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Poisson Brackets with Prescribed Casimirs

Dedicated to Giuseppe Marmo, on the occasion of his 65-th birthday.

Pantelis A. Damianou and Fani Petalidou

Abstract. We consider the problem of constructing Poisson brackets on smooth manifolds M with

prescribed Casimir functions. If M is of even dimension, we achieve our construction by considering a

suitable almost symplectic structure on M, while, in the case where M is of odd dimension, our objec-

tive is achieved using a convenient almost cosymplectic structure. Several examples and applications

are presented.

1 Introduction

A Poisson bracket on the space C∞(M) of smooth functions on a smooth manifold

M is a skew-symmetric, bilinear map,

{ · , · } : C∞(M) ×C∞(M) → C∞(M),

that verifies the Jacobi identity and is a biderivation. Thus, (C∞(M), { · , · }) has the

structure of a Lie algebra. This notion has been introduced in the framework of clas-

sical mechanics by S. D. Poisson, who discovered the natural symplectic bracket on

R
2n [27], a notion that was later generalized to manifolds of arbitrary dimension by S.

Lie [23]. The increased interest in this subject during the 19th century was originally

motivated by the important role of Poisson structures in Hamiltonian dynamics. It

has been revived in the last 35 years, after the publication of the fundamental works

of A. Lichnérowicz [21], A. Kirillov [14], and A. Weinstein [31], and Poisson ge-

ometry has emerged as a major branch of modern differential geometry. The pair

(M, { · , · }) is called a Poisson manifold and is foliated by symplectic immersed sub-

manifolds, the symplectic leaves. The functions in the center of (C∞(M), { · , · }),

i.e., the elements f ∈ C∞(M) such that { f , · } = 0, are called the Casimirs of the

Poisson bracket { · , · }, and they define the space of first integrals of the symplectic

leaves. For this reason, Casimir invariants have acquired a dominant role in the study

of integrable systems defined on a manifold M and in the theory of the local structure

of Poisson manifolds [31].

To introduce the problem we remark that, for an arbitrary smooth function f on

R
3, the bracket

(1.1) {x, y} =
∂ f

∂z
, {x, z} = −

∂ f

∂y
, and {y, z} =

∂ f

∂x
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is Poisson and admits f as Casimir. Clearly, if Ω = dx ∧ dy ∧ dz is the standard

volume element on R
3, then the bracket (1.1) can be written as

{x, y}Ω = dx ∧ dy ∧ d f , {x, z}Ω = dx ∧ dz ∧ d f , {y, z}Ω = dy ∧ dz ∧ d f .

More generally, let f1, f2, . . . , fl be functionally independent smooth functions on

R
l+2 and let Ω be a non-vanishing (l + 2)-smooth form on R

l+2. Then the formula

(1.2) {g, h}Ω = f dg ∧ dh ∧ d f1 ∧ · · · ∧ d fl, g, h ∈ C∞(R
l+2),

defines a Poisson bracket on R
l+2 with f1, . . . , fl as Casimir invariants. In addition,

the symplectic leaves of (1.2) have dimension at most 2. The Jacobian Poisson struc-

ture (1.2) (the bracket {g, h} is equal, up to a coefficient function f , with the usual

Jacobian determinant of (g, h, f1, . . . , fl)) appeared in [4] in 1989 where it was at-

tributed to H. Flaschka and T. Ratiu. The first explicit proof of this result was given

in [12], while the first application of formula (1.2) was presented in [4, 5] in con-

junction with transverse Poisson structures to subregular nilpotent orbits of gl(n,C),

n ≤ 7. It was shown that these transverse Poisson structures, which are usually com-

puted using Dirac’s constraint formula, can be calculated much more easily using the

Jacobian Poisson structure (1.2). This fact was extended to any semisimple Lie alge-

bra in [8]. In the same paper it was also proved that, after a suitable change of coordi-

nates, the above referred transverse Poisson structures is reduced to a 3-dimensional

structure of type (1.1). We believe that for the other type of orbits, e.g., the minimal

orbit and all the other intermediate orbits, one can compute the transverse Poisson

structures using the results of this paper. However, this study will be the subject of a

future work. Another interesting application of formula (1.2) appears in [26], where

the polynomial Poisson algebras with some regularity conditions are studied. We also

mention the study of a family of rank 2 Poisson structures in [1].

The purpose of this paper is to extend the formula of type (1.2) in the more general

case of higher rank Poisson brackets. The problem can be formulated as follows:

Given (m − 2k) smooth functions f1, . . . , fm−2k on an m-dimensional smooth

manifold M, functionally independent almost everywhere, describe the Poisson

brackets { · , · } on C∞(M) of rank at most 2k that have f1, . . . , fm−2k as Casimirs.

First, we investigate this problem in the case where m = 2n, i.e., M is of even di-

mension. We assume that M is endowed with a suitable almost symplectic structure

ω0, and we prove that (Theorem 3.3) a Poisson bracket { · , · } on C∞(M) with the

required properties is defined, for any h1, h2 ∈ C∞(M), by the formula

{h1, h2}Ω = −
1

f
dh1 ∧ dh2 ∧

(
σ +

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
∧ d f1 ∧ · · · ∧ d f2n−2k,

where Ω = ωn
0/n! is a volume element on M, f satisfies f 2 = det

(
{ fi , f j}0

)
6= 0

({ · , · }
0

being the bracket defined by ω0 on C∞(M)), σ is a 2-form on M satisfying

certain special requirements (see Proposition 2.7), and g = iΛ0
σ.1 We proceed by

1Λ0 being the bivector field on M associated to ω0.
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considering the case where M is an odd-dimensional manifold, i.e., m = 2n + 1,

and we establish a similar formula for the Poisson brackets on C∞(M) with the

prescribed properties. For this construction, we assume that M is equipped with

a suitable almost cosymplectic structure (ϑ0,Θ0) and with the volume form Ω =

ϑ0 ∧
Θ

n
0

n!
. Then we show that (Theorem 3.7) a Poisson bracket { · , · } on C∞(M)

with f1, . . . , f2n+1−2k as Casimir functions is defined, for any h1, h2 ∈ C∞(M), by the

formula

{h1, h2}Ω = −
1

f
dh1 ∧ dh2 ∧

(
σ +

g

k − 1
Θ0

)
∧

Θ
k−2
0

(k − 2)!
∧ d f1 ∧ · · · ∧ d f2n+1−2k,

where f is given by (3.11), σ is a 2-form on M satisfying certain particular conditions

(see, Proposition 3.6), and g = iΛ0
σ 2.

The proofs of the main results are given in Section 3. Section 2 consists of prelim-

inaries and fixing the notation, while in Section 4 we present several applications of

our formulæ on Dirac brackets, on brackets associated with nonholonomic systems,

and on Toda and Volterra lattices.

2 Preliminaries

We start by fixing our notation and recalling the most important notions and for-

mulæ needed in this paper. Let M be a real, smooth, m-dimensional manifold, let

TM and T∗M be its tangent and cotangent bundles resepctively, and C∞(M) the

space of smooth functions on M. For each p ∈ Z, we denote by V
p(M) and Ωp(M)

the spaces of smooth sections, respectively, of
∧p

TM and
∧p

T∗M. By convention,

we set Vp(M) = Ωp(M) = {0}, for p < 0, V0(M) = Ω0(M) = C∞(M), and, tak-

ing into account the skew-symmetry, we have Vp(M) = Ωp(M) = {0}, for p > m.

Finally, we set V(M) =
⊕

p∈Z
Vp(M) and Ω(M) =

⊕
p∈Z

Ωp(M).

2.1 From Multivector Fields to Differential Forms and Back

There is a natural pairing between the elements ofΩ(M) andV(M), i.e., a C∞(M)-bi-

linear map 〈 · , · 〉 : Ω(M) × V(M) → C∞(M), (η, P) 7→ 〈η, P〉, defined as follows.

For any η ∈ Ωq(M) and P ∈ V
p(M) with p 6= q, 〈η, P〉 = 0; for any f , g ∈

Ω0(M), 〈 f , g〉 = f g; while if η = η1 ∧ η2 ∧ · · · ∧ ηp ∈ Ωp(M) is a decomposable

p-form (ηi ∈ Ω1(M)) and P = X1 ∧ X2 ∧ · · · ∧ Xp is a decomposable p-vector field

(Xi ∈ V
1(M)),

〈η, P〉 = 〈η1 ∧ η2 ∧ · · · ∧ ηp,X1 ∧ X2 ∧ · · · ∧ Xp〉 = det
(
〈ηi ,X j〉

)
.

The above definition is extended to the nondecomposable forms and multivector

fields by bilinearity in a unique way. Precisely, for any η ∈ Ωp(M) and X1, . . . ,Xp ∈
V

1(M),

〈η,X1 ∧ X2 ∧ · · · ∧ Xp〉 = η(X1,X2, . . . ,Xp).

2Λ0 being the bivector field on M associated to (ϑ0,Θ0).

https://doi.org/10.4153/CJM-2011-082-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-082-2


994 P. A. Damianou and F. Petalidou

Similarly, for P ∈ Vp(M) and η1, η2, . . . , ηp ∈ Ω1(M),

〈η1 ∧ η2 ∧ · · · ∧ ηp, P〉 = P(η1, η2, . . . , ηp).

We adopt the following convention for the interior product iP : Ω(M) → Ω(M)

of differential forms by a p-vector field P, viewed as a C∞(M)-linear endomorphism

of Ω(M) of degree −p. If P = X ∈ V
1(P) and η is a q-form, iXη is the element of

Ωq−1(M) defined, for any X1, . . . ,Xq−1 ∈ V
1(M), by

(iXη)(X1, . . . ,Xq−1) = η(X,X1, . . . ,Xq−1).

If P = X1 ∧ X2 ∧ · · · ∧ Xp is a decomposable p-vector field, we set

iPη = iX1∧X2∧···∧Xp
η = iX1

iX2
. . . iXp

η.

More generally, recalling that each P ∈ V
p(M) can be locally written as the sum of

decomposable p-vector fields, we define as iPη, with η ∈ Ωq(M) and q ≥ p, to be the

unique element of Ωq−p(M) such that, for any Q ∈ Vq−p(M),

(2.1) 〈iPη,Q〉 = (−1)(p−1)p/2〈η, P ∧ Q〉.

While, if p > q, we define iPη = 0.

Similarly, we define the interior product jη : V(M) → V(M) of multivector fields by

a q-form η. If η = α ∈ Ω1(M) and P ∈ V
p(M), then jαP is the unique (p−1)-vector

field on M given, for any α1, . . . , αp−1, by

( jαP)(α1, . . . , αp−1) = P(α1, . . . , αp−1, α).

Moreover, if η = α1 ∧ α2 ∧ · · · ∧ αq is a decomposable q-form, we set

jηP = jα1∧α2∧···∧αq
P = jα1

jα2
. . . jαq

P.

Hence, using the fact that any η ∈ Ωq(M) can be locally written as the sum of de-

composable q-forms, we define jη to be the C∞(M)-linear endomorphism of V(M)

of degree −q that associates, with each P ∈ Vp(M) (p ≥ q), the unique (p−q)-vector

field jηP defined, for any ζ ∈ Ωp−q(M), by

〈ζ, jηP〉 = 〈ζ ∧ η, P〉.

If the degrees of η and P are equal, i.e., q = p, the interior products jηP and iPη are,

up to sign, equal:

jηP = (−1)(p−1)p/2iPη = 〈η, P〉.

The Schouten bracket [ · , · ] : V(M)×V(M) → V(M), which is a natural extension

of the usual Lie bracket of vector fields on the space V(M) [10, 16], is related to

the operator i through the following useful formula due to Koszul [16]. For any

P ∈ Vp(M) and Q ∈ Vq(M),

(2.2) i[P,Q] =
[

[iP, d], iQ

]
,
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where the brackets on the right-hand side of (2.2) denote the graded commutator

of graded endomorphisms of Ω(M), i.e., for any two endomorphisms E1 and E2 of

Ω(M) of degrees e1 and e2, respectively, [E1, E2] = E1 ◦ E2 − (−1)e1e2 E2 ◦ E1. Hence,

we have

(2.3) i[P,Q] = iP ◦ d ◦ iQ − (−1)p d ◦ iP ◦ iQ

− (−1)(p−1)q iQ ◦ iP ◦ d + (−1)(p−1)q−p iQ ◦ d ◦ iP.

Furthermore, given a smooth volume form Ω on M, i.e., a nowhere vanishing ele-

ment ofΩm(M), the interior product of p-vector fields on M withΩ, p = 0, 1, . . . ,m,

yields a C∞(M)-linear isomorphism Ψ of V(M) onto Ω(M) such that, for each de-

gree p, 0 ≤ p ≤ m,

Ψ : Vp(M) → Ω
m−p(M)

P 7→ Ψ(P) = ΨP = (−1)(p−1)p/2iPΩ.

Its inverse map Ψ−1 : Ωm−p(M) → Vp(M) is defined, for any η ∈ Ωm−p(M), by

Ψ−1(η) = jηΩ̃, where Ω̃ denotes the dual m-vector field of Ω, i.e., 〈Ω, Ω̃〉 = 1.

By composing Ψ with the exterior derivative d on Ω(M) and Ψ−1, we obtain the

operator D = −Ψ−1 ◦ d ◦ Ψ which was introduced by Koszul [16]. One should

notice that D does not depend on the volume form chosen. It is of degree −1 and of

square 0 and it generates the Schouten bracket. For any P ∈ Vp(M) and Q ∈ V(M),

(2.4) [P,Q] = (−1)p
(

D(P ∧ Q) − D(P) ∧ Q − (−1)pP ∧ D(Q)
)
.

2.2 Poisson Manifolds

We recall the notion of Poisson manifold and some of its properties whose proofs may

be found, for example, in [10, 20, 28].

A Poisson structure on a smooth manifold M is a Lie algebra structure on C∞(M)

whose the bracket { · , · } : C∞(M) ×C∞(M) → C∞(M) verifies the Leibniz’s rule:

{ f , gh} = { f , g}h + g{ f , h}, ∀ f , g, h ∈ C∞(M).

In [21], Lichnérowicz remarks that { · , · } gives rise to a contravariant antisymmet-

ric tensor field Λ of order 2 such that Λ(d f , dg) = { f , g}, for f , g ∈ C∞(M). Con-

versely, each such bivector field Λ on M gives rise to a bilinear and antisymmetric

bracket { · , · } on C∞(M), { f , g} = Λ(d f , dg), f , g ∈ C∞(M). This bracket sat-

isfies the Jacobi identity, i.e., for any f , g, h ∈ C∞(M), { f , {g, h}} + {g, {h, f }} +

{h, { f , g}} = 0 if and only if [Λ,Λ] = 0, where [ · , · ] denotes the Schouten bracket

on V(M). In this case Λ is called a Poisson tensor and the manifold (M,Λ) a Poisson

manifold.

As was proved in [12], a consequence of expression (2.3) of the Schouten bracket

is that an element Λ ∈ V2(M) defines a Poisson structure on M if and only if

2iΛ ◦ dΨΛ + dΨΛ∧Λ = 0.3

3Since we have adopted a different convention of sign for the interior product i, condition differs up to
a sign from the one in [12].
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Equivalently, using formula (2.4) and the fact that, for any P ∈ Vp(M),

Ψ
−1 ◦ iP = (−1)(p−1)p/2P ∧Ψ

−1,

the last condition can be written as

(2.5) 2Λ ∧ D(Λ) = D(Λ ∧ Λ).

Given a bivector field Λ on M, we can associate it with a natural homomorphism

Λ# : Ω1(M) → V
1(M), which maps each element α of Ω1(M) to a unique vector field

Λ#(α) such that, for any β ∈ Ω1(M),

〈α ∧ β,Λ〉 = 〈β,Λ#(α)〉 = Λ(α, β).

If α = d f , for some f ∈ C∞(M), the vector field Λ#(d f ) is called the hamiltonian

vector field of f with respect to Λ and is denoted by X f . If Λ is a Poisson tensor,

the image ImΛ# of Λ# is a completely integrable distribution on M and defines the

symplectic foliation of (M,Λ) whose space of first integrals is the space of Casimir

functions of Λ, i.e., the space of the functions f ∈ C∞(M) such that Λ#(d f ) = 0.

Moreover, Λ# can be extended to a homomorphism, also denoted by Λ#, from

Ωp(M) to V
p(M), p ∈ N, by setting, for any f ∈ C∞(M), Λ#( f ) = f , and, for any

ζ ∈ Ωp(M) and α1, . . . , αp ∈ Ω1(M),

(2.6) Λ
#(ζ)(α1, . . . , αp) = (−1)pζ

(
Λ

#(α1), . . . ,Λ#(αp)
)
.

Thus, Λ#(ζ ∧ η) = Λ#(ζ) ∧ Λ#(η), for all η ∈ Ω(M). When Ω(M) is equipped with

the Koszul bracket {{ · , · }} defined, for any ζ ∈ Ωp(M) and η ∈ Ω(M), by

(2.7) {{ζ, η}} = (−1)p
(
∆(ζ ∧ η) −∆(ζ) ∧ η − (−1)pζ ∧∆(η)

)
,

where ∆ = iΛ ◦ d − d ◦ iΛ, Λ# becomes a graded Lie algebra homomorphism. Ex-

plicitly,

Λ
#
(
{{ζ, η}}

)
=

[
Λ

#(ζ),Λ#(η)
]
,

where the bracket on the right-hand side is the Schouten bracket.

Example 2.1 Any symplectic manifold (M, ω0), whereω0 is a nondegenerate closed

smooth 2-form on M, is equipped with a Poisson structure Λ0 defined by ω0 as fol-

lows. Define the tensor field Λ0 to be the image of ω0 by the extension of the iso-

morphism Λ#
0 : Ω1(M) → V

1(M), (inverse of ω♭0 : V1(M) → Ω1(M), X 7→ ω♭0(X) =

−ω0(X, · )), to Ω2(M), given by (2.6).

2.3 Decomposition Theorem for Exterior Differential Forms

In this subsection, we begin by reviewing some important results concerning the de-

composition theorem for exterior differential forms on almost symplectic manifolds.

The complete study of these results can be found in [18, 20].
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Let (M, ω0) be a 2n-dimensional almost symplectic manifold, i.e., ω0 is a nonde-

generate smooth 2-form on M, Λ0 the bivector field on M associated with ω0 (see

Example 2.1), Ω =
ωn

0

n!
the corresponding volume form on M, and Ω̃ =

Λ
n
0

n!
the dual

2n-vector field ofΩ. We consider the isomorphism ∗ = Ψ◦Λ#
0 : Ωp(M) → Ω2n−p(M)

given, for any ϕ ∈ Ωp(M), by

(2.8) ∗ϕ = (Ψ ◦ Λ#
0)(ϕ) = (−1)(p−1)p/2 iΛ#

0(ϕ)

ωn
0

n!
.

Remark 2.2 In order to be in agreement with the convention of sign adopted in

(2.1) for the interior product, we make a sign convention for ∗ different from the one

given in [20].

The (2n − p)-form ∗ϕ is called the adjoint of ϕ relative to ω0. The isomorphism ∗
has the following properties:

(i) ∗ ∗ = Id, which implies that

(2.9) Ψ ◦ Λ#
0 = Λ

#−1

0 ◦Ψ−1.

(ii) For any ϕ ∈ Ωp(M) and ψ ∈ Ωq(M),

∗ (ϕ ∧ ψ) = (−1)(p+q−1)(p+q)/2 iΛ#
0(ϕ)∧Λ#

0(ψ)

ωn
0

n!

= (−1)(p−1)p/2 iΛ#
0(ϕ)(∗ψ) = (−1)pq+(q−1)q/2iΛ#

0(ψ)(∗ϕ).

(2.10)

(iii) For any k ≤ n,

∗
ωk

0

k!
=

ωn−k
0

(n − k)!
.

Definition 2.3 A smooth form ψ ∈ Ω(M) such that iΛ0
ψ = 0 everywhere on M is

said to be effective. On the other hand, a smooth form ϕ on M is said to be simple if

it can be written as

ϕ = ψ ∧
ωk

0

k!
,

where ψ is effective.

Proposition 2.4 The adjoint of an effective differential form ψ of degree p ≤ n is

∗ψ = (−1)p(p+1)/2ψ ∧
ω

n−p
0

(n − p)!
.

The adjoint ∗ϕ of a smooth (p + 2k)-simple form ϕ = ψ ∧
ωk

0

k!
is

(2.11) ∗ϕ = (−1)p(p+1)/2 ψ ∧
ω

n−p−k
0

(n − p − k)!
.
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Theorem 2.5 (Lepage’s Decomposition Theorem) Every differential form ϕ ∈
Ω(M) of degree p ≤ n may be uniquely decomposed as the sum

ϕ = ψp + ψp−2 ∧ ω0 + · · · + ψp−2q ∧
ω

q
0

q!
,

with q ≤ [p/2] ([p/2] being the largest integer less than or equal to p/2), where, for

s = 0, . . . , q, the differential forms ψp−2s are effective and may be calculated from ϕ by

means of iteration of the operator iΛ0
. Then its adjoint ∗ϕ may be uniquely written as

the sum

∗ ϕ = (−1)p(p+1)/2
(
ψp − ψp−2 ∧

ω0

n − p + 1
+ · · ·

+ (−1)q (n − p)!

(n − p + q)!
ψp−2q ∧ ω

q
0

)
∧

ω
n−p
0

(n − p)!
.

We continue by indicating the effect of operator ∗ on Poisson structures. Since

Λ#
0 : Ωp(M) → V

p(M), p ∈ N, defined by (2.6), is an isomorphism, any bivector

field Λ on (M, ω0) can be viewed as the image Λ#
0(σ) of a 2-form σ on M by Λ#

0. We

want to establish the condition on σ under which Λ = Λ#
0(σ) is a Poisson tensor. For

this reason, we consider the codifferential operator δ = ∗d∗ introduced in [18], which

is of degree −1 and satisfies the relation δ2 = 0. We remark that

δ
(2.8)
= Ψ ◦ Λ#

0 ◦ d ◦Ψ ◦ Λ#
0

(2.9)
= Λ

#−1

0 ◦Ψ−1 ◦ d ◦Ψ ◦ Λ#
0 = −Λ

#−1

0 ◦ D ◦ Λ#
0,

whence we obtain

(2.12) Λ
#
0 ◦ δ = −D ◦ Λ#

0.

Lemma 2.6 For any differential form ζ on (M, ω0) of degree p ≤ n,

(2.13) Ψ
−1(ζ) = Λ

#
0(∗ ζ).

Proof We have

Λ
#
0(∗ ζ)

(2.8)
= Λ

#
0 ◦Ψ ◦ Λ#

0(ζ)
(2.9)
= Λ

#
0 ◦ Λ

#−1

0 ◦Ψ−1(ζ) = Ψ
−1(ζ).

Proposition 2.7 Using the same notation, Λ = Λ#
0(σ) defines a Poisson structure on

(M, ω0) if and only if

(2.14) 2σ ∧ δ(σ) = δ(σ ∧ σ).

Proof We have seen that Λ is a Poisson tensor if and only if (2.5) holds. But, in our

case Λ = Λ#
0(σ), so Λ ∧ Λ = Λ#

0(σ ∧ σ), and Λ#
0 is an isomorphism. Therefore,

2Λ ∧ D(Λ) = D(Λ ∧ Λ) ⇔ 2Λ#
0(σ) ∧ (D ◦ Λ#

0)(σ) = (D ◦ Λ#
0)(σ ∧ σ)

(2.12)
⇔ −2Λ#

0(σ) ∧ Λ
#
0(δσ) = −Λ

#
0(δ(σ ∧ σ))

⇔ 2σ ∧ δ(σ) = δ(σ ∧ σ),

and we are done.
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Remark 2.8 Brylinski [2] observed that when the manifold is symplectic, i.e.,

dω0 = 0, δ is equal up to sign to ∆ = iΛ0
◦ d − d ◦ iΛ0

. Then, in this frame-

work, (2.14) is equivalent to {{σ, σ}}
0
= 0, ({{ · , · }}

0
being the Koszul bracket (2.7)

associated with Λ0), which means that σ is a complementary 2-form on (M,Λ0) in

the sense of Vaisman [29].

3 Poisson Structures with Prescribed Casimir Functions

Let M be a m-dimensional smooth manifold and let f1, . . . , fm−2k be smooth func-

tions on M that are functionally independent almost everywhere. We want to con-

struct Poisson structures Λ on M having symplectic leaves of dimension at most 2k

that have as Casimirs the given functions f1, f2, . . . , fm−2k. We start by discussing

the problem on even-dimensional manifolds. In the next subsection we extend the

results to odd-dimensional manifolds.

3.1 On Even-dimensional Manifolds

We suppose that dim M = 2n and begin our study with the following lemma.

Lemma 3.1 Given (M, f1, . . . , f2n−2k) with f1, . . . , f2n−2k functionally independent

almost everywhere on M, then there exists, at least locally, Λ0 ∈ V
2(M) with rankΛ0 =

2n such that 〈
d f1 ∧ · · · ∧ d f2n−2k, Λ

n−k
0

〉
6= 0.

Proof In fact, let p ∈ M and let U be an open neighborhood of p such that

f1, . . . , f2n−2k are functionally independent at each point x ∈ U . That means that

d f1 ∧ · · · ∧ d f2n−2k(x) 6= 0 on U . We select 1-forms β1, . . . , β2k on U so that

(d f1, . . . , d f2n−2k, β1, . . . , β2k) become a basis of the cotangent space at each point

of U . Let (Y1, . . . ,Y2n−2k,Z1, . . . ,Z2k) be a family of vector fields on U dual to

(d f1, . . . , d f2n−2k, β1, . . . , β2k). That is, they satisfy d fi(Y j) = δi j , βi(Z j) = δi j , and

all other pairings are zero. We consider the bivector field

Λ0 =

n−k∑

i=1

Y2i−1 ∧ Y2i +

k∑

j=1

Z2 j−1 ∧ Z2 j ,

which is of maximal rank on U . It is clear that

〈
d f1 ∧ · · · ∧ d f2n−2k,

Λ
n−k
0

(n − k)!

〉
= 1 6= 0.

Now consider (M, f1, . . . , f2n−2k) and a nondegenerate bivector field Λ0 on M

such that

(3.1) f =

〈
d f1 ∧ · · · ∧ d f2n−2k,

Λ
n−k
0

(n − k)!

〉
=

〈 ωn−k
0

(n − k)!
, X f1

∧ · · · ∧X f2n−2k

〉
6= 0

on an open and dense subset U of M. In (3.1), ω0 denotes the almost symplectic

form on M defined by Λ0, and X fi
= Λ#

0(d fi) are the hamiltonian vector fields of fi ,
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i = 1, . . . , 2n − 2k, with respect to Λ0. Let D = 〈X f1
, . . . ,X f2n−2k

〉 be the distribution

on M generated by X fi
, i = 1, . . . , 2n − 2k, D◦ its annihilator, and orthω0

D the

symplectic orthogonal of D with respect to ω0. Since det({ fi , f j}0
) = f 2 6= 0 on U,

Dx = D ∩ TxM is a symplectic subspace of TxM with respect to ω0x
at each point

x ∈ U. Thus, TxM = Dx ⊕ orthω0x
Dx = Dx ⊕ Λ#

0x
(D◦

x ), where D◦

x = D◦ ∩ T∗

x M and

T∗

x M = D◦

x ⊕ (Λ#
0x

(D◦

x ))◦ = D◦

x ⊕ 〈d f1, . . . , d f2n−2k〉x. Finally, we denote by σ the

smooth 2-form on M that corresponds, via the isomorphism Λ#
0, to an element Λ of

V
2(M).

Proposition 3.2 Under the above assumptions, a bivector field Λ on (M, ω0) of rank

at most 2k on M admits as unique Casimirs the functions f1, . . . , f2n−2k if and only if

its corresponding 2-form σ is a smooth section of
∧2

D◦ of maximal rank on U.

Proof Effectively, for any fi , i = 1, . . . , 2n − 2k,

(3.2) Λ(d fi , · ) = 0 ⇔ Λ
#
0(σ)(d fi, · ) = 0 ⇔ σ(X fi

,Λ#
0( · )) = 0.

Thus, f1, . . . , f2n−2k are the unique Casimir functions of Λ on U if and only if the

vector fields X f1
, . . . ,X f2n−2k

with functionally independent hamiltonians on U gen-

erate kerσ, i.e., for any x ∈ U, Dx = kerσ♭x. The last relation means that σ is a section

of
∧2

D◦ of maximal rank on U.

Still using the same notation, we can formulate the following main theorem.

Theorem 3.3 Let f1, . . . , f2n−2k be smooth functions on a 2n-dimensional differen-

tiable manifold M that are functionally independent almost everywhere, let ω0 be an

almost symplectic structure on M such that (3.1) holds on an open and dense subset U

of M, Ω = ωn
0/n! the corresponding volume form on M, and let σ be a section of

∧2
D◦

of maximal rank on U that satisfies (2.14). Then the (2n − 2)-form

(3.3) Φ = −
1

f

(
σ +

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
∧ d f1 ∧ · · · ∧ d f2n−2k,

where f is given by (3.1) and g = iΛ0
σ, corresponds, via the isomorphism Ψ−1, to

a Poisson tensor Λ with orbits of dimension at most 2k for which f1, . . . , f2n−2k are

Casimirs. Precisely, Λ = Λ#
0(σ) and the associated bracket of Λ on C∞(M) is given, for

any h1, h2 ∈ C∞(M), by

(3.4) {h1, h2}Ω = −
1

f
dh1 ∧dh2 ∧

(
σ+

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
∧d f1 ∧· · ·∧d f2n−2k.

Conversely, if Λ ∈ V2(M) is a Poisson tensor of rank 2k on an open and dense subset U

of M, then there are 2n − 2k functionally independent smooth functions f1, . . . , f2n−2k

on U and a section σ of
∧2

D◦ of maximal rank on U satisfying (2.14) such that ΨΛ

and { · , · } are given, respectively, by (3.3) and (3.4).
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Proof We denote by Ω̃ =
Λ

n
0

n!
the dual 2n-vector field of Ω on M, and we set Λ =

jΦΩ̃. For any fi , i = 1, . . . , 2n − 2k, we have

Λ
#(d fi) = − jd fi

Λ = − jd fi
jΦΩ̃ = − jd fi∧ΦΩ̃ = − j0Ω̃ = 0,

which means that f1, . . . , f2n−2k are Casimir functions of Λ. We shall see that Λ =

Λ#
0(σ). Thus, Λ will define a Poisson structure on M having the required properties.

We calculate the adjoint form ∗Φ of Φ relative to ω0:

∗Φ = −
1

f
∗
(

(σ +
g

k − 1
ω0) ∧

ωk−2
0

(k − 2)!
∧ d f1 · · · ∧ d f2n−2k

)

(2.10)
= −(−1)(2n−2k−1)(2n−2k)/2 1

f
iX f1

∧···∧X f2n−2k

[
∗
(

(σ +
g

k − 1
ω0) ∧

ωk−2
0

(k − 2)!

)]
.

But, from Lepage’s decomposition theorem, σ can be written as σ = ψ2 + ψ0ω0,

where ψ2 is an effective 2-form on M with respect to Λ0 and ψ0 =
iΛ0
σ

iΛ0
ω0

= − g
n

. It is

easy to check that

iΛ0
ω0 = −〈ω0,Λ0〉 = −

Tr(ω♭0 ◦ Λ
#
0)

2
= −

Tr(I2n)

2
= −n.

Hence,

(
σ +

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
=

(
ψ2 −

g

n
ω0 +

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!

= ψ2 ∧
ωk−2

0

(k − 2)!
+

n − k + 1

n
g
ωk−1

0

(k − 1)!

and

∗
((

σ +
g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!

)

= ∗
(
ψ2 ∧

ωk−2
0

(k − 2)!

)
+

n − k + 1

n
g
(
∗

ωk−1
0

(k − 1)!

)

(2.11)
= −ψ2 ∧

ωn−(k−2)−2
0

(n − (k − 2) − 2)!
+

n − k + 1

n
g

ωn−(k−1)
0

(n − (k − 1))!

= −(ψ2 −
g

n
ω0) ∧

ωn−k
0

(n − k)!
= −σ ∧

ωn−k
0

(n − k)!
.

(3.5)

Consequently,

∗Φ = −(−1)(2n−2k−1)(2n−2k)/2 1

f
iX f1

∧···∧X f2n−2k

[
−σ ∧

ωn−k
0

(n − k)!

]

(2.1)(3.2)
=

1

f

〈 ωn−k
0

(n − k)!
, X f1

∧ · · · ∧ X f2n−2k

〉
σ =

1

f
f σ = σ.

(3.6)
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By applying (2.13) to the above relation, we obtain

Λ
#
0(σ) = Λ

#
0(∗Φ) = Ψ

−1(Φ) = jΦΩ̃ = Λ.

Thus, according to Proposition 2.7, Λ defines a Poisson structure on M with orbits

of dimension at most 2k for which f1, . . . , f2n−2k are Casimir functions. Obviously,

the associated bracket of Λ on C∞(M) is given by (3.4). For any h1, h2 ∈ C∞(M),

{h1, h2} = jdh1∧dh2
Λ = jdh1∧dh2

jΦΩ̃ = jdh1∧dh2∧ΦΩ̃ ⇐⇒

{h1, h2}Ω = −
1

f
dh1 ∧ dh2 ∧

(
σ +

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
∧ d f1 ∧ · · · ∧ d f2n−2k.

Conversely, if Λ is a Poisson tensor on M with symplectic leaves of dimension

at most 2k, then in a neighborhood U of a nonsingular point there are coordinates

(z1, . . . , z2k, f1, . . . , f2n−2k) such that the symplectic leaves of Λ are defined by fl =

const, l = 1, . . . , 2n − 2k. Let Λ0 be a nondegenerate bivector field on U such that

f =

〈
d f1 ∧ · · · ∧ d f2n−2k :

Λ
n−k
0

(n − k)!

〉
6= 0

on U and let σ be the 2-form on U that corresponds, via the isomorphism Λ#
0, to

Λ. As we did earlier, we construct the distribution D on U and its annihilator D◦.

According to Propositions 3.2 and 2.7, σ is a section of
∧2

D◦ of maximal rank on U

satisfying (2.14). We will prove that the (2n − 2)-form ΨΛ = −iΛ#
0(σ)Ω = ∗σ, where

Ω =
ωn

0

n!
is the volume element on U defined by the almost symplectic form ω0, the

inverse of Λ0, can be written in the form (3.3).

Since (3.1) holds on U , Ω can be written on U as

Ω =
1

f

ωk
0

k!
∧ d f1 ∧ · · · ∧ d f2n−2k

and

ΨΛ = −iΛΩ = −
1

f

(
iΛ
ωk

0

k!

)
∧ d f1 ∧ · · · ∧ d f2n−2k.(3.7)

We now proceed to calculate the (2k− 2)-form −iΛ
ωk

0

k!
. We remark that

ωk
0

k!
= ∗

ωn−k
0

(n−k)!
.

So, from (2.10) we get that

(3.8) −iΛ
ωk

0

k!
= ∗

(
σ ∧

ωn−k
0

(n − k)!

)
.

Repeating the calculation of (3.5) in the inverse direction, we have

∗ (σ ∧
ωn−k

0

(n − k)!
) = − ∗ ∗

(
(σ +

g

k − 1
ω0) ∧

ωk−2
0

(k − 2)!

)

= −
(
σ +

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
.

(3.9)
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Therefore, by replacing (3.9) in (3.8) and the obtained relation in (3.7), we prove that

ΨΛ is given by the expression (3.3). Then it is clear that { · , · } is given by (3.4).

Remark 3.4 Theorem 3.3 can be generalized by replacing the exact 1-forms

d f1, . . . , d f2n−2k with 1-forms α1, . . . , α2n−2k that are linearly independent at each

point of an open and dense subset of M. It suffices to consider a nondegenerate

bivector Λ0 on M such that

f =

〈
α1 ∧ · · · ∧ α2n−2k,

Λ
n−k
0

(n − k)!

〉
6= 0

holds on an open and dense subset U of M and to construct the distribution D =

〈Xα1
, . . . ,Xα2n−2k

〉, Xαi
= Λ#

0(αi), and its annihilator D◦. Then to each section σ of∧2
D◦ of maximal rank on U corresponds a bivector Λ ∈ V

2(M) of rank at most 2k

whose kernel coincides with the space 〈α1, . . . , α2n−2k〉 almost everywhere on M and

its associated bracket on C∞(M) is given by

(3.10) {h1, h2}Ω = −
1

f
dh1 ∧dh2 ∧

(
σ+

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
∧α1 ∧· · ·∧α2n−2k,

ω0 being the almost symplectic structure on M defined by Λ0, g = iΛ0
σ, and Ω =

ωn
0

n!
.

3.2 On Odd-dimensional Manifolds

Let M be a (2n+1)-dimensional manifold. We remark that any Poisson tensorΛ on M

admitting f1, . . . , f2n+1−2k ∈ C∞(M) as Casimir functions can be viewed as a Poisson

tensor on M ′ = M × R admitting f1, . . . , f2n+1−2k and f2n+2−2k(x, s) = s (s being the

canonical coordinate on the factor R) as Casimir functions, and conversely. Thus, the

problem of construction of Poisson brackets on C∞(M) having as center the space

of functions generated by ( f1, . . . , f2n+1−2k) is equivalent to that of construction of

Poisson brackets on C∞(M ′) having as center the space of functions generated by

( f1, . . . , f2n+1−2k, s), a setting that was completely studied in Subsection 3.1. In what

follows, using the results of Subsection 3.1., we establish a formula analogous to (3.4)

for Poisson brackets on odd-dimensional manifolds. But before we proceed, let us

recall the notion of almost cosymplectic structures on M and some of their properties

[19, 22].

An almost cosymplectic structure on a smooth manifold M, with dim M = 2n + 1,

is defined by a pair (ϑ0,Θ0) ∈ Ω1(M) × Ω2(M) such that ϑ0 ∧ Θn
0 6= 0 everywhere

on M. The last condition means that ϑ0 ∧Θn
0 is a volume form on M and that Θ0 is

of constant rank 2n on M. Thus, kerϑ0 and kerΘ0 are complementary subbundles

of TM called, respectively, the horizontal bundle and the vertical bundle. Of course,

their annihilators are complementery subbundles of T∗M. Moreover, it is well known

[22] that (ϑ0,Θ0) gives rise to a transitive almost Jacobi structure (Λ0, E0) ∈ V
2(M)×

V
1(M) on M such that

iE0
ϑ0 = 1 and iE0

Θ0 = 0,

Λ
#
0(ϑ0) = 0 and iΛ#

0(ζ)Θ0 = −(ζ − 〈ζ, E0〉ϑ0), for all ζ ∈ Ω
1(M).
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We have, kerϑ0 = ImΛ#
0 and kerΘ0 = 〈E0〉. So, TM = ImΛ#

0 ⊕ 〈E0〉 and T∗M =

〈E0〉
◦ ⊕ 〈ϑ0〉. The sections of 〈E0〉

◦ are called semi-basic forms and Λ#
0 is an iso-

morphism from the C∞(M)-module of semi-basic 1-forms to the C∞(M)-module

of horizontal vector fields. This isomorphism can be extended, as in (2.6), to an iso-

morphism, also denoted by Λ#
0, from the C∞(M)-module of semi-basic p-forms on

the C∞(M)-module of horizontal p-vector fields. Finally, we note that (ϑ0,Θ0) de-

termines on M ′ = M × R an almost symplectic structure ω ′

0 = Θ0 + ds ∧ ϑ0 whose

corresponding nondegenerate bivector field is Λ ′

0 = Λ0 + ∂
∂s
∧ E0.

Now, we consider (M, f1, . . . , f2n+1−2k), with f1, . . . , f2n+1−2k functionally inde-

pendent almost everywhere on M, and an almost cosymplectic structure (ϑ0,Θ0)

on M whose associated nondegenerate almost Jacobi structure (Λ0, E0) verifies the

condition

(3.11) f =

〈
d f1 ∧ · · · ∧ d f2n+1−2k, E0 ∧

Λ
n−k
0

(n − k)!

〉
6= 0

on an open and dense subset U of M.4 Let ω ′

0 = Θ0 + ds ∧ ϑ0 and Λ ′

0 = Λ0 + ∂
∂s
∧ E0

be the associated tensors on M ′ = M × R. Since, for any m = 1, . . . , n + 1,

(3.12)
ω ′

0
m

m!
=

Θm
0

m!
+ds∧ϑ0∧

Θ
m−1
0

(m − 1)!
and

Λ ′

0
m

m!
=

Λm
0

m!
+
∂

∂s
∧E0∧

Λ
m−1
0

(m − 1)!
,

it is clear that

〈
d f1 ∧ · · · ∧ d f2n+1−2k ∧ ds,

Λ ′

0
n+1−k

(n + 1 − k)!

〉

=

〈
d f1 ∧ · · · ∧ d f2n+1−2k ∧ ds,

Λ
n+1−k
0

(n + 1 − k)!
+
∂

∂s
∧ E0 ∧

Λ
n−k
0

(n − k)!

〉

=

〈
d f1 ∧ · · · ∧ d f2n+1−2k ∧ ds,

∂

∂s
∧ E0 ∧

Λ
n−k
0

(n − k)!

〉
= − f 6= 0

(3.13)

on the open and dense subset U ′ = U×R of M ′. Furthermore, we view any bivector

field Λ on (M, ϑ0,Θ0), having as Casimirs the given functions, as a bivector field

on (M ′, ω ′

0), having f1, . . . , f2n+1−2k and f2n+2−2k(x, s) = s as Casimirs. Let D ′◦ be

the annihilator of the distribution D ′ = 〈X ′

f1
, . . . ,X ′

f2n+2−2k
〉 on M ′ generated by the

hamiltonian vector fields

X ′

fi
= Λ

′#
0 (d fi) = Λ

#
0(d fi) − 〈d fi , E0〉

∂

∂s
, i = 1, . . . , 2n + 1 − 2k,

X ′

f2n+2−2k
= Λ

′#
0 (ds) = E0

of f1, . . . , f2n+1−2k and f2n+2−2k(x, s) = s with respect to Λ ′

0. Then, from Proposition

3.2, we get that there exists a unique 2-form σ ′ on M ′ that is a section of
∧2

D ′◦

4As in the case of even-dimensional manifolds, such a structure (Λ0, E0) always exists at least locally.
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of maximal rank 2k on U ′ = U × R, such that Λ = Λ ′#
0 (σ ′). Moreover, since Λ is

independent of s and without a term of type X ∧ ∂
∂s

, σ ′ must be of type

(3.14) σ ′
= σ + τ ∧ ds,

where σ and τ are, respectively, a 2-form and a 1-form on M having the following

additional properties:

(i) σ is a section
∧2

〈E0〉
◦, i.e., σ is a semi-basic 2-form on M with respect to

(Λ0, E0);

(ii) τ is a section of D◦ = 〈X f1
, . . . ,X f2n+1−2k

, E0〉
◦, where X fi

= Λ#
0(d fi), i.e., τ

is a semi-basic 1-form on (M,Λ0, E0) which is also semi-basic with respect to

X f1
, . . . ,X f2n+1−2k

;

(iii) for any fi , i = 1, . . . , 2n + 1 − 2k, σ(X fi
, · ) + 〈d fi , E0〉τ = 0.

Consequently, Λ is written, in an unique way, as Λ = Λ#
0(σ) + Λ#

0(τ ) ∧ E0.

Summarizing, we may formulate the next proposition.

Proposition 3.5 Under the above notations and assumptions, a bivector field Λ on

(M, ϑ0,Θ0), of rank at most 2k, has as unique Casimirs the functions f1, . . . , f2n+1−2k

if and only if its corresponding pair of forms (σ, τ ) has the properties (i)–(iii) and

(rankσ, rank τ ) = (2k, 0) or (2k, 1) or (2k − 2, 1) on U.

On the other hand, it follows from Theorem 3.3 that the bracket { · , · } of Λ on

C∞(M) is calculated, for any h1, h2 ∈ C∞(M), viewed as elements of C∞(M ′), by

the formula

{h1, h2}Ω
′ (3.13)

=
1

f
dh1∧dh2∧

(
σ ′ +

g ′

k − 1
ω ′

0

)
∧
ω ′

0
k−2

(k − 2)!
∧d f1∧· · ·∧d f2n+1−2k∧ds,

where Ω ′ =
ω ′

0
n+1

(n+1)!
and g ′ = iΛ ′

0
σ ′. But, Ω ′ (3.12)

= −Ω ∧ ds, Ω = ϑ0 ∧
Θ

n
0

n!
being a

volume form on M, and g ′ = iΛ ′

0
σ ′ = iΛ0+∂/∂s∧E0

(σ + τ ∧ ds) = iΛ0
σ = g. Thus,

taking into account (3.12) and (3.14), we have

{h1, h2}Ω∧ds = −
1

f
dh1∧dh2∧

(
σ+

g

k − 1
Θ0

)
∧

Θ
k−2
0

(k − 2)!
∧d f1∧· · ·∧d f2n+1−2k∧ds,

which is equivalent to

{h1, h2}Ω = −
1

f
dh1 ∧ dh2 ∧

(
σ +

g

k − 1
Θ0

)
∧

Θ
k−2
0

(k − 2)!
∧ d f1 ∧ · · · ∧ d f2n+1−2k.

However, according to Proposition 2.7, { · , · } is a Poisson bracket on C∞(M) ⊂
C∞(M ′) if and only if

(3.15) 2σ ′ ∧ δ ′(σ ′) = δ ′(σ ′ ∧ σ ′),

where δ ′ = ∗ ′d ∗ ′ is the codifferential on Ω(M ′) of (M ′, ω ′

0) defined by the iso-

morphism ∗ ′ : Ωp(M ′) → Ω2n+2−p(M ′) of (2.8). We want to translate (3.15) to a
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condition on (σ, τ ). Let Ω
p
sb(M) be the space of semi-basic p-forms on (M,Λ0, E0),

let ∗ be the isomorphism between Ω
p
sb(M) and Ω

2n−p
sb (M) given, for any ϕ ∈ Ω

p
sb(M),

by

∗ϕ = (−1)(p−1)p/2iΛ#
0(ϕ)

Θn
0

n!
,

let dsp : Ω
p
sb(M) → Ω

p+1
sb (M) be the operator that corresponds to each semi-basic

form ϕ the semi-basic part of its differential dϕ, and let δ = ∗ dsb ∗ be the associated

“codifferential” operator on Ωsb(M) =
⊕

p∈Z
Ω

p
sb(M). By a straightforward, but

long, computation, we show that (3.15) is equivalent to the system

(3.16)

{
2σ ∧ δ(σ) = δ(σ ∧ σ)

δ(σ ∧ τ ) + δ(σ) ∧ τ − σ ∧ δ(τ ) = (iΛ#
0(dϑ0)σ)σ − 1

2
iΛ#

0(dϑ0)(σ ∧ σ).

Hence, we deduce the following proposition.

Proposition 3.6 Under the above assumptions and notations, Λ = Λ#
0(σ)+Λ#

0(τ )∧E0

defines a Poisson structure on (M, ϑ0,Θ0) if and only if (σ, τ ) satisfies (3.16).

Concluding, we can announce the following theorem.

Theorem 3.7 Let f1, . . . , f2n+1−2k be smooth functions on a (2n + 1)-dimensional

smooth manifold M that are functionally independent almost everywhere, let (ϑ0,Θ0)

be an almost cosymplectic structure on M such that (3.11) holds on an open and dense

subset U of M, let Ω = ϑ0 ∧
Θ

n
0

n!
be the corresponding volume form on M, and let

(σ, τ ) be an element of Ω2
sb(M)×Ω1

sb(M), with (rankσ, rank τ ) = (2k, 0) or (2k, 1) or

(2k − 2, 1) on U, that has the properties (ii)–(iii) and satisfies (3.16). Then the bracket

{ · , · } on C∞(M) given, for any h1, h2 ∈ C∞(M), by

(3.17) {h1, h2}Ω = −
1

f
dh1∧dh2∧

(
σ+

g

k − 1
Θ0

)
∧

Θ
k−2
0

(k − 2)!
∧d f1∧· · ·∧d f2n+1−2k,

where f is that of (3.11) and g = iΛ0
σ, defines a Poisson structure Λ on M, Λ = Λ#

0(σ)+

Λ#
0(τ ) ∧ E0, with symplectic leaves of dimension at most 2k for which f1, . . . , f2n+1−2k

are Casimirs. The converse is also true.

Remark 3.8 We remark that, in both cases (of even dimension m = 2n and of odd

dimension m = 2n + 1), when k = 1, the brackets (3.4) and (3.17) are reduced to a

bracket of type (1.2). Precisely,

{h1, h2}Ω = −
g

f
dh1 ∧ dh2 ∧ d f1 ∧ · · · ∧ d fm−2.

4 Some Examples

4.1 Dirac Brackets

Let (M, ω0) be a symplectic manifold of dimension 2n, let Λ0 be its associated Poisson

structure, and let f1, . . . , f2n−2k be smooth functions on M whose the differentials are
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linearly independent at each point of the submanifold M0 of M defined by the equa-

tions f1(x) = 0, . . . , f2n−2k(x) = 0. We assume that the matrix
(
{ fi , f j}0

)
is invert-

ible on an open neighborhood W of M0 in M and we denote by ci j the coefficients of

its inverse matrix which are smooth functions on W such that
∑2n−2k

j=1 { fi , f j}0
c jk =

δik. We consider on W the 2-form

(4.1) σ = ω0 +
∑

i< j

ci jd fi ∧ d f j .

We will prove that it is a section of
∧2

D◦ of maximal rank on W that verifies (2.14).

As in Subsection 3.1, D denotes the subbundle of TM generated by the hamiltonian

vector fields X fi
of fi , i = 1, . . . , 2n − 2k, with respect to Λ0 and D◦ its annihilator.

For any X fl
, l = 1, . . . , 2n − 2k, we have

σ(X fl
, · ) = ω0(X fl

, · ) +
∑

i< j

ci j〈d fi ,X fl
〉d f j −

∑

i< j

ci j〈d f j ,X fl
〉d fi

= −d fl +
∑

i< j

ci j{ fl, fi}0
d f j −

∑

i< j

ci j{ fl, f j}0
d fi

= −d fl +
∑

j

δl jd f j = −d fl + d fl = 0,

which means that σ is a section of
∧2

D◦ → W. The assumption that
(
{ fi , f j}0

)

is invertible ensures that D is a symplectic subbundle of TWM. So, for any x ∈ W,

T∗

x M = D◦

x ⊕ 〈d f1, . . . , d f2n−2k〉x, and

2∧
T∗

x M =

2∧
D◦

x +

2∧
〈d f1, . . . , d f2n−2k〉x + D◦

x ∧ 〈d f1, . . . , d f2n−2k〉x.

But, ω0 is a nondegenerate section of
∧2

T∗M and the part
∑

i< jci jd fi ∧ d f j of σ is a

smooth section of
∧2

〈d f1, . . . , d f2n−2k〉 of maximal rank on W, because det(ci j) 6= 0

on W. Thus, σ is of maximal rank on W. Also, we have

g = iΛ0
σ = −

〈
ω0 +

∑

i< j

ci jd fi ∧ d f j ,Λ0

〉
= −n −

∑

i< j

ci j{ fi , f j}0

= −n + (n − k) = −k,

and

∗σ
(3.6)(3.3)
= −

1

f

(
σ +

g

k − 1
ω0

)
∧

ωk−2
0

(k − 2)!
∧ d f1 ∧ · · · ∧ d f2n−2k

= −
1

f
(ω0 +

∑

i< j

ci jd fi ∧ d f j −
k

k − 1
ω0) ∧

ωk−2
0

(k − 2)!
∧ d f1 ∧ · · · ∧ d f2n−2k

=
1

f

ωk−1
0

(k − 1)!
∧ d f1 ∧ · · · ∧ d f2n−2k.

(4.2)
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Consequently,

δσ = (∗ d ∗)σ
(4.2)
= ∗

(
−

d f

f
∧ (∗σ)

)
(2.10)
= −

1

f
iX f
σ

and

(4.3) 2σ ∧ δ(σ) = −
2

f
σ ∧ (iX f

σ) = −
1

f
iX f

(σ ∧ σ).

On the other hand,

∗ (σ ∧ σ)
(2.10)
= −iΛ#

0(σ)(∗σ)
(4.2)
= −

1

f

(
iΛ#

0(σ)

ωk−1
0

(k − 1)!

)
∧ d f1 ∧ · · · ∧ d f2n−2k

(3.8)
=

1

f

[
∗
(
σ ∧

ωn−k+1
0

(n − k + 1)!

)]
∧ d f1 ∧ · · · ∧ d f2n−2k

(3.5)(4.1)
= −

1

f

(
ω0 +

∑

i< j

ci jd fi ∧ d f j −
k

k − 2
ω0

)
∧

ωk−3
0

(k − 3)!

∧ d f1 ∧ · · · ∧ d f2n−2k

=
2

f
∧

ωk−3
0

(k − 3)!
∧ d f1 ∧ · · · ∧ d f2n−2k

(4.4)

and

(4.5) δ(σ ∧ σ) = ∗ d ∗ (σ ∧ σ)
(4.4)
= ∗

(
−

d f

f
∧ ∗ (σ ∧ σ)

)
(2.10)
= −

1

f
iX f

(σ ∧ σ).

From (4.3) and (4.5) we conclude that σ verifies (2.14). Thus, according to Theo-

rem 3.3, the bivector field

Λ = Λ
#
0(σ) = Λ0 +

∑

i< j

ci jX fi
∧ X f j

defines a Poisson structure on W whose corresponding bracket { · , · } on C∞(W,R)

is given, for any h1, h2 ∈ C∞(W,R), by

(4.6) {h1, h2}Ω =
1

f
dh1 ∧ dh2 ∧

ωk−1
0

(k − 1)!
∧ d f1 ∧ · · · ∧ d f2n−2k.

In the above expression of Λ we recognize the Poisson structure defined by Dirac [9]

on an open neighborhood W of the constrained submanifold M0 of M, and in (4.6),

we see the expression of the Dirac bracket given in [13].
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4.2 Nonholonomic Systems

Let Q be the configuration space of a Lagrangian system with Lagrangian function

L : TQ → R, subjected to nonholonomic homogeneous constraints defined by a

distribution C ⊂ TQ on Q. In a local coordinate system (q1, . . . , qn, q̇1, . . . , q̇n) of

TQ, C is described by the independent equations

(4.7) ζ i
s (q)q̇s

= 0, 5 i = 1, . . . , n − k,

where ζ i
s , s = 1, . . . , n, are smooth functions on Q, and the equations of motion of

the nonholonomic system are given by

(4.8)
d

dt

( ∂L

∂q̇s

)
−
∂L

∂qs
= λiζ

i
s , s = 1, . . . , n,

(λi being the Lagrangian multipliers) together with the constraint equations (4.7).

We now turn to the Hamiltonian formulation of our system on the cotangent bun-

dle T∗Q of Q. We suppose that T∗Q is equipped with the standard, nondegenerate,

Poisson structure Λ0 =
∂
∂ps

∧ ∂
∂qs associated with the symplectic form ω0 = dps ∧dqs.

Let

L : TQ → T∗Q, (qs, q̇s) 7→
(

qs, ps =
∂L

∂q̇s

)
,

be the Legendre transformation associated with L. Assuming that L is regular, we have

that L is a diffeomorphism that maps the equations of motion (4.8) to the system

q̇s
=
∂H

∂ps

ṗs = −
∂H

∂qs
+ λiζ

i
s , s = 1, . . . , n,

(4.9)

where H : T∗Q → R is the Hamiltonian given by H = (q̇s ∂L
∂q̇s − L) ◦ L−1, and the

constraint distribution C to the constraint submanifold M of T∗Q, which is defined

by the equations

f i(q, p) = ζ i
s (q)

∂H

∂ps

= 0, i = 1, . . . , n − k.

Also, the regularity assumption on L implies that, at each point (q, p) ∈ M, T(q,p)T
∗Q

splits into a direct sum of symplectic subspace and that the matrix

C = (Ci j) =
(
Λ0(d f i , q∗ζ j)

)
=

(
ζ i

s

∂2H

∂ps∂pt

ζ
j

t

)
,

which is symmetric, is invertible on M. Precisely,

T(q,p)T
∗Q = T(q,p)M⊕ Z,

5In this subsection, the Einstein convention of sum over repeated indices holds.
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where Z ⊂ TT∗Q is the distribution on T∗Q spanned by the vector fields

Zi
= ζ i

s

∂

∂ps

= Λ
#
0(−q∗ζ i),

where ζ i = ζ i
s (q)dqs, i = 1, . . . , n−k, are the constraint 1-forms on Q and q : T∗Q →

Q is the canonical projection. Hence, in view of (4.9), the Hamiltonian vector field

XH = Λ#
0(dH) admits, along M, the decomposition XH = Xnh−λiZ

i . The part Xnh is

tangent to M and λiZ
i lies on Z, along M. According to the results of [3, 24, 30], the

dynamical equations of Xnh on M are expressed in Hamiltonian form with respect to

the restriction { · , · }Mnh on C∞(M) of the bracket { · , · }nh given, for any H1,H2 ∈
C∞(T∗Q), by

(4.10) {H1,H2}nh = {H1,H2}0
+ Clm{ f l,H1}0

〈dH2,Z
m〉

− Clm{ f l,H2}0
〈dH1,Z

m〉 + Ci j{ f j , f l}
0
Clm〈dH1,Z

i〉〈dH2,Z
m〉,

where { · , · }
0

is the bracket of Λ0 on C∞(T∗Q) and
(
Ci j

)
is the inverse matrix of C.

In other words, for functions h1, h2 ∈ C∞(M), the value of {h1, h2}
M

nh is equal to the

value of {H1,H2}nh along M, where H1 and H2 are, respectively, arbitrary smooth

extensions of h1 and h2 on T∗Q. We will show that (4.10) holds, and so { · , · }Mnh can

be calculated by (3.10).

We remark that

Λnh = Λ0 + ClmX f l ∧ Zm +
1

2
Ci j{ f j , f l}

0
ClmZi ∧ Zm,

where X f l = Λ#
0(d f l) is the bivector field on T∗Q associated with (4.10) whose the

kernel along M coincides with the space 〈d f 1, . . . , d f n−k, q∗ζ1, . . . , q∗ζn−k〉|M. In

fact,

Λnh(d f s) = X f s + Clm{ f l, f s}
0
Zm − Clm〈d f s,Zm〉X f l

+
1

2
Ci j{ f j , f l}

0
Clm〈d f s,Zi〉Zm −

1

2
Ci j{ f j , f l}

0
Clm〈d f s,Zm〉Zi

= X f s + Clm{ f l, f s}
0
Zm − ClmC

smX f l

+
1

2
Ci j{ f j , f l}

0
ClmC

siZm −
1

2
Ci j{ f j , f l}

0
ClmC

smZi

= X f s + Clm{ f l, f s}
0
Zm − X f s +

1

2
{ f s, f l}

0
ClmZm −

1

2
Ci j{ f j , f s}

0
Zi

= 0

and

Λnh(q∗ζ s) = Λ
#
0(q∗ζ s) + Clm〈q∗ζ s,X f l〉Zm

= −Zs + ClmC
lsZm

= −Zs + Zs
= 0,
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while rankΛnh = 2k everywhere on M [30]. On the other hand, Λnh can be viewed

as the image, via the isomorphism Λ#
0, of the 2-form

σ = ω0 − Clmd f l ∧ q∗ζm +
1

2
Ci j{ f j , f l}

0
Clmq∗ζ i ∧ q∗ζm

on T∗Q with rankσ = 2k on M. Also,

f =

〈
d f 1 ∧ · · · ∧ d f n−k ∧ q∗ζ1 ∧ · · · ∧ q∗ζn−k,

Λ
n−k
0

(n − k)!

〉
6= 0

on M, because f 2 = det J = detC2 6= 0 on M, where

J =

(
{ f i , f j}

0
Λ0(d f i , q∗ζ j)

Λ0(q∗ζ i , d f j) Λ0(q∗ζ i , q∗ζ j)

)
=

(
{ f i , f j}

0
C

−C 0

)

and

g = iΛ0
σ = −

〈
ω0 − Clmd f l ∧ q∗ζm +

1

2
Ci j{ f j , f l}

0
Clmq∗ζ i ∧ q∗ζm, Λ0

〉

= −(n − ClmC
lm) = −n + (n − k) = −k.

Hence, we can apply (3.10) for the calculation of { · , · }nh on C∞(T∗Q) and, by

restriction, on C∞(M). For any H1,H2 ∈ C∞(T∗Q),

{H1,H2}nhΩ =
1

f
dH1 ∧ dH2 ∧

ωk−1
0

(k − 1)!
∧ d f 1 ∧ · · · ∧ d f n−k ∧ q∗ζ1 ∧ · · · ∧ q∗ζn−k,

where Ω =
ωn

0

n!
is the corresponding volume element on T∗Q.

Remark 4.1 Without doubt, Λnh is Poisson if and only if σ satisfies (2.14). But,

Van der Schaft and Maschke [30] proved that { · , · }nh satisfies the Jacobi identity if

and only if the constraints (4.7) are holonomic. Hence, we conclude that σ satisfies

(2.14) if and only if the constraint distribution C is completely integrable. These facts

have an interesting geometric interpretation observed by Koon and Marsden [15]; the

vanishing of the Schouten bracket [Λnh,Λnh] is equivalent with the vanishing of the

curvature of an Ehresmann connection associated with the constraint distribution C .

4.3 Periodic Toda and Volterra Lattices

In this paragraph we study the linear Poisson structure Λ
T

associated with the peri-

odic Toda lattice of n particles. This Poisson structure has two well-known Casimir

functions. Using Theorem 3.3 we construct another Poisson structure having the

same Casimir invariants as Λ
T
. It turns out that this structure decomposes as a direct

sum of two Poisson tensors one of which (involving only the a variables in Flaschka’s

coordinates) is the quadratic Poisson bracket of the Volterra lattice (also known as

https://doi.org/10.4153/CJM-2011-082-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-082-2


1012 P. A. Damianou and F. Petalidou

the KM-system). It agrees with the general philosophy (see [6]) that one obtains the

Volterra lattice from the Toda lattice by restricting to the a variables.

The periodic Toda lattice of n particles (n ≥ 2) is the system of ordinary differen-

tial equations on R
2n that in Flaschka’s [11] coordinate system (a1, . . . , an, b1, . . . , bn)

takes the form

ȧi = ai(bi+1 − bi) and ḃi = 2(a2
i − a2

i−1) (i ∈ Z and (ai+n, bi+n) = (ai , bi)).

This system is hamiltonian with respect to the nonstandard Lie-Poisson structure

ΛT =

n∑

i=1

ai
∂

∂ai

∧
( ∂

∂bi

−
∂

∂bi+1

)

on R
2n, and it has as hamiltonian the function H =

∑n
i=1(a2

i + 1
2
b2

i ). The structure

ΛT is of rank 2n − 2 on

U =

{
(a1, . . . , an, b1, . . . , bn) ∈ R

2n
∣∣∣

n∑

i=1

a1 . . . ai−1ai+1 . . . an 6= 0
}
,

and it admits two Casimir functions:

C1 = b1 + b2 + · · · + bn and C2 = a1a2 . . . an.

We consider on R
2n the standard symplectic form ω0 =

∑n
i=1 dai ∧ dbi , its asso-

ciated Poisson tensor Λ0 =
∑n

i=1
∂
∂ai

∧ ∂
∂bi

, and the corresponding volume element

Ω = ωn
0/n! = da1 ∧ db1 ∧ · · · ∧ dan ∧ dbn. The hamiltonian vector fields of C1 and

C2 with respect to Λ0 are

X
C1

= −

n∑

i=1

∂

∂ai

and X
C2

=

n∑

i=1

a1 . . . ai−1ai+1 . . . an
∂

∂bi

.

So, D = 〈X
C1
,X

C2
〉 and

D◦
=

{ n∑

i=1

(αidai + βidbi) ∈ Ω
1(R

2n)
∣∣∣

n∑

i=1

αi = 0

and

n∑

i=1

a1 . . . ai−1βiai+1 . . . an = 0
}
.

The family of 1-forms (σ1, . . . , σn−1, σ
′

1, . . . , σ
′

n−1),

σ j = da j − da j+1 and σ ′

j = a jdb j − a j+1db j+1, j = 1, . . . , n − 1,
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provides, at every point (a, b) ∈ U, a basis of D◦

(a,b). The section of maximal rank

σ
T

of
∧2

D◦ → U, which corresponds to ΛT , via the isomorphism Λ#
0, and verifies

(2.14), is written in this basis as

σ
T
=

n−1∑

j=1

σ j ∧
( n−1∑

l= j

σ ′

l

)
.

Now, we consider on R
2n the 2-form

σ =

n−2∑

j=1

σ j ∧
( n−1∑

l= j+1

σl

)
+

n−2∑

j=1

σ ′

j ∧
( n−1∑

l= j+1

σ ′

l

)

=

n−2∑

j=1

[
(da j − da j+1) ∧ (da j+1 − dan)

+ (a jdb j − a j+1db j+1) ∧ (a j+1db j+1 − andbn)
]

=

n∑

j=1

(
da j ∧ da j+1 + a ja j+1db j ∧ db j+1

)
.

It is a section of
∧2

D◦ whose rank depends on the parity of n; if n is odd, its rank is

2n − 2 on U, while, if n is even, its rank is 2n − 4 almost everywhere on R
2n. Also,

after a long computation, we can confirm that it satisfies (2.14). Thus, its image via

Λ#
0, i.e., the bivector field

(4.11) Λ =

n∑

j=1

(
a ja j+1

∂

∂a j

∧
∂

∂a j+1
+

∂

∂b j

∧
∂

∂b j+1

)
,

defines a Poisson structure on R
2n with symplectic leaves of dimension at most 2n−2,

when n is odd, that has C1 and C2 as Casimir functions. (When n is even, Λ has two

more Casimir functions.) We remark that (R
2n,Λ) can be viewed as the product of

Poisson manifolds (R
n,Λ

V
) × (R

n,Λ ′), where

Λ
V
=

n∑

j=1

a ja j+1
∂

∂a j

∧
∂

∂a j+1
and Λ

′
=

n∑

j=1

∂

∂b j

∧
∂

∂b j+1
.

The Poisson tensor Λ
V

is the quadratic bracket of the periodic Volterra lattice on R
n,

and it has C2 as unique Casimir function when n is odd.

In the following, using (3.4), we illustrate the explicit formulæ of the brackets of

Λ
T

and Λ in the special case n = 3. We have C1 = b1 + b2 + b3, C2 = a1a2a3, k = 2,

Λ0 =
∑3

i=1
∂
∂ai

∧ ∂
∂bi

, and Ω = da1 ∧ db1 ∧ da2 ∧ db2 ∧ da3 ∧ db3. Consequently,

f = 〈dC1 ∧ dC2, Λ0〉 = −(a1a2 + a2a3 + a1a3), which is a nonvanishing function

on U.

https://doi.org/10.4153/CJM-2011-082-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-082-2


1014 P. A. Damianou and F. Petalidou

For the periodic Toda lattice of 3 particles, we have σ
T
= (da1 − da2) ∧ (a1db1 −

a3db3) + (da2 − da3) ∧ (a2db2 − a3db3), g
T
= iΛ0

σ
T
= −(a1 + a2 + a3) and

Φ
T
= −

1

f
(σ

T
+ g

T
ω0) ∧ dC1 ∧ dC2

= −a1db1 ∧ da2 ∧ da3 ∧ db3 + a1da2 ∧ db2 ∧ da3 ∧ db3

+ a2da1 ∧ db1 ∧ da3 ∧ db3

− a2da1 ∧ db1 ∧ db2 ∧ da3 + a3da1 ∧ da2 ∧ db2 ∧ db3

+ a3da1 ∧ db1 ∧ da2 ∧ db2.

Thus,

{a1, b1}T
Ω = da1 ∧ db1 ∧ Φ

T
= a1Ω, {a1, b2}T

Ω = da1 ∧ db2 ∧ Φ
T
= −a1Ω,

{a2, b2}T
Ω = da2 ∧ db2 ∧ Φ

T
= a2Ω, {a2, b3}T

Ω = da2 ∧ db3 ∧ Φ
T
= −a2Ω,

{a3, b3}T
Ω = da3 ∧ db3 ∧ Φ

T
= a3Ω, {a3, b1}T

Ω = da3 ∧ db1 ∧ Φ
T
= −a3Ω,

and all other brackets are zero.

For the Poisson structure (4.11) on R
6, we have σ = (da1 − da2) ∧ (da2 − da3) +

(a1db1 − a2db2) ∧ (a2db2 − a3db3), g = iΛ0
σ = 0 and

Φ = −
1

f
σ ∧ dC1 ∧ dC2

= −a1a2db1 ∧ db2 ∧ da3 ∧ db3 + a1a3db1 ∧ da2 ∧ db2 ∧ db3

− a2a3da1 ∧ db1 ∧ db2 ∧ db3

− da1 ∧ db1 ∧ da2 ∧ da3 − da1 ∧ da2 ∧ da3 ∧ db3

+ da1 ∧ da2 ∧ db2 ∧ da3.

Thus,

{a1, a2}Ω = da1 ∧ da2 ∧ Φ = a1a2Ω, {a1, a3}Ω = da1 ∧ da3 ∧ Φ = −a1a3Ω,

{a2, a3}Ω = da2 ∧ da3 ∧ Φ = a2a3Ω, {b1, b2}Ω = db1 ∧ db2 ∧ Φ = Ω,

{b1, b3}Ω = db1 ∧ db3 ∧ Φ = −Ω, {b2, b3}Ω = db2 ∧ db3 ∧ Φ = Ω,

and all other brackets are zero.

4.4 A Lie-Poisson Bracket on gl(3,R)

On the 9-dimensional space gl(3,R) of 3 × 3 matrices



x1 z2 y3

y1 x2 z3

z1 y2 x3


 ,

https://doi.org/10.4153/CJM-2011-082-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-082-2


Poisson Brackets with Prescribed Casimirs 1015

which is isomorphic to R
9, we consider the functions

C1(x, y, z) = x1 + x2 + x3, C2(x, y, z) = y1z2 + y2z3 + y3z1, C3(x, y, z) = z1z2z3.

Using Theorem 3.7, we are able to construct a linear Poisson structure Λ on gl(3,R),

with sysmplectic leaves of dimension at most 6, having C1, C2, and C3 as Casimir

functions. For this, we consider on gl(3,R) ∼= R
9 the cosymplectic structure

(ϑ0,Θ0),

ϑ0 = dz3 and Θ0 = dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3 + dz1 ∧ dz2,

whose corresponding transitive Jacobi structure (Λ0, E0) is

Λ0 =
∂

∂x1
∧

∂

∂y1
+

∂

∂x2
∧

∂

∂y2
+

∂

∂x3
∧

∂

∂y3
+

∂

∂z1
∧

∂

∂z2
and E0 =

∂

∂z3
.

Clearly,

f = 〈dC1 ∧ dC2 ∧ dC3, E0 ∧ Λ0〉 = −z1z2
2 − z2

1z2 − z1z2z3

is nonzero on the open and dense subset

U = {(x, y, z) ∈ R
9 | z1z2

2 + z2
1z2 + z1z2z3 6= 0}

of gl(3,R) ∼= R
9 and

Ω = ϑ0 ∧Θ
4
0 = dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3 ∧ dz1 ∧ dz2 ∧ dz3

is a volume form of gl(3,R). Furthermore, we consider on gl(3,R) the pair of semi-

basic forms (σ, τ ),

σ = −z1dx1 ∧ dx2 − z2dx2 ∧ dx3 + z3dx1 ∧ dx3 − y1dx1 ∧ dy1 + y1dx1 ∧ dy2

− y2dx2 ∧ dy2 + y2dx2 ∧ dy3 − y3dx3 ∧ dy3 + y3dx3 ∧ dy1

− z2dy1 ∧ dz1 − z1dy1 ∧ ∧dz2 + z2dy2 ∧ dz1 + z1dy3 ∧ dz2

and

τ = −z3dy2 + z3dy3,

which has the properties (ii)–(iii) and verifies the system (3.16). Thus, the bracket

{ · , · } on C∞(gl(3,R)) given by (3.17) defines a Poisson structure Λ on gl(3,R). We
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have g = iΛ0
σ = y1 + y2 + y3 and

Φ = −
1

f
(σ +

g

2
Θ0) ∧Θ0 ∧ dC1 ∧ dC2 ∧ dC3

= z1dx1 ∧ dy1 ∧ dx2 ∧ dy2 ∧ dy3 ∧ dz2 ∧ dz3

− z1dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3 ∧ dz2 ∧ dz3

− z1dx1 ∧ dx2 ∧ dx3 ∧ dy3 ∧ dz1 ∧ dz2 ∧ dz3

− z2dx1 ∧ dy1 ∧ dx2 ∧ dx3 ∧ dz1 ∧ dz2 ∧ dz3

− z2dy1 ∧ dx2 ∧ dy2 ∧ dx3 ∧ dy3 ∧ dz1 ∧ dz3

+ z2dy1 ∧ dz1 ∧ dx3 ∧ dy3 ∧ dz3 ∧ dy2 ∧ dx1

− y1dx3 ∧ dy3 ∧ dz1 ∧ dz2 ∧ dz3 ∧ dy2 ∧ dx2

− y3dy1 ∧ dz1 ∧ dx2 ∧ dy2 ∧ dz3 ∧ dz2 ∧ dx3

− y1dx1 ∧ dy2 ∧ dz1 ∧ dz2 ∧ dz3 ∧ dy3 ∧ dx3

− z3dy2 ∧ dz1 ∧ dx1 ∧ dy1 ∧ dz2 ∧ dy3 ∧ dx2

− y2dx2 ∧ dy3 ∧ dz1 ∧ dz2 ∧ dz3 ∧ dy1 ∧ dx1

+ z3dx1 ∧ dx2 ∧ dz1 ∧ dz2 ∧ dz3 ∧ dy2 ∧ dx3

− y3dy1 ∧ dz1 ∧ dx2 ∧ dy2 ∧ dz3 ∧ dz2 ∧ dx1

− z3dy2 ∧ dz1 ∧ dx3 ∧ dy3 ∧ dz2 ∧ dy1 ∧ dx1

− y2dy3 ∧ dz2 ∧ dx1 ∧ dy1 ∧ dz1 ∧ dz3 ∧ dx3.

So,

{x1, y1}Ω = dx1 ∧ dy1 ∧ Φ = −y1Ω, {x1, y3}Ω = dx1 ∧ dy3 ∧ Φ = y3Ω,

{x1, z1}Ω = dx1 ∧ dz1 ∧ Φ = −z1Ω, {x1, z2}Ω = dx1 ∧ dz2 ∧ Φ = z2Ω,

{x2, y1}Ω = dx2 ∧ dy1 ∧ Φ = y1Ω, {x2, y2}Ω = dx2 ∧ dy2 ∧ Φ = −y2Ω,

{x2, z2}Ω = dx2 ∧ dz2 ∧ Φ = −z2Ω, {x2, z3}Ω = dx2 ∧ dz3 ∧ Φ = z3Ω,

{x3, y2}Ω = dx3 ∧ dy2 ∧ Φ = y2Ω, {x3, y3}Ω = dx3 ∧ dy3 ∧ Φ = −y3Ω,

{x3, z1}Ω = dx3 ∧ dz1 ∧ Φ = z1Ω, {x3, z3}Ω = dx3 ∧ dz3 ∧ Φ = −z3Ω,

{y1, y2}Ω = dy1 ∧ dy2 ∧ Φ = −z1Ω, {y1, y3}Ω = dy1 ∧ dy3 ∧ Φ = z3Ω,

{y2, y3}Ω = dy2 ∧ dy3 ∧ Φ = −z2Ω,

and all other brackets are zero.
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The Lie–Poisson bracket in this example coincides with the one of the bi-Hamil-

tonian pair formulated by Meucci [25] for Toda3 system, a dynamical system studied

by Kupershmidt in [17] as a reduction of the KP hierarchy. Meucci derives this struc-

ture by a suitable restriction of a related pair of Lie algebroids on the set of maps

from the cyclic group Z3 to GL(3,R). Explicit formulæ for the above bracket can

also be found in [7] where the Toda3 system is reduced to the phase space of the full

Kostant–Toda lattice.
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[17] B. A. Kupershmidt, Discrete Lax equations and differential-difference calculus. Astérisque 123(1985),
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