ERRATUM

In the following abstracts, crucial passages are spoiled, but not by the author.

Metalogical extensions II: First-order consequences and Gödel (BSL 21 (2015), p. 85): In the whole text, the variable a has to be replaced by α . In the $2^{\rm nd}$ paragraph, the fundamental relation between satisfaction and semantic consequence was defaced. It must be: $\mathfrak{M}, V \mid\mid =_{\Phi} \Box \alpha$ iff $\Phi \mid\mid = \alpha$, whereby the new symbol $\mid\mid =$ is used. $\Box T$ should be $\Box \top$. $\Phi \mid\mid -\alpha$ is defined by $\Phi \cup \{\neg \Box \phi \colon \Phi \not\models \phi\} \vdash_{\mathrm{QNI}} \alpha$. In the 3^{rd} paragraph, the completeness theorem: $\Phi \mid\mid = \alpha$ iff $\Phi \mid\mid -\alpha$, being a consequence of the uniqueness of the metalogical extension seq^{\Box} , was disguised.

Immanent inconsistency (ibidem, p. 441): In the 2^{nd} paragraph, $\#(\phi)$ is to be $\#(\phi)$. In the PROOF, seq^{σ} must be seq^{\Box}. In the last paragraph, the ι was \bot , and the marred |-/- means, of course, \forall .

On the possible modalities of a logic (ibid., pp. 239–240): The requirements for seq are: $\Phi \subseteq seq \Phi$, $seq seq \Phi \subseteq seq \Phi$, and $seq \Phi \subseteq seq \Psi$ if $\Phi \subseteq \Psi$. The last sentence of this paragraph is one of the lemmata: Φ is closed iff Φ is a consequence set.

JOACHIM MUELLER-THEYS