclusion of the viscous term in the Rayleigh–Plesset equation – no dissipation is present
in the system. In reverse, this implies that the strong damping observed in the phase-change
model is solely due to phase change, where successive condensation and evaporation half-
cycles, concurring with storage and retraction of energy in the thermal boundary layer in
the liquid that surrounds the pocket, are responsible for the observed damping. Therefore,
also at higher temperatures, phase change may not be the overwhelmingly dominant factor,
but its influence on the dynamics remains non-negligible. In addition, there is also a
pronounced increase of the period of the oscillations, as would be expected for a strongly
damped signal.

The last plot, figure 20(e), shows the comparison of the pressure-sensor-integrated
values for the maximum pressure Psensor,max for the two models on a logarithmic scale,
as a function of ambient temperature T0. For high temperatures, Psensor,max is observed to
be slightly larger for the adiabatic model (red symbols) than for the phase-change model
(blue symbols). This however rapidly changes around the temperature for which Π ≈ 1,
where the pressure in the phase-change case changes steeply, whereas the pressure in the
adiabatic case continues to change gradually. In the low-temperature regime where the very
large pressures are observed, the pressure predicted by the phase-change model is almost
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Figure 20. (a) Solution of the adiabatic model (solid curves) compared with that of the phase-change model
from § 4 (dashed lines, also plotted in figures 10 and 11) using the parameters observed for a wave of
steepness α = 0.385 in both cases. (a) The vapour bubble radius R(t) as a function of time t for four different
temperatures, T = 20, 40, 60 and 80 ◦C. The horizontal dashed line indicates the radius of the pressure sensors
used, Rsensor = 2.75 mm. (b) Same data as in (a) but zoomed in on the region until the first minimum occurs.
(c) The vapour pressure pV (t) as a function of time t . (d) Same data as in (c) but zoomed in on the region
until the first minimum occurs. (e) Maximum pressure Psensor,max , integrated over the sensor area, obtained
using the phase-change model (blue symbols) and using the adiabatic model (red symbols), as a function of
ambient temperature T0. Note that in the latter case no sensor integration was necessary since the pocket in all
investigated cases remained larger than the sensor size. In plots (c,d) absolute pressures p are reported, whereas
in (e) we use gauge pressures P = p − pV,0, where pV,0 is the equilibrium vapour pressure.
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two orders of magnitude larger than that predicted by the adiabatic model. In conclusion,
compared with the adiabatic model, the phase-change model predicts significant changes
in the dynamics of the vapour pocket throughout the entire range of temperatures studied.
The most significant aspect for the current work is that at low temperatures the pressure
increase predicted by the adiabatic model is dwarfed by the enormous pressure rise
predicted by the phase-change model.

Whoever may have been surprised that the pressure Psensor,max does not decrease
monotonically with temperature (or with increasing vapour pressure), may be reassured
by the fact that the rescaled pressure Psensor,max/pV,0 = (psensor,max − pV,0)/pV,0 does
indeed decrease monotonically.

Appendix H. Full axisymmetric and spherically symmetric models
For completeness, we also provide the full axisymmetric model (4.2), (4.3) and (4.5)
and initial conditions (4.6), including the surface tension and viscous terms (which only
surface in the Rayleigh–Plesset equation), together with their non-dimensional form,
analogous to (4.13), but including the non-dimensionalised form of the Plesset–Zwick
equation. In addition, we provide the analogous equations for a completely spherical
vapour bubble.

With the definitions introduced in § 4.1, the full axisymmetric model, including surface
tension σ and kinematic liquid viscosity νL can be written as

d
dt

(
R Ṙ

)
log
[

R∞
R

]
− 1

2
Ṙ2 + σ

ρL R
+ 2νL

Ṙ

R
+ pV,0 − pV (t)

ρL
= 0, (H1a)

dpV

dt
=
(

∂ρV

∂pV

)−1
[
−2ρV

R

dR

dt
+ 2kL

L R

∂T

∂r

∣∣∣∣
r=R(t)

]
, (H1b)

TV − T0 = −
√

αL

π

∫ t

s=0

R(s) ∂T
∂r

∣∣
r=R(s)√∫ t

w=s R(w)2dw

ds, (H1c)

R(0) = R0, Ṙ(0) = −V0, pV (0) = pV,0 + ρL V 2
wave. (H1d)

Using the same non-dimensionalisation procedure followed in § 4.1, we obtain the
dimensionless form of this set of equations:(

d

dt̃

(
R̃ ˙̃R

))
log

[
R̃∞
R̃

]
− 1

2
˙̃R2 + 1

WeR̃
+ 2

˙̃R
ReR̃

− Δ̃ = 0, (H2a)

dΔ̃

dt̃
= 2

Eu0

(
∂ρ̃V

∂ p̃V

)−1
[

−ρ̃V

˙̃R
R̃

− Π
Θ̃

R̃

]
, (H2b)

Δ̃ = − 1
π

∫ t̃

s̃=0

R̃(s̃) Θ̃√∫ t̃
w̃=s̃ R̃(w̃)2dw̃

ds̃, (H2c)

R̃(0) = 1 ; ˙̃R(0) = −1 ; Δ̃(0) = κ. (H2d)

Here, the dimensionless quantities Δ̃, Π and κ are as defined in (4.11), (4.13c) and
(4.14), whereas We = ρL V 2

0 R0/σ and Re = V0 R0/νL denote the Weber and Reynolds
numbers, respectively. The Rayleigh–Plesset equation found in § 4.3 corresponds to the
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limit We → ∞ and Re → ∞. More importantly, we introduced a new dimensionless
quantity Θ̃ defined as

Θ̃ ≡ 1
βEu0T0

√
παL R0

V0

∂T

∂r

∣∣∣∣
r=R

. (H3)

Although it may not be immediately clear why this quantity should be of order one, it
can be easily verified by inserting the approximation (∂T/∂r)r=R ≈ (TV − T0)/

√
παL t to

obtain Θ̃ ≈ (T̃V − 1)/(βEu0
√

t̃) ≈ Δ̃/
√

t̃ , which is order one by construction, as argued
in § 4.3. One may however arrive to this conclusion also from a more formal study of the

properties of (H2c), noting that the function of the history factor R̃(s̃)/
√∫ t̃

w̃=s̃ R̃(w̃)2dw̃

is to give a weight to Θ̃(s̃) that rapidly decays to zero when the distance to t̃ (i.e. t̃ − s̃)
becomes larger. Finally, one may ask if it is not necessary to provide an initial condition
Θ̃(0). By expanding (H2c) around t̃ = 0 for small t̃ = ε̃ one can show that

lim
ε̃→0

Θ̃(ε̃) = lim
ε̃→0

πΔ̃(ε̃)√
ε̃

, (H4)

which is all fine if Δ̃(ε̃) goes to zero fast enough, in which case Θ̃(0) = 0, but a bit
problematic if Δ̃(0) is finite, as it is in the case of (H2d), since then Θ̃(0) = ∞, which
physically corresponds to the creation of a thermal boundary layer from an untouched
liquid at a temperature T0 lower than that at the boundary. A simple numerical workaround
is to use Θ̃(0) = 0 in all cases, where the small numerical error made close to t̃ = 0 is
rapidly corrected.

Finally, as in § 5, we discussed the extension of the applicability of the model to
spherical vapour bubbles, we also present the spherically symmetric formulation, which
follows from combining the spherically symmetric Rayleigh–Plesset equation (Brennen
2013) with the spherically symmetric version of the Plesset–Zwick formula from Plesset
& Zwick 1952 and by inserting mV = (4/3)π R3ρV into our energy-mass balance (4.1),
leading to

R R̈ + 3
2

Ṙ2 + 2σ

ρL R
+ 4νL

Ṙ

R
+ pV,0 − pV (t)

ρL
= 0, (H5a)

dpV

dt
=
(

∂ρV

∂pV

)−1
[
−3ρV Ṙ

R
+ 3kL

L R

∂T

∂r

∣∣∣∣
r=R(t)

]
, (H5b)

TV − T0 = −
√

αL

π

∫ t

s=0

R(s)2 ∂T
∂r

∣∣
r=R(s)√∫ t

w=s R(w)4dw

ds, (H5c)

R(0) = R0, Ṙ(0) = −V0, pV (0) = pV,0 + ρL V 2
wave, (H5d)

which then leads to the dimensionless version

R̃ ¨̃R + 3
2

˙̃R2 + 2

WeR̃
+ 4

˙̃R
ReR̃

− Δ̃ = 0, (H6a)

dΔ̃

dt̃
= 3

Eu0

(
∂ρ̃V

∂ p̃V

)−1
[

−ρ̃V

˙̃R
R̃

− Π
Θ̃

R̃

]
, (H6b)
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Δ̃ = − 1
π

∫ t̃

s̃=0

R̃(s̃)2 Θ̃√∫ t̃
w̃=s̃ R̃(w̃)4dw̃

ds̃, (H6c)

R̃(0) = 1,
˙̃R(0) = −1, Δ̃(0) = κ, (H6d)

which are similar to the axisymmetric version. The most important conclusion is that
in all cases the value of the parameter Π in (4.14) determines the qualitative behaviour
of the vapour pocket, where for Π � 1, a vapour pocket collapse combined with large
pressures is expected and, for Π � 1, damped oscillations are seen at much more moderate
pressures.

At this point it is maybe good to stress that the axisymmetric version holds unchanged
for a full cylindrical bubble such as a torus (although it was derived for a hemicylindrical
one), and that boundary conditions may be different from those used in the main text of
this paper. For instance, one might want to look at the motion of a bubble that is immersed
in a liquid at the vapour pressure, where the bubble wall by some process has obtained a
finite (inward) velocity −V0. One then may just use the equations as they were derived in
this work, but with Vwave = 0 in the initial condition, leading to κ = (Vwave/V0)

2 = 0 in
the dimensionless version.

At the other extreme one may think of a quiescent bubble being pressurised at an
overpressure �p0. In that case, since Ṙ(0) = 0, one needs to derive a velocity scale from
�p0 as V0 = √

�p0/ρL , which can subsequently be used for the non-dimensionalisation
leading to the exact same equations, but with slightly different boundary conditions
R̃(0) = 1, ˙̃R(0) = 0 and Δ̃(0) = 1 (or R(0) = R0, Ṙ(0) = 0 and pV (0) = pV,0 + �p0 in
the dimensional case).
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