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1. Introduction
The main aim of the present note is to compare C(X) and C(pX), the spaces

of real-valued continuous functions on a completely regular space X and its real
1-1 compactification vX, with regard to weak compactness and weak countable
compactness. In a sense to be made precise below, it is shown that C(X) and
C(oX) have the same absolutely convex weakly countably compact sets. In
certain circumstances countable compactness may be replaced by compactness,
in which case one obtains a nice representation of the Mackey completion of the
dual space of C(X) (Theorems 5, 6, 7).

These results all depend to some extent on Theorem 1, where it is shown that
the same absolutely convex subsets of C(X) are compact for the weak topology
and the topology of pointwise convergence. This fact is used to give a proof of a
recent result of H. Buchwalter (1, Theoreme 2.6) which asserts that C(X) and
C(uX) have the same disques bornes completants for their topologies of compact
convergence. (A disque borne compliant in a locally convex space is a bounded
absolutely convex set whose span is a Banach space with respect to the associated
norm. Such a set will be referred to here as a dbc-set.) Various convergence
criteria are also considered in Section 3.

Section 4 is concerned with conditions under which C(X) is barrelled or
(7-barrelled in its topology of compact convergence. In (2, Theoreme 4.1),
H. Buchwalter and J. Schmets have given various conditions equivalent to
ff-barrelledness for C(X). Theorem 9 contains some further results in this
direction, while Theorem 10 is an analogue for the barrelled case of one of their
results.

I am very grateful to Professor Schmets and Professor Buchwalter for
providing me with preprint copies of (2), and to the referee for simplifying the
proof of Theorem 5 (ii).
2. Notation

It will be assumed without specific mention that all the underlying topological
spaces are non-empty and completely regular.

For f 6 C(X), f ° denotes its unique extension to an element of C(vX) and if
A£C(X), A0 = {f°: feA}. The statement that C(X) and C(vX) have the
same sets satisfying a property (P) means that A satisfies property (P) in C(X)
if and only if A" satisfies this property in C(vX).
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222 I. TWEDDLE

CC(X) denotes C(X) with the topology of compact convergence and C(X)'
is the dual of CC(X). Ca(X), CS(X), [C(X)']ff, [C(,X)'\ denote respectively
C(X) with the weak topology a(C(X), C(X)'), C{X) with the topology sx of
pointwise convergence, C(X)' with the weak topology o(C(X)', C(X)) and C(X)'
with the Mackey topology r(C(X)', C(X)).

For each xeX,5x denotes the element of C(X)' defined by 5JJ) = /(x).

3. Weak compactness and convergence: completion of the dual space

Let JT be the family of all non-empty compact subsets of X. For each
K e j f let H(K) be the subset {fe C(X): | f(x) | ^ 1, x e K}° of C(Z)'. Then:

(i) each //(£) is an absolutely convex compact subset of[C(X)'Ja;
(ii) [J{H(K): Kejf} spans C(X)';
(iii) the set of extremal points of H(K) is { + 5X: x e X}.

The first and second observations follow since //(AT) is the polar of a neighbour-
hood in CC(X) and each element of C(X)' is bounded on such a neighbourhood.
It is well known that when X is compact, the extremal points of the closed unit
ball of C(X)' are precisely the point measures ±5x(xeK) (7, Section 25, 2 (2)).
The third observation is easily deduced from this by using the fact that each
Ke jf is C-embedded in C(X), (4, 3.11 (c)).

If F' is the vector subspace of C(X)' spanned by the extremal points of the
sets H(K) (Ke X), (C(X), F') is a dual pair, and the topology a{C(X), F') is
simply sx. (For later reference, note that in the terminology of (13, Section 2),
& = {H(K): Ke jf} is an 5-family for (C(X), C(X)') and C(X)\Sf) = F'.)
The following is now an immediate consequence of (12, Theorem 2).

Theorem 1. Ca(X) and CS(X) have the same absolutely convex compact sets.

Corollary. Letfn->0 in Ca{X) and suppose that the closed absolutely convex
envelope A of {fn: n = 1,2, ...} in CO(X) is compact. Then A" is compact in
Ca(vX).

Proof. The proof of (7, Section 20, 9 (6)) shows that

A = { t Un- 1 KJ ^ 1, 6.e#?, n = 1, 2, ...j,
(./i = 1 n = 1 J

where each series ~LS,nfn converges in Ca(X). For any such series !.%„/„ and any
y e vX, there exists x e X such that

i = i

an<*fn(y) = /„(*) (n = 1, 2, ...) (4, 7C). Then/^(y)-»O and
00 \l) 00 OO

f f i fv) = y f / (x) = >
n = l / n = l n = l
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or equivalently,
00 / 00

/!->0 and £ U°n=( E *.
n = 1 \n = 1

in Cs(oX). Again by (7, Section 20, 9 (6)), A" is compact in Cs(vX) and there-
fore also in Ca(pX) by the theorem.

Theoreme 2.6 of (1) can now be obtained by an application of this corollary.

Theorem 2 (Buchwalter). CC(X) and Cc(oX) have the same dbc-sets.
Proof. As in (1) it is enough to show that if D is a dbc-set in CC(X), D" is

bounded in Cc(oX). If this is not the case, there is an element n e C(vX)' and
a sequence (/,) in D such that

If iTis the span of D in C(X), (l/n)/n-»0 in the norm topology defined on E
by D, and since E is complete in this topology, the closed absolutely convex
envelope A of {(1/n)/,: n = 1, 2, ...} is a norm compact subset of E. Since
Ca(X) induces a coarser topology on E, A is compact in Ca(X). By the Corollary
to Theorem 1, A" is compact and therefore bounded in Ca(pX). Thus there is a
constant M > 0 such that | /i((l/«)/n) I ^ M (« = 1,2,...), which contradicts (*).

Remark. As observed in (2, Remark 1 following 3.5), in fact CS(X) and
Cc(vX) have the same dbc-sets. This may be proved as above with an application
of Theorem 1.

The next two results are interpretations in the present context of some general
convergence theorems of (12) and (13). The first of these is well known.

Theorem 3. (i) /„->//« Ca(X) if and only if{fn: n = 1, 2, ...} is bounded in
Ca(X) andfn(x)^f(x)for each xeX.

(ii) gn-+g in Ca(oX) if and only if{gn: n = 1, 2, ...} is bounded in Ca(oX)
and gn(x)-*g(x) for each xe X.

Proof, (i) follows immediately from (12, Corollary 2). As in the proof of
the Corollary to Theorem 1, if gn(x)-*g(x) for each xe X, then gn-+g in Cs(vX).
(ii) then follows from (i).

A series ~Lxn in a locally convex space is said to have property (0) if each
subseries is weakly convergent (see (14)).

Theorem 4. A series Ifn has property (O) in CC(X) if and only if S/° has
property (O) in C£vX). Further iflfn has property (O) in CC(X), "Zfn converges
unconditionally in Cc(vX).

Proof. The sufficiency of the condition in the first assertion is immediate.
Conversely, if 1fn has property (O) in CC(X), then Z/° is certainly subseries

convergent under soX. The necessity of the condition and the second assertion
then follow immediately from (13, Corollary to Theorem 7), when the interpre-
tation of the topology of pointwise convergence given at the beginning of the
section is applied to soX.
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Theorem 5. (i) Ca(X) and Ca(oX) have the same absolutely convex countably
compact sets, (ii) If Cc(v>X) is complete, Ca(X) and Ca(vX) have the same
absolutely convex compact sets.

In both cases, if CC(X) is sequentially complete, the hypothesis of absolute
convexity may be omitted.

Proof, (i) Let A be any non-empty absolutely convex countably compact
subset of CO(X). Let (fn) be a sequence in A and let/0 6 A be a cluster point
of (/„) in Ca(X). Given yu y2, ..., yr e oX, there exist xu x2, ..., xreX such
that

/Xy.) =/.(**) (« = o, l , . . . ; s = l, 2,..., r).
Then, ife>0,
{» : I fv

a(ys)-fo(ys) | <e, s = 1, 2, .... r}
= {« : l / » W - / o W I <e, s = 1, 2, ..., r},

from which it follows that/2 is a cluster point of (/") in Cs(oZ).
Let nu fi2, •••, Hi e C{pX)'. By (9, Theorem 2.1) there is a subsequence

t

(/«%)) s u c n t n a t /iT(k)W-*/o(x) f°r all xe (J supp//,. Now A is a dbc-set in
r = 1

C^A') since it is sequentially complete in Ca(X) (the proof of 10, Chapter V,
Lemma 2 is easily adapted to this case) and so by Theorem 2, (/n°w) is a bounded
sequence in Cc(oX). Applying Theorem 3 (i) in Ca I M supp n,) then shows

V = i /
that

>rC/?(*)J-^,(/o as fe^oo (r = l ,2 , .... 0,

from which it follows that for an infinite number of suffices n,
f'm-fte{gBC(vX) : | tfg) \ <, 1, r = 1, 2, .... r}.

/o is therefore a cluster point of (fl) in ^(tiA') and A" is a countably compact
subset of Ca(pX).

The converse is immediate since the mapping 9: Ca(vX)-*Ca(X) defined by
0(d) = 9 \x is continuous.

(ii) Let B be any absolutely convex compact subset of Ca(X). By (i) and
Eberlein's theorem it follows that if Cc(vX) is complete, then B" is relatively
compact in Ca(pX). Since the mapping 8 defined in (i) is a continuous bijection
and since B is closed in Ca(X), B" = 9~i(B) is closed and therefore compact in
Ca(vX).

The converse follows as in (i).
Finally, if CC(X) is sequentially complete, CC(X) and Cc(vX) have the same

bounded sets (1, 3.15). The assumption of absolute convexity may therefore be
dropped in (i) and consequently also in (ii).

Remark. If Ca(X) and Ca(pX) have the same compact sets, one can show
by an argument similar to that used in the proof of Theorem 2 that they must
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have the same bounded sets. However H. Buchwalter has shown that in general
the families of bounded sets are not the same (1, Section 3).

If there exists a discrete space Z with measurable cardinal (4, Chapter 12),
then Ca(Z) and Ca(pZ) do not have the same absolutely convex compact sets.
Since CC(Z) is a product of copies of R, [C(Z)']X is a direct sum of copies of Ft
and so is complete. Since Z is not realcompact (4, 12.2), there is an element
y e oZ\Z and the mapping f->f\y) is a linear form on C(Z) which must be
discontinuous on some absolutely convex compact subset A of Ca(Z) (10,
Chapter VI, Theorem 3). A" cannot then be compact in Ca(pZ) (see Theorem 7
below).

Theorem 6. If there is a sequence (Xn) of bounded subsets of X such that
00

X = cl \J Xn, then Ca(X) and Ca(pX) have the same absolutely convex compact
n — 1

sets.
Proof. Let A be an absolutely convex compact subset of Ca(X). By

Theorem 5 (i), A0 is countably compact in Ca(vX). Now each Xn is also a
bounded subset of vX and so its closure in vX is compact (4, 8E). Thus by
hypothesis vX has a er-compact dense subset and so by (9, Theorem 2.5) A" is
compact in Cs(pX). It now follows from Theorem 1 that A" is compact in
Ca(vX). As before, the converse is immediate.

While the problem of comparing the absolutely convex compact subsets of
Ca(X) and Ca(oX) would seem to be of interest for its own sake, the next result
gives it an added importance.

Theorem 7. If Ca(X) and Ca(vX) have the same absolutely convex compact
sets, then [C(DZ)']T is the completion of[C(X)'~\x.

Proof. The mapping 9: Ca(vX)^>Ca(X) denned by 9(g) = g \x is bijective
and continuous. Hence its transpose 9' maps C{X)' injectively onto a vector
subspace G' of C(pX)' which is dense in [C(oX)']T. By hypothesis, if G' is pro-
vided with the topology induced by i(C{vX)', C(oXJ), 9' defines a topological
isomorphism of [CCA')'], onto G'.

The result will follow if it is shown that [C^A")'], is complete. M. de Wilde
and J. Schmets have shown that Cc(uA") is ultrabornological (3, Theoreme).
Consequently C(vX)' may be represented as a closed vector subspace of a
product Y\ E'y where each E'y is the dual space of a Banach space Ey (10,

Chapter V, Propositions 3, 25, 28). Since a product of complete spaces is
complete and each E'y is complete under z{E'y, Ey) (10, Chapter VI, Corollary 2
of Proposition 1), C(vX)' must be complete in the topology induced by the
product of these Mackey topologies. This is a topology of the dual pair
\c{vX)', C(vX)), so that [C(uA")']t is also complete (10, Chapter VI, Proposi-
tion 5).
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Now suppose that Cc{oX) is sequentially complete. For each series E/n in
CC(X) having property (O), let A(Ifn) denote the closed absolutely convex

envelope of \ £ fr: n = 1, 2, ...[ in Ca(X). By Theorem 4, CC(X) and
(.r = 1 J

Cc(uX) have the same series with property (O). It follows from (14, Lemma 1),
as in the corollary to Theorem 1, that for each such series S/n, the closed absolutely

convex envelope of < £ / » : n = 1, 2, ...f in C^uA') is compact, and so
(.«• = ! J

/*(2/n) is compact in Ca(X). The topology % on C(A')' of uniform convergence
on all sets of the form A(Ifn) is then a topology of the dual pair (C(X)', C{X)).

The celebrated results of L. Nachbin (8) and T. Shirota (11) show that
Cc(pX) is bornological, so that by hypothesis and the remark following
Proposition 2 of (14), C(vX)' is complete in the topology t] of uniform conver-
gence on the sets (A(Ifn))

D.
An argument similar to that in the first paragraph of the proof of Theorem 7

then establishes the following.
Theorem 8. . In the above notation, if Cc(vX) is sequentially complete, the

^-completion of C(X)' is C(pX)' with the topology n.

Remark. It may seem more natural so assume in Theorem 5 (ii) that
Cc(vX) is quasicomplete and in Theorem 8 that CC(X) is sequentially complete.
However, S. Warner has shown that quasicompleteness and completeness are
equivalent for such function spaces (15, Theorem 1) and as pointed out by
H. Buchwalter, if CC(X) is sequentially complete so also is Cc(uX) (1, following
proof of 4.4).

Some results related to the material of this section are mentioned in (6).

4. a-barrelled and barrelled spaces
A separated locally convex space is said to be a-barrelled if each weak*

bounded sequence in its dual space forms an equicontinuous set. In (2,
Theoreme 4.1), H. Buchwalter and J. Schmets consider conditions equivalent to
<7-barrelledness for CC(X); in particular they show that CC(X) is <r-barrelled if
and only if [C(Z)']t is sequentially complete. Theorem 10 is the analogue of
this result for the barrelled case. Theorem 9 contains some further conditions
equivalent to tr-barrelledness.

A real separated locally convex space E with dual E' is said to have property
(J) if for each x e E and each non-empty a(E', .Enclosed bounded set B there
exists x' e £ such that

<x,x'> = sup{<x,/>: y'eB}.

The following characterisation of property (J) may be well known. A proof is
included for completeness.

Lemma. E has property (J) if and only if each a(E', E)-bounded sequence has
a a(E', E)-cluster point.
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Proof. Let B be any non-empty a{E', £)-closed bounded set and let xeE.
Choose a sequence (x'n) in B such that

<x,x;>-*sup{<x,/>: y'sB}.
If (x'n) has a a{E', £)-cluster point x', then x' e B and

<x, x'> = sup {<x, / > : y'eB}.

This establishes the sufficiency of the condition.
Now suppose that (x'n) is a <x(£", £)-bounded sequence in £" which has no

a{E', ^-cluster point. Let x' be a o{E*, £)-cluster point of (x^). [E* denotes
the algebraic dual of E.) Since x' ^ 0, there exists xeE such that <x, x'>>0.
Choose a subsequence (y'n) of (x̂ ,) such that <x, JO-><X, x'> and construct a
subset -B of E' as follows:

(a) if there is a subsequence (z^) of (y'n) such that

if not and there is a subsequence (w )̂ of (^) such that

, x'} (n = l, 2, ...),

p { ; }
(c) if neither of these conditions is satisfied, there is a subsequence (u'n) of

(y'n) such that
<x, u;> = <x, x'> ( n = l , 2 , ...).

In each case 5 is a(E', jE)-closed and bounded and x does not attain its
supremum on B. This establishes the necessity of the condition.

A separated locally convex space is said to be sequentially barrelled if each
weak* null sequence forms an equicontinuous set (16, Section 4). Although
there are sequentially barrelled spaces which are not c-barrelled, the two ideas
coincide for CC(X).

Theorem 9. The following are equivalent:
(i) CC(X) is o-barrelled;

(ii) CC(X) is sequentially barrelled;
(iii) CC(X) has property (J);
(iv) each absolutely convex bounded metrisable subset of \C(Xy]a is equi-

continuous.
Proof. It is clear that (i)=>(ii). The proof that (ii)=>(i) is a slight modifica-

tion of the proof of (2, Theoreme 4.1, (e)=>(a)). Let (/in) be a bounded sequence
in {C{X)'~]a. Then (l/«K->0 in [C(A-)']ff. Thus if Cc(X) is sequentially
barrelled,

supp {nn: n = 1, 2, ...} = supp {(l/n)nn: n = 1, 2, ...}
is compact, and the rest follows as in (2).
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(i)=>(iii). This follows immediately from the Lemma.
(iii)=>(i). If CC(Z) has property (/), [C(Xy]a must be sequentially complete

by the Lemma. The result now follows by (2, Theoreme 4.1, (b)o(a)).
(i)=>(iv). Let B be any absolutely convex bounded metrisable subset of

[C( *")']„. By (5, Proposition 1.3 and Theorem 1.4), the closure B of B in
[C^) ' ] , , is also metrisable, and by hypothesis it is countably compact. B is
therefore compact in \_C(X)'~\a, and since a compact metric space is separable, it
follows that B, and therefore also B, is equicontinuous.

(iv)=>(i). Let (//„) be any Cauchy sequence in [C{X)'~\a. By (5, Corollary to
Theorem 1.4), the closed absolutely convex envelope of {/*„: n = 1, 2, ...} in
[C(X)'~\a is metrisable and therefore equicontinuous. It now follows that
\C(X)'~\a is sequentially complete and the result follows as in (iii)=>(i).

Theorem 10. CC(X) is barrelled if and only if [C(X)'~\Z is quasicomplete.

Proof. If CC(X) is barrelled, [C(X)'~]a is quasicomplete. This implies that
[C(Ar)']t is also quasicomplete.

To establish the reverse implication, it is enough to show that each non-
empty closed bounded subset of X is compact (8, Theorem 1; 11, Theorem 1).
Let Y be such a subset and let !F be an ultrafilter in Y. Then as in the proof of
(11, Theorem 1):

(i) & converges to an element x of vX;
(ii) <0={{5X: xeG}: Ge&} is an ultrafilter in B = {8X: xeY} and for

each/eC(A"), lim </, «?> =/°(x).

Since [C(Af)']t is quasicomplete it is also sequentially complete, and so
CC(X) is ex-barrelled (2, Theoreme 4.1). B is bounded in [C(X)']a and therefore
each sequence in B has a cluster point in \C(X)'~\a. Since [QA')'], is quasi-
complete, it follows from Eberlein's theorem that B is relatively compact in
[C(X)'~\a. The linear form f->f°(x) must therefore be an element of C(X)'.
Consequently xe X. Since Yis closed in X,xe Yand Yis therefore compact.

Added in Proof: After submission of this note, papers (17) and (18) appeared.
Corollary 7.4 of (17) contains a generalisation of Theorem 1 while Theorem 10.6
of (18) is a version of this result. In both cases the methods used are quite
different from these employed here.
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