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Spatial units typically vary over many of their characteristics, introducing poten-
tial unobserved heterogeneity which invalidates commonly used homoskedasticity
conditions. In the presence of unobserved heteroskedasticity, methods based on the
quasi-likelihood function generally produce inconsistent estimates of both the spatial
parameter and the coefficients of the exogenous regressors. A robust generalized
method of moments estimator as well as a modified likelihood method have been
proposed in the literature to address this issue. The present paper constructs an
alternative indirect inference (II) approach which relies on a simple ordinary least
squares procedure as its starting point. Heteroskedasticity is accommodated by
utilizing a new version of continuous updating that is applied within the II procedure
to take account of the parameterization of the variance–covariance matrix of the
disturbances. Finite-sample performance of the new estimator is assessed in a Monte
Carlo study. The approach is implemented in an empirical application to house
price data in the Boston area, where it is found that spatial effects in house price
determination are much more significant under robustification to heterogeneity in
the equation errors.

1. INTRODUCTION

In recent years, spatial models have stimulated growing interest and application
in various areas in economics. Economic data frequently exhibit strong spatial
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patterns that need to be accounted for in applied research. Common examples
include real estate pricing data, R&D spillover effects, crime rates, unemployment
rates, regional economic growth patterns, and environmental characteristics in
urban, suburban, and rural areas. Econometric modeling of such phenomena
now makes extensive use of formulations that accommodate spatial dependence
through autoregressive specifications known as spatial autoregressions (SARs).
SAR models, like vector autoregressions, have the great advantage of simplicity
and ready implementation. These models have been found to flexibly describe
many different networks of spatial interactions by appropriate ex ante specification
of weighting matrices that embody dependencies considered to be of primary
relevance in specific empirical applications. Weight matrices may incorporate
notions of “economic distance” that include geographic and economic proximity
as well as many other socioeconomic characteristics.

For SAR models with homoskedastic innovations, a wide range of estimation
procedures are available, ranging from maximum likelihood/quasi maximum
likelihood (ML/QML) methods (e.g., Lee, 2004) to two-stage least squares (2SLS;
e.g., Kelejian and Prucha, 1998) and generalized method of moments (GMM;
e.g., Kelejian and Prucha, 1999). However, data recorded across space are fre-
quently heterogeneously distributed, due to such elements as aggregation of “rate
variables,” social interactions, preferences, as well as variation in demographic
characteristics like income or size across different regions. Examples in the recent
empirical literature stress the importance of capturing the inherent heterogeneity in
spatial units in modeling and estimation. Inter alia, we cite intermarriage decisions
across U.S. states (Bisin, Topa, and Verdier, 2004), house selling prices (Harrison
and Rubinfeld, 1978; LeSage, 1999), and crime rates and social interactions across
contiguous U.S. states (Glaeser, Sacerdote, and Scheinkman, 1996), where these
effects are important. Thus, spatial units typically vary over many observed and
unobserved characteristics, leading to potentially heterogeneous innovations in
regressions that may introduce bias and invalidate the aforementioned commonly
used procedures.

More specifically, although ML/QML methods provide an obvious general
approach to parameter estimation (Lee, 2004), in the presence of unobserved
heterogeneity, they produce inconsistent estimates (e.g., Lin and Lee, 2010).
This lack of robustness to heteroskedasticity is possibly the main shortcoming
of ML/QML methods for spatial data. On the other hand, methods based on
2SLS/GMM enjoy robustness toward unknown heteroskedasticity in the distur-
bances. The simple 2SLS estimator introduced by Kelejian and Prucha (1998) and
developed further by Lee (2003, 2007) would produce consistent estimates in case
of heteroskedastic disturbances, even though their usual asymptotic distribution
would not be correct. Along these lines, Kelejian and Prucha (2007) suggest a
heteroskedasticity and autocorrelation consistent (HAC) procedure to consistently
estimate the variance matrix of 2SLS-type estimators that is robust to departures
from spherical disturbances. The main drawbacks of 2SLS estimators are lack
of optimality and the fact that they fail if there are no exogenous regressors
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in the model (as well as in cases where the weight matrix is row normalized
and the only exogenous regressor in the model is an intercept). More recently,
Lin and Lee (2010) propose a robust generalized method of moments estimator
which delivers consistent estimation of the parameters of SAR models with
heteroskedastic errors, while Kelejian and Prucha (2010) consider a robust GMM
with a particular focus on the SARAR(1,1) model structure1 with heteroskedastic
disturbances. The approach developed in Kelejian and Prucha (2010) has been
generalized to accommodate higher-order spatial lags in Badinger and Egger
(2011). An interesting analysis of the finite-sample performance of 2SLS/GMM
estimators in the presence of heteroskedasticity and possibly a spatial lag in the
disturbances is reported in Arraiz et al. (2010). More recently, Liu and Yang (2015)
propose a modified QLE/MLE estimator modified Quasi Maximum Likelihood
(MQML) that restores consistency by adjusting the score function for the spatial
parameter to accommodate general forms of heteroskedasticity. Furthermore, Jin
and Lee (2019) develop a generalized empirical likelihood method to estimate
SARAR models that is robust to heteroskedastic errors.

A separate remark is needed for simple ordinary least squares (OLS) estimation
of the parameters of a SAR model with exogenous regressors, which is known
to be consistent under certain restrictive assumptions on the limit behavior of the
spatial design, as discussed in Lee (2002). OLS may enjoy some robustness to
unknown heteroskedasticity in the disturbances, but again, this is only achieved
under highly restrictive weight matrix specifications, which may not be pertinent
to empirical situations of interest. As a practical example, OLS would not be
consistent when the network structure is defined according to a contiguity criterion
where the number of neighbors of a given spatial unit remains fixed as the sample
size grows, even in the simpler setting of homoskedastic disturbances. In general,
the necessary restrictions on the limit behavior of the weight structures that ensure
consistency are difficult to verify in practical situations, making OLS estimation a
questionable choice for practitioners.

The present paper develops a new method of robust estimation for the SAR
model with unknown heteroskedasticity that is based on a continuously updated
version of the indirect inference (II) estimator of Kyriacou, Phillips, and Rossi
(2017) (KPR henceforth). The II estimator in KPR was designed to modify (incon-
sistent) OLS estimation of a pure SAR model (that is, SAR without exogenous
regressors) with homoskedastic innovations, leading to consistent, asymptotically
normal estimates that enjoy good finite-sample properties. In that case, the II
procedure converts an inconsistent OLS estimator into a consistent one.

We propose a similar enhancement in the case of a SAR model with exogenous
regressors (SARX, in the sequel) and heterogeneous spatial errors. The key idea
in this approach is to accommodate more realistic error structures by parame-
terizing the variance–covariance structure in terms of unknown parameters of
interest within the II mechanism via a suitable, feasible, binding function. The

1SARAR denotes “spatial autoregression with spatial autoregressive disturbances.”
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idea relates to the “continuous-updating” GMM estimator considered in Hansen,
Heaton, and Yaron (1996),2 where the covariance matrix is continuously altered
as the parameter vector in question is updated sequentially in the minimization
routine. The proposed continuously updated indirect inference (CUII) estimator
is computationally straightforward and can flexibly allow for various forms of
unknown heteroskedasticity and realistic spatial weight schemes that are relevant
to empirical work. We then show that our new CUII estimator is consistent and
asymptotically normal, while simulation and empirical results confirm its satisfac-
tory finite-sample properties under general spatial designs and heteroskedasticity
structures. In particular, the simulations show that the new CUII estimator offers a
substantial improvement over standard 2SLS and robust GMM as it does not rely
on the construction of optimal instruments and, even more importantly, on the joint
relevance of such instruments. In independent recent work that appeared after our
paper was completed, Bao, Liu, and Yang (2020) extended results in KPR to SARX
models with heteroskedastic error terms, and suggested an II-type transformation
that produces results comparable to our findings reported in Sections 3 and 4. Bao
et al. (2020) adopted a different parameterization of the (nonconstant) variance–
covariance matrix of the disturbances, resulting in a different asymptotic variance
for their estimator.

The rest of the paper is organized as follows. Section 2 introduces the SARX
model and its underlying assumptions. The bias of the QMLE under heteroskedas-
ticity is explored in a working example by using the bias expansion of Bao
(2013). We show that the QMLE can be severely biased when the spatial weights
deviate from a Toeplitz network structure, such as block diagonal or circulant. The
CUII procedure based on OLS is introduced in Section 3, and its limit behavior
is explored in Section 4. Section 5 presents some special cases of the general
SAR model, while in Section 6, we construct a Moran I test for lack of spatially
correlated disturbances. Section 7 reports simulations comparing the finite-sample
performance of the CUII estimator to existing methods. An empirical comparison
of estimation methods for inference on the spatial parameter in the context of
house price data in the Boston area is given in Section 8. Conclusions are in
Section 9, proofs are in the Appendix, and the Online Supplementary Material
provides additional technical material and simulation results.

In the sequel, λ0, β0, and σ 2
0 denote true values of these parameters, while λ, β,

and σ 2 denote admissible values. We use Aij and Ai to signify the (i,j)th element
and the transpose of the ith row of the generic matrix A. We use ||.|| and ||.||∞ to
denote the spectral norm and uniform absolute row sum norm, respectively, and
K > 0 represents an arbitrary finite, positive constant. For any function v(x), we
define v(r)(x) : dvr(x)/dxr, and an ∼ n for any sequence an indicates an/n → K as
n → ∞. Furthermore, ηi(A), i = 1, . . . ,q, denote the eigenvalues of a generic real
q×q matrix A, while η̄(A) = max

i=1,...q
{|ηi(A)|} and η(A) = min

i=1,...,q
{|ηi(A)|}.

2See Durbin (1988) for an early version of the idea of continuous updating in the context of efficiently estimating
structural equation models by iterative instrumental variable methods.
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2. THE SARX MODEL WITH UNKNOWN HETEROSKEDASTICITY

Our focus is the linear SARX model

yn = λ0Wnyn +Xnβ0 + εn, (2.1)

where n denotes sample size, yn is an n-vector of observations, Xn is an n × k
matrix of observations of exogenous regressors, and ε is a vector of disturbances.
We denote by Wn the given n × n matrix of spatial weights, while λ0 and β0 are,
respectively, the unknown scalar spatial autoregressive coefficient and a k-vector of
coefficients of the exogenous variables. The pure SAR model (with no exogenous
regressors) is a special case of (2.1) with β0 = 0. In what follows, we assume
the presence of exogenous regressors and rule out the possibility of β0 = 0.
Henceforth, we drop the subscript n even though quantities generally denote
triangular arrays, i.e., y = yn, X = Xn, W = Wn, and ε = εn.3

Under standard stability conditions, the model in (2.1) can be rewritten in
reduced form as

y = S−1(λ0)Xβ0 +S−1(λ0)ε, (2.2)

where S = S(λ0) = In − λ0W. Allowing for unanticipated heteroskedasticity in
(2.1), we impose the following condition.

Assumption 1. For all n and for i = 1, . . . ,n, the {εi} are a set of independent
random variables, with mean 0 and unknown variances σ 2

i > 0. In addition, for
some δ > 0,

sup
0<i≤n

E|εi|2+δ ≤ K.

Let E(εε′) = �0 > 0. As is common practice in the spatial literature, restrictions
on the parameter space and the asymptotic behavior of W are imposed to ensure
existence of the reduced form SARX in (2.2) and to establish the limit theory. We
therefore impose the following additional conditions.

Assumption 2. λ0 ∈ 	, where 	 is a closed subset in (−1,1).

Assumption 3. (i) For all n,Wii = 0, for i = 1, . . . ,n.
(ii) For all n, ||W|| ≤ 1.
(iii) For all sufficiently large n, ||W||∞ +||W ′||∞ ≤ K.
(iv) For all sufficiently large n, uniformly in i,j = 1, . . . ,n, Wij = O(1/h), where

h = hn is bounded away from zero for all n and h/n → 0 as n → ∞.

Assumptions 2 and 3(ii) guarantee that S−1(λ) exists for all λ ∈ 	 and is
nonsingular. It is well documented (e.g., KPR; Kelejian and Prucha, 2010) that the
restriction on the parameter space given in Assumption 2 and a condition on the
spectral norm, such as the one given in Assumption 3(ii), are not strictly necessary

3The subscript n is retained only when we want to particularly stress the importance of some sequential dependence
on sample size.
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to develop asymptotic theory. However, these conditions (or similar ones) are
required to ensure existence of the reduced form in (2.2), measurability of the
dependent variable, and existence of the likelihood function.

Assumption 4. For all sufficiently large n, sup
λ∈	

||S−1(λ)||∞ +||S−1(λ)′||∞ < K.

We also impose conditions on existence of limits and no collinearity for large n.
Let MX = I −X(X′X)−1X′, and set G = G(λ0) = WS−1(λ0).

Assumption 5. All elements of the n × k matrix X are uniformly bounded for
all n, and, for all sufficiently large n,

η

(
(X,G′Xβ0)

′(X,G′Xβ0)

n

)
> 0. (2.3)

The last condition rules out cases where the columns of G and X are perfectly
collinear, for all sufficiently large n.

Standard ML/QML-based estimation methods generally lead to inconsistent
estimates unless the εi’s are homoskedastic (e.g., Lin and Lee, 2010). To illustrate,
define the concentrated pseudo-log-likelihood function in this case

l(λ) = K − 1

2
ln(y′S(λ)′MXS(λ)y)+ 1

n
ln|S(λ)| (2.4)

and let

λ̂QML = argmax
λ∈	

l(λ). (2.5)

Write l(i)(λ0) = ∂ il(λ)

∂λi |λ0, for i > 0. A necessary condition for consistency of

λ̂QML is

plim
n→∞

1

n
l(1)(λ0) = 0. (2.6)

This condition is satisfied under standard SARX assumptions when disturbances
are homoskedastic (Lee, 2004), but it is generally violated under Assumption 1.
Specifically, Lin and Lee (2010) show that a sufficient condition for (2.6), and
hence for consistency of λ̂QML, is

1

n

n∑
i=1

(
Gii − 1

n
trG

)⎛
⎝σ 2

i − 1

n

n∑
j=1

σ 2
j

⎞
⎠ → 0, (2.7)

as n → ∞, where Gii is the ith diagonal element of G. The condition in (2.7) is
trivially satisfied for any form of heteroskedasticity when almost all the elements
of G are equal. However, unless the weight matrix is restricted to have a circulant
or block diagonal structure (such as in Case, 1991) or some other very specific
structure which ensures that Gii, for i = 1, . . . ,n, are equal, general results about
consistency of λ̂QML cannot be obtained when σ 2

i is not constant across i.
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For further illustration, consider the simple and typical (e.g., Harvey, 1976) form
of multiplicative heteroskedasticity given by

�0(γ ) = σ 2

⎛
⎜⎜⎜⎜⎜⎝

ez1γ 0 0 . . . 0
0 ez2γ 0 . . . 0
...

...
. . .

...
...

0 0 . . . 0 eznγ

⎞
⎟⎟⎟⎟⎟⎠ (2.8)

for unknown scalar parameters γ and σ 2 and an n-vector of observables z =
(z1, . . . ,zn)

′. Set σ 2 = 1 without loss of generality. For �0(γ ) defined as in (2.8),
the LHS of (2.7) becomes

∞∑
t=0

γ t

t!

1

n

n∑
i=1

(
Gii − 1

n
trG

)⎛
⎝zt

i −
1

n

n∑
j=1

zt
j

⎞
⎠ . (2.9)

The latter expression confirms that, even in the presence of a very simple form of
heteroskedasticity such as that in (2.8), the condition displayed in (2.7) is difficult
to check for general W and z1, . . . ,zn. Of course, under the extreme condition that
the sample covariance between the diagonal elements of G and zt is zero for each
t for n → ∞, then condition (2.7) holds. But if instead the sample covariance
is constant and nonzero across t (at least for sufficiently large n), the LHS of
(2.7) becomes K(eγ − 1), which vanishes only when γ → 0. Simple calculations
confirm that (2.9) is nonzero for other cases. For instance, if {Gii,zi} are stationary
and ergodic over i with mean {μG,μz} and if zi has finite moment generating
function, then

∞∑
t=0

γ t

t!

1

n

n∑
i=1

(
Gii − 1

n
trG

)⎛
⎝zt

i −
1

n

n∑
j=1

zt
j

⎞
⎠ →a.s. E((Gii −μG)eγ zi), (2.10)

which is nonzero whenever the covariance E((Gii −μG)eγ zi) is nonzero.
We next examine the bias of λ̂QML under error heterogeneity as in Assumption 1.

Starting from the results in Bao (2013), we may compute the bias of λ̂QML given
the error variance matrix �0(γ ) in (2.8). For illustration, we limit our analysis to
the Gaussian case, although more general results can be obtained at the expense of
extra computation. Explicit calculations of the bias terms are reported in Section
S.1 of the Online Supplementary Material, and we only report here the plots of the
bias functions as γ varies, i.e., of B(γ,λ0) for different values of λ0 and for four
different choices4 of W against γ ∈ [−10,10] at n = 200.

The elements of the vector (z1, . . . ,zn)
′ are generated once from a uniform distri-

bution with support [0,4] and kept fixed across γ as well as across different scenar-
ios. For each choice of W, the spatial parameter ranges from λ0 = −0.8,0,0.4,0.8.

4Figure S1 of the Online Supplementary Material depicts the structure of the four choices of weight matrices used in
this paper, to illustrate the degree of sparseness and/or symmetry in each design.
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Figure 1. B(γ ) for various weight matrix designs at n = 200. Top: (L) block diagonal, (R) circulant,
two ahead-two behind; Bottom: (L) “exponential,” (R) “random.”

The plot depicted on the top left of Figure 1 reports B(γ,λ0) when W is chosen
as a block diagonal matrix (Case, 1991). Specifically, this first choice of W is
defined as

Wn = Ir ⊗Bm, Bm = 1

m−1
(lml′m − Im), (2.11)

where Is is the s×s identity matrix, lm is an m-vector of 1’s, and ⊗ is the Kronecker
product. It is easy to verify that the Gii, for i = 1, . . . ,n, are constant across i for W
in (2.11). Similarly, the plot in the top right of Figure 1 reports B(γ,λ0) when W
is chosen as a circulant with two neighbors behind and two ahead. As expected,
for both these choices of W, the bias function is zero for all values of λ0 as γ

varies. The plot depicted in the bottom left of Figure 1 is the bias function when W
is randomly generated as a symmetric n × n matrix of zeros and ones, where the
number of “ones” is restricted at 20% of the total number of elements in W. This
choice of W is generated once for any given n and kept fixed across different γ and
λ. Similarly, the plot in the bottom right of Figure 1 displays B(γ,λ0) for W based
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on an exponential distance decay, with wij = exp(−|�i − �j|)1(|�i − �j| < logn),
where �i is the ith location along the interval [0,n], which is randomly generated
from a uniform distribution with support [0,n]. Again, we generate one W for each
sample size and we keep it fixed across scenarios. In the sequel, we refer to these
matrices as “random” and “exponential.” Both these cases are then rescaled by
their respective spectral norm. These examples of W tend to be more relevant to
empirical work than other choices such as (2.11) or circulant matrices, as they
mimic contiguity-based weight matrices. Under Assumption 1 and with either
“random” or “exponential” cases of W, the ML/QML is not expected to return
consistent estimators for a general heteroskedastic design as Gii, for i = 1, . . . ,n,
vary across i.

The plots in the bottom panel of Figure 1 confirm that the finite-sample bias
persists even for a moderately sized sample of n = 200 and its magnitude varies
with λ0 (e.g., the bias is, in general, larger in absolute value for a large negative
λ0). Furthermore, the bias tends to be generally more severe for “exponential” W,
as shown in the plot in the bottom right of Figure 1. As expected, the leading terms
of B(γ,λ0) (reported explicitly in the Online Supplementary Material) vanish for
λ0 = 0 and for γ = 0 (although, even if they are not displayed in Figure 1, terms
that vanish as n → ∞ may persist in finite samples and contribute to the overall
bias of λ̂QML).

3. CONTINUOUSLY UPDATED INDIRECT INFERENCE BASED ON
OLS ESTIMATES

As discussed above, in the presence of unknown heteroskedasticity, the standard
ML/QML methods are, in general, biased and inconsistent. On the other hand, the
OLS estimators of the unknown parameters in (2.1) can be consistent even under
Assumption 1, as long as some stringent conditions on the asymptotic behavior of
W are satisfied. Specifically, as shown in Lee (2002), the OLS estimator of λ0 is
consistent but does not have a standard normal limiting distribution if h defined in
Assumption 3(iv) satisfies

1

h
+ h√

n
→ 0 as n → ∞, (3.1)

and it is consistent and asymptotically normal if

1

h
+

√
n

h
→ 0 as n → ∞. (3.2)

For instance, OLS estimation of (2.1) will lead to inconsistent estimates in
situations whereby the spatial weights are generated via a contiguity criterion (e.g.,
country borders) and the number of neighbors of a given unit (country in this
case) needs to remain constant as the sample size increases, regardless of whether
homoskedasticity in the disturbances holds or not.
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The limit conditions (3.1) and (3.2) are hardly verifiable in practical situations
as only a finite set of observations is available in most circumstances and we are
typically agnostic about the limit behavior of h. Hence, OLS estimation is com-
monly and justifiably ignored in practice. But OLS can be used as a building block
for a modified estimator with improved finite-sample and asymptotic properties
as we now show. OLS has the advantage of computational simplicity, but the
methodology we describe can, in principle, be extended to QML or other implicitly
defined estimators, at the expense of some additional computational and algebraic
costs.

Using (2.1), we can “concentrate β out,” leading to

β̂(λ) = (X
′
X)−1X

′
S(λ)y, (3.3)

and then focus on estimation of λ0. The OLS estimator of λ in ( 2.1), denoted by
λ̂, is defined as

λ̂ = y
′
W

′
MXy

y′W ′MXWy
. (3.4)

Similar to the discussion in KPR, we can obtain a formal expansion for the
expected value of the latter ratio based on Lieberman’s (1994) result as

E(λ̂) = E(y′W ′MXy)

E(y′W ′MXWy)
+O

(
1

n

)
. (3.5)

Let Q(λ) = MXG(λ), P(λ) = Q(λ)′S−1(λ), Q = Q(λ0), and P = P(λ0). By standard
algebra,

E(λ̂) = tr(P�0)+β ′
0X′PXβ0

tr(Q′Q�0)+β ′
0X′Q′QXβ0

+O

(
1

n

)
. (3.6)

Following the formal expansion in (3.6), we define the binding function τn(λ) as

τn(λ,�λ,β̂(λ)) = τn(λ)

= tr(P(λ)�λ)+ β̂(λ)′X′P(λ)Xβ̂(λ)

tr(Q(λ)′Q(λ)�λ)+ β̂(λ)′X′Q(λ)′Q(λ)Xβ̂(λ)
+Op

(
1

n

)
,

(3.7)

and its approximate counterpart (which will be used for practical implementa-
tion) as

τ ∗
n (λ,�λ,β̂(λ)) = τ ∗

n (λ) = tr(P(λ)�λ)+ β̂(λ)′X′P(λ)Xβ̂(λ)

tr(Q(λ)′Q(λ)�λ)+ β̂(λ)′X′Q(λ)′Q(λ)Xβ̂(λ)
, (3.8)

with β̂(λ) defined according to (3.3), and

�λ = diag(ε(λ)ε(λ)′), ε(λ) = (y−λWy−Xβ̂(λ)), (3.9)
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where diag(A) for a generic n × n matrix A returns the n × n diagonal matrix
containing only the main diagonal of A and with other entries zero.5

The methodology we now propose is a continuously updated version of II in
which estimates of the error variances that affect bias and the binding function are
continuously updated within the II procedure. The resulting estimator is defined
as the extremum estimator that satisfies

λ̂CUII = argmin
λ ∈ 	

{λ̂− τ ∗
n (λ,�λ,β̂(λ))}2, (3.10)

which we call the CUII estimator, λ̂CUII , of λ. A detailed discussion on the
robustness advantages of using τ ∗

n (.) rather than its standard simulated version
(e.g., Gouriéroux, Renault, and Touzi, 1995) is contained in KPR. In this setting,
the II approach of simulating pseudodata to construct the binding function would
be more restrictive as it would require considerably more structure compared to
standard estimation problems under homoskedasticity. In particular, the specific
form of heteroskedasticity, in addition to distributional assumptions, would be
needed to employ the standard simulation approach.

From substantial numerical work, the objective function in (3.10) is found to be
continuous and strictly convex for all values of the parameter space, so that the
optimization problem appears to be standard. Since smoothness and monotonicity
conditions on τn(λ) are required to establish the limit theory, we introduce the
following condition.

Assumption 6. (i) For all n, τn(λ) is continuously differentiable and strictly
increasing for all λ ∈ 	 with probability one.

(ii) plim
n→∞

τ (1)
n (λ0) exists and it is positive.

As discussed in KPR, the latter is employed as a high-level condition, because
the derivation of more primitive assumptions involving general choices of W is not
feasible. KPR verified a condition similar to Assumption 6 for a class of W with
Toeplitz structures (e.g., circulant and block diagonal structures). However, as is
common practice in the simulation-based techniques literature, when W has a more
general unspecified structure, practitioners have to rely on numerical methods to
verify conditions such as Assumption 6. We stress that τn(·) does not depend on
nuisance parameters, and so verification can be achieved numerically in finite
samples for any given sample and choice of W in a straightforward manner. In
Sections 7 and 8, we report plots of τ ∗

n (·) for λ ∈ 	 for the choices of W adopted
in the simulations and for a few pseudodatasets (yi,x′

i)
′, i = 1, . . . ,n, and for our

empirical setting, respectively.
Under Assumption 6, we have the inverse function representation of the CUII

estimator

λ̂CUII = τ ∗−1
n (λ̂). (3.11)

5We outline that our definition of the binding function is different from Bao et al. (2020), as both numerator and
denominator are parameterized as a function of λ.
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4. LIMIT THEORY

This section derives the asymptotic properties of the estimator (3.10) for model
(2.1) when the case β0 = 0 is ruled out a priori. From (3.7) and (3.8), we consider
the centering random sequence

τn(λ0) = tr(P�λ0)/n+ β̂(λ0)
′X′PXβ̂(λ0)/n

tr(Q′Q�λ0)/n+ β̂(λ0)′X′Q′QXβ̂(λ0)/n
+O

(
1

n

)
, (4.1)

where

β̂(λ0) = β0 + (X′X)−1X′ε, (4.2)

ε(λ0) = MXε, (4.3)

so that �λ0 = diag(MXεε′MX). Define

Vn = 4

n

(
β ′

0X′PMX�0MXP′Xβ0 β ′
0X′PMX�0MXQ′QXβ0

β ′
0X′Q′QMX�0MXP′Xβ0 β ′

0X′Q′QMX�0MXQ′QXβ0

)

+ 4

n

∑
i

∑
j<i

σ 2
i σ 2

j

(
(P+P′)2

ij
4

(P+P′)ij(Q
′Q)ij

2
(P+P′)ij(Q

′Q)ij
2 (Q′Q)2

ij

)
. (4.4)

In order to assure the existence of limits of each of the suitably standardized
components that appear in (4.4), we impose the following conditions.

Assumption 7. As n → ∞, the following limits exist:

ā = ā(λ0) = lim
n→∞

1

n
tr(P�0), b̄ = b̄(λ0) = lim

n→∞
1

n
β ′

0X′PXβ0,

c̄ = c̄(λ0) = lim
n→∞

1

n
tr(Q′Q�0), d̄ = d̄(λ0) = lim

n→∞
1

n
β ′

0X′Q′QXβ0, (4.5)

ā(1) = ā(1)(λ0) = lim
n→∞

1

n

(
tr(G′P�0 +PG�0)−2tr (Pdiag(G�0))

)
,

b̄(1) = b̄(1)(λ0) = lim
n→∞

1

n

(
β ′

0X′(G′P+PG)Xβ0 −2β ′
0X′P(I −MX)GXβ0

)
,

c̄(1) = c̄(1)(λ0) = lim
n→∞

2

n

(
tr(G′Q′Q�0)− tr(Q′Qdiag(G�0))

)
,

d̄(1) = d̄(1)(λ0) = lim
n→∞

2

n
(β ′

0X′G′Q′QXβ0 −β ′
0X′Q′Q(I −MX)G′Xβ0), lim

n→∞Vn.

(4.6)

Positive definiteness of Vn in (4.4) in the limit is ensured under Assumption 5,
since both terms in (4.4) are positive semidefinite for each n and Assumption 5
establishes strict positive definiteness in the limit for the dominant first term.

https://doi.org/10.1017/S0266466621000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000384


CONTINUOUSLY UPDATED INDIRECT INFERENCE 119

Standard calculations give

τ̄ (1) = τ̄ (1)(λ0) = plim
n→∞

τ (1)
n (λ0) = ā(1) + b̄(1)

c̄+ d̄
− (c̄(1) + d̄(1))(ā+ b̄)

(c̄+ d̄)2
, (4.7)

whose existence and positivity are assured by Assumptions 6 and 7. By virtue of
the delta method,
√

n(λ̂− τn(λ0)) = f ′
nUn +op (1), (4.8)

where

Un = 1√
n

(
ε′Pε − tr(P�λ0)+2β ′

0X′PMXε

ε′Q′Qε − tr(Q′Q�λ0)+2β ′
0X′Q′QMXε

)
, (4.9)

and

f ′
n =

((
1

n
y′W ′MXWy

)−1

,

(
1

n
y′W ′MXWy

)−2 (
1

n
y′W ′MXy

))
. (4.10)

We derive

f̄ = plim
n→∞

fn =
((

c̄+ d̄
)−1

,
(
c̄+ d̄

)−2 (
ā+ b̄

))′
, (4.11)

which is defined in terms of limits that appear in τ̄ (1). In particular, existence
and positivity of τ̄ (1) in (4.7) ensure that the common factor 1/(c̄+ d̄) �= 0. Thus,
existence and nonnullity of f̄ are assured under Assumptions 6(ii) and 7.

With these results in hand, we obtain the following limit theory.

THEOREM 1. (a) Under (2.1), with β0 �= 0, and Assumptions 1–5, 6(i), and 7,

√
n(λ̂− τn(λ0)) →

d
N (0, f̄ ′ lim

n→∞Vnf̄ ). (4.12)

(b) Under (2.1), with β0 �= 0, and Assumptions 1–7,
√

n(λ̂CUII −λ0) →
d
N

(
0,v2

CUII

)
, (4.13)

where v2
CUII = f̄ ′ lim

n→∞Vnf̄ /
(
τ̄ (1)

)2
exists and is nonzero under Assumptions 2,

3(ii), and 5–7.

Let v̂2
CUII be the estimated version of v2

CUII , obtained by replacing the unknown
λ0 and β0 by λ̂CUII and β̂CUII , respectively, �0 by �̂ = diag(ε̂ε̂′), where ε̂ =
MXS(λ̂CUII)y, and σ 2

i by ε̂2
i , for i = 1, . . . ,n.

THEOREM 2. Let Assumption 1 hold, with δ = 2. Under Assumptions 2–7, as
n → ∞,

v̂2
CUII − v2

CUII →
p

0. (4.14)
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Estimation of β0 in (2.1) under Assumption 1 and exogeneity of X causes less
difficulty than estimation of λ0 as simple OLS regression produces consistent
estimates under general limit behavior of W. Nonetheless, from (3.3), we can
deduce consistency of β̂CUII and its asymptotic normality by using the following
representation of the scaled estimation error:

√
n(β̂CUII −β0) =

(
1

n
X′X

)−1 1√
n

X′ε

−
(

1

n
X′X

)−1 1

n
X′GXβ0

√
n(λ̂CUII −λ0)+op(1), (4.15)

where

√
n(λ̂CUII −λ0) = 1

τ
(1)
n (λ0)

√
n(λ̂− τn(λ0))+op(1). (4.16)

From (4.8)–(4.10),
√

n(β̂CUII −β0) = ζ ′
nRn, (4.17)

where

Rn = 1√
n

⎛
⎝ X′ε

ε′Pε − tr(P�λ0)+2β ′
0X′PMXε

ε′Q′Qε − tr(Q′Q�λ0)+2β ′
0X′Q′QMXε

⎞
⎠ (4.18)

and

ζn =
((

1

n
X′X

)−1

, −
(

1

n
X′X

)−1 1

n
X′GXβ0τ

(1)
n (λ0)

−1f ′
n

)′
. (4.19)

Defining

ζ̄ = plim
n→∞

ζn, (4.20)

and

Tn = 1

n

⎛
⎝ X′X X′�0MX(P+P′)Xβ0

β ′
0X′(P+P′)MX�0X 4β ′

0X′PMX�0MXP′Xβ0

2β ′
0X′Q′QMX�0X 4β ′

0X′Q′QMX�0MXP′Xβ0

2X′�0MXQ′QXβ0

4β ′
0X′PMX�0MXQ′QXβ0

4β ′
0X′Q′QMX�0MXQ′QXβ0

⎞
⎠

+ 4

n

∑
i

∑
j<i

σ 2
i σ 2

j

⎛
⎜⎝

0(k×k) 0(k×1) 0(k×1)

0(1×k)
(P+P′)2

ij
4

(P+P′)ij(Q
′Q)ij

2

0(1×k)
(P+P′)ij(Q

′Q)ij
2 (Q′Q)2

ij

⎞
⎟⎠, (4.21)

we deduce the following result.
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COROLLARY 1. Under (2.1), with β0 �= 0, and Assumptions 1–7,
√

n(β̂CUII −β0) →
d
N (0,ζ̄ ′ lim

n→∞ Tnζ̄ ), (4.22)

as n → ∞.

The variance matrix ζ̄ ′ lim
n→∞ Tnζ̄ in (4.22) is nonsingular under Assumptions 5–7.

The proof of Corollary 1 follows in a similar way to that of part (a) of Theorem 1
and is omitted.

A special remark is needed to clarify the extent of the CUII transformation in
case OLS is consistent and/or consistent and asymptotically normal, i.e., under
(3.1) and (3.2). The RHS of (3.6) can be equivalently expressed as6

E(λ̂) = λ0 + tr(G′MX�0)

β ′
0X′G′MXGXβ0 + tr(G′MXG�0)

+O

(
1

n

)
, (4.23)

so that, after straightforward manipulation, if 1/h → 0,

τn(λ) = λ+ tr(G′(λ)MX�λ)

β̂(λ)′X′G′(λ)MXG(λ)Xβ̂(λ)

(
1− tr(G′(λ)MXG(λ)�λ)

β̂(λ)′X′G′(λ)MXG(λ)Xβ̂(λ)

+Op

(
1

h2

))
+Op

(
1

n

)
. (4.24)

Thus, under (3.1), the CUII transformation removes the finite-sample bias up
to order 1/n and restores asymptotic normality, while its scope is limited to
removing finite-sample bias of order 1/h if (3.2) holds. We note that when
h → ∞,

√
n(λ̂− τn(λ0)) = 1√

n
f ′
n

(
ε′G′MXε − tr(G′MX�λ0)+β ′

0X′G′MXε

ε′Q′Qε − tr(Q′Q�λ0)+2β ′
0X′Q′QMXε

)

= 1√
n

f ′
n

(
β ′

0X′G′MXε

2β ′
0X′Q′QMXε

)
+op(1), (4.25)

fn =
((

1

n
y′W ′MXWy

)−1

;
(

1

n
y′W ′MXWy

)−2 (
1

n
y′W ′MXε

))′
, (4.26)

so that

f̄ =
((

d̄
)−1 ; 0

)′
(4.27)

as y′W ′MXε/n = op(1). Therefore, since, from (4.24), τ̄ (λ0) = 1 under either (3.1)
or (3.2),

v2
CUII = lim

n→∞
β ′

0X′G′MX�0MXGXβ0/n

(β ′
0X′G′MXGXβ0/n)2

, (4.28)

6In the general expression (3.6), λ0 was not factored out to simplify the algebra in the proof of Theorem 1.
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which is equivalent to the asymptotic variance of
√

n(λ̂ − λ0) under (3.2). The
latter, in turn, is equivalent to the asymptotic variance of the ML estimator of λ

under normality of the errors for �0 = σ 2I (e.g., Lee, 2004).

5. TWO SPECIAL CASES: PURE SAR AND LOCAL-TO-PURE SAR

The framework discussed in Sections 3 and 4 is not directly applicable to the pure
SAR model

y = λ0Wy+ ε, (5.1)

which is the special case of (2.1) with β = 0 ex ante and no exogenous inputs
in the fitted regression. Limit theory for estimates of λ in (5.1) cannot generally
be deduced as a special case of that developed for estimates of λ in (2.1), as
the rate of convergence can be slower than the standard

√
n (e.g., Lee, 2004).

Furthermore, OLS estimation of λ in (5.1) is inconsistent unless λ = 0 (Lee, 2002).
KPR developed an II transformation of the OLS estimator of λ in (5.1) under
homoskedastic errors, to restore its consistency and asymptotic normality. In this
section, we extend that work to accommodate unknown heteroskedasticity in the
disturbances along the lines of Sections 3 and 4.

The OLS estimator for λ in (5.1) is defined as

λ̂ = y′W ′y
y′W ′Wy

, (5.2)

with expected value

E(λ̂) = tr(P�0)

tr(G′G�0)
+O

(
h

n

)
, (5.3)

where P(λ) = G′(λ)S−1(λ) and P = P(λ0). Similar to Section 3, we define

τn(λ) = τ(λ) = tr(P(λ)�λ)

tr(G′(λ)G(λ)�λ)
+Op

(
h

n

)
(5.4)

and its operational version

τ ∗
n (λ) = τ(λ) = tr(P(λ)�λ)

tr(G′(λ)G(λ)�λ)
, (5.5)

with �(λ) = diag(ε(λ)ε(λ)′) and ε(λ) = S(λ)y. Under Assumption 6 with τn(·)
defined according to (5.4), we define again λ̂CUII = τ−1

n (λ̂).
In the sequel, we adopt the same notation of Section 4 and define

τn(λ0) =
h
n tr(P�λ0)

h
n tr(G′G�λ0)

+Op

(
h

n

)
with �λ0 = diag(εε′), (5.6)

and

τ̄ (1) = τ̄ (1)(λ0) = plim
n→∞

τ (1)
n (λ0) = ā(1)

c̄
− c̄(1)ā

c̄2
, (5.7)
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with ā, c̄, ā(1), c̄(1) defined in (4.5) and (4.6) with Q = G in the present case.
Existence and positivity of the limit in (5.7) are guaranteed by Assumptions 6 and
7 with Q = G.

As Vn in (4.4) would be singular in the limit in the case of model (5.1), we
redefine the main quantities appearing in Section 4 as√

n

h
(λ̂− τn(λ0)) = f ′

nUn +op (1), (5.8)

where

Un =
√

h

n

(
ε′Pε − tr(P�λ0)

ε′G′Gε − tr(G′G�λ0)

)
, (5.9)

fn =
((

h

n
y′W ′Wy

)−1

,

(
h

n
y′W ′Wy

)−2 (
h

n
y′W ′y

))′
, (5.10)

f̄ = plim fn
n→∞

= (
(hc̄)−1 , (hc̄)−2 (hā)

)′
, (5.11)

and

Vn = 4h

n

∑
i

∑
j<i

σ 2
i σ 2

j

(
(P+P′)2

ij
4

(P+P′)ij(G
′G)ij

2
(P+P′)ij(G

′G)ij
2 (G′G)2

ij

)
, (5.12)

where existence and nonsingularity are again assured under Assumptions 6 and 7.
With these reductions for the present case and analogous to Theorem 1, we obtain
the following limit theory.

THEOREM 3. (a) Under (5.1), Assumptions 1–4, 6(i), and 7, with τn(·) and Vn

defined according to (5.4) and (5.12), respectively,√
n

h
(λ̂− τn(λ0)) →

d
N (0, f̄ ′ lim

n→∞Vnf̄ ). (5.13)

(b) Under (5.1), Assumptions 1–4, 6, and 7, with τn(·) and Vn defined according
to (5.4) and (5.12), respectively,√

n

h
(λ̂CUII −λ0) →

d
N

(
0,v2

CUII

)
, (5.14)

where v2
CUII = f̄ ′ lim

n→∞Vnf̄ /
(
τ̄ (1)

)2
exists and is nonzero under Assumptions 2,

3(ii), and 5–7.

A sketch of the proof of Theorem 3 is reported in the Appendix, although it
follows with minor modifications from that of Theorem 1.
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Another version of (2.1) is the SARX model with a local-to-zero coefficient
vector

β0 = βn,0 = δ√
n
, (5.15)

with unknown localized coefficient vector δ �= 0. This model is a SAR with
exogenous regressors of marginal relevance, as measured by βn,0, which captures
decreasing relevance as the sample size increases. As with the notation defined in
Section 3, we have P(λ) = Q′(λ)S−1(λ) and Q(λ) = MXG(λ). Under Assumptions
2–4, and according to the same argument discussed in (3.6), the expected value of
λ̂ can be written as

E(λ̂) = tr(P�0)+β ′
0X′PXβ0

tr(Q′Q�0)+β ′
0X′Q′QXβ0

+O

(
1

n

)

= tr(P�0)

tr(Q′Q�0)

(
1+ 1

n

δ′X′PXδ

tr(P�0)

)(
1− 1

n

δ′X′Q′QXδ

tr(Q′Q�0)

)
+O

(
1

n

)

= tr(P�0)

tr(Q′Q�0)
+O

(
h

n

)
, (5.16)

so that the binding function τn(·) can be defined as

τn(λ) = τ(λ) = tr(P(λ)�λ)

tr(Q′(λ)Q(λ)�λ)
+Op

(
h

n

)
, (5.17)

with �λ = diag(MXS(λ)yy′S(λ)MX).
Proceeding as in Section 4, we obtain√
n

h
(λ̂− τn(λ0)) = f ′

nUn +op (1), (5.18)

where

Un =
√

h

n

(
ε′Pε − tr(P�λ0)

ε′Q′Qε − tr(Q′Q�λ0)

)
, with �λ0 = diag(MXεε′MX), (5.19)

fn =
((

h

n
y′W ′MXWy

)−1

,

(
h

n
y′W ′MXWy

)−2 (
h

n
y′W ′MXy

))′
, (5.20)

and

f̄ = plim
n→∞

fn = (
(hc̄)−1 , (hc̄)−2 (hā)

)′
. (5.21)

The equality in (5.18) follows trivially, since√
h

n
(y′W ′MXy− tr(P�λ0)) =

√
h

n

(
ε′Pε − tr(P�λ0)+β ′

0X′PXβ0 +2β ′
0X′Pε

)
=

√
h

n
(ε′Pε − tr(P�λ0))+op(1), (5.22)
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and√
h

n
(y′W ′MXWy− tr(Q′Q�λ0)) =

√
h

n
(ε′Q′Qε − tr(Q′Q�λ0))+op(1), (5.23)

under (5.15). Setting

Vn = 4h

n

∑
i

∑
j<i

σ 2
i σ 2

j

(
(P+P′)2

ij
4

(P+P′)ij(Q
′Q)ij

2
(P+P′)ij(Q

′Q)ij
2 (Q′Q)2

ij

)
, (5.24)

we deduce the following limit theory for this local-to-pure SAR case.

THEOREM 4. (a) Under (2.1), with β0 = βn,0 as in (5.15), Assumptions 1–4,
6(i), and 7, with τn(·) and Vn defined according to (5.17) and (5.24), respec-
tively,√

n

h
(λ̂− τn(λ0)) →

d
N (0, f̄ ′ lim

n→∞Vnf̄ ). (5.25)

(b) Under (2.1), with β0 = βn,0 as in (5.15), Assumptions 1–4, 6, and 7, with τn(·)
and Vn defined according to (5.17) and (5.24), respectively,√

n

h
(λ̂CUII −λ0) →

d
N

(
0,v2

CUII

)
, (5.26)

where v2
CUII = f̄ ′ lim

n→∞Vnf̄ /
(
τ̄ (1)

)2
exists and is nonzero under Assumptions 2,

3(ii), and 5–7.

A sketch of the proof of Theorem 4 is reported in the Appendix. A remark on
the specific order O(n−1/2) of the shrinking sequence in (5.15) is needed here.
Theorem 4 above would hold with essentially no modification in the case β0,n =
δ/αn, where αn represents a generic positive sequence such that

√
n/αn = o(1) as

n → ∞. In the case

βn,0 = β0 = δ√
h
, (5.27)

which corresponds either to a sequence of nonshrinking parameters (in case h
is a bounded sequence), or to a shrinking sequence that converges to zero at a
rate slower than

√
n, since h/n = o(1) from Assumption 3(iv), the limit theory

outlined in Section 4 would apply with virtually no modification after adjusting
the normalizing sequences. In particular, Theorem 1 would hold with

√
n replaced

by
√

n/h, and Vn and f̄ replaced by hVn and

f̄ =
((

hc̄+hd̄
)−1 ; (

hc̄+hd̄
)−2 (

hā+hb̄
))′

, (5.28)

respectively.
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6. SPATIALLY CORRELATED DISTURBANCES: A DISCUSSION

The framework derived in Sections 3 and 4 could, in principle, be extended to more
general settings such as higher-order SAR models or a SAR model with spatially
correlated errors. These extensions would be achieved by adding one (or more) II
conditions to match other quantities via suitable binding functions, as opposed to
just the first moment as in Section 3. However, such developments come at the cost
of additional high-level assumptions that assure the existence of a unique solution.
We stress that the present high-level Assumption 6 has the crucial advantage of not
depending on nuisance parameters, and thus can be easily checked on a case-by-
case basis. This advantage would be lost in more complicated models.

We focus in this section on a heuristic discussion of a CUII-based Moran test
for lack of spatially correlated errors by using the approach of Kelejian and Prucha
(2001) or Robinson (2008). We consider the following model with SAR errors:

y = λ0Wy+Xβ0 +u, with u = ρ0Du+ ε, (6.1)

where D is a weight matrix satisfying Assumptions 3 and 4, and the error vector ε

satisfies Assumption 1.
The null hypothesis to be tested is H0 : E(uu′) = �0, i.e., ρ0 = 0, against the

alternative hypothesis H1 : E(uu′) �= �0. We can construct a test for H0 based
on the vector of residuals û under H0. Thus, from Kelejian and Prucha (2001) or
Robinson (2008), we use a suitably studentized quadratic form û′Dû (or its square)
to construct a Moran-type of statistic to test H0. This testing framework in the
presence of heteroskedasticity has been discussed by Kelejian and Prucha (2001),
using Instrumental Variables IV estimates to construct û. However, their test cannot
accommodate the case β0 = 0 ex ante, and it would perform poorly in case the
regressors are increasingly irrelevant (e.g., in the case of weak instruments). The
derivation of a Central Limit Theorem (CLT) for û′Wû/

√
n when the residuals

û are obtained by CUII estimation is much more complex than the analysis of
Kelejian and Prucha (2001), as CUII estimates are not simple linear functions of
the disturbances.

Under H0, û = u(λ̂CUII) = MXS(λ̂CUII)y, where λ̂CUII is the restricted estimate
of λ in (6.1), and thus

1√
n

u(λ̂CUII)
′Du(λ̂CUII)

= 1√
n

u(λ0)
′Du(λ0)− 1

n
u(λ0)

′(D+D′)MXWy
√

n(λ̂CUII −λ0)+op(1)

= 1√
n
ε′MXDMXε − an

τ
(1)
n

f ′
n

1√
n

Un +op(1)

=
(

1 an

τ
(1)
n

f ′
n

) 1√
n

⎛
⎝ ε′MXDMXε

ε′Pε − tr(P�λ0)+2β ′
0X′PMXε

ε′Q′Qε − tr(Q′Q�λ0)+2β ′
0X′Q′QMXε

⎞
⎠+op(1), (6.2)
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where

an = 1

n
ε′MX(D+D′)MXWS−1ε = 1

n
ε′MX(D+D′)MXGε. (6.3)

From the second line on the RHS of (6.2), it is easy to show that the first term
is Op(1/

√
h), while the second is Op(1/h). Therefore, the argument that follows

only holds when h is a bounded sequence (i.e., the setting considered by Kelejian
and Prucha (2001, 2010) and Lin and Lee (2010)). A brief remark is made on the
case of divergent h at the end of this section, but a thorough analysis in that case
is beyond the scope of the present work. We modify Assumption 3 as follows.

Assumption 3’. (i) For all n,Wii = 0 and Dii = 0, for i = 1, . . . ,n.
(ii) For all n, ||W|| ≤ 1 and ||D|| ≤ 1.
(iii) For all sufficiently large n, ||W||∞ +||W ′||∞ ≤ K and ||D||∞ +||D′||∞ ≤ K.
(iv) For all sufficiently large n, uniformly in i,j = 1, . . . ,n, Wij = O(1/h), and Dij =

O(1/h), where h = hn is bounded away from zero for all n and it is bounded
as n → ∞.

Let T = MXDMX ,

Ṽn =4

n

⎛
⎝0 0 0

0 β ′
0X′PMX�0MXP′Xβ0 β ′

0X′PMX�0MXQ′QXβ0

0 β ′
0X′Q′QMX�0MXP′Xβ0 β ′

0X′Q′QMX�0MXQ′QXβ0

⎞
⎠

+4

n

∑
i

∑
j<i

σ 2
i σ 2

j

⎛
⎜⎜⎝

(T+T ′)2
ij

4
(T+T ′)ij(P+P′)ij

4
(T+T ′)ij(Q

′Q)ij
2

(T+T ′)ij(P+P′)ij
4

(P+P′)2
ij

4
(P+P′)ij(Q

′Q)ij
2

(T+T ′)ij(Q
′Q)ij

2
(P+P′)ij(Q

′Q)ij
2 (Q′Q)2

ij

⎞
⎟⎟⎠, (6.4)

and modify Assumption 7 as follows.

Assumption 7’. lim
n→∞Ṽn exists and is nonsingular.

We deduce the following theorem.

THEOREM 5. Let Assumptions 1, 2, 3’, 4–6, and 7’ hold. Then, as n → ∞,

1√
n

u(λ̂CUII)
′Du(λ̂CUII)

d→ N (0,ṽ2), (6.5)

where

lim
n→∞

(
1 an

τ
(1)
n

f ′
n

)
Ṽn

(
1 an

τ
(1)
n

f ′
n

)′
. (6.6)

A sketch of the proof of Theorem 5 is given in the Appendix. A consistent
estimator, ˆ̃v2, of ṽ2 can be obtained as in Theorem 2 by replacing unknowns
with suitable estimates, viz., �0 by �̂ = diag(ε̂ε̂′), where ε̂ = MXS(λ̂CUII)y, and
σ 2

i by ε̂2
i , for i = 1, . . . ,n. Thereupon, a Moran-type test statistic for H0 can be
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constructed as

(u(λ̂CUII)
′Du(λ̂CUII))

2

n ˆ̃v2
, (6.7)

which has a χ2 with one degree of freedom limit distribution.
The case of divergent h requires a different normalization rate, as Ṽ would be

singular for divergent h, and it is not pursued here. In such case,√
h

n
u(λ̂CUII)

′Du(λ̂CUII) =
√

h

n
ε′MXDMXε +Op

(
1√
h

)
. (6.8)

7. SIMULATIONS

We report the results of a set of Monte Carlo experiments to compare the finite-
sample performance of the CUII estimators with the standard QML (Lee, 2004)
and 2SLS estimators (Kelejian and Prucha, 1998), as well as the Robust
Generalized Method of Moments (RGMM) procedure of Lin and Lee (2010)
and the modified QML (MQML) estimator of Liu and Yang (2015).

We consider different heteroskedastic and spatial weight scenarios. Through-
out, the number of exogenous regressors is set at k = 3, with the first regres-
sor being an n × 1 column of ones and the other two being randomly drawn
from two independent uniform distributions on the support [0,1], and kept fixed
across replications. In each scenario, we set β0 = (0.2,0.1,−0.3), and consider
four different values of λ0, i.e., λ0 = −0.5,0.3,0.5,0.8. We generate εi, for i =
1, . . . ,n, as

εi = σiζi, (7.1)

with ζi ∼ i.i.d.t(5), i.e., the ζi’s are generated from a t-distribution with five
degrees of freedom. Two mechanisms for the scale parameter σi are used: (i) direct
construction using the formula

σi = c
di∑n

j=1 dj/n
, (7.2)

where the constant c is set to unity and di denotes the number of neighbors of
unit i, such that, for each generic W, di = card(j : wij �= 0,i �= j) and card(·)
denotes cardinality; or the σi are drawn randomly from a χ2 distribution with five
degrees of freedom (χ2(5)). With both methods, the σi are kept fixed across sim-
ulations and across different parameter scenarios. The heteroskedasticity design
in ( 7.2) is in line with the simulation work in Kelejian and Prucha (2010)
and Arraiz et al. (2010), and is motivated by situations in which heteroskedas-
ticity arises as units across different regions may have different numbers of
neighbors.
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We consider two different choices for W, already partially introduced in Sec-
tion 2 and reported here for convenience.7 The first, which is denoted “random” in
the tables and in the discussion that follows in this section, is randomly generated
as an n×n symmetric matrix of zeros and ones and then rescaled, so that each row
sums to unity, with the number of “ones” restricted to 10% of the total entries in W.
This choice is empirically motivated as it mimics a fairly dense contiguity matrix.
The second choice, denoted “exponential,” is based on an exponential-decay notion
of distance, again randomly generated. More specifically, we construct an n × 1
vector of locations by generating n random numbers from a uniform distribution
on support [0,n]. We then define wij = exp

(−|Li −Lj|
)
1(|Li −Lj| < log(n)). The

resulting matrix is then normalized by its spectral norm.8 Both choices of W are
generated once for each sample size and are kept fixed across different scenarios
and across the 1,000 Monte Carlo replications. We stress that for both choices
of W, the QML is not expected to return consistent estimators in the presence of
unknown heteroskedasticity, as the condition in (2.7) is not met.

Before reporting and discussing the simulation results, we numerically confirm
Assumption 6 for a given set of regressors X and a realization of the disturbances
for each of the aforementioned scenarios. Figure 2 shows the approximate binding
function, τ ∗(λ,�λ,β̂(λ)) in (3.8), for one single set of observations X (k = 3) and
y generated for β0 = (0.2,0.1, − 0.3) and λ = 0.3. The plots depicted in Figure 2
correspond to all four configurations of heteroskedasticity/weighting structures
previously discussed. For each case, Assumption 6 is evidently satisfied as the
approximate binding function is strictly monotonic for all λ ∈ 	. As expected,
Assumption 6 may be violated in the vicinity of λ = 1, but this “unit root” case is
excluded as is customary in the SAR literature.

Tables 1–4 report the bias and mean square error (MSE) for the CUII, QML,
MQML, 2SLS, and RGMM procedures for n = 30, 50, 100, 200. The RGMM
estimator corresponds to what Lin and Lee (2010) denote as optimal RGMM, and
is constructed using the same algorithm described in Lin and Lee (2010). The 2SLS
estimates are derived by the standard Kelejian and Prucha (1998) approach, i.e.,
using the linearly independent columns of [WX,X] as instruments for [Wy,X], even
though similar results are obtained when using the linearly independent columns of
[WX,W2X,X], or the so-called optimal instruments [G(λ̃)Xβ̃,X] with (λ̃,β̃ ′)′ being
preliminary estimates (Lee, 2003). Tables 1 and 2 report results for “random” W
and σi in (7.1) generated as (7.2) and as χ2(5), respectively. Tables 3 and 4 report
corresponding results for “exponential” W.

Across all scenarios, the QML estimator of λ does not display a severe bias
overall, but for the case of “random” W, the bias does not seem to vanish as n
increases. On the other hand, the MQML of Liu and Yang (2015) enjoys excellent

7Figure S1 in the Online Supplementary Material gives graphical illustrations of these spatial matrix designs.
8Here and in the sequel, we define “sparseness” as the ratio between nonzero elements to total number of elements.
The sparseness of the exponential distance W matrix decreases with n, and it amounts to 19% for n = 30, 14.96% for
n = 50, 9.02% for n = 100, and 5.08% for n = 200.
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Figure 2. Plots of τ ∗
n (λ) in (3.8) at λ0 = 0.3 with β0 = (0.2;0.1; −0.3) and ζi ∼ iid t(5) for n = 100.

Top: (L) “random” W & σi ∼ χ2(5), (R) “exponential” W & σi ∼ χ2(5); Bottom: (L) “random” W
& σi defined as in (7.2), (R) “exponential” W & σi defined as in (7.2).

finite-sample performance and is considered our best benchmark. For “random” W,
in terms of bias magnitude, MQML seems to slightly outperform CUII in the case
where the heteroskedasticity is generated as in (7.2), whereas the opposite holds
for σis generated as χ2(5). For “exponential” W, in most cases, CUII seems to
slightly outperform MQML in terms of bias, a feature which is notable especially
at λ = 0.5. In general, the MSE of MQML is slightly smaller than that of CUII,
even though the difference becomes progressively smaller as n increases. On the
other hand, CUII appears to be nearly insensitive to the starting initialization used
in the optimization routine when compared to the MQML.

It has been well documented in the spatial literature that 2SLS is not efficient
compared to other methods, and indeed our 2SLS estimates across Tables 1–4
reveal particularly poor performance, having large biases and even larger MSE.
Finally, the RGMM performance has a mixed pattern of performance, depending
on the value of λ0 and the choice of σi. For both “random” and “exponential” W,

https://doi.org/10.1017/S0266466621000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000384


CONTINUOUSLY UPDATED INDIRECT INFERENCE 131

Table 1. Bias and MSE of CUII, QML, MQML, 2SLS, and RGMM estimators
for “random” W using 1,000 Monte Carlo replications. The εi’s are defined as in
(7.1) with ζi ∼ iid t(5) and σi is defined as in (7.2).

n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0745 0.1950 −0.0376 0.1264 −0.0144 0.0634 −0.0080 0.0560

0.3 0.0100 0.1581 0.0260 0.1173 0.0224 0.0800 0.0030 0.0618

0.5 0.0527 0.1653 0.0692 0.1191 0.0180 0.0751 0.0190 0.0609

0.8 0.0793 0.1663 0.0738 0.1058 0.0777 0.0847 0.0329 0.0608

QML bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0577 0.0803 −0.0031 0.0728 −0.0356 0.0506 −0.0393 0.0504

0.3 −0.0858 0.0971 −0.0936 0.0805 −0.0797 0.0635 −0.0813 0.0539

0.5 −0.1374 0.1013 −0.1049 0.0763 −0.1078 0.0571 −0.0950 0.0484

0.8 −0.1267 0.0816 −0.1410 0.0702 −0.1326 0.0480 −0.1545 0.0498

MQML bias MSE bias MSE bias MSE bias MSE

−0.5 0.0358 0.0868 0.0181 0.0834 0.0060 0.0537 0.0002 0.0521

0.3 −0.0331 0.0957 −0.0124 0.0817 −0.0015 0.0652 −0.0068 0.0564

0.5 −0.0407 0.0872 −0.0025 0.0756 −0.0230 0.0557 −0.0015 0.0516

0.8 −0.0427 0.0751 −0.0231 0.0759 −0.0031 0.0513 −0.0083 0.0486

2SLS bias MSE bias MSE bias MSE bias MSE

−0.5 −0.7459 2.3226 −0.4963 3.3981 −0.5898 4.4274 −0.5110 7.5457

0.3 −0.0329 2.5238 0.0149 4.3781 0.0645 4.5001 0.1618 8.4440

0.5 0.1809 3.1665 0.2530 2.9833 0.1343 2.5633 0.1618 5.0755

0.8 0.3151 2.6836 0.1274 2.1983 0.2108 1.6882 0.2041 2.4499

RGMM bias MSE bias MSE bias MSE bias MSE

−0.5 −0.3074 0.6961 −0.1230 0.4128 −0.0629 0.0760 −0.0536 0.0645

0.3 −0.0291 0.4907 −0.0289 0.2695 −0.0416 0.1224 −0.0557 0.0816

0.5 0.0149 0.4958 0.0141 0.2493 −0.0319 0.2660 −0.0668 0.1370

0.8 0.1151 0.5264 0.0721 0.4906 0.0339 0.5678 −0.0326 0.5065

when the σi’s are generated as (7.2), the finite-sample performance of RGMM is
satisfactory for larger sample sizes, although both bias and MSE are particularly
poor for λ0 = −0.5 in the “random” case. Furthermore, for “random” W, RGMM
displays a large MSE for all sample sizes when λ0 = 0.8, even though the bias is
not particularly severe. The performance of the RGMM in terms of bias and MSE
improves for both “random” and “exponential” cases when the σi’s are generated
from χ2(5), even though it still remains substantially inferior to that of both CUII
and MQML.
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Table 2. Bias and MSE of CUII, QML, MQML, 2SLS, and RGMM estimators
for “random” W using 1,000 Monte Carlo replications. The εi’s are defined as in
(7.1) with ζi ∼ iid t(5) and σi ∼ χ2(5).

n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0360 0.1262 −0.0158 0.0590 0.0111 0.0589 −0.0006 0.0521

0.3 0.0132 0.1204 0.0066 0.0733 0.0036 0.0596 −0.0098 0.0523

0.5 0.0003 0.1128 0.0089 0.0649 0.0040 0.0691 −0.0037 0.0580

0.8 0.0691 0.1203 0.0136 0.0766 0.0357 0.0742 0.0197 0.0588

QML bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0169 0.0733 −0.0301 0.0440 −0.0110 0.0487 −0.0278 0.0480

0.3 −0.0728 0.0833 −0.0810 0.0606 −0.0751 0.0500 −0.0827 0.0491

0.5 −0.1527 0.0947 −0.0801 0.0534 −0.1069 0.0555 −0.1051 0.0501

0.8 −0.0985 0.0626 −0.0950 0.0445 −0.1418 0.0498 −0.1542 0.0511

MQML bias MSE bias MSE bias MSE bias MSE

−0.5 0.0374 0.0813 0.0216 0.0488 0.0295 0.0528 0.0072 0.0499

0.3 −0.0175 0.0837 −0.0020 0.0588 −0.0047 0.0513 −0.0121 0.0547

0.5 −0.0300 0.0772 −0.0145 0.0521 −0.0204 0.0538 −0.0143 0.0520

0.8 −0.0316 0.0640 0.0006 0.0530 −0.0191 0.0466 −0.0036 0.0490

2SLS bias MSE bias MSE bias MSE bias MSE

−0.5 −0.5405 2.8543 −0.4837 1.8426 −0.6045 3.5927 −0.7222 11.3494

0.3 −0.2197 1.8963 −0.2851 2.0994 −0.2312 5.9163 −0.1206 11.8204

0.5 −0.2943 1.5970 −0.2300 1.6587 −0.0086 5.1936 0.0365 7.5799

0.8 0.1399 1.4416 0.0665 0.7330 0.1751 1.6407 0.2028 3.4770

RGMM bias MSE bias MSE bias MSE bias MSE

−0.5 −0.1668 0.4255 −0.0858 0.1015 −0.0485 0.0813 −0.0423 0.0582

0.3 −0.0492 0.2873 −0.0647 0.1140 −0.0705 0.0872 −0.0703 0.0652

0.5 −0.0662 0.2928 −0.0464 0.1381 −0.0720 0.2267 −0.1203 0.1795

0.8 0.0492 0.3546 −0.0134 0.1806 −0.0658 0.3921 −0.0725 0.7230

The performance of 2SLS and particularly that of RGMM seems to be heavily
influenced by sparsity in W. The results in Tables 1 and 2 correspond to a choice of
W with 10% “ones” for each sample size. In the Online Supplementary Material,
we report the equivalent of Tables 1 and 2 for a choice of W with 20% “ones,”
which leads to a denser contiguity-like matrix. As expected, the MSEs reported
in Tables S1 and S2 are systematically higher than their counterparts in Tables 1
and 2, and the performance of 2SLS and, especially, of RGMM, deteriorates even
more clearly in terms of MSE as sparseness in W declines.
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Table 3. Bias and MSE of CUII, QML, MQML, 2SLS, and RGMM estimators
for “exponential” W using 1,000 Monte Carlo replications. The εi’s are defined as
in (7.1) with ζi ∼ iid t(5) and σi is defined as in (7.2).

n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.1506 0.3090 −0.0951 0.1605 −0.0358 0.0656 −0.0137 0.0661

0.3 −0.0838 0.1811 −0.0529 0.1022 −0.0179 0.0424 −0.0142 0.0450

0.5 −0.0404 0.1688 −0.0268 0.0980 −0.0719 0.0394 −0.0043 0.0437

0.8 0.0122 0.0741 0.0237 0.0532 0.0111 0.0268 −0.0119 0.0448

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.1088 0.1617 −0.0859 0.1155 −0.0251 0.0561 −0.0382 0.0678

0.3 −0.2065 0.1516 −0.1254 0.0868 −0.0660 0.0378 −0.0470 0.0406

0.5 −0.1772 0.1282 −0.1228 0.0769 −0.0719 0.0309 −0.0520 0.0340

0.8 −0.1279 0.0636 −0.1033 0.0394 −0.0694 0.0187 −0.0564 0.0229

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0531 0.1884 −0.0553 0.1261 −0.0238 0.0616 −0.0082 0.0646

0.3 −0.1020 0.1276 −0.0734 0.0810 −0.0287 0.0374 −0.0243 0.0390

0.5 −0.1010 0.1097 −0.0750 0.0677 −0.0245 0.0277 −0.0321 0.0319

0.8 −0.0401 0.0977 −0.0300 0.0462 −0.0187 0.0155 −0.0400 0.0216

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.7895 3.0953 1.1721 4.9663 1.3151 6.2323 1.5788 6.2859

0.3 0.6586 1.4838 0.7798 1.2917 0.9263 1.8396 1.0740 2.2559

0.5 0.5258 1.2483 0.6827 1.6504 0.7489 1.1029 0.8554 1.5950

0.8 0.3057 0.2669 0.2789 0.2419 0.3758 0.3419 0.4689 0.6066

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0967 0.5008 −0.0479 0.1979 −0.0075 0.0868 0.0239 0.0813

0.3 0.0034 0.3632 0.0713 0.2917 0.0343 0.1076 0.0495 0.0985

0.5 0.1273 0.4544 0.0778 0.2578 0.0849 0.1758 0.0723 0.1372

0.8 0.1046 0.1596 0.1164 0.1352 0.0903 0.0982 0.0761 0.1027

In addition to the degree of sparsity of W, the poor performance of 2SLS and
RGMM observed in Tables 1–4 might also depend on the particular simulation
design, which corresponds to rather weak relevance in the instruments. In Tables
S3 and S4 in the Online Supplementary Material, we report results derived for
β0 = (2,1.5,−1) and the two columns of X, other than that corresponding to
the intercept, being randomly drawn from two independent uniform distributions
on the support [0,4]. We only focus on the choice of “exponential” W, but the
same pattern holds for “random” W. In Tables S3 and S4, we also report bias
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Table 4. Bias and MSE of CUII, QML, MQML, IV, and RGMM estimators for
‘eExponential” W using 1,000 Monte Carlo replications. The εi’s are defined as
in (7.1) with ζi ∼ iid t(5) and σi ∼ χ2(5).

n = 30 n = 50 n = 100 n = 200

CUII λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0990 0.2383 −0.0666 0.1576 −0.0388 0.0696 −0.0374 0.0703

0.3 −0.0406 0.1812 −0.0459 0.0958 −0.0209 0.0381 −0.0184 0.0530

0.5 −0.0364 0.1810 −0.0014 0.0891 −0.0094 0.0395 −0.0051 0.0454

0.8 0.0251 0.0667 0.0337 0.0616 −0.0002 0.0258 −0.0121 0.0421

QML λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.1076 0.1653 −0.0686 0.1134 −0.0618 0.696 −0.0589 0.0717

0.3 0.1540 0.1300 −0.1210 0.0892 −0.0566 0.0381 −0.0594 0.0473

0.5 −0.1808 0.1365 −0.0956 0.0631 −0.0551 0.0345 −0.0487 0.0376

0.8 −0.1032 0.0531 −0.1072 0.0394 −0.0508 0.0165 −0.0625 0.0225

MQML λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.0385 0.1705 −0.0285 0.1219 −0.0269 0.0649 −0.0299 0.0670

0.3 −0.0854 0.1182 −0.0665 0.0737 −0.0293 0.0351 −0.0288 0.0467

0.5 −0.1048 0.1136 −0.0579 0.0551 −0.0319 0.0306 −0.0314 0.0356

0.8 −0.0473 0.0759 −0.0511 0.0315 −0.0265 0.0154 −0.0227 0.0210

2SLS λ bias MSE bias MSE bias MSE bias MSE

−0.5 0.6186 5.2417 1.3742 5.0555 1.1728 4.5728 1.6285 5.6988

0.3 0.8710 1.9714 0.7492 1.0895 0.8836 1.4099 1.0015 2.8367

0.5 0.6006 0.9648 0.7298 0.9990 0.6812 0.9991 0.8861 1.7479

0.8 0.2798 0.2063 0.3322 0.3881 0.3538 0.2985 0.4931 0.7864

RGMM λ bias MSE bias MSE bias MSE bias MSE

−0.5 −0.1083 0.3466 −0.0179 0.1787 −0.0152 0.0952 0.0078 0.0871

0.3 0.0617 0.4151 0.0801 0.2614 0.0382 0.0787 0.0528 0.1089

0.5 0.0935 0.3829 0.1226 0.2545 0.1044 0.1706 0.0653 0.1084

0.8 0.1404 0.1590 0.1238 0.1797 0.1127 0.1202 0.0946 0.0970

and MSE for a continuously updated version of RGMM (denoted by CUGMM
henceforth), obtained by using the same set of optimal instruments of Lin and Lee
(2010), but by parameterizing the optimal choice of the weight matrix in terms of
unknown parameters in the same spirit of Hansen et al. (1996).9 Results displayed
in Table S3 show that all estimators enjoy a very satisfactory performance, with

9We omit the comparison with CUGMM for the simulation setup adopted in Tables 1–4, as its performance appears
similar to, if not worse than, that of RGMM.

https://doi.org/10.1017/S0266466621000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466621000384


CONTINUOUSLY UPDATED INDIRECT INFERENCE 135

CUII and CUGMM often outperforming RGMM and MQML in terms of both bias
and MSE. In Table S4, instead, CUII often tends to outperform both RGMM and
CUGMM in terms of MSE, even though occasionally it has slightly larger bias.
The performance of MQML is excellent overall and sometimes even superior to
that of CUII. In sum, the finite-sample properties of all the estimators remain very
satisfactory for the design adopted in Tables S3 and S4. In particular, we notice
that 2SLS performs very well, unlike in Tables 1–4, S1, and S2. This might have
been expected, given the strong instrument relevance and the simple closed form
of 2SLS.

We also explore robustness of CUII versus competitor estimators in the case
of model misspecification. Tables S5 and S6 given in the Online Supplementary
Material report results for CUII, QML, MQML, and RGMM when the true data
generating process is a pure SAR, while the estimated model is a SARX with
intercept and one exogenous regressor which is drawn from a uniform distribution
on the support [0,1]. Tables S5 and S6 display results for “exponential” W, with σi

generated as in (7.2) and from χ2(5), respectively. Comparison with 2SLS is not
possible here, as the standard instruments would be irrelevant. From Tables S5 and
S6, as expected, RGMM has an erratic pattern, which becomes extremely poor for
positive λ. This is due to irrelevance of instruments used to construct RGMM. The
pattern of CUII, with respect to MQML, across sample sizes and different values
of λ, follows that of Tables 3 and 4, confirming robustness of CUII in cases where
the practitioner is agnostic about the relevance of regressors.

8. EMPIRICAL ILLUSTRATION

In this section, we report an empirical application of the CUII estimator and
compare results to those obtained by the competitor methods QML, RGMM, and
MQML. This application provides an illustration of the new method in a practical
setting. The application is complemented by a further simulation that is matched
to the empirical data and is therefore more realistic than standard Monte Carlo
designs.

Specifically, we use Boston house price data (Harrison and Rubinfeld, 1978) and
its “corrected” version (Gilley and Pace, 1996),10 which also includes information
on LON (tract point longitudes in decimal degrees) and LAT (tract point latitudes
in decimal degrees) for the 506 census tracts in the Boston Standard Metropolitan
Area during the early 1970s. The locations of the 506 census tracts are depicted in
Figure 3 below.

The main variable of interest is log(MEDV), which is the logarithm of the
median price (in thousands of dollars) for owner-occupied houses. The dataset
contains additional information about the following environmental and socioeco-
nomic variables:11

10Data and codes are available from the authors upon request.
11For additional information about the dataset, we refer to Simlai (2014) and Harrison and Rubinfeld (1978).
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Figure 3. Locations of the 506 census tracts.

crim per capita crime rate by town;

zn proportion of residential land zoned for lots over 25,000 sq.ft;

indus proportion of nonretail business acres per town;

chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise);

nox nitrogen oxides concentration (parts per 10 million);

rm average number of rooms per dwelling;

age proportion of owner-occupied units built prior to 1940;

dis weighted mean of distances to five Boston employment centers;

rad index of accessibility to radial highways;

tax full-value property-tax rate per 10,000;

ptratio pupil–teacher ratio by town;

black 1,000∗ (Bk −0.63)2, where Bk is the proportion of blacks by town;

lstat lower status of the population (percent).

In the spirit of Simlai (2014), we estimate parameters of the model

log(MEDV)i = α +λ
∑
i�=j

wijln(MEDV)j + x
′
iβ + εi i = 1, . . . ,506, (8.1)

where the covariate vector xi contains rm2
i , agei, log(dis)i, log(rad)i, taxi, ptratioi,

blacki, log(stat)i,crimi,zni,indusi,chasi,nox2
i . When λ = 0 ex ante, the model

simplifies to the hedonic price model. Since the main scope of this paper is robust
estimation and inference on λ, this illustration focuses on the spatial network
effect in model (8.1) and thus on estimation and significance of λ, rather than the
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covariate coefficient vector β. We recall that estimation of β in the general model
(2.1) and in the specific model (8.1) poses fewer consistency and efficiency issues
compared to inference on λ.

We conjecture that several measures of proximity might play a role in the
house price determination process of MEDVi, as both economic distance and
geographical distance seem relevant. Accordingly, we design five different choices
of weight matrix W, which are denoted, respectively, as Wgeo, Wexp,geo, Wgeo,0.9,
Wtax, and Wschool. The first three choices for W in (8.1) reflect geographical
proximity and rely on the geo-distance between tracts i and j (denoted as geoij

in the sequel) computed using the Haversine formula. The matrices Wgeo, Wexp,geo,
and Wgeo,0.9 are then constructed as

• Wgeo: wij = 1/geoij;
• Wgeo,exp: wij = exp

(−|geoij|
)
1(|geoij| < log(n));

• Wgeo,0.9: wij = 1(|geoij| < D∗), where we set D∗ = 2.5 km to obtain a matrix
sparseness12 of approximately 9%.

The remaining two choices of W are defined in terms of various economic
distances. Wtax contains the inverse of pairwise distances between census tracts,
where proximity is defined according to how similar their respective full-property
tax rates are. Specifically wtax

ij = 1/|taxi − taxj| if taxi �= taxj, and wtax
ij = 1 if

taxi = taxj. Heuristically, we expect house prices to be affected more from the
house prices of neighboring properties, where “neighbor” is now defined as being
of similar status, which, in turn, is proxied by the property tax rate. Similarly,
we define Wschool based on the observable ptratio, which is known to reflect the
quality of schools in each census tract. Again, two census tracts with similar
ptratio are expected to be similar in terms of their socioeconomic status. We define
wschool

ij = 1/|ptratioi − ptratioj|, as long as ptratioi �= ptratioj, and wschool
ij = 1 in

case ptratioi = ptratioj. For all choices of W, we set wii = 0, and we normalize
the matrices, so that elements of each row sum to 1. Figures S2–S6 in the
Online Supplementary Material depict the 3D plots for Wgeo, Wgeo,exp, Wgeo,0.9,
Wtax, and Wschool, respectively. These plots offer an intuitive illustration on the
spatial structure, the respective level of sparsity, and the respective decay rates
of the weights, especially in view of the three nonsparse structures Wgeo, Wtax,
and Wschool, for which the sparseness amounts to approximately 100%, but have
decaying weights.

Figure S7 in the Online Supplementary Material displays the approximate
binding functions for all the choices of the weight matrices for λ in (−1,1).
Thus, Assumption 6 is satisfied for the present setup, confirming that CUII is well
defined.

In Table 5, we report estimates and t-ratios for the parameter λ obtained by
QML, CUII, RGMM, and MQML. The estimates of λ do not vary much across

12We remind the reader that we are calculating “sparseness” as the ratio of number of nonzero elements over the total
number of elements.
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Table 5. Estimates and t-statistic of λ in (8.1) computed by QML, CUII, RGMM,
and MQML for different choices of weighting structures. CPU times measured in
seconds.

QML CUII RGMM MQML

Wgeo λ 0.0367 0.0381 0.0380 0.0379

t-ratio 1.1990 16.3998 1.1213 2.7596

CPU times 4.32 2.52 452.22 1.24

Wexp,geo λ 0.0241 0.0246 0.0247 0.0247

t-ratio 1.8542 19.8468 2.1385 17.6448

CPU times 3.71 4.3 342.64 1.36

Wgeo,0.9 λ 0.0130 0.0131 0.0127 0.0132

t-ratio 2.4790 44.7070 3.0448 72.5195

CPU times 4.87 4.15 150.7 1.27

Wtax λ 0.0217 0.0230 0.0143 0.0235

t-ratio 1.2368 12.3797 1.0886 12.7909

CPU times 4.48 3.60 378.06 12.79

Wschool λ −0.0269 −0.0268 −0.0271 −0.0268

t-ratio −2.9089 −91.3553 −2.3550 −17.9526

CPU times 3.75 2.89 52.29 1.29

average CPU times 4.226 3.492 275.18 3.59

QML, CUII, MQML, and RGMM. But a major difference between the methods
shows up in the significance of the spatial effects. The methods CUII and MQML
return similar results with highly significant t-statistics in all scenarios, with t-
statistics substantially larger by an order of magnitude than those of the other
methods. The effects of robustification to heterogeneity in the equation errors is
therefore materially important in hypothesis testing. The CPU times (in seconds)
are also displayed for each estimation method.13 These values reveal that the CUII
is computationally inexpensive, a feature which is robust across all choices of
weight matrices as shown by the average CPU time (across all W choices), while
the RGMM appears to be the most computationally expensive method. While the
MQML has a further computational advantage over CUII for the majority of W
choices, its CPU time appears to be sensitive to the choice of W.

The t-statistics obtained by QML are unreliable, because the QML standard
errors are not robust to heteroskedasticity of the errors, but the corresponding
figures are reported in the tables for completeness. Finally, the t-ratios obtained

13This has been calculated using the cputime command in Matlab.
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Table 6. Bias and MSE for N = QML,CUII,RGMM,MQML computed from B =
100 bootstrap samples for various choices of weighting structures.

QML CUII RGMM MQML

Wgeo BiasN/λ̂N −0.0007 0.0646 0.0546 0.0691

MSEN/λ̂2
N 0.9204 0.8136 0.7645 0.9678

Wexp,geo BiasN/λ̂N −0.2344 −0.0095 −0.0220 −0.0386

MSEN/λ̂2
N 0.1452 0.0618 0.0642 0.1647

Wgeo,0.9 BiasN/λ̂N 0.0465 0.0525 0.0554 0.0523

MSEN/λ̂2
N 0.1277 0.1268 0.1313 0.1259

Wtax BiasN/λ̂N −0.0967 −0.0382 −0.0610 −0.0359

MSEN/λ̂2
N 0.4461 0.3658 0.9324 0.3888

Wschool BiasN/λ̂N −0.0154 −0.0199 −0.0176 −0.0201

MSEN/λ̂2
N 0.1817 0.1732 0.1816 0.1840

by RGMM are not significant for the weighting structures Wtax and Wgeo, a result
that contrasts sharply with those obtained by CUII and MQML.

In order to assess the accuracy, and hence the reliability of point estimates
and t-statistics displayed in Table 5, we mimic the empirical illustration in a
Monte Carlo exercise by means of B bootstrap samples constructed from the
point estimates in Table 5 and using a wild bootstrap variant to generate simu-
lation errors from the actual residuals. Specifically, we denote by ε̂N , for N =
QML,CUII,RGMM,MQML, the vector of residuals based on entries in Table 5,
and we generate an n × B matrix of i.i.d. random variables from the Rademacher
distribution, with typical element indicated by rij, for i = 1, . . . n and j = 1, . . . ,B.
For each estimator N and each choice of W, we then generate B sets of pseudodata
vectors as

y∗
N,j = S−1(λ̂N)

(
Xβ̂N +u∗

N,j

)
, j = 1, . . . ,B, (8.2)

with each component of u∗
N,j being constructed as u∗

N,ij = (n/(n−k))1/2ε̂N,irij (k =
14), and we calculate the corresponding B estimators λ̂∗

N,j, for j = 1, . . . ,B, so that
a measure of bias and MSE can be computed as

BiasN = 1

B

B∑
j=1

λ̂∗
N,j − λ̂N, MSEN = Bias2

N + 1

B

B∑
j=1

⎛
⎝λ̂∗

N,j −
1

B

B∑
j=1

λ̂∗
N,j

⎞
⎠

2

. (8.3)

Results of this bootstrap exercise are reported in Table 6. For ease of interpretation,
given the small magnitude of λ̂N , for N = QML,CUII,RGMM,MQML, in Table 6,
we report scaled quantities, i.e., BiasN/λ̂N and MSEN/λ̂2

N .
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Results in Table 6 show that λ̂CUII generally has similar performance in terms
of bias and MSE as its robust counterparts RGMM and MQML and improved
performance in some cases, notably for Wexp,geo. Again, QML is not expected
to be consistent in these scenarios, although its bias appears to be substantially
larger than that of other estimators only for Wexp,geo. More importantly, the clear
advantage in terms of efficiency of λ̂CUII and λ̂MQML over λ̂RGMM outlined in Table 5
for Wtax is confirmed by the simulation exercise reported in Table 6. However, this
small simulation exercise reveals that results obtained when proximity is defined
as Wgeo are very erratic, and thus practitioners should treat estimates and tests
reported in the first line of Table 5 as not particularly reliable. This behavior is
probably due to the very dense structure of this choice of weighting structure.
Results for Wgeo,0.9 and Wschool reported in Table 6 partially confirm those in
Table 5, as MSECUII and MSEMQML are lower than MSERGMM , but the comparative
advantage in terms of MSE does not fully match the considerable difference in
their t-statistic values reported in Table 5.

While the main goal of this empirical exercise is to illustrate the implementation
of the CUII method in relation to other spatial econometric methods, the results
do reveal some interesting features concerning the various channels of spatial
correlation in the context of house price determination. In particular, it seems
worthy of mention that spatial effects that are present when the network structure
is defined in terms of Wtax or Wschool continue to persist when the individual levels
of tax and ptratio are included among regressors, revealing a genuinely significant
impact. It is also worth pointing out that the spatial effects induced by Wtax and
Wschool differ in sign and thus their interpretation as positive or negative spatial
spillovers differ, an empirical feature that might usefully be explored in subsequent
research.

9. CONCLUDING REMARKS

Unobserved heteroskedasticity in the disturbances is a frequent occurrence in
spatial models due to sample unit heterogeneity across their many individual
features, including respective unit size. The new estimation method introduced in
this paper directly addresses such heterogeneity, relying on an II transformation
of standard OLS estimation that parameterizes the error covariance matrix in
terms of the unknown spatial parameter. The procedure follows in the spirit of
continuously updated estimators in the broader econometric literature such as
GMM. The resulting CUII estimator is consistent and asymptotically normal
under some standard model and regularity conditions combined with an additional
binding function condition that can be numerically verified in practical work.

The finite-sample performance of the CUII estimator is found in simulations to
be very satisfactory when compared to other robust methods such as the GMM
robust procedures of Lin and Lee (2010) and Kelejian and Prucha (2010) or the
modified QMLE procedure of Liu and Yang (2015). Implementation of CUII is
straightforward, and the optimization routine to derive the estimator appears to
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converge quickly even when an artificially dense W matrix is designed. The finite-
sample performance of CUII appears to retain some degree of robustness even
in the presence of model misspecification. A simple empirical illustration based
on Boston house price data reveals that a major advantage of accommodating
heterogeneity in system disturbances lies in hypothesis testing, where significance
tests are found to differ considerably across estimation methods, with CUII giving
much higher levels of significance to spatial effects across many different choices
of the house price network structure.

APPENDIX

Proof of Theorem 1.
Proof of part (i) Let ψij and ψ̃ij be the 2 × 1 vectors defined as ψij = (ψ1ij ψ2ij)

′ =
((P+P′)ij/2 (Q′Q)ij)

′ and ψ̃ij = (ψ̃1ij ψ̃2ij)
′ = ((MXP′)ij (MXQ′Q)ij)

′, respectively. Let

�̃ = diag(εε′) and �λ0 = diag(MXεε′MX), consonant with the notation of Section 4. We
first show

Un = 1√
n

(
ε′Pε − tr(P�λ0)+2β ′

0X′PMXε

ε′Q′Qε − tr(Q′Q�λ0 )+2β ′
0X′Q′QMXε

)

= 1√
n

(
ε′Pε − tr(P�̃)+2β ′

0X′PMXε

ε′Q′Qε − tr(Q′Q�̃)+2β ′
0X′Q′QMXε

)
+op(1). (A.1)

Thus, we need to show

1√
n

n∑
i=1

ψii,s(εi(λ0)2 − ε2
i ) = op(1), s = 1,2, (A.2)

where εi(λ0) = εi −
∑n

i Bijεj, Bij = X′
i(X

′X)−1Xj.
We have

1√
n

∑
i

ψii,s(εi(λ0)2 − ε2
i ) = 1√

n

∑
i

ψii,s
∑

j

∑
t

εjεtBijBit − 2√
n

∑
i

ψii,sεi
∑

j

Bijεj

= 1√
n

∑
i

ψii,s
∑

j

ε2
j B2

ij +
1√
n

∑
i

ψii,s
∑

j

∑
t �=j

εjεtBijBit

− 2√
n

∑
i

ψii,sε
2
i Bii − 2√

n

∑
i

ψii,sεi
∑
j �=i

Bijεj. (A.3)

The modulus of the first term in (A.3) has expectation bounded by

C√
n

∑
i

|ψii,s|
∑

j

B2
ij ≤ C√

nh

∑
i

∑
j

B2
ij = C√

nh
tr(X(X′X)−1X′) = o(1), (A.4)

as ψii,s = O(1/h) under Assumptions 3 and 4. Similarly, the modulus of the third term has
expectation bounded by

C√
n

∑
i

|ψii,s|Bii ≤ C√
nh

∑
i

Bii = o(1). (A.5)
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The second term in (A.3) has mean zero and variance bounded by

C

n

∑
i

∑
v

∑
j

∑
t �=j

|ψii,s||ψvv,s||BijBitBvtBvj| ≤ C

n

∑
i

∑
v

∑
j

∑
t

|ψii,s||ψvv,s||BijBitBvtBvj|

≤ C

nh2

∑
i

∑
v

∑
j

∑
t

|BijBit|(B2
vt +B2

vj) ≤ C

nh2
sup

i

∑
j

|Bij|sup
t

∑
i

|Bit|
∑

v

∑
t

B2
vt

+ C

nh2
sup

j

∑
i

|Bij|sup
i

∑
t

|Bit|
∑

v

∑
j

B2
vj ≤ C

nh2
, (A.6)

under Assumptions 3–5. Similarly, the fourth term in (A.3) has mean zero and variance
bounded by

C

n

∑
i

∑
j �=i

ψ2
ii,sB2

ij +
C

n

∑
i

∑
j �=i

ψii,sψjj,sBijBji ≤ C

nh2

∑
i

∑
j

B2
ij ≤ C

nh2
. (A.7)

Then, (A.2) holds by the Markov inequality.
The remainder of the proof of part (i) and the proof of part (ii) are similar to the proofs

in KPR and are reported in the Online Supplementary Material. �

Proof of Theorem 2. Let ε̂ = MXS(λ̂CUII)y and �̂ = diag(ε̂ε̂′). We need to show, as
n → ∞ and t,s = 1,2, that

1

n

∑
i

∑
j<i

(
ε̂2

i ε̂2
j ψ̂sijψ̂tij −σ 2

i σ 2
j ψsijψtij

)
= op(1), (A.8)

1

n

(
tr(�̂Â)− tr(�0A)

)
= op(1), (A.9)

and

1

n

(
β̂ ′

CUIIX′ ˆ̃
� ′

s�̂
ˆ̃
�tXβ̂CUII −β ′

0X′�̃ ′
s�0�̃tXβ0

)
= op(1), (A.10)

where, consonant with the notation defined at the beginning of the proof of Theorem 1,

ψij = (
ψ1ij ψ2ij

)′ = (
(P+P′)ij/2 (Q′Q)ij

)′, �̃1 = MXP, �̃2 = MXQ′Q, and ψ̂sij,
ˆ̃
�t,

for s,t = 1,2, are obtained by replacing the unknown λ0 by its estimate λ̂CUII . Furthermore,
Â is the estimated version of a generic matrix A = A(λ0) whose elements are uniformly
bounded by 1/h and such that ||A(λ)||∞ +||A(λ)′||∞ < C uniformly over λ. Convergence
of the other terms appearing in v2

CUII is trivial, as it only relies on consistency of λ̂CUII and

β̂CUII .
We provide a proof of (A.8), while the proofs of (A.9) and (A.10) are omitted, as they

follow very similar arguments to those applied to show (A.8) and (A.2) at the beginning of
the proof of Theorem 1. In order to prove (A.8), we need to show

1

n

∑
i

∑
j<i

(
ε2

i ε2
j −σ 2

i σ 2
j

)
ψsijψtij = op(1), (A.11)

1

n

∑
i

∑
j<i

(
ε̂2

i ε̂2
j − ε2

i ε2
j

)
ψsijψtij = op(1), (A.12)
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and

1

n

∑
i

∑
j<i

ε̂2
i ε̂2

j (ψ̂sijψ̂tij −ψsijψtij) = op(1). (A.13)

The rest of the proof is technical, and the details are reported in the Online Supplementary
Material. �

Proof of Theorem 3. The details of the proof are virtually identical to that of Theorem 1
once we adjust for the correct normalization rate. Following the same notation adopted
in the proof of Theorem 1, let ψij be the 2 × 1 vectors defined as ψij = (

ψ1ij ψ2ij
)′ =(

(P+P′)ij/2 (G′G)ij
)′, and

ui = (
u1i u2i

)′ = 2εi
∑
j<i

ψijεj, (A.14)

so that
√

n/hUn = ∑n
i=1 ui +op(1), according to (5.9). Furthermore, let

A =Var

⎛
⎝ n∑

i=1

ui

⎞
⎠ = 4

n∑
i=1

∑
j<i

σ 2
i σ 2

j ψijψ
′
ij, (A.15)

such that hA/n → limn→∞ Vn as n → ∞, where Vn is defined in (5.12). The rest of the
proofs follows in a similar way to the proof of Theorem 1 with minor modifications. �

Proof of Theorem 4. The details of the proof are again identical to that of Theorem 1
once we adjust for the correct normalization rate. Unlike the proof of Theorem 3, before
proceeding, we need to show

Un =
√

h

n

(
ε′Pε − tr(P�λ0)

ε′Q′Qε − tr(Q′Q�λ0 )

)

=
√

h

n

(
ε′Pε − tr(P�̃)+

ε′Q′Qε − tr(Q′Q�̃)

)
+op(1), (A.16)

where, consonant with the notation defined in the proof of Theorem 1, �̃ = diag(εε′) and
�λ0 = diag(MXεε′MX). The proof is identical to that reported in (A.2)–(A.7) after replacing
the rate 1/

√
n with

√
h/n. The rest of the proof then follows as in Theorem 3, with Vn and

f̄ defined in (5.24) and (5.21). �

Proof of Theorem 5. The proof again follows that of Theorem 1 after redefining ψij and

ψ̃ij to be the 3×1 vectors ψij = (ψ1ij ψ2ij ψ3ij)
′ = ((T +T ′)ij/2 (P+P′)ij/2 (Q′Q)ij)

′
and ψ̃ij = (

ψ̃1ij ψ̃2ij ψ̃3ij
)′ = (

0 (MXP′)ij (MXQ′Q)ij
)′. �

SUPPLEMENTARY MATERIAL

To view the supplementary material for this article, please visit: http://doi.org/
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