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Abstract . In this article, we review the construction of Hamiltonian pertur­
bation theories with emphasis on Hori's theory and its extension to the case of 
dynamical systems with several degrees of freedom and one resonant critical angle. 
The essential modification is the comparison of the series terms according to the 
degree of homogeneity in both y/e and a parameter which measures the distance 
from the exact resonance, instead of just \fe. 

1. Introduct ion. Formal Averag ing Theor ies 

The construction of theories aiming at a precise description of the celestial 
motions is an old problem in astronomy. The complexity of the equati­
ons of the N-planets problem (N > 2) has been overcome by astronomers 
through very elaborate techniques. Most of these theories were founded on 
the algebraic skills of some astronomers and classical treatises on perturba­
tions theory assemble a large number of algebraic tricks used to reach the 
proposed targets. We could quote Sampson's theory of the four Galilean sa­
tellites of Jupiter as a milestone in this direction with its mobile frames and 
"completed t ime". These theories were generally good enough for the con­
struction of ephemerides of a rather good quality for the needs of tha t t ime. 
However, almost all a t tempts of extending them by increasing the order of 
approximation were frustrated by insurmountable difficulties, notwithstan­
ding the possibilities of using computer algebra in order to expedite the 
calculations and to avoid errors in the algebraic developments. 

Among the techniques devised in the past, Delaunay's theory of the 
motion of the Moon is an exception. Instead of looking for tricks to solve 
every difficulty, Delaunay proposed a well organized iterative procedure 
which is a paradigm of what is done nowadays (see Brouwer and Clemence, 
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1961, chap. XVII). He first noted tha t the equations of variation of the 
elements used by Lagrange and Laplace could be written in a very simple 
form by using a special set of variables, usually called Delaunay's variables: 

^ = m e a n anomaly L=^/JIa 

</=argument of the pericenter G=Ly/\ — e2 (1) 
/i=longitude of the node H—G cos i 

where fi is the product of the gravitational constant and the mass of the 
central body, a the semi-major axis, e the orbital eccentricity and i the 
inclination of the orbit over the reference plane. 

With these variables, the equations of variation of the elements are the 
Delaunay equations 

d£_d£ ^L- _§£. 
dt ~ dL dt ~ d£ 

(2) 

where 

dg dF 

dt ~ dG 

dh dF 

~dt ~d~H 

2X2 + eR(L, 

dG _ dF 

dt dg 

dH _ dF 

dt ~ dh 

G,H,e,g,h). (3) 

R is the potential of the disturbing forces expressed in terms of the Delaunay 
variables, written here as a time independent function only for simplicity, 
and e is a small parameter of the order of the relative value of the disturbing 
masses. The variational equations are in canonical form. Delaunay then 
introduced his 'operation' and performed it successively many hundreds of 
times. Delaunay's operation s tar ts with the choice of one trigonometric 
term in the Fourier expansion of R, say 

Wt = At {L, G, H) cos{k[e + k'(g + k'{'h) 

and the consideration of the dynamical system defined by the abridged 
Hamiltonian 2 

F ( 1 ) = " 2 p + £ W l -
This system is integrable and the main step of Delaunay's operation is to 
obtain one solution of this abridged system and to use it to derive one ca­
nonical transformation leading to the elimination of the term W\ from the 
given system [in fact, the transformation achieves the substitution of this 
term by another one with a coefficient of the order of 0(e2)]. After elimi­
nating Wi, one may choose another term, W2, and repeat the operation. 
This operation is repeated as many times as possible. 

https://doi.org/10.1017/S0252921100046352 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046352


HAMILTONIAN AVERAGING THEORIES AND RESONANCE 41 

The techniques of Delaunay were improved by Poincare (1892) who, instead 
of making the successive elimination of the trigonometric terms, used the 
Jacobian generating functions of canonical transformations and was able 
to eliminate all terms of a given kind (say, those with k[ ^ 0) with one 
only canonical transformation. This is the form used by Brouwer (1959) to 
solve the problem of the motion of an artificial satellite around an oblate 
Earth and is generally known as the Von Zeipel or Poincare-Von Zeipel, 
or even the Brouwer-Von Zeipel method, since Brouwer used some ideas of 
Von Zeipel (1916) to deal with secular terms. 

2. Lie M a p p i n g s , Hori T h e o r y 

Hori (1966) considered, instead of Jacobian generating functions, canonical 
transformations defined by Lie mappings. The use of Lie series was already 
current amongst physicists and, before 1960, several authors (Sersic, 1956; 
Grobner, 1960) had already suggested to use them to represent the cano­
nical transformations used in the perturbation methods of celestial mecha­
nics. A modified approach to the question was later introduced by Deprit 
(1969), shown to be equivalent to Hori's formulation by several authors 
(e.g. Campbell and Jefferys, 1970). 

In order to explain Hori's theory, let us s tar t by considering one cano­
nical system of equations: 

f = f £~£ <'-"-.*) <4 
where F = F(jL,-,^,e) is a time-independent Hamiltonian, and consider the 
transformation (Li,£i) =>• (L*,^*) defined by the generic equation 

<t> + {<£, r * } + \{{<t>, T*}, r * } + £{{{& r * } , r * } , r * } + • • • 

(5) 
where T* = T*(L*, £*, e). {.,.} are Poisson brackets in the variables (L*,£*). 
The method of Hori is founded on the set of equations obtained by identi­
fication of all terms of the same order with respect to e in the equation of 
energy conservation: 

F*(Lie*,e) = ET-F(Lieie) (6) 

(F* is the Hamiltonian resulting from the transformation). The resulting 
equations are partial differential equations in the coefficients of the power 
expansion of an unknown Lie generator: 

T*(Lieie) = J2£kn(Lht*). 
k 

The main points of the theory proposed by Hori are: 
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dL* 

du 

3F0 

dtt 

dTt 
— = *it -
du 

dt{ 8F0 

du dL\ 

-n-

All partial differential equations may be written in the homological 
form 

F*k=*k + {F0,T*k} (7) 

where Fo is the undisturbed part of F, Fk is the coefficient of ek in 
the expansion of F* in the powers of e and Wk is a function which is 
known if the equations of the previous orders have been solved. 
The Cauchy's characteristics of the homological partial differential are 
curves whose parametric equations are solutions of the equations 

(8) 

(9) 

• The averaging rule 
F*k=<vk> 

expresses the intent of having an averaged F* and avoids the occur­
rence of secular terms in T*. The introduction of this arbitrary condi­
tion is allowed by the indeterminacy of eq. 9 where both Tk and Fk 

are unknown. 
• Li,£{ are unspecified canonical variables (Hori's theory is not restricted 

to action-angle variables). 

Eqs. 8 are known as Hori's auxiliary system or Hori's kernel and their 
remarkable property is tha t they are the same at all orders of approxi­
mation. The parameter u has the same physical dimension as t and was 
called "proper-time" in Hori's paper. Interpretations founded on this ana­
logy led to conceptual difficulties which impaired, in the past, the cor­
rect understanding of Hori's theory. However, the meaning of u is imma­
terial, since this parameter disappears as can be seen from the sequence 
of calculations to be done: a) introduction of the general solution of eq. 8: 
L*-,t- = L*-,tj(Ci + U,C2,---,C2N) into <&k; b) averaging; c) integration 
of eq. 9 in u; and d) transformation of the results back to the variables 
Lj,ij and elimination of C\ + u,C2, • • -,C2N by means of the inverses of 
the general solutions of eq. 8 (see Caratheodory, 1965). 

3 . Degenerac i e s , R e s o n a n c e 

The classical difficulty in an averaging theory, let it be the theory of De-
launay, Poincare, Hori or any other, is the degeneracy of the Hamiltonian 
system defined by Fo. A Hamiltonian is said to be degenerate when there 
exists one linear combination with integer coefficients of its proper frequen-
cies dFo 
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which is equal to zero. This is the case, for instance, when FQ is the Hamilto-
nian of the Keplerian motion: Fo = —fj?/2L2, in which case j^k- = | § - = 0 
since Fo depends only on the first Delaunay variable. Degeneracies of this 
kind are said to be essential because they do not depend on the initial 
conditions: all Keplerian motions have both a fixed plane and a fixed peri­
helion. Degeneracies may also be accidental and occur only for some par­
ticular values of the initial conditions. One example is the motion of an 
asteroid whose orbital period is commensurable with Jupiter 's period. This 
degeneracy depends on the initial conditions and disappears if we move 
the asteroid to an orbit with a different period. The main consequence of 
an accidental degeneracy, or resonance, is the occurrence of small divisors 
during the integration of the equations of perturbation. 

When degeneracies do not occur, the system may be averaged over all 
Delaunay angles, tha t is, we may find a canonical transformation such that 
the transformed Hamiltonian F* is independent of all new angles £* and is, 
therefore, easily integrable. The transformation back to the original varia­
bles gives the formal solution of the problem at the order of the approxi­
mation of the calculated F*. When degeneracies occur, the averaging may 
be done only over the non-degenerate angles, tha t is, we may only find a 
canonical transformation which makes the transformed Hamiltonian F* in­
dependent of the non-degenerate angles and, as a consequence, the method 
leads only to a simplification of the given problem When the degeneracy is 
accidental, tha t is, in the so-called resonant systems, one more averaging 
is, however, possible. 

Let us consider a resonant system where, after some suitable change of 
variables, the Hamiltonian is 

oo 

F = F0(L1) + ^2skR2k(Li,£i) (t = 1 , 2 , - • - , # ) , (10) 
fc=i 

a n d f)F 

•" = i H ( ^ - ( 1 1 ) 

that is, one fundamental frequency is close to zero and all other undisturbed 
fundamental frequencies vp — dFo/dLp (p ^ 1) are equal to zero. 

The natural extension of the classical Jacobian averaging methods to 
the case where the angle to be eliminated is resonant is Bohlin's method. In 
Bohlin's method, as it was exposed by Poincare (1892) and used by many 
authors, v\ = dFo/dLi is considered as a quantity of the order 0(y/e) and 
the functions giving the canonical transformation and the averaged Hamil­
tonian are also expanded in the powers of y/s. However, as first noted by 
Poincare (op.cit., p.365), the equations of perturbation of Bohlin's method, 
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at the second approximation, are singular. This singularity cannot be re­
moved if the given system has more than one degree of freedom and the 
equations of perturbation in Delaunay variables cannot be solved. Another 
difficulty of Bohlin's method, as first noted by Jupp (1970), is tha t the 
results obtained when the equations are solved up to a given order are not 
complete. Due to the fact tha t v\ = 0(y/s) while its derivative with respect 
to L\ is 0(1), differentiation with respect to L\ reduces the order of every 
function having v\ as a factor. Thus, if the generating function is deter­
mined up to an order 0(sk/2), the derivative of the next order term, with 
respect to L*, will also contribute terms of the order 0(ekl2) and shall be 
included in the transformation in order to have it complete to the nominal 
order 0{ek'2). This is a less crucial difficulty and it is easily dealt by means 
of a modification in the definition of the orders of approximation in the 
theory, as shown below. 

The method of Hori is well suited to deal with the first of these diffi­
culties. It leads naturally to a non-Keplerian Hori's kernel whose solution 
incorporates the main resonant perturbations. It is interesting to remember 
that some successful a t tempts in dealing with the singularities of the equa­
tions, in the case of systems with one degree of freedom, also introduce a 
preliminary transformation incorporating the main resonant perturbations 
in the variables (see Jupp, 1992). Similar transformations are also implicitly 
done in the Fourier expansions introduced by Bohlin (1888) in his solution 
and in the method proposed by Sessin (1986) to solve the equations of the 
Delaunay's theory for resonant systems with several degrees of freedom. 

Because of the mixture of orders, a mere generalization, to this case, 
of the equations of the non-resonant case is not possible. Indeed, in the 
homological eq. 7, the term \Pfc is a function of Tf, • • •, T£_j through chains 
of Poisson brackets of these functions with others, including FQ. Therefore, 
\Pfc depends on multiple derivatives of Fo with respect to the variables and, 
thus, will contain terms of different orders. These terms can be easily taken 
into account and moved to the equations corresponding to their orders. 
However, we cannot exclude tha t the resolution of the equations do not 
introduce, themselves, terms functionally equal to Fo which, again, will 
change in order when differentiated with respect to L\. In order to overcome 
this difficulty, we will substi tute L\ by a new action variable 

x = Li-L*, (12) 

where L\ is defined by 

and assume x = 0(-\/£). Then we will take into account tha t x and y/e are 
both small parameters of the same magnitude and they will be considered 
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on the same footing. Thus, while in the general theories all identifications 
are done following the powers of the small parameter e, in this extension 
of the method of Hori, we will consider both y/e and x and we will perform 
all identifications according to the degree of homogeneity in y/e and x. 

For instance, the Poisson bracket of two functions ipi(x,Lp,£i) and 
fa(x, Lp,£i) (p = 2,3,---,N;i = 1,2,- • -,N) homogeneous with respect 
to the quantities s/e and x will be split in two parts: 

(dfa dfa dfadfa\ l-s^fdfadfa dfadfa\ , . „* 
ydtx dx d£i dx J ^\d£pdLp d£pdLp/ 

p—2 

The second part of this Poisson bracket is an ordinary operation and the 
degree of homogeneity of the result is equal to the sum of the degrees of 
homogeneity of fa and fa. However, in the first part of it, the operation 
d/dx reduces by one the degree of homogeneity and the resulting degree of 
homogeneity of the first parenthesis with respect to y/e and x is one unit 
less than tha t of the terms of the second bracket. 

It is convenient to introduce the notations 

9 fa dfa dfa dfa 
1 

{fa 

1^1) W2. 

^2},,= 

(1 -

N 

E 
p=2 

and write the Poisson bracket as 

d£x dx 

(dfa dfa 

V d£p dip 

d£x dx ' 

dfa dfa 

d£p dip 

(14) 

(15) 

{i>ui>2} = {fa,fah + {fa,fa}P; (16) 

For the case of three functions we have 

{{fa, fa}, fa} = {{V>i, fa}i, fah + {{fa, fah,fa}P + (17) 

{{^1, fa}p, fa}l + {{fa,fa}p, fa}p-

This notation is helpful in keeping trace of terms of different degrees of 
homogeneity in \fe and x. For instance in eq. 17, the degree of homogeneity 
of the last term is the sum of the degrees of homogeneity of the three 
functions, the two brackets showing the subscripts 1 and p have a degree of 
homogeneity one unit less, and the bracket showing twice the subscript 1 
has a degree of homogeneity two units less. This notation helps in avoiding 
the mixture terms of different degrees. 

This new approach changes the form of the Lie-series expansion of one 
function. Let / be an homogeneous function of degree D in the variables 
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-y/e, x and let us consider the canonical transformation <f>p : (x,Lp,£i) =£• 
(x*,L*,£*) determined by the Lie generator 

T = J2lt(x\L;tif) (18) 

+ g { { { / , r ! f } i , r 2 - } 1 , r 3 * } 1 + 

fc=2 

where the generic T£(x*,L*,£*) are homogeneous functions of degree k in 
the variables y/s,x*. The Lie series expansion of f may be written as in 
eq. 5, or, making the substitution of the Lie generator T* by its expansion, 

ET.f = f+ 
{/,r2*}i+ 
{/, Tjh + {/, T*}P + i { { / , r 3 * } l f r 2 * } 1 + 

{/,r4*}i + {/,r3*}„ + { { { / . T j f h . r ^ h + H i / . r ^ , ^ } , 
+ M { / , r 2 * } „ , - ' - ' - - -

{/,r5*}i + {/ , r 4*}p + 
(19) 

where we have taken full account of the fact tha t the Poisson brackets 
carry terms of different orders and have grouped them so as to have terms 
of degree D in the first row, terms of degree D + 1 in the second row, 
etc. The mere inspection of this result allows us to justify the assumption 
Tj* = 0, which serves to avoid an unlimited number of terms at every order. 

4 . R e s o n a n t A v e r a g i n g T h e o r y 

In order to construct perturbation equations in this problem, all functions 
shall be expanded in series of terms with the same degree of homogeneity 
with respect to y/e and x. Initially, the functions Fo and R2k are expanded 
to become 

F 0 = Fo(LJ) + X2{x) + X3(x) + • • • (20) 

and 

R2k(Li, ti) = Rik(L*, Lp, £t) + R(${x, Lp, £{) + R${x, Lp, 1-) + • • • (21) 

where Xy and i?2A/ are homogeneous functions of degree A;' in x. The term 
Xi(x) is absent from the series for Fo since, again, by Taylor's theorem and 
the definition of LJ, 

x1(x) = d-^lx = ,;x = o. 

When these expansions are introduced into eq. 6, we obtain 

F = F0(L*1) + ^2Fk(x,Lp,£i,e), (22) 
fc>2 
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where Fk is homogeneous of degree k with respect to x and y/e. In parti­
cular, we have F\ = 0 and 

F 2 =X2(x) +eR2(L*1,Lp,£i) 

F3 =X3(x) +sR2
1)(x,Lp,£i) 

FA =XA{x) +eR2
2)(x,Lp,ei)+e2R4(L*,Lp,£i) (23> 

F5 =X5(x) +eR2
3)(x,Lp,£i)+e2R4

1)(x,Lp,£i) 

We then consider the conservation equation 

F*(x*,L;,et) = Er.F(x;L;tei) (24) 

and introduce the Lie generator of the canonical transformation <f>p, given 
by eq. 18, and the transformed Hamiltonian F* in the expanded form 

F* = J2F*k- (25) 
fc=l 

where, again, the subscripts indicate the degree of homogeneity in y/e, x. 
The comparison of the terms of the same degree of homogeneity in y/e, 
x yields a system of equations similar to the equations of Hori's general 
theory, but different from them because: 

• Fo(L*) is a constant; therefore all Poisson brackets including FQ vanish; 
• Fi is zero; therefore all Poisson brackets including Fi vanish; 
• The partial Poisson brackets {., .}i lower the degree of homogeneity in 

y/e and x by one. 

Thus, we obtain the equations for resonant systems: 

F5= F0(L*) 
F f = 0 
F * = F2(X*,L;,£;) 

F * = F 3 + { F 2 , r * } 1 

F4* = F 4 + { F g , ^ * } ! + {F2,T2*}„ + i { { F a i 2 ? } l f r 3 *} ! + { F ^ x 

Ffc* = Ffc + {Fk-ltT2h + {Ffc_2,T2*}„ + ±{{Fk.2,T2*}l,T2*}1+ 
i {{F*_ 3 , T2*}!, T2*}p + i{{Ff c_3 , T2*}„ T 2 *} 1 + 

i{{Ff c_4 , T*} p , T*}p + • • • + {F 2 , T ^ J j 
(26) 

These equations are very similar to the perturbation equations of the ge­
neral non-resonant theory. However, besides the intrinsic differences due to 
the separation of each Poisson bracket into two parts, two major differences 
are to be emphasized: 
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1. The first non-trivial equation only appears for the subscript k = 3 of 
Fk and F£; t ha t is, two units more than the corresponding subscripts 
in the first non-trivial equation of the non-resonant case; 

2 . The subscripts of the unknowns T£ in the non-trivial equations are 
one unit less than the corresponding subscripts of F£ (they are equal 
in the homological equation of the general non-resonant case). If F is 
known only up to the degree of homogeneity p, T can be determined 
only up to the degree p — 1. 

The non-trivial equations obtained by the identification of the orders 
have the homological form 

{F2,TUh = H - *k(x*,L;,e;) (27) 

or, in explicit terms, 

-dl*^* dlfdx^ ~Fk~ *k{x » L " ' « ) " ( 2 8 ) 

We note tha t , at each order, \&fc is a function which is known provided the 
equations of the previous orders have been solved. 

The next steps are identical to the general Hori's theory (see Ferraz-
Mello, 1990, 1997) with the only difference that all functions are expanded 
and ordered following the degree of homogeneity with respect to the varia­
bles y/e and x*. 

It is worthwhile mentioning tha t , as in the method of Bohlin, it is ne­
cessary to solve the equations up to the degree of homogeneity p + 1, to 
have the generating function of the canonical transformation T determined 
up to the degree p. 

The characteristic equations of this partial differential equation consist 
of the equations of the Hori's kernel: 

dx* _ dF2(x*,L;,e?) 

du dl\ 

de*1 = dF2(x*,L*p,t!) 

du dx* 

and the equation for T ^ : 

(29) 

(30) 

du 
= Vk{x%L*tS)-Ft. (31) 

The function F2 plays a special role in the solution of the resulting 
equations since it is the new Hori's kernel. In the new variables, it is 

F2(x\L;ttf) = \ ^ £ x * * + eR2(x*,L;,£*). (32) 
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F2 is not just a function of the variables x*,l\, but it also depends on 
the variables L*p,£*. In fact, action-angle variables associated 
with the Hamiltonian Fo and have no particular meaning in the dynamical 
system defined by the Hamiltonian F2. However, the homological partial 
differential equation (eq. 27) involves only the variables x*,£\ and the corre­
sponding Hori's kernel has only one degree of freedom. Thus, the variables 
L*, £* are constants with respect to u. This Hori's kernel has only one degree 
of freedom, is integrable and, at least in theory, we may proceed with the 
averaging and the construction of formal solutions. In fact, the integration 
of actual Hori's kernels in resonant systems is very difficult. Indeed, from 
the kernel equations we easily obtain 

du = I —== dti (33) 

Accordingly, u(£\) is given by an elliptic integral making almost impossible 
to proceed beyond the equation for T j , tha t is, beyond the order 0(e), 
unless some additional approximations are made. But this difficulty is only 
of a practical nature and we have to remember that in some simple cases 
such as in the Ideal Resonance Problem, the system of equations may be 
completely solved with the aid of some recurrence relations introduced by 
Garfinkel et al. (1971). 

The equations of the characteristics of the homological equation need 
to be completed with the averaging condition 

Ffc* = < % > = fvk[x'{u),L;Xi(«),Qdu (34) 

where the integral is performed over one period of variation of u. 

5. C o n c l u s i o n 

We have presented here an extension of the method of Hori to resonant 
systems. The essential modification with respect to Hori's general theory is 
the fact tha t the identification of all series is done following the degree of 
homogeneity with respect to y/e and x = L\ — L\ (L\ is the exact resonant 
value of L\). The continuation is a standard application of Hori's theory. 
For the sake of simplicity, we have considered one generic case in which the 
resonance predominates over long-period perturbations, but cases in which 
they concur both on an equal footing may be studied following the same 
steps. The application will be successful in all cases in which we can obtain 
a separable Hori kernel. 

From a formal point of view, the extension of Hori's method to pro­
blems with two or more independent resonances acting simultaneously is 

https://doi.org/10.1017/S0252921100046352 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100046352


50 S. FERRAZ-MELLO 

easy. However, the Hori kernel will have, in this case, respectively, two or 
more degrees of freedom and, even in the simplest cases, this kernel is not 
integrable. We may, at most, study the solutions close to an stable equili­
brium point of F2 by adopting a linear approximation for R2(L\, L*p, 1%). 
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