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Abstract

Let G be a finite group and let N be a normal subgroup of G. We determine the structure of N when the
diameter of the graph associated to the G-conjugacy classes contained in N is as large as possible, that is,
equal to three.
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1. Introduction

Let G be a finite group and let N be a normal subgroup of G. If x ∈ N, we denote
by xG = {xg | g ∈ G} the G-conjugacy class of x. Let ΓG(N) be the graph associated
to these G-conjugacy classes, which was defined in [2] as follows: its vertices are the
G-conjugacy classes of N of cardinality bigger than 1, that is, G-classes of elements
lying in N\(Z(G) ∩ N), and two of them are joined by an edge if their sizes are
not coprime. It was proved in [2] that d(ΓG(N)) ≤ 3, where d(ΓG(N)) denotes the
diameter of the graph. In this note we analyse the structure properties of N when
d(ΓG(N)) = 3.

The above graph extends the ordinary graph, Γ(G), which was formally defined
in [3], and whose vertices are the noncentral conjugacy classes of G, and two vertices
are joined by an edge if their sizes are not coprime. The graph ΓG(N) can be viewed as
the subgraph of Γ(G) induced by those vertices of Γ(G) which are vertices in ΓG(N).
This fact does not allow us, however, to obtain directly properties of the graph of
G-classes.

Concerning ordinary classes, Kazarin [8] characterised the structure of a group G
having two ‘isolated classes’. We recall that a group G is said to have isolated classes
if there exist elements x, y ∈ G such that every element of G has a conjugacy class size
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coprime to either |xG | or |yG |. In particular, Kazarin determined the structure of those
groups G with d(Γ(G)) = 3. On the other hand, the disconnected graph was studied by
Bertram et al. [3]. It should be noted that similar results have also been studied for
other graphs. In [6], Dolfi defined the graph Γ′(G) whose vertices are the elements of
the set of all primes which occur as divisors of the lengths of the conjugacy classes of
G, and two vertices p, q are joined by an edge if there exists a conjugacy class in G
whose length is a multiple of pq. In [5], Casolo and Dolfi described all finite groups
G for which Γ′(G) is connected and has diameter three.

We remark that the primes dividing the G-conjugacy class sizes do not need to
divide |N|. This especially occurs when N is Abelian and noncentral in G and,
consequently, we may have no control over this set of primes. For this reason,
we observe that new cases appear when dealing with G-classes which are not
contemplated in the ordinary case. The main result of this note is Theorem 1.1 and
it is inspired by [8]. From now on, if G is a finite group, we denote by π(G) the set of
primes dividing |G| and, analogously, if X is a set, then π(X) denotes the set of primes
dividing |X|.

Theorem 1.1. Let G be a finite group and N EG. Suppose that xG and yG are two
noncentral G-conjugacy classes of N such that any G-conjugacy class of N has
size coprime with |xG | or |yG |. Let πx = π(xG), πy = π(yG) and π = πx ∪ πy. Then
N = Oπ′(N) ×Oπ(N) with x, y ∈ Oπ(N), which is either a quasi-Frobenius group with
Abelian kernel and complement, or Oπ(N) = P × A with A ≤ Z(N), and P is a p-group
for a prime p.

Notice that in the conditions of Theorem 1.1, we have two possibilities: either
d(ΓG(N)) ≤ 2 or d(ΓG(N)) = 3. In the former case, the graph is disconnected and the
structure of N is already determined by [2, Theorem E]. We slightly improve this
result in Corollary 1.2. In the second case, the graph is connected. This follows
from [2, Theorem B] because, when the graph ΓG(N) is disconnected, each connected
component is a complete graph. Therefore, we deduce the following consequences for
each of these cases.

Corollary 1.2. Let G be a finite group and N EG. Suppose that ΓG(N) is disconnected
and let x, y ∈ N such that (|xG |, |yG |) = 1. Set π = π(xG) ∪ π(yG). Then x, y ∈ Oπ(N),
N = Oπ′(N) × Oπ(N) with Oπ′(N) ≤ Z(G), and either Oπ(N) is a quasi-Frobenius
group with Abelian kernel and complement, or Oπ(N) = P × A with A ≤ Z(G), and
P is a p-group for a prime p.

Corollary 1.3. Let G be a finite group and N EG. Suppose that ΓG(N) is connected
with d(ΓG(N)) = 3. Let x, y ∈ N such that d(xG, yG) = 3. Set π = π(xG) ∪ π(yG). Then x,
y ∈ Oπ(N), N = Oπ′(N) ×Oπ(N), where either Oπ(N) is a quasi-Frobenius group with
Abelian kernel and complement, or Oπ(N) = P × A with A ≤ Z(N), and P is a p-group
for a prime p.
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2. Proofs

First, we state three elementary results which are needed to prove the main result.

Lemma 2.1 [1, Lemma 8]. Let G be a π-separable group. Then the conjugacy class
size of every π-element of G is a π-number if and only if G = H × K, where H and K
are a Hall π-subgroup and a π-complement of G, respectively.

In the particular case in which π = p′, the complement of some prime p, Lemma 2.1
is true without assuming p-separability (or equivalently p-solvability). We recall that
the class size of an element is also sometimes called the index of the element.

Lemma 2.2 [4, Lemma 1]. If every p′-element of a group G has index prime to p, for
some prime p, then the Sylow p-subgroup of G is a direct factor of G.

Lemma 2.3 [2, Lemma 2.1]. Let G be a finite group and N EG. Let B = bG and C = cG

be two noncentral G-conjugacy classes of N. If (|B|, |C|) = 1, then:

(i) CG(b)CG(c) = G;
(ii) BC = CB is a noncentral G-class of N and |BC| divides |B| |C|;
(iii) suppose that d(B, C) ≥ 3 and |B| < |C|. Then |BC| = |C| and CBB−1 = C.

Furthermore, C〈BB−1〉 = C, 〈BB−1〉 ⊆ 〈CC−1〉 and |〈BB−1〉| divides |C|.

Proof of Theorem 1.1. We proceed by induction on |N|. Notice that the hypotheses
are inherited by every normal subgroup in G which is contained in N and contains x
and y. By using the primary decomposition, we can assume that both x and y have
order a power of a prime, say p and q, respectively.

Step 1. We have q = p if and only if xy = yx.

Suppose that xy = yx and that p , q. Observe that CG(xy) = CG(x) ∩ CG(y) and,
consequently, both |xG | and |yG | divide |(xy)G |. Thus, we obtain a G-conjugacy class
connected with xG and yG, which contradicts the hypotheses. Conversely, suppose that
p = q. We know that p cannot divide either |xG | or |yG |. Furthermore, the hypotheses
imply that (|xG |, |yG |) = 1. Therefore, we have G = CG(x)CG(y) and |xG | = |G : CG(x)| =
|CG(y) : CG(x) ∩ CG(y)|. Now, since y is a p-element in Z(CG(y)), we deduce that
y ∈ CG(x) ∩ CG(y) and hence xy = yx.

Step 2. We have p ∈ πy and q ∈ πx and hence p, q ∈ π.

We define K = CG(x) ∩ CG(y). First, we assume that p , q and xy , yx. Then
|G : K| = |G : CG(x)| |CG(x) : CG(x) ∩ CG(y)| = |xG | |yG |, which is a π-number. Since
x ∈ Z(CG(x)) and x is a p-element but x < K, we know that p divides |CG(x) : K| = |yG |.
This means that p ∈ πy. Similarly, q divides |xG |, that is, q ∈ πx. As a result, p, q ∈ π.

Suppose now that p = q and xy = yx. Let us see that p ∈ π. We write X = xG

and Y = yG and we assume that |X| > |Y |. By hypothesis, the distance between X and
Y in ΓG(N) is bigger than or equal to 3. We can apply Lemma 2.3(iii) and we get
X〈YY−1〉 = X, 〈YY−1〉 ⊆ 〈XX−1〉 and |〈YY−1〉| divides |X|. On the other hand, since
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G = CG(x)CG(y), we have X ⊆ CG(y). As a result, 〈YY−1〉 ⊆ 〈XX−1〉 ⊆ CG(y). In
particular, if we take z = yg , y, for some g ∈ G, we have w = zy−1 ∈ 〈YY−1〉 ⊆ CG(y),
so [z, y] = 1. Consequently, w is a nontrivial p-element and, since p divides |〈YY−1〉|,
which divides |X|, we conclude that p ∈ πx. If |Y | > |X|, we can argue similarly to get
p ∈ πy.

Step 3. We can assume that N/Z(N) is neither a p-group nor a q-group. In particular,
we can assume that N is not Abelian.

Suppose that N/Z(N) is a p-group. The argument is analogous if we suppose that
it is a q-group. Hence, we can write N = P × A, where A ≤ Z(N) and A is a p′-group.
If p , q, it follows that x ∈ P and y ∈ A, which leads to a contradiction with Step 1.
Thus, p = q and x, y ∈ P, so the theorem is proved.

Step 4. We can suppose that N is not a π-group.

Let us see that if N is a π-group, then N is a quasi-Frobenius group with Abelian
kernel and complement, or N = P × A with A ≤ Z(N) and A a p′-group. Assume that
N is a π-group. As N is non-Abelian by Step 3, there exists a conjugacy class zN such
that |zN | , 1. Since |zN | divides |zG |, then either (|zN |, |xG |) = 1 or (|zN |, |yG |) = 1. As N is
a π-group, then |zN | is either a πx-number or a πy-number. If Γ(N) is disconnected, we
know by Theorem 2 of [3] that N is a quasi-Frobenius group with Abelian kernel and
complement. Moreover, Γ(N) cannot be empty because by Step 3, N can be assumed to
be non-Abelian. Consequently, we can assume that Γ(N) is connected and this forces
either |xN | = 1 or |yN | = 1. Suppose for instance that |xN | = 1, that is, x ∈ Z(N). Again
by Step 3, we can find an s-element w of N\Z(N) with s , p. Observe that |wN | must
be a πy-number, so wG is connected to yG in ΓG(N). As x and w have coprime orders
and x ∈ Z(N), we have that |wG | and |xG | both divide |(wx)G |. As a consequence, we
have a contradiction because |(wx)G | has primes in πx and πy. Thus, we can suppose
that N is not a π-group.

Step 5. Conclusion in case p , q.

Let z be a π′-element of K ∩ N and let us prove that |zG | is a π′-number. Suppose
that s ∈ π is a prime divisor of |zG |. We can assume for instance that s ∈ πy, otherwise
we proceed analogously. Since |zG | divides |(zx)G |, we deduce that s divides |(zx)G |.
Also, we know by Step 2 that q ∈ πx. This forces |(zx)G | to be divisible by primes in
πx and πy, which is a contradiction. Consequently, s < π and |zG | is a π′-number, as
asserted.

Let M be the subgroup generated by all π′-elements of K ∩ N. We prove that
M is a nontrivial normal subgroup of G. If M , 1, then K ∩ N is a π-group and,
since |N : K ∩ N| = |KN : K| divides |G : K|, which is also a π-number, N is a π-
group, contrary to Step 4. Let α be a generator of M, so |αG | is π′-number. As
(|G : K|, |αG |) = 1, we have G = KCG(α) and, hence, αG = αK ⊆ K ∩ N. Therefore,
αG ⊆ M.

Let D = 〈xG, yG〉. Notice that D EG and D ⊆ N. Let α be a generator of M. As we
have proved in the previous paragraph, |αG | is a π′-number and then (|αG |, |xG |) = 1, so
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G = CG(x)CG(α). Thus, xG = xCG(α) ⊆ CG(α) because α ∈ K. The same happens for y,
that is, yG ⊆ CG(α), so we conclude that [M,D] = 1.

We define L = MD and we distinguish two cases. Assume first that L < N. Note
that x, y ∈ L EG and L trivially satisfies the hypotheses of the theorem. By applying
induction to L, we have L = Oπ(L) ×Oπ′(L). Observe that the fact that M , 1 implies
that Oπ′(L) > 1. Now, by the definition of M, |K ∩ N : M| is a π-number. As |N : K ∩ N|
is also a π-number, so is |N : Oπ′(L)|. Then Oπ′(L) = Oπ′(N) is a Hall π′-subgroup of
N. We can apply Lemma 2.1 to conclude that N = Oπ(N) ×Oπ′(N) with x, y ∈ Oπ(N).
Since Oπ′(N) > 1, we apply the inductive hypotheses to Oπ(N) < N and we deduce
that Oπ(N) is a quasi-Frobenius group with Abelian kernel and complement, or
Oπ(N) = P × A with A ≤ Z(N), and P is a p-group, so the proof is finished.

From now on, we assume that L = N and we show that Z(N) = 1 and N = M × D
with x, y ∈ D. If Z(N) , 1, we take N = N/Z(N) and G = G/Z(N). If |xG

| = 1,
then [x, y] = 1 and thus [x, y] ∈ Z(N). Since (o(x), o(y)) = 1, it is easy to prove that
[x, y] = 1, which is a contradiction. Analogously, we have |yG

| , 1. Consequently, N
satisfies the assumptions of the theorem. By induction, we have N = Oπ′(N) ×Oπ(N)
with x, y ∈ Oπ(N) and Oπ(N) is either a quasi-Frobenius group with Abelian kernel
and complement, or N = P × A with A 6 Z(N), and P a p-group. In the latter case,
[y, x] = 1, which leads to a contradiction as we have seen before. So, we are in the
former case. It follows that N = Oπ′(N) ×Oπ(N) with x, y ∈ Oπ(N) and, by applying
induction to Oπ(N) < N, we have the result. Therefore, Z(N) = 1. On the other hand,
we have proved that [M,D] = 1. Hence, M ∩ D ⊆ Z(N) = 1 and N = M × D with
x, y ∈ D.

Since M , 1, we can apply induction to D and get D = Oπ′(D) × Oπ(D) with
x, y ∈ Oπ(D) and Oπ(D) is a Frobenius group with Abelian kernel and complement
(notice that Z(Oπ(D)) = 1 because Z(N) = 1). The p-group case cannot occur because
x and y do not commute. Notice that if M is a π′-group, then the theorem is proved. We
assume that M is not a π′-group and seek a contradiction. Let s ∈ π such that s divides
|M|. We can assume that s ∈ πx (we proceed analogously if s ∈ πy). Suppose that there
exists an s′-element z ∈ M such that |zM | is divisible by s. Since N is the direct product
of M and D, (zy)N = zNyN is a nontrivial class of N whose size is divisible by s and by
some prime of |yN | , 1. This is not possible because |(zy)G | would have primes in πx

and πy. Thus, the class size of every s′-element of M is an s′-number. By Lemma 2.2,
we have M = M1 × S with S ∈ Syls(M). In this case, Z(S ) ⊆ Z(N) = 1, which is a
contradiction.

Step 6. Conclusion in case p = q.

Let K = CG(x) ∩CG(y) as in Step 2. Let z be a p′-element of K ∩ N and let us prove
that |zG | is a π′-number. Suppose that s ∈ π is a prime divisor of |zG |. We can assume
that s ∈ πy. Since |zG | divides |(zx)G |, we see that s divides |(zx)G |. On the other hand,
we know by the proof of Step 2 that q ∈ πx. Therefore, |(zx)G | is divisible by primes in
πx and πy, which is a contradiction. As a consequence, s < π and |zG | is a π′-number.

https://doi.org/10.1017/S0004972715001860 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001860


[6] Normal subgroups whose conjugacy class graph has diameter three 271

Let T be the subgroup generated by all p′-elements of K ∩ N. We prove that T
is a nontrivial normal subgroup of G. In fact, T , 1 because otherwise K ∩ N would
be a π-group and this implies that N is a π-group by arguing as in Step 5, and this
contradicts Step 4. If α is a generator of T , we know that |αG | is a π′-number. Then
(|G : K|, |αG |) = 1, so G = KCG(α) and αG = αK ⊆ K ∩ N. This proves that αG ⊆ T .

As the class size of every p′-element of T is a p′-number, by using Lemma 2.2,
we have T = Op(T ) × Op′(T ). However, by definition of T , we have Op(T ) = 1
or equivalently M = Op′(T ). Notice that if s ∈ π and s , p, then the class size of
every element of T is an s′-number, so it is elementary that T has a central Sylow
s-subgroup and we can write T = Oπ(T ) × Oπ′(T ). On the other hand, |N : T | =
|N : K ∩ N| |K ∩ N : T |, where |N : K ∩ N| = |KN : K| is a π-number and |K ∩ N : T |
is a power of p ∈ π. Therefore, Oπ′(T ) = Oπ′(N) and Oπ′(N) is a Hall π′-subgroup of
N. We have proved that the class size of every p′-element of N is a π′-number, so, by
Lemma 2.1, we have N = Oπ′(N) ×Oπ(N). We apply induction to Oπ(N) < N and the
proof is finished. �

Proof of Corollary 1.2. The corollary follows immediately from Theorem 1.1. We
only have to notice that if x, y ∈ Oπ(N) and z ∈ Oπ′(N)\Z(G), then there is a path
connecting xG and yG because (xz)G is connected to xG and (yz)G, which is connected
to yG. This contradicts the hypotheses of the theorem. Thus, Oπ′(N) ≤ Z(G). By the
same argument, we obtain A ≤ Z(G) when Oπ(N) = P × A. �

Proof of Corollary 1.3. The corollary follows trivially from Theorem 1.1. �

We give an example showing that the converse of Theorem 1.1 is not true.

Example 2.4. We take the special linear group H = SL(2, 5), which is a group of order
120 that acts Frobeniusly on K = Z11 × Z11. Let P ∈ Syl5(H) and consider NH(P).
Define N := KP, which trivially is a normal subgroup of G := KNH(P). The set of the
G-conjugacy class sizes of N is {1, 20, 242}. The graph ΓG(N) consists of exactly two
vertices joined by an edge. Obviously, N is a Frobenius group with Abelian kernel
and complement and there do not exist two noncentral G-classes in N such that any
noncentral G-class of N has size coprime with one of both of them.

Finally, we give two examples illustrating each case in Theorem 1.1.

Example 2.5. We take the following groups from the library SmallGroups of GAP [7].
Let G1 = Id(324, 8) and G2 = Id(168, 44) (in fact, G2 is the semilinear affine group
of order 168) whose normal subgroups are the Abelian 3-subgroup P = Z3 × Z3 and
A = Z2 × Z2 × Z2, respectively. It is easy to check that P has four G1-classes whose
sizes are 1, 2, 3 and 3, and A has two G2-classes of sizes 1 and 7. We construct
N = P × A and G = G1 × G2. Then N is a normal subgroup of G and the set of
G-conjugacy class sizes of N is {1, 2, 3, 7, 14, 21}. Therefore, d(ΓG(N)) = 3 and N is
the direct product of a 3-group and A ≤ Z(N). Notice that, in this example, Oπ′(N) = 1
and π = {2, 3, 7}.
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Example 2.6. The quasi-Frobenius case in Theorem 1.1 is the natural extension of the
ordinary case. It is enough to consider any group G and N = G such that Γ(G) = ΓG(N)
has two connected components. By the main theorem of [3], we know that G is a
quasi-Frobenius group with Abelian kernel and complement.
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